
Safe and Secure Software
Ada 2005An Invitation to

Safe Typing
2

Courtesy of

The GNAT Pro Company
John Barnes

9

Safe typing is not about preventing heavy-handed use of the keyboard, although
it can detect errors made by typos!

Safe typing is about designing the type structure of the language in order to
prevent many common semantic errors. It is often known as strong typing.

Early languages such as Fortran and Algol treated all data as numeric types.
Of course, at the end of the day, everything is indeed held in the computer as a
numeric of some form, usually as an integer or floating point value and usually
encoded using a binary representation. Later languages, starting with Pascal,
began to recognize that there was merit in taking a more abstract view of the
objects being manipulated. Even if they were ultimately integers, there was
much benefit to be gained by treating colors as colors and not as integers by
using enumeration types (just called scalar types in Pascal).

Ada take this idea much further as we shall see, but other languages still treat
scalar types as just raw numeric types, and miss the critical idea of abstraction,
which is to distinguish semantic intent from machine representation. The Ada
approach provides more opportunities for detecting programming errors.

Using distinct types

Suppose we are monitoring some engineering production and checking for
faulty items. We might count the number of good ones and bad ones. We want to
stop production if the number of bad ones reaches some limit and perhaps also
stop when the number of good ones reaches some other limit. In C or C++ we
might have variables

int badcount, goodcount;
int b_limit, g_limit;

and then perhaps
badcount = badcount + 1;
...
if (badcount == b_limit) { ... };

and similarly for the good items. Since everything is really an integer, there is
nothing to prevent us writing by mistake

if (goodcount == b_limit) { ... }

where we really should have written g_limit. Maybe it was a cut and paste error
or a simple typo (g is next to b on a qwerty keyboard). Anyway, since they are
integers the compiler will be happy even if we are not.

We could do the same in any language. But Ada gives us the opportunity to
be more precise about what we are doing. We can write

10

type Goods is new Integer;
type Bads is new Integer;

These declarations introduce new types, which have all the properties of the
predefined type Integer (such as operations + and –) and indeed are
implemented in the same way, but are nevertheless distinct. We can now write

Good_Count, G_Limit: Goods;
Bad_Count, B_Limit: Bads;

and now we have quite distinct groups of entities for our manipulation; any
accidental mixing will be detected by the compiler and prevent the incorrect
program from running. So we can happily write

Bad_Count := Bad_Count + 1;

if Bad_Count = B_Limit then

but are prevented from writing
if Good_Count = B_Limit then -- illegal

since this is a type mismatch.
If we did indeed want to mix the types, perhaps to compare the bad items and

good items then we can do a type conversion (known as a cast in other
languages) to make the types compatible. Thus we can write

if Good_Count = Goods(B_Limit) then

Another example might be when computing the percentage of bad objects,
where we can convert both counts to the parent type Integer thus

100 * Integer(Bad_Count) / (Integer(Bad_Count)+Integer(Good_Count))

We can use the same technique to avoid accidental mixing of floating types.
Thus when dealing with weights and heights in the chapter on Safe Syntax,
rather then

My_Height, My_Weight: Float;

it would better to write
type Inches is new Float;
type Pounds is new Float;

My_Height: Inches := 68.0;
My_Weight: Pounds := 168.0;

and then confusion between the two would be detected by the compiler.

Safe and Secure Software: An invitation to Ada 2005

11

Enumerations and integers

In the chapter on Safe Syntax we discussed an example of a railroad crossing
which included a test

if (the_signal == clear) { ... };

if The_Signal = Clear then ... end if;

in C and Ada respectively. In C the variable the_signal and associated constants
such as clear might be declared thus

enum signal {
 danger,
 caution,
 clear
};

enum signal the_signal;

This convenient notation in fact is simply a shorthand for defining constants
danger, caution and clear of type int. And the variable the_signal is also of type
int.

As a consequence, nothing can prevent us from assigning a nonsensical value
such as 4 to the_signal. In particular, such a nonsensical value might arise from
the use of an uninitialized variable. Moreover, suppose other parts of the
program are concerned with chemistry and use states anion and cation; nothing
would prevent confusion between cation and caution. We might also be dealing
with girls' names such as betty and clare or weapons such as dagger and spear.
Nothing prevents confusion between dagger and danger or clare and clear.

In Ada we write
type Signal is (Danger, Caution, Clear);

The_Signal: Signal := Danger;

and no confusion can ever arise since an enumeration type in Ada truly is a
different type and not a shorthand for an integer type. If we did also have

type Ions is (Anion, Cation);
type Names is (Anne, Betty, Clare, ...);
type Weapons is (Arrow, Bow, Dagger, Spear);

then the compiler would prevent the compilation of a program that mixed these
things up. Moreover the compiler would prevent us from assigning to Clear or
Danger since these are literals and this would be as nonsensical as trying to
change the value of an integer literal such as 5 by writing

5 := 2 + 2;

 Safe typing

12

At the machine level the various enumeration types are indeed encoded as
integers and we can access the encodings if we really need to, by using the
attribute Pos thus

Danger_Code: Integer := Signal'Pos(Danger);

We can also specify our own encodings, as we shall see in the chapter on Safe
Communication.

Incidentally, a very important built-in type in Ada is the type Boolean, which
formally has the declaration

type Boolean is (False, True);

The result of a test such as The_Signal = Clear is of the type Boolean, and there
are operations such as and, or, not which operate on Boolean values. It is never
possible in Ada to treat an integer value as a Boolean or vice versa. In C it will
be recalled, tests yield integer values and zero is treated as false, and nonzero as
true. Again we see the danger in

if (the_signal == clear)
{
 ...
};

Omitting one equals turns the test into an assignment and because C permits an
assignment to act as an expression the syntax is acceptable. The error is further
compounded since the integer result is treated as a Boolean for the test. So
altogether C has several pitfalls illustrated by the one example
▪ using = for assignment,
▪ allowing assignments as expressions,
▪ treating integers as Booleans in conditional expressions.
Most of these flaws have been carried over into C++. None of these issues are
present in Ada.

Constraints and subtypes

It is often the case that we know that the value of a certain variable is always
going to be within some meaningful range. If so we should say so and thereby
make explicit in the program some assumption about the external world. Thus
My_Weight could never be negative and would hopefully never exceed 300
pounds. So we can declare

My_Weight: Float range 0.0 .. 300.0;

Safe and Secure Software: An invitation to Ada 2005

13

or if we had been methodical programmers and had previously declared a
floating type Pounds then

My_Weight: Pounds range 0.0 .. 300.0;

If by mistake the program generates a value outside this range and then attempts
to assign it to My_Weight thus

My_Weight := Compute_Weight(...);

then the exception Constraint_Error will be raised (or thrown) at run time. We
might handle (or catch) this exception in some other part of the program and
take remedial action. If we do not, the program will stop and the runtime system
will produce an error message indicating where the violation occurred. This all
happens automatically – appropriate checks are inserted into the compiled code.

This idea of subranges was first introduced in Pascal and improved in Ada. It
is not available in most other languages and we would have to program our own
checks all over the place but more likely we wouldn't bother, and any error
resulting from violating these bounds would be that much harder to detect.

If we knew that every weight to be dealt with by the program was in a
restricted range, then rather than putting a constraint on every variable
declaration we can impose it on the type Pounds in the first place.

type Pounds is new Float range 0.0 .. 300.0;

On the other hand if some weights in the program are unrestricted and it is only
the weight of people that are known to lie in a restricted range then we can write

type Pounds is new Float;
subtype People_Pounds is Pounds range 0.0 .. 300.0;

My_Weight: People_Pounds;

We can also apply constraints and declare subtypes of integer types and
enumeration types. Thus when counting good items we would assume that the
number was never negative and perhaps that it would never exceed 1000. So we
might have

type Goods is new Integer range 0 .. 1000;

If we just wanted to ensure that it was never negative but did not wish to impose
an upper limit then we could write

type Goods is new Integer range 0 .. Integer'Last;

where Integer'Last gives the upper value of the type Integer. The restriction to
positive or nonnegative values is so common that the Ada language provides the
following built-in subtypes:

 Safe typing

14

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

The type Goods could then be declared as
type Goods is new Natural;

and this would just impose the lower limit of zero as required.
As an example of a constraint with an enumeration type we might have

type Day is (Monday, Tuesday, Wednesday, Thursday, Friday,
 Saturday, Sunday);
subtype Weekday is Day range Monday .. Friday;

and then we would be prevented from assigning Sunday to a variable of the
subtype Weekday.

Inserting constraints as in the above examples may seem to be tiresome but
makes the program clearer. Moreover, it enables the compiler and runtime
system to verify that the assumptions being expressed by the constraints are
indeed correct.

Arrays and constraints

An array is an indexable set of things. As a simple example, suppose we are
playing with a pair of dice and wish to record how many throws of each value
(from 2 to 12) have been obtained. Since there are 11 possible values, in C we
might write

int counters[11];

int throw;

and this will in fact declare 11 variables referred to as counters[0] to
counters[10] and a single integer variable throw.

If we wish to record the result of another throw then we might write:
throw = ... ;

counters[throw–2] = counters[throw–2] + 1;

Note the need to decrement the throw value by 2, since C arrays are always
zero-indexed (that is, have a lower bound of zero). Now suppose the counting
mechanism goes wrong (some joker produces a die with 7 spots perhaps or
maybe we are generating the throws using a random number generator and we
have not programmed it correctly) and a throw of 13 is generated. What
happens? The C program does not detect the error but simply computes where

Safe and Secure Software: An invitation to Ada 2005

15

counters[11] would be and adds one to that location. Most likely this will be the
location of the variable throw itself since it is declared after the array and it will
become 14! The program just goes hopelessly wrong.

This is an example of the infamous buffer overflow problem. It is at the heart
of many serious and hard-to-detect programming problems. It is ultimately the
loophole which permits viruses to attack systems such as Windows. This is
discussed further in Chapter 7 on Safe Memory Management.

Now consider the same program in Ada, we can write
Counters: array (2 .. 12) of Integer;

Throw: Integer;

and then
Throw := ... ;

Counters(Throw) := Counters(Throw) + 1;

And now if Throw has a rogue value such as 13 then since Ada has runtime
checks to ensure that we cannot read or write to a part of an array that does not
exist, the exception Constraint_Error is raised and the program is prevented
from running wild.

Note that Ada gives control over the lower bound of the array as well as the
upper bound. Array indices in Ada do not all start at zero. Lower bounds in real
programs are more often one than zero. Specifying the lower bound as 2 in the
above example means that the variable throw can be used directly in the index,
without the complication of deciding on and subtracting the appropriate offset as
in the C version.
The problem with the dice program was not so much that the upper bound of the
array was exceeded (that was the symptom) but rather that the value in Throw
was out of bounds. We can catch the mistake earlier by declaring a constraint on
Throw thus

Throw: Integer range 2 .. 12;

and now Constraint_Error is raised when we try to assign 13 to Throw. As a
consequence the compiler is able to deduce that Throw always has a value
appropriate to the range of the array, and no checks will actually be necessary
for accessing the array using Throw as an index. Indeed, placing a constraint on
variables used for indexing typically reduces the number of runtime checks
overall. Incidentally, we can reduce the double appearance of the range 2 .. 12
by writing

Throw: Integer range 2 .. 12;
Counters: array (Throw'Range) of Integer;

 Safe typing

16

or even more clearly:
subtype Dice_Range is Integer range 2 .. 12;
Throw: Dice_Range;
Counters: array (Dice_Range) of Integer;

The advantage of only writing the range once is that if we need to change the
program (perhaps adding a third die so that the range becomes 3 .. 18) then this
only has to be done in one place.

Range checks in Ada are of enormous practical benefit during testing and can
be turned off for a production program. Ada compilers are not unique in
applying runtime checks in programs. The Whetstone Algol 60 compiler dating
from 1962 did it. Ada (like Java) specifies the checks in the language definition
itself.

Perhaps it should also be mentioned that we can give names to array types as
well. If we had several sets of counter values then it would be better to write

type Counter_Array is array (Dice_Range) of Integer;
Counters: Counter_Array;
Old_Counters: Counter_Array;

and then if we wanted to copy all the elements of the array Counters into the
corresponding elements of the array Old_Counters then we simply write

Old_Counters := Counters;

Giving names to array types is not possible in many languages. The advantage
of naming types is that it introduces explicit abstractions, as when counting the
good and bad items. By telling the compiler more about what we are doing, we
provide it with more opportunities to check that our program makes sense.

Real errors

The title of this section is an example of those nasty puns so hated by the
software pioneer Christopher Strachey as mentioned in the Conclusion. This is
about accuracy in arithmetic and in particular with real as opposed to integer
types.

In floating point arithmetic (using types such as real in Pascal, float in C and
Float in Ada) the computation is done with the underlying floating point
hardware. Floating point numbers have a relative accuracy. A 32-bit word might
allocate 23 bits for the mantissa, one bit for the sign and 8 bits for the exponent.
This gives an accuracy of 23 binary digits or about 7 decimal digits.

So a large value such as 123456.7 is accurate to one decimal place, whereas a
very small value such as 0.01234567 is accurate to eight decimal places, but in

Safe and Secure Software: An invitation to Ada 2005

17

all cases the number of significant digits is always 7. So the accuracy is relative
to the magnitude of the number.

Relative accuracy works well most of the time but not always. Consider the
representation of an angle giving the bearing of a ship or rocket. Perhaps we
would like to hold the accuracy to a second of arc. Remember that there are 60
seconds in a minute, 60 minutes in a degree and 360 degrees in a whole circle.

If we hold the angle as a floating point number
float bearing;

then the accuracy at 360 degrees will be about 8 seconds which is not good
enough, whereas the accuracy at 1 degree will be about 1/45 second which is
unnecessary. We could of course hold the value as an integral number of
seconds by using an integer type

int bearingsecs;

This works but it means we have to remember to do our own scaling for input
and display purposes.

But the real trouble with floating point is that the accuracy of operations such
as addition and subtraction is affected by rounding errors. If we subtract two
nearly equal values then we get cancellation errors. And of course certain
numbers will not be held exactly. If we have a stepping motor which works in
1/10 degree steps then because 0.1 cannot be held exactly in binary the result of
adding 10 steps will not be exactly one degree at all. So even if the accuracy
required is quite coarse so that the notional accuracy is more than adequate the
cumulative effect of tiny computational errors can be unbounded.

Scaling everything to use integers is acceptable for simple applications but
when we have several types held as scaled integers and we have to operate on
several together we often get into problems and have to do our own scaling
(perhaps even by using raw machine operations such as shifting). This is all
prone to errors and difficult to maintain.

Ada is one of the few languages to provide fixed point arithmetic. This does
the scaling automatically for us. Thus for the stepping motor we might declare

type Angle is delta 0.1 range –360.0 .. 360.0;
for Angle'Small use 0.1;

and this will hold the values internally as scaled integers that represent multiples
of 0.1 but we can think about them as the abstract values they represent, that is
degrees and tenths of degrees. And all arithmetic operations will not suffer from
rounding errors.

In summary, Ada has two forms of real arithmetic

 Safe typing

18

▪ floating point, which provides relative accuracy,
▪ fixed point, which provides absolute accuracy.

Ada also supplies a specialized form of fixed point for decimal arithmetic,
which is the standard model for financial calculations.

The topic of this section is rather specialized but it does illustrate the breadth
of facilities in Ada and the care taken to encourage safety in numerical
calculations.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_2.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-7.pdf
	back.pdf

