
LESSONS FROM VERIFYING LEGACY JAVA CODE
APPLIED TO C++ SPECIFICATION & VERIFICATION

David R. Cok

CEA - LSL
 and
Independent consultant

28 June 2018

2018-06-28 | David COK

• Describe high-level lessons from specifying and verifying several
industrial (Java) libraries

• Summarize some outstanding technical/language feature issues
from those verification projects

• Present language designs (of some features) for ACSL++, a
specification language for C++ that builds on ACSL

MAIN GOALS OF THIS TALK

!2

2018-06-28 | David COK

• Long-term development of JML and OpenJML  
(open source - openjml.org)
• aicas (equipment grant)
• NSF CCF0916350 (Leavens & Singleton, at UCF)
• NSF ACI-1314674 (Cok, at GrammaTech)
• Amazon (Automated Reasoning Group)  

• Specific verification projects
• mostly under NDA
• 1 publication with Amazon at VSTTE

• C++ Specification language
• CEA
• VESSEDIA (EC project) - vessedia.eu

ACKNOWLEDGEMENTS

!3

2018-06-28 | David COK

• NSF Disclaimer: This material is based upon work supported by the National Science Foundation under the
grants listed above. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

• Portions of this work were funded/supported by the VESSEDIA project, funded from the European Union's
Horizon 2020 research and innovation programme under grant agreement No. 731453.

The work described here is being published in:

• (accepted) VSTTE 2018: Practical Methods for Reasoning about Java 8’s Functional Programming Features
(David R. Cok, Serdar Tasiran)

• (accepted) FTfJP 2018: Reasoning about Functional Programming in Java and C++ (David R. Cok)

• (accepted) FTfJP 2018: Specification Idioms from Industrial Experience (David R. Cok)

• (invited) ISOLA 2018: Java Automated Deductive Verification in Practice: Lessons from industrial proof-
based projects (David R. Cok)

• (invited) ISOLA 2018: Java Verification: Static, Dynamic and In-between (David R. Cok) 

• Complementary: ICSE 2018 poster: An Algorithm and Tool to Infer Practical Postconditions (Singleton,
Leavens, Rajan,. Cok)

ACKNOWLEDGEMENTS

!4

2018-06-28 | David COK

VERIFYING LEGACY JAVA SOFTWARE —
HIGH-LEVEL OBSERVATIONS

!5

2018-06-28 | David COK

• Modular verification
• Requires (quite a bit of) spec writing [spec inference on its way]
• A lot of gain from partial work

• precluding runtime exceptions
• verifying functional behavior of critical (but not all) pieces

• But complete modular S&V gives confidence in usefulness and
correctness of specs

VERIFICATION PARADIGM

Legacy Software
Specifications for 
each method

For each method/function separately:
check that implementation is consistent 
with specification and specs of called methods

!6

2018-06-28 | David COK

VERIFICATION PARADIGM - OPENJML

For each method/function separately:
check that implementation is consistent  
with specification and specs of called methods

Compiler parse, name resolution and type-checking

Translate into an IR, simplifying and including all assertions
to be checked

Translate into a logical language (SMT-LIB)

SMT solver checks each verification condition

(Lots of room for engineering variation and optimization)
(Variation: use interactive provers (e.g. Coq, PVS) instead of automated (SMT))

!7

2018-06-28 | David COK

CURRENT PROJECTS

• 3 current projects to S&V legacy software + 1 about to start
• Java, some C
• Java S&V performed using JML and the OpenJML tool

• Legacy:
• code already written
• heavily tested
• specify and verify the code as is

• Important to clients:
• software is being used
• software is being actively developed
• software is safety- or security- or correctness- critical

• Industrial scale:
• significant abstraction
• significant amount of code (but manageable in ~101 p-m)
• more struggles with scale, information hiding and  

data marshaling than intricate algorithms
!8

2018-06-28 | David COK

DEMO - OPENJML

!9

2018-06-28 | David COK!10

Yellow markers are locations of errors.
Hovering over marker shows error message.
Hovering over variable/expression shows counterexample value

SCREENSHOT OF OPENJML DEMO

2018-06-28 | David COK!11

SCREENSHOT OF OPENJML DEMO

Error is an arithmetic range error
i: Minimum int
-i: Minimum int
:: negation not allowed for the minimum int
So add a precondition

2018-06-28 | David COK!12

SCREENSHOT OF OPENJML DEMO

Precondition added — verification still fails
i: 1610612712
-i: -161061712
Hovering over + : i + (-i) is 0
:: Operator precedence is wrong
:: Add parentheses

2018-06-28 | David COK!13

SCREENSHOT OF OPENJML DEMO

Parentheses added — verification still fails
i: #x7ffffffc — close to but not max int
return expression - min integer
:: Padding a number within PADSIZE of the maximum
integer causes an overflow
:: Add a precondition limiting i

2018-06-28 | David COK!14

SCREENSHOT OF OPENJML DEMO

Added the additional precondition.
Now verification succeeds.

2018-06-28 | David COK!15

SCREENSHOT OF OPENJML DEMO

General point of OpenJML Demo:

One spends much more time debugging specs/proofs
than on successful proofs.

Demo showed one particular bit of functionality -
the ability to explore a counterexample: variable
values, expression values, also control flow and values
in specifications.

2018-06-28 | David COK

CHALLENGES

!16

2018-06-28 | David COK

CHALLENGE 1: DEVELOPERS AND SPECIFIERS

Developers: design, write,  
test, release code

Specifiers: do formal  
methods stuff

(code)

(nothing)

History and current state:

Developers: design, write,  
test, release code

Specifiers: do formal  
methods stuff

(code)

(bug reports; code comments)  
(specifications separate from code)

Increasingly:

Integrated team (perhaps with specializations) 
 - formal specifications closely associated with code
 - verification checks part of continuous integration

Future/ideal:

!17

2018-06-28 | David COK

CHALLENGE 1: DEVELOPERS AND SPECIFIERS

• Building trust

• Demonstrating value

• Tools that are robust

• Tools that non-experts can use

• Tools that scale to “real” code

• Target software that is worth the effort

• Specifications that add value to the code, not just clutter it  
(readable, readily understandable, adds insight, is not duplicative)  
e.g. specifications can be more verbose than the code itself

!18

2018-06-28 | David COK

CHALLENGE 2: SCALE

Projects so far:
• 104-105 of LOC, about as many lines of specs
• 103 methods
• 101+ hours of verification time; 100-4 sec/method
• average of 104 lines of SMT/method
• 105-6 individual assertions

Engineering optimization needed
(along with theoretical focus on soundness and expressiveness)

• preprocessing? (or does the SMT solver do this best?)
• design of SMT translation for optimized solver execution
• breadth of SMT solver capability
• handling quantifiers (cf. Leino and Pit-Claudel)
• defaults and inference (cf. Singleton et al.)
• wisely tracking and using dependencies

!19

2018-06-28 | David COK

CHALLENGE 3: LIBRARY SPECIFICATIONS

Modern programming languages rely on
system libraries to provide many capabilities.

Correspondingly, verification environments  
need specifications of those libraries.

• Specs need to be written

• Specs need to be verified against library implementations

• Will one set of specifications be useful for all purposes?

• avoiding runtime exceptions vs. verifying functional behavior

• predominantly bit-vector vs. mathematical arithmetic

• runtime verification vs. static deductive verification

• the same set of specs for different tools?

 Library

API & SPECS

App

!20

2018-06-28 | David COK

CHALLENGE 4: VERIFYING LIBRARIES  
 (as the software deliverable)

Spec

Impl

Spec

Impl

Spec

Impl Spec must be consistent with implementation  
and be strong enough to prove uses in callers

!21

2018-06-28 | David COK

CHALLENGE 4: VERIFYING LIBRARIES

Spec

Impl

Spec

Impl

Spec must be consistent with implementation  
and be strong enough to prove uses in callers

AP
I &

 SP
EC

Library developer does
not develop clients

Spec

Impl

(client-side)

!22

2018-06-28 | David COK

CHALLENGE 4: VERIFYING LIBRARIES

Spec

Impl

Spec

Impl

Spec must be consistent with implementation  
and be strong enough to prove uses in callers

AP
I

Library developer does
not develop clients

Un
it

te
sts

Ex
am

pl
e
 

pr
og

ra
m

s

As part of development, verify against  
unit test suite, example uses of API.  
Perhaps also against actual clients.  
 
Need to have tools to check for coverage  
of such API specification testing.!23

Ac
tu

al
cli

en
ts

2018-06-28 | David COK

CHALLENGE 5: CONTINUOUS INTEGRATION

As software evolves, specifications and proofs must evolve

Make the verification part of Continuous Integration,  
along with dynamic unit testing.  

Include checks for coverage

It’s not hard: just do it (though the verification can be time-consuming)

It would help to have
• ability to replay (instead of re-find) SMT-based proofs
• dependency checking tools to minimize the  

re-verification needed for a given change
• faster proof tools

!24

2018-06-28 | David COK

CHALLENGE 6: SPECIFICATION QUALITY

Dynamic testing has measures of test coverage

What is the equivalent for specification quality?

!25

2018-06-28 | David COK

CHALLENGE 7: VERIFYING SECURITY

Verifying functional specs Program does what the specs say

Verifying security Program will not do anything else

We can specify and prove specific security properties

How do we know which properties we are missing?

!26

2018-06-28 | David COK

CHALLENGE 8: SPECIFICATION LANGUAGE  
EXPRESSIVENESS & UNDERSTANDABILITY

(Not just technical language feature expressiveness)

Verification tools prove specification and implementation  
are mutually consistent, not necessarily correct.

Do the specs match human expectations of program behavior?

Specifications must be
concise enough
understandable enough

that non-expert human review can be confident of reasonable
completeness and correctness.

Move away from traditional logic-based languages?
DSLs?
Table-based specs?

!27

2018-06-28 | David COK

CHALLENGES SUMMARY

• Developer trust

• Scale

• Library specifications

• Library verification

• Continuous integration

• Quality and completeness of specifications

• Verifying security

• Specification language expressiveness

!28

2018-06-28 | David COK

SPECIFICATION LANGUAGE FEATURES

!29

2018-06-28 | David COK

• Mathematical modeling types
• Reasoning about quantifiers and comprehensions
• Method calls in specifications

• Frame properties in callbacks [now add: functional programs]
• Specifying effects on static fields
• (Java) lazy class initialization
• Invariants of complex data structures
• Finalizers
• Specifying clients of function objects
• Specifying function objects
• Specifying libraries
• Specification for multiple tools

SPECIFICATION CHALLENGES
(from Leavens, Leino, Müller, Specification and Verification Challenges… 2006)

!30

2018-06-28 | David COK

• Mathematical modeling types
• Reasoning about quantifiers and comprehensions
• Method calls in specifications

• Frame properties in callbacks [now add: functional programs]
• Specifying effects on static fields
• (Java) lazy class initialization
• Invariants of complex data structures
• Finalizers
• Specifying clients of function objects
• Specifying function objects
• Specifying libraries
• Specification for multiple tools

SPECIFICATION CHALLENGES
(from Leavens, Leino, Müller, Specification and Verification Challenges… 2006)

!31

All of these are still challenges
in practical application

2018-06-28 | David COK

• Abstraction and refinement
• Management of invariants
• Hidden state and observational purity
• Usability: understanding and debugging proof failures
• Concurrency

ADDITIONAL SPECIFICATION CHALLENGES

!32

2018-06-28 | David COK

• Crucial to modeling or developing large-scale systems

• Not much of an issue in verifying specific algorithms

ABSTRACTION AND REFINEMENT

!33

2018-06-28 | David COK

OBSERVATIONAL PURITY

!34

2018-06-28 | David COK

OBSERVATIONAL PURITY
- HIDE IMPLEMENTATION DETAILS WITH DATAGROUPS

!35

Service object

Internal  
State//@ assigns state;

void set(Object o) { … }

//@ model public JMLDataGroup state;

private int size; //@ in state;

Service.java

2018-06-28 | David COK

OBSERVATIONAL PURITY
- HIDE IMPLEMENTATION DETAILS WITH DATAGROUPS

!36

Service object

Internal  
State//@ assigns state;

void set(Object o) { … }

//@ model public JMLDataGroup state;

private int size; //@ in state;

But frame conditions keep bubbling out to transitive callers 
even ones that need not know that Service is even being used.

Need to have abstraction layers of frame conditions

Service.java

//@ assigns s.state;
void foo(Service s) {
 s.set(…);
}

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE

!37

In some cases the internal state does not affect the rest of the program:

• A cache
• Log output

Can we omit changes to some internal state from frame conditions?

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE: CACHE

!38

class Cache {

public:
 //@ model JMLDataGroup state;

private:
 boolean isCached = false; //@ in state;
 int value; //@ in state;

public:

 //@ assigns state;
 int get() {
 if (!isCached) {
 value = computeValue();
 isCached = true;
 }
 return value;
 }

}

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE: CACHE

!39

class Cache {

public:
 //@ model JMLDataGroup state;

private:
 boolean isCached = false; //@ in state;
 int value; //@ in state;

public:

 //@ assigns state \nothing;
 int get() {
 if (!isCached) {
 value = computeValue();
 isCached = true;
 }
 return value;
 }
}

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE: CACHE

!40

class Cache {

public:
 //@ model JMLDataGroup state;

private:
 boolean isCached = false; //@ in state;
 int value; //@ in state;

public:
 //@ assigns state \nothing;
 int get() {
 if (!isCached) {
 value = computeValue();
 isCached = true;
 }
 return value;
 }

 //@ pure
 boolean isCached() {
 return isCached;
 }
}

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE: CACHE

!41

class Cache {

public:
 //@ model JMLDataGroup state;

private:
 boolean isCached = false; //@ in state;
 int value; //@ in state;

public:
 //@ assigns state \nothing;
 int get() {
 if (!isCached) {
 value = computeValue();
 isCached = true;
 }
 return value;
 }

 //@ pure
 boolean isCached() {
 return isCached;
 }
}

Observes internal state

2018-06-28 | David COK

OBSERVATIONAL PURITY
- IGNORED STATE: CACHE

!42

class Cache {

public:
 //@ model JMLDataGroup state;

private:
 boolean isCached = false; //@ in state;
 int value; //@ in state;

public:
 //@ assigns state \nothing;
 int get() {
 if (!isCached) {
 value = computeValue();
 isCached = true;
 }
 return value;
 }

 //@ pure
 boolean isCached() {
 return isCached;
 }
}

isCached();
get();
isCached();

If get() does not modify program
state then the two isCached()
calls must return the same value.

If state is observed, it may not
be ignored!

[Proof obligations are similar to
assuring information flow properties]

Observes internal state

2018-06-28 | David COK

ACSL++

!43

2018-06-28 | David COK

• ACSL++: A specification language for C++ programs
• Part of VESSEDIA — vessedia.eu 

 

• Create a design document for ACSL++
• Build on ACSL - http://frama-c.com  

• Build on STANCE - http://www.stance-project.eu  

• Leverage experience of other specification languages, O-O and otherwise,
e.g., JML, Spec#, Dafny, SPARK, …

• Also leverage experience with industrial scale projects

• Then, implement, as possible and time permits
• Expansion of Frama-C’s frama-clang plug-in: C++ -> C -> Frama-C  

ACSL++ GOALS

!44

http://vessedia.eu
http://frama-c.com
http://www.stance-project.eu

2018-06-28 | David COK

• Simple items
• Namespaces
• Classes (aggregates)
• Templates
• Exceptions
• Default values of formal parameters
• Attributes
• Enums
• Defensive programming
• Pure functions
• Types
• Invariants
• Conversions and casts, implicit and explicit

• New concepts
• Inheritance and abstraction, access control
• Changes to hidden state
• Functional programming

• Misc
• Access control

C++ ISSUES

!45

2018-06-28 | David COK

TEMPLATES

!46

2018-06-28 | David COK

C++ TEMPLATES

!47

• C++’s generic programming mechanism: here no operations required of T other than copying

template <class T> class Stack { Stack<int> s;
 Stack<T> push(const T& item);
 void pop();
 T& top();
}

• But often there are implicit comparison or arithmetic or other operations (could even require specific methods)

template <class T> class List {
 void sort(); <———————————— Needs comparison
 double average(); <—————————— Needs arithmetic
}

• C++ has no means (other than documentation or shared knowledge) to specify what operations are needed. 

• Type problems are not discovered until compilation if a template is instantiated with inappropriate types. 
 

• Similarly: no place to put specifications of operations needed for template parameters.  
So one can’t reason about templates apart from specific instantiations.

2018-06-28 | David COK

C++ CONCEPTS

!48

• Concepts is a proposal (perhaps for C++20) to include a constraint language for templates. 
An example taken from the (very draft) proposal

template <class T>
 concept C = requires(T a, T b, const T c, const T d) {
 c == d; // #1 
 a = std::move(b); // #2 
 a = c; // #3
};

• The requires construct lists syntax that elements of a type must satisfy for the type to be considered to adhere to the concept C 

• Another example: type T and U that can be compared. == and != must produce results convertible to Boolean. 
These don’t explicitly say

• t == u and u == t give the same result
• t == u and t != u give opposite boolean results

 (though there are proposals for some portion of such functionality.)

template <class T, class U> 
concept __WeaklyEqualityComparableWith =
 requires(const remove_reference_t<T>& t,
 const remove_reference_t<U>& u) {
 t == u; requires Boolean<decltype(t == u)>;
 t != u; requires Boolean<decltype(t != u)>;
 u == t; requires Boolean<decltype(u == t)>;
 u != t; requires Boolean<decltype(u != t)>;
};

2018-06-28 | David COK

C++ CONCEPTS
WHERE TO PUT THE SPECIFICATIONS?

!49

• (Early) Draft design

• piggyback on the Concepts idea
• include (in ACSL++ annotations) declarations with conventional method specifications

• If there are generic specifications and specifications in a specialization:  
both sets of specs apply, as if they were additional behaviors

template <class T> 
concept EqualityComparable =
 requires(const remove_reference_t<T>& t,
 const remove_reference_t<T>& u) {
 t == u; requires Boolean<decltype(t == u)>;
 t != u; requires Boolean<decltype(t != u)>;
 u == t; requires Boolean<decltype(u == t)>;
 u != t; requires Boolean<decltype(u != t)>;

 /*@ behavior neq
 @ requires \true;
 @ ensures (t!= u) == !(t == u);
 @ throws {…} \false;
 @ boolean operator!=(const T& t, const T& u);
 @*/
};

2018-06-28 | David COK

C++ CONCEPTS
VERIFICATION CONDITIONS

!50

• When writing a template

• use concept names to characterize template arguments

• implementations of template functions can be verified
using the specs of methods from the concept 
 
 

• When using (instantiating) a template

• The actual template argument must obey the declared
concept of the formal template argument

2018-06-28 | David COK

FUNCTIONAL PROGRAMMING IN C++  
(and Java)

!51

2018-04-23 | COK David

• Lambda expressions
auto addone = [](int i) { return i+1; }

 effectively a class with an operator() method

• Implicit iteration (combinators)
 transform(v.begin(), v.end(), v.begin(), addone);

• Computing (composing) function objects - properties of output
function depend on input functions

 auto fg = compose(f, g);

FUNCTIONAL PROGRAMMING IN C++

!52

2018-04-23 | COK David

auto addone = [](int i) { return i+1; }

• Properties of a function object:
• Pre/frame/post/footprint conditions
• Define a specification type that holds those pre/frame/post conditions

/*@ class Increment {
 requires i < INT_MAX;
 assigns \nothing;
 ensures \result == (i+1);
 int operator()(int i);
} @*/

auto /*@{ Increment }@*/ addone = [](int i) { return i+1; }

• Clients of addone can see addone’s specification in Increment.

FUNCTIONAL PROGRAMMING IN C++
LAMBDA EXPRESSIONS

!53

2018-04-23 | COK David

set(Supplier<T> s) {
 this.x = s.get();
}

set(() -> t)

FUNCTIONAL PROGRAMMING IN C++
INLINING

!54

Small function; source is available

Actual argument is a literal

2018-04-23 | COK David

set(Supplier<T> s) {
 this.x = s.get();
}

set(() -> t)

FUNCTIONAL PROGRAMMING IN C++
INLINING

!55

Small function; source is available

Actual argument is a literal

Inline substitution and evaluation:

this.x = t;

2018-04-23 | COK David

set(Supplier<T> s) {
 this.x = s.get();
}

set(() -> t)

FUNCTIONAL PROGRAMMING IN C++
INLINING

!56

Small function; source is available

Actual argument is a literal

Inline substitution and evaluation:

this.x = t;

Requires source of called methods
Breaks modularity

2018-04-23 | COK David

FUNCTIONAL PROGRAMMING IN C++
MODEL METHODS

!57

Instead of the source itself, specify a method using a ‘model method’  
(abstraction/summary of the method’s implementation)

• Abstraction/summary of the method’s body
• Sometimes is a duplicate of it
• Preserves modularity

//@ behavior { this.x = s.get(); }
set(Supplier<T> s);

2018-04-23 | COK David

vector<int> v;
vector<int> w;
transform(v.begin(),v.end(),w.begin(),addone);

• Non-functional

vector<int> v;
/*@ loop_invariant 0 <= i && i <= v.size();
 loop_invariant (\forall int j; (0 <= j && j < i) ==> w[j] == v[j] + 1);
 @*/
for (int i = 0; i < v.size(); ++i) {
 w[i] = addone(v[i]);
}

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!58

If the function argument is a function  
literal (such as a lambda expression),
then it can be inlined along with a  
loop implementing transform and  
analyzed as a traditional loop.

2018-04-23 | COK David

vector<int> v;
vector<int> w;
transform(v.begin(),v.end(),w.begin(),addone);

• Non-functional

vector<int> v;
/*@ loop_invariant 0 <= i && i <= v.size();
 loop_invariant (\forall int j; (0 <= j && j < i) ==> w[j] == v[j] + 1);
 @*/
for (int i = 0; i < v.size(); ++i) {
 w[i] = ((v[i]) + 1);
}

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!59

If the function argument is a function  
literal (such as a lambda expression),
then it can be inlined along with a  
loop implementing transform and  
analyzed as a traditional loop.

2018-04-23 | COK David

vector<int> v;
vector<int> w;
transform(v.begin(),v.end(),w.begin(),addone);

• Non-functional

vector<int> v;
vector<int> w;
auto iter = v.begin();
auto out = w.begin();
/*@ loop_invariant 0 <= \count && \count <= std::distance(v.begin(),v.end());
 loop_invariant (\forall int j; (0 <= j && j < \count) ==> w[j] == v[j] + 1);
 loop_invariant (\forall int j; (0 <= j && j < \count) ==> *(w.begin()+j) == 1 + *(v.begin()+j));
 @*/
while (iter != v.end()) {
 *out = addone(*iter);

++iter; ++out;
}

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!60

These specs combine user information:
 the effect of addone
and library information: 
 the structure of the loop

2018-04-23 | COK David

• there is no loop in user code to which to attach loop invariants 

• the loop in the library code is separated from any details of user code

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!61

2018-04-23 | COK David

vector<int> v;
vector<int> w;
transform(v.begin(),v.end(),w.begin(),addone);

Possibly:

/*@ ensures \forall int i; 0 <= i && i < rend-rbegin ==>
 *(wbegin+i) == f(*(rbegin+i));
@*/
transform(rbegin,rend,wbegin,f)

But this only works if f is a nicely pure function, without other dependence  
(and besides it is not a logic function)

Instead, we need to be able to combine
- a representation of the combinator’s actions
- and client information about the effect of the argument

That is - the spec of transform needs information about the specification of f

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!62

2018-04-23 | COK David

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!63

 In java.util.stream.Stream:

 /*@ public normal_behavior
 @ requires true;
 @ {
 @ //@ loop_invariant i == \count && 0 <= i && i <= _length;
 @ //@ decreases this._length - i;
 @ for (int i=0; i < this._length; i++) {
 @ consumer.accept(this.values[i]);
 @ }
 @ }
 @*/
 void forEachOrdered(java.util.function.Consumer<? super T> consumer);

2018-04-23 | COK David

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!64

 In client code:

 public class Test {

…

public void foo() {

…

ii = 0;
//@ loop_invariant Test.ii == \count;
//@ loop_invariant (\forall int j; j>=0 && j<\count; arr[j] == st.value[j]);
//@ loop_modifies Test.ii, Test.arr[*];
//@ inlined_loop;
st.forEachOrdered(v -> putAtI(v)); // arr[ii] = v; ii++;
//@ assert Test.ii == st.count();

//@ assert arr[4] == 5;
//@ assert (\forall int j; j>=0 && j<arr.length; arr[j] == st.value[j]);

}
}

2018-04-23 | COK David

FUNCTIONAL PROGRAMMING IN C++
IMPLICIT ITERATION

!65

 In client code:

 public class Test {

…

public void foo() {

…

ii = 0;

 //@ loop_invariant Test.ii == \count;
//@ loop_invariant (\forall int j; j>=0 && j<\count; arr[j] == st.value[j]);
//@ loop_modifies Test.ii, Test.arr[*];

 //@ loop_invariant i == \count && 0 <= i && i <= _length;
 //@ decreases _length - i;
 for (int i=0; i < _length; i++) {
 (v -> putAtI(v)).accept(st.values[i]); ————————->> putAtI(st.values[i])
 }

//st.forEachOrdered(v -> putAtI(v)); // arr[ii] = v; ii++;

//@ assert Test.ii == st.count();

//@ assert arr[4] == 5;
//@ assert (\forall int j; j>=0 && j<arr.length; arr[j] == st.value[j]);

}
}

2018-06-28 | David COK

FUNCTIONAL PROGRAMMING
SIMPLE CASES

!66

In our first Java S&V project using FP, nearly all uses of FP
could be handled by a combination of

• specification interfaces

• inlining function literals

• model programs

• combining user and library specs for implicit iteration

Did not need to handle the full generality of FP

2018-04-23 | COK David

choice(bool b, … ftrue, … ffalse) { 
 return [](int i){ return b ? ftrue(i) : ffalse(i); }
}

What should we write as the specifications of choice?

We need to be able to express the specification of the result in
terms of specifications of arguments.

[Kassios, Müller, 2011: Modular Specification and Verification of
Delegation with SMT solvers]

- No need for 2nd order functions or reasoning
- Translation can be handled by SMT solvers

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!67

2018-04-23 | COK David

[Just working with unary functions int -> int]

Precondition of f(i):
 pre(f, i) = …

Postcondition of f(i) returning r:
post(f, r, i) = …

Frame condition of f(i):
 writes(f, i) = …

Reads footprint of f(i):
 reads(f, i) = …

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!68

If we use pre(f) that returns a function,
which is the precondition, then we start  
needing to manipulate functions in SMT

2018-04-23 | COK David

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

compose(… f, … g) {  
 return [](int i){ return f(g(i)); }
}

ensures forall int i: pre(\result,i) = (pre(g,i) &&
 (forall int t : post(g,t,i) ==> pre(f,t)));

ensures forall int r,i : post(\result,r,i) =
 (exists int t: post(g,t,i) && post(f,r,t));

!69

2018-04-23 | COK David

h = compose(subone, addone);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (exists int t: post(addone,t,i) && post(subone,r,t));

assume post(h,kk,k);
assert k == kk;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!70

2018-04-23 | COK David

h = compose(subone, addone);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (exists int t: post(addone,t,i) && post(subone,r,t));

assume post(h,kk,k);
assert k == kk;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

forall int r i: post(addone, r, i) = (r == i+1)
forall int r i: post(subone, r, i) = (r == i -1)

!71

2018-04-23 | COK David

h = compose(subone, addone);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (exists int t: (t==i+1) && (r== t-1));

assume post(h,kk,k);
assert k == kk;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!72

forall int r i: post(addone, r, i) = (r == i+1)
forall int r i: post(subone, r, i) = (r == i -1)

2018-04-23 | COK David

h = compose(subone, addone);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (r == i);

assume post(h,kk,k);
assert k == kk;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!73

2018-04-23 | COK David

h = compose(subone, addone);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (r == i);

 post(h,kk,k) =
 (kk == k);

assume post(h,kk,k);
assert k == kk;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!74

2018-04-23 | COK David

h = compose(subone, bump);
int k;
int kk = h(k);
assert k == kk;

assume forall int r,i : post(h,r,i) =
 (exists int t: post(bump,t,i) && post(subone,r,t));

assume post(h,kk,k);
assert …;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

forall int r i: post(bump, r, i) = (r > i)
forall int r i: post(subone, r, i) = (r == i -1)

!75

2018-04-23 | COK David

h = compose(subone, bump);
int k;
int kk = h(k);
assert …;

assume forall int r,i : post(h,r,i) =
 (exists int t: (t>i) && (r==t-1));

assume post(h,kk,k);
assert …;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!76

forall int r i: post(bump, r, i) = (r > i)
forall int r i: post(subone, r, i) = (r == i -1)

2018-04-23 | COK David

h = compose(subone, bump);
int k;
int kk = h(k);
assert …;

assume forall int r,i : post(h,r,i) =
 (r+1 > i);

assume post(h,kk,k);
assert …;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!77

2018-04-23 | COK David

h = compose(subone, bump);
int k;
int kk = h(k);
assert …;

assume forall int r,i : post(h,r,i) =
 (r+1 > i);

assume post(h,kk,k);
assert kk >= k ;

FUNCTIONAL PROGRAMMING IN C++
COMPOSITION

!78

2018-04-23 | COK David

• Hand translations to SMT have a lot of quantification:
• provable conjectures prove very quickly
• invalid conjectures timeout on Z3, OK on CVC4

• pre and post will have different signatures for each function signature

• this same technique can be adopted for C function pointers  
(and for function objects implemented with Java anonymous classes)

• There are also rules for frame conditions and various other details

FUNCTIONAL PROGRAMMING IN C++

!79

2018-04-23 | COK David

• Want to write a stand-alone specification for  
transform(in_begin, in_end, out_begin, f);

• The specifications need to incorporate the recurrence solution of the
inductive formula corresponding to each iteration.

FUNCTIONAL PROGRAMMING IN C++
BACK TO IMPLICIT ITERATION

!80

in = in_begin;
out = out_begin;

//@ loop_invariant (\forall int j; 0<=j && j<\count;
 … accumulation of effects of \count iterations …);

for (int \count; 0 <= \count && \count < in_end-in_begin) {
 *out = f(*in); // note other implicit inputs and side effects
 in++; out++;
}

//@ ensures (\forall int j; 0<=j && j<in_end-in_begin;
 … accumulation of effects of all iterations …);

2018-04-23 | COK David

• Can do that for some cases:

FUNCTIONAL PROGRAMMING IN C++
BACK TO IMPLICIT ITERATION

!81

/*@ behavior pure:
 assumes \separated(in_begin..in_end-1, out_begin..out_begin+(in_end-1-in_begin));
 assumes (\forall int j; 0<=j<in_end-in_begin ==> \writes(f,in_begin[j]) == \empty);
 assumes (\forall int j; 0<=j<in_end-in_begin ==> \reads(f,in_begin[j]) == \empty);
 requires (\forall int j; 0<=j<in_end-in_begin ==> \pre(f,in_begin[j]));
 assigns out_begin[0 .. in_end-1-in_begin];
 ensures (\forall int j; 0<=j<in_end-in_begin ==> \post(f,out_begin[j],in_begin[j]));

 behavior pure_inplace:
 assumes in_begin == out_begin;
 assumes (\forall int j; 0<=j<in_end-in_begin ==> \writes(f,in_begin[j]) == \empty);
 assumes … reads footprint is separated from out range …
 requires (\forall int j; 0<=j<in_end-in_begin ==> \pre(f,in_begin[j]));
 assigns out_begin[0 .. in_end-1-in_begin];
 ensures (\forall int j; 0<=j<in_end-in_begin ==> \post(f,out_begin[j],\old(in_begin[j])));

 …
@*/
transform(in_begin, in_end, out_begin, f);

2018-04-23 | COK David

• Input might read past output:

FUNCTIONAL PROGRAMMING IN C++
BACK TO IMPLICIT ITERATION

!82

/*@
 behavior write_ahead:
 assumes … reads footprint, out range, writes footprint are separated …
 assumes out_begin == in_begin+1;
 requires (\forall int j; 0<=j<in_end-in_begin ==> \pre(f, … output value at j …));
 assigns \union(0,in_end-in_begin-1, \writes(f, _)), out_begin[0 .. in_end-1-in_begin];
 ensures (\forall int j; 0<=j<in_end-in_begin ==> \post(f, out_begin[j], in_begin[j]));

@*/
transform(in_begin, in_end, out_begin, f);

e.g.,

int a[100];
a[0] = 0;
transform(&a[0], &a[99], &a[1], [](int i){ return i+1; }

produces

a = 0,1,2,3,4,5,6,7,8,9,…

Updated value  
(out_begin[j-1])

2018-04-23 | COK David

• But still…

• The general case is not expressible

• Having a plethora of special cases is not ideal

• However, common cases can be specified

• … This aspect is still a work in progress

FUNCTIONAL PROGRAMMING IN C++
BACK TO IMPLICIT ITERATION

!83

2018-04-23 | COK David

• S&V is being accomplished at industrial scale
• Still takes experts
• Still takes significant effort
• But are producing results of value (not just research endeavors)
• Starting to be accepted by developers

• There are S&V project management issues to solve

• There are (encoding and reasoning) tool enhancement issues to solve

• There are new specification language issues brought about by the combination
of imperative and functional programming

• Theory and tool advancements go best hand-in-hand with practical
applications.

CONCLUSION

!84

Commissariat à l’énergie atomique et aux énergies alternatives
Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142
91191 Gif-sur-Yvette Cedex - FRANCE
www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Contacts :

Email : {david.cok@cea.fr}
Email : {david.r.cok@gmail.com}

!85

2018-06-28 | David COK

• Title: Lessons from verifying legacy Java code for C++
specification & verification

• David R. Cok

• Legacy code is typically written with no regard for specification
and verification. Consequently verification tools applied to legacy
code must support most language features and be able to scale to
the size and scope of industrial software. This talk will use case
study examples from a verification project targeting industrial
Java code to demonstrate both how verification of features in Java
8 was achieved and what challenges still remain for such projects.
Then we will illustrate how the lessons learned from that project
are informing the design of a specification language for C++.

ORIGINAL ABSTRACT

!86

2018-06-28 | David COK

• The theme for this year will be "Sound Open Source Static
Analysis for Security", with sessions on "analysis of legacy code",
"use in new developments" and "accountable software quality".
So we plan to invite speakers across critical industries (railway,
OS/networks, avionics, nuclear) and research labs (Sandia Labs,
NASA, Galois) to present their use of either Frama-C or SPARK in
these contexts. For your one-hour keynote, what we have in mind
is an overview of where sound static analysis (mostly based on
deductive verification, but could be also abstract interpretation)
can provably help with the development of higher quality / more
secure software, based on your extensive experience with the use
of formal methods for security in an industrial context. Of course,
let us know if you'd like to present something completely different,
that may be even better.

•

WORKSHOP TOPIC

!87

