
Benjamin Monate

Co-founder of TrustInSoft and CTO

Applying formal

methods to

existing

software: what

can you expect?

2

Sound Static Analysis
aka formal methods to prove properties of software

Works for Safety Critical Software

• Consequences of failures are analyzed from the beginning

• Regulation is strong: standards and associated liability

• Adapted development process: specific languages/dev. cycles

• Software errors mitigated with system architecture

 considering probability of failure

3

Sound Static Analysis for Security Critical
Software?

• Meanings of failure probability?

 adversary defies standard distributions of the software input

• One single error  arbitrary corruption

• Confidentiality: secrets must not escape software

• Software already deployed in production: barely tested for security

- Because testing security is hard: looking for behaviors that have undefined
consequences but are most of the time invisible

- Observing a data leak is difficult: where shall it be observed? How shall one
recognize that some bits are part of a secret?

4

TrustInSoft pragmatic and incremental security

Each level requires some previous ones to be meaningful

TrustInSoft Analyzer addresses Level 2 up to Level 5

Confidence

Level

Property Tool Guaranteed properties

Level 1 Each compilation

unit compiles

Compilers with warnings Static typing and syntactic compliance

Level 2 Integrity of link Sound Source Linker Consistency of compilation units (ODR/static inline/weak)

Level 3 Only defined

behaviors

Sound Static Analyzer Absence of undefined behaviors/Integrity
Compilers optimizations makes the consequences more and more

dangerous

Level 4 Dataflow integrity Sound Static Analyzer Absence of unwanted data flows/Confidentiality

Level 5 Functional

correctness

Sound Functional

Verification

Program fulfills its functional specification

5

How to reach these levels on legacy code?

• Level 1 for free

• Level 2 automatic with TrustInSoft Analyzer: just provide all source files

May be detected by modern binary-level LTO

Reduced example from Xen

file1.c: int GlobalConfig[255] = { 0 };

file2.c: extern int *Globalconfig;

• Level 3 not easy to get because

- Soundness: false alarms, not the most important problem

- Programs contain bugs: must be fixed to give semantics

6

Methodology toward Level 3 security

Do not explore all execution paths at once, but

• Explore simple path: rely on existing test-suite

• Fix all discovered bugs

- Unlike testing: detect invisible undefined behaviors

 Invisible but may hide security bugs thanks to compiler optimization/platform

specificities

- No need to be fully deterministic: external functions/hardware are stubbed

- Use an existing test to reach some difficult-to-reach program points (after SSL

certificate validation) and then invent new tests by mutating the input data that do not

change the initial paths (fuzzing, manual testing)

- Generalize the tests progressively  fix bugs one after the other

- Maybe one reaches a state where all behaviors are covered

 But if one does not, the security is still vastly improved, step-by-step

7

How long does it take to get a proof of
absence of undefined behaviors?

• Major industrial question: ROI, Time To Market, Total Cost of Ownership

• Important but flawed question:

- It takes the time that one needs to fix all the discovered bugs

- No one knows how to evaluate this soundly

• Cyber-security is incremental

- Soundness does not mean: “all questions answered”

- Soundness does mean: “some questions answered definitively”

Not necessarily “the” whole question

8

Examples: tooling funded for zero false positive
and zero false negative source code analysis

Hundreds of security bugs discovered: most of them fixed upstream

• Initial analysis: existing test-suites

• Further analysis: AFL fuzzing

• Next steps: generalized input to reach more behaviors

Invalid memory accesses, signed overflows, uninitialized data, double free, strict aliasing violations,

constant execution time…

OpenSSL, Amazon S2N, Google Libwebp, expat, libpng, SQLite, musl,
libjpg, libsodium, LibreSSL, tiny ssh, libxml, zlib, ntpd, libbzip2,

dpdk, nova, libksba

9

Examples: subtle bug in Google’s libwebp

• Invalid pointer computation: invisible UB

• Followed by invalid pointer comparison

- result depends on memory layout

- If the result is wrong, out-of-bound access occurs

• LLVM ASan statistically uses the memory layout without consequences

• TrustInSoft Analyzer’s soundness means: all memory layouts are explored

10

Full Level 3 is reachable

Proof of absence of UBs for some configurations of mbed TLS

Read the full technical report at https: //trust-in-soft.com/polarssl-verification-kit/

https://trust-in-soft.com/polarssl-verification-kit/

11

Good news for cyber-security

• These examples are the most difficult software to analyze

- Huge legacy, multi-purpose code bases

- No developer was involved in the analysis: only bug reports

- Time to convince developers/maintainers that fixing issues is important

• And still: it works!

Security is improved: fewer bugs and unmodified dev. process

• In the industry, this is much simpler!

12

Level 4 : Dataflow integrity

Example: look for the sources of random numbers in OpenSSL

Explicit security property: Random generators seeds are acceptable

- Customer knows what "acceptable" means

- Tools can extract the origin of the data: sound means exhaustive

Findings: a dozen of sources are used, including the private certificate

Customer conclusion: we must configure the stack to avoid this

Classical security analysis: define attack surfaces and implement proper mitigations

This works on the source code, if security expressed in terms of programs behaviors

13

Level 5: full specifications for all functions

Kind of a Grail for program correctness

• We support this usage

• Impacts the dev. Cycle:

- Produce specifications

- Check specifications

 software developed to make it provable maybe with dedicated languages/methodology

• Adopted only for very specific parts of very specific safety/security critical

software

14

Conclusion

• Soundness of tools is a definitive improvement for security

• Do not try to reach the highest integrity levels instantly

• Stopping in the middle of any level is worth it

 one reduces its hidden technical debt

• Difference with unsound tools

each step is a definitive improvement for security

When it is done, it is for real

15

Thank you

Benjamin.Monate@trust-in-soft.com

mailto:MAIL@trust-in-soft.com

