m) Componolit

Secure Systems Engineering

Reimplement? Reuse? Both!
Trustworthy Systems with Genode and SPARK

Alexander Senier
Sound Static Analysis for Security Workshop

Gaithersburg, MD, June 27", 2018

About 6 Componolit
Componolit Secure Systems Engineering

m Security company based in Dresden, Germany

‘l P
m Enable customers to build secure & robust systems « ‘!
= Component-based systems ‘

= Program verification
m Focus:

= Mobile devices

= Industrial 0T

o
43‘

06/27/2018

What is SPARK? 6 gOTtPOEp?llnt
Language and toolset ecure Systems Engineering

B Programming language and tool set
m Different levels of assurance
m Adapt at your discretion

06/27/2018

What is SPARK? 6 Componolit

Secure Systems Engineering

Stone level

m No side-effects in functions
m No parameter aliasing

m No pointers

B Fewer dangerous constructs

06/27/2018 4

What is SPARK? 6 S:Ol'sntPOEanIt
Higher assurance ecure Systems Engineering

B Bronze level: Correct initialization and data flow
m Silver level: Absence of runtime errors

m Gold level: Proof key (integrity) properties

m Platinum level: Functional correctness

06/27/2018

Componolit

Secure Systems Engineering

What 1s SPARK?
You may know this: Jet engines

06/27/2018

m) Componolit

Secure Systems Engineering

What 1s SPARK?
And this: Vermont Lunar CubeSat

© Chrandonvt

06/27/2018 7

What is SPARK? 6 Componolit
And this: Tokeneer

Secure Systems Engineering

What is SPARK? 6 FO__II]LPOEHQH'E
And this: Muen Separation Kernel >ecure systems tngineering

© William Christen

06/27/2018 ;

What is SPARK? (ComP0n0|It
But how about this?

Secure ems Engineering

06/27/2018

Demo #1 6 S:OFSntPOEanIt
Plain Web application ecure Systems Engineering

© Karsten WiirtH S ,: :

06/27/2018)

o

Web application
Security

® No authentication — bad idea!
m Options

= Passwords

= Client certificates

= Authentication tokens

06/27/2018

m) Componolit

Secure Systems Engineering

12

Web application

Token-based authentication

eyJhbGci01iJIUzI1INiISINnR5cCI6IKkpXVCJI9.

{
"alg": "HS256",

"typ": "JWT"
}

06/27/2018

. SF1KXxwRJISMeKKF
2QT4fwpMeJT36POk6yJV_adQsswsc

B -

6 Componolit

Secure Systems Engineering

Web Authentication

Service Provider

(3) (2)

Service Authentication
Request Response

Client

(4) (1)
Response Authentication
Request

13

Token-based authentication
The monolithic approach

Services
(systemd, cron, ssh,
syslog, dbus, ...)

HTTP Server

Libc...

TCP/IP Drivers

06/27/2018

m) Componolit

Secure Systems Engineering

m A lot to trust!

m How likely is no critical bug within
decades?

m Millions of lines of code

m Formally verifying all those
components? Good luck!

14

m) Componolit

Secure Systems Engineering

We still want trustworthy authentication for our wind turbine!
Alternatives?

06/27/2018

Interlude
The Genode 0S Framework*

m) Componolit

Secure Systems Engineering

m Hierarchical System
B Recursive system structure Architecture

= Root: Microkernel
= Parent: Responsibility + control
= |solation is default
= Strict communication policy
m Everything is a user-process
= Application
= File systems
= Drivers, Network stacks

06/27/2018 *) https:/lgenode.org

TR
e
.

16

m) Componolit

Secure Systems Engineering

Interlude
Minimal Trusted Computing Base

m Per-application TCB
m Trusted Computing Base (TCB)

= Software required for security ! ,

= Parents in tree ! , ! ,
= Services used

= TCB reduction .\’ /. ,
. Application-specific .\’ !F’

= Example: File system
m Sessions .

06/27/2018 17

Architecture for Trustworthy Systems 6 COIT]pOﬂO“t

Strategy #1: Policy Objects

m Can’t reimplement everything
m Solution: software reuse
= Untrusted software (gray)
= Policy object (green)
= Client software (orange)
m Policy object
= Establishes assumptions of client
= Sanitizes
= Enforces additional policies

06/27/2018

Secure Systems Engineering

m Policy objects

Protocol validator

(e.g. TLS)
B =
Network Web
Stack browser

18

Architecture for Trustworthy Systems 6 S:OI'SntPOEanIt
Strategy #2: Trusted Wrappers FeuTE e FRginesng

m Trusted wrapper
m Untrusted software (gray)
= E.g. disk, file system, cloud

VPN
m Trusted wrapper Component
= Mandatory encryption :
m Client software (orange) .
= No direct interaction with Network Web
untrusted components Stack B

= Minimal attack surface

06/27/2018

19

Architecture for Trustworthy Systems 6 S:OI'SnpOﬂQllt
Strategy #3: Transient components Feure ystems Engineering

B Transient component
m Untrusted software
= E.g. Media decoder

Controller

= No chance to get this right!

m Transient component i
= Temporarily instantiate untrusted e

software for single file/stream ndony [E—

= Expose only simple interfaces Network Decoder Audio Player
(e.g. PCM audio)

= Cleanup on completion

06/27/2018

20

m) Componolit

Secure Systems Engineering

Let’s put it together.

06/27/2018

m) Componolit

Secure Systems Engineering

Token-based authentication
First component-based attempt

[Nic Session

Virtual Box

JWT

(Linux Validator

+

Web Server)

Microkernel & Core

06/27/2018 22

Token-based authentication
Second component-based attempt

Virtual Box

JWT

(Linux Downlink Validator

+

Web Server)

Microkernel & Core

06/27/2018

m) Componolit

Secure Systems Engineering

Terminal Session
Nic Session

23

Demo #2

Secure Systems Engineering

dator

1 JWT vali

ima

Min

__.wl

uodand) oAelSnS B

06/27/2018

m) Componolit

Secure Systems Engineering

Component -based architecture
Disclaimer

m Never show your authentication tokens in presentations ;-)
m Proof-of-Concept

= No TLS in this demo!
= Only symmetric crypto for validating JWTs for now (HMAC-SHA256)

= Only “stone” level right now (proving absence of runtime errors TBD)
m Not a solution for availability!

06/27/2018 25

m) Componolit

Secure Systems Engineering

Component-based architecture
Trusted computing base

m The TLS validator has 3618 SLOC*:
« Ada: 2836 (78.39%)
= Cpp: 782 (21.61%)
m The overall Trusted Computing Base is ~37000 SLOC*:
= Components: validator, microkernel, core, init, dynamic linker, RTC driver

= CPp: 33318 (91.27%)
= ada: 2836 (7.77%)
= asm: 352 (0.96%)

*) generated using 'SLOCCount' by David A. Wheeler.

06/27/2018 26

Component-based architecture 6 Componollt

Secure Systems Engineering

But, performance?

-

Performance Evaluation
Setup

m Client
= Intel Core i5-M520, 2.4 GHz
= Intel 82577LM GIiB Ethernet
= Debian 9.4, x86 64
= Lighttpd 1.4.45-1

m ab (Apache Benchmark)
= version 2.4.25-3+deb9u4
= 6 concurrent requests

= 1000 requests
1k, 10k, 100k, 1M

06/27/2018

m) Componolit

Secure Systems Engineering

m Evaluation Setup
1. Internet
2. Local webserver

3. Local webserver through
passthrough JWT validator

4. Local webserver through real
JWT validator

28

Performance Evaluation - Componollt

Secure Systems Engineering

Results
Blk m10k m100k m1M H1lk W10k m100k m1M
100 2.5
2
10 -
1.5
1 _
1
0.1
0.5
0.01 0
Internet Local Passthrough Validated Local Passthrough Validated

Mean latency between request [ms]

06/27/2018 29

m) Componolit

Secure Systems Engineering

Component -based architecture
Reimplement? Reuse? Both!

B Component-based systems and program verification fit together very well!
m Confidentiality & integrity

= No need to verify large code bases

= Reuse of large parts of the architecture

= Minimal trusted computing base

= Performance: Promising, but needs evaluation in realistic setup

06/27/2018 30

Component -based architecture
What else?

m Everything you saw is open source — try it!
m JWX library for parsing JWTs (and more)
= https://github.com/Componolit/jwx

m Demo
= examples/authproxy.adb (in JWT repository)

m Libsparkcrypto
= https://github.com/Componolit/libsparkcrypto

m Genode OS Framework
= https://github.com/genodelabs/genode

m SPARK
= https://www.adacore.com/download

06/27/2018

m) Componolit

Secure Systems Engineering

31

m) Componolit

QueStiOI’lS? Secure Systems Engineering

Alexander Senier
Managing Director
senier@componolit.com

@Componolit - componolit.com - github.com/Componolit

06/27/2018

mailto:senier@componolit.com

