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Executive Summary 

The current procedures for FACE conformance verification are based on linking Unit 
of Conformance (UoC) object code with standard libraries – “Gold Standard 
Libraries”, or GSLs – and checking for unresolved references. Although this 
approach works well for UoCs written in C or C++, it is not adequate for Ada. (It also 
does not fit the Java model, but Java-related issues are outside the scope of this 
paper.) In Ada source code, run-time functionality is realized in a portable way not by 
invoking a standard library but rather by using standard language syntax. The library 
Application Program Interface (API) supporting Ada run-time functionality is 
invoked from the compiled code, not from the source program, and is vendor 
specific.  

This paper presents a proposal for FACE conformance verification of Ada UoCs 
based on the concept of a stubbed run-time library, comprising a selected set of 
package specs and their associated “dummy” package bodies, to be included as a 
supplement to the Ada GSL for the targeted profile and capability set in the 
Conformance Test Suite (CTS). The stubbed run-time library is specific to the Ada 
compiler that is used by the CTS. It will support the features permitted in its targeted 
capability set and exclude, to the extent possible and practical, the features that the 
capability set prohibits. The proposed approach extends the current CTS verification 
procedures and is under consideration in the FACE Consortium.  

A large Ada codebase of defense airborne software has been developed and deployed 
over the years, and a practical and effective conformance policy for Ada can help 
expand the FACE ecosystem while also making the FACE approach attractive to Ada 
developers.  

The proposed approach detailed in this paper covers both Ada 95 and Ada 2012. It 
applies to UoCs outside the Operating System Segment (OSS) and is currently 
focused on verification of Ada UoCs in the Portable Components Segment (PCS), but 
the basic concepts also apply to UoCs in the other non-OSS segments. 
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Introduction 
As defined in FACE Consortium standards [1, 2, 3, 4], conformance verification for UoCs in the PCS entails 
meeting several kinds of requirements: 

• Conformant USM (Unit of Portability Supplied Data Model), 

• Conformant uses of the Transport Services Segment (TSS), 

• Adherence to the restrictions specified in the targeted profile, and 

• Adherence to the restrictions specified in the targeted capability set. 

The requirements associated with conformant TSS usage and data model do not raise Ada-specific issues and 
will not be dealt with in this paper. Likewise, the profile restrictions (POSIX and ARINC 653 subsets) can be 
handled for Ada in the same way as for C and C++, by including the permitted functions in the GSL. On the 
other hand, enforcing adherence to the capability set restrictions presents an issue with Ada that does not 
arise as a major problem in C or C++. For the latter languages1, run-time functionalities such as threading, 
memory management, and exception handling are implemented by a standard library API. A GSL for a 
specific capability set can simply include the API subset permitted by that capability set. If a candidate UoC 
invokes a function outside of that subset, the error is detected by the CTS; the object code for the UoC will 
not link with the GSL, since there will be an unresolved reference. 

For Ada, however, there is not a standard API for the run-time services defined by the language. Portability 
for an Ada program using threading (known in Ada as “tasking”), memory management, or exception 
handling is achieved not through source code invocation of standard library API functions as in C but rather 
through standard language syntax. The compiled code contains calls on an API that implements the run-time 
functionality, but this API (the run-time library), in both its interface and its implementation, is specific to the 
Ada compiler vendor. As an example, here is a skeletal version of a simple Ada package: 
  

 
1 Some C++ features result in the invocation of compiler specific functions. However, for C++ the names of these 
functions are well known for the GCC compiler. Further, in many cases these functions are defined as part of the 
platform’s application binary interface (ABI) and are even more well known. These are in the “allowed definitions” files 
in the CTS.  In Ada this problem in more severe, since the names are completely compiler specific. [9] 
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package Pkg is 
   task T1; 
end Pkg; 

with Interfaces.C; 
package body Pkg is 
   task body T1 is 
      N : Interfaces.C.int; 
   begin 
      … 
   end T1; 
end Pkg; 

When this code is compiled using AdaCore’s GNAT Ada implementation, the object code will contain 
references to external symbols including the following: 

• Interfaces.C, a package from the Ada standard library. This package is explicitly referenced in 
the source code. 

• System.Tasking, a package in AdaCore’s run-time library that implements task management 
(creation, queuing, etc.). This package is not referenced from the source code but rather from the 
compiled object code. If the Ada source code is compiled with a different vendor’s compiler, a 
differently named package would almost certainly be referenced. 

The above Ada code conforms with each of the Ada FACE profiles and capability sets (for both Ada 95 [5] 
and Ada 2012 [6]) provided that the code within “...” in the body of the task T1 obeys the profile and 
capability set restrictions. However, since run-time library packages that implement language functionality 
are not part of the language standard, the CTS procedures for generating GSLs do not take them into account. 
The result, if the CTS performed an analysis on Ada in the same way as it is done for C and C++, would be a 
failure result for the above code, even though it is FACE conformant2. 

The issues associated with run-time libraries have been known for some time, and the conformance 
verification procedures presently support two approaches: 

• Treat the run-time library as part of the Operating System Segment (OSS) 

If the Real-Time Operating System (RTOS) has been verified as FACE conformant, then the run-time 
library is linked with the UoC object code to test for conformance. All references to the library are 
resolved, and the external references from the library implementation are “bottom side” interfaces that 
are allowed. 

• Treat the run-time library as part of the UoC 

 
2 Actually, in the current CTS, Ada is not handled at all. The Conformance Verification Matrix (CVM) shows each Ada 
capability set requirement as “Verification not needed”. 
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With this approach, the run-time library is subject to the same conformance requirements as the UoC 
application code. 

The first approach avoids the issue of justifying “bottom side” interfaces, but it requires the Ada UoC to be 
targeted to an RTOS that includes the relevant run-time libraries and has been verified as FACE conformant. 
However, deployment of FACE conformant UoCs in multiple kinds of environments, including OSes that are 
not FACE conformant, is important in attracting avionics software developers to adopt the FACE approach. 
Depending on the run-time library to be part of a conformant RTOS is overly constraining. Additionally, 
even with a FACE conformant RTOS, the capability set restrictions must be enforced. For each of the three 
capability sets, a specific run-time library will be needed. 

The alternative approach, treating the Ada run-time library as part of the UoC, has proved to be unwieldy in 
practice. Explaining and justifying the “bottom-side” calls from the library implementation is a major effort. 
It assumes a level of expertise with compiler technology that is possessed by the compiler vendor but not 
necessarily by the UoC developer or the Verification Authority representative. Moreover, from a FACE 
perspective there is no reason why the implementation of the run-time library should obey the same 
restrictions as the UoC itself. By its nature a run-time library is target dependent and non-portable. It is the 
“glue” that connects the FACE conformant UoC to the target platform and that enables the UoC source code 
to be portable.  

Furthermore [10], most Ada run-time libraries have years or even decades of flight history experience, 
including certification under assurance standards such as DO-178B [7] and DO-178C [8], and were not 
designed to meet the requirements of the FACE profiles and capability sets. It would be financially 
burdensome to Ada compiler vendors, and counterproductive to the FACE community, for Ada vendors to 
rework their existing solutions. Portability is needed for the UoC (via its use of standard APIs and language 
features), not for the run-time library that implements these features.  

The following sections of this paper propose an alternative approach, which can be accomplished in the 
context of the current CTS. Through the concept of a “stubbed run-time library” that is included when an Ada 
GSL is generated, the test procedures can be extended to support verification of Ada UoCs. The approach 
applies to all profiles and capability sets and to both Ada 95 and Ada 2012. 

 



FACE™ Conformance for Ada Software: Issues and Proposed Approach for non-OSS Ada UoCs 

 
www.opengroup.org T h e  O p e n  Gr o u p  F A C E™  a n d  S O S A™  U S  A i r  F o r ce  T I M  P a p e r  7 

Host-Based Conformance Verification 
The CTS supports two styles of conformance verification: 

• Host-based, on a Windows or Linux platform 

• Target-based, using the UoC’s cross-development toolchain (discussed in the next section) 

For host-based conformance verification the CTS supports both Windows 10 and Linux. For Windows 10, 
the installation process sets up an Ada compiler derived from a Free Software Foundation version of GNAT. 
For Linux, the CTS supports Red Hat Enterprise Linux versions 7 and 8 (RHEL 7 and RHEL 8). RHEL 7 
supplies an Ada compiler that handles Ada 95 but not Ada 2012. RHEL 8 does not include an Ada compiler. 

Based on FACE Consortium policy, language support in the CTS requires a non-proprietary compiler. To 
meet that requirement, the GNAT GPL 2017 Ada compiler is proposed. This edition is publicly available 
with licensing that is appropriate for usage in the CTS. It implements both Ada 95 and Ada 2012 and thus 
allows a single compiler to be used for both versions of the language. (Later versions of the GNAT GPL 
technology3 only provide Ada 2012; verifying Ada 95 UoCs would require supplying GNAT GPL 2017 as a 
second Ada toolchain,) Since RHEL 7 is approaching its end-of-life stage, RHEL 8 is proposed as the Linux 
edition for hosting this Ada compiler. GNAT GPL 2017 is available for Windows 10. 

All GNAT compilers implement the full Ada language. For use in the CTS the implementation for a specific 
capability set needs to allow all features that are permitted by that capability set, and it should prohibit, to the 
extent possible and practical, features that the capability set excludes. To this end AdaCore has prepared 
three run-time libraries4, corresponding to the three capability sets: 

• The General-Purpose run-time library was derived from the full Ada run-time for the GNAT GPL 
2017 compiler by removing units that are prohibited in the General-Purpose capability set. 

• The Safety-Extended run-time library was derived from the General-Purpose run-time library by 
removing units that are prohibited in the Safety-Extended capability set. 

• The Safety-Base & Security run-time library was derived from the Safety-Extended run-time 
library by removing units that are prohibited in the Safety-Base & Security capability set. 

Each of these run-time libraries can be used for both Ada 95 and Ada 2012. For Ada 95 UoCs a compiler 
switch -gnat95 will enforce the restriction to Ada 95 features (usage of new Ada 2012 features are then 
flagged as errors).  

 
3 In 2019 the GNAT GPL edition was rebranded as GNAT Community. 
4 These subsetted libraries were prepared by manually editing the source code. As a more efficient long-term approach, 
AdaCore is also working on an alternative and automated scheme based on removing symbols from the library object 
file. 
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For use in the CTS, there is no need for the run-time libraries to include their full (functional) 
implementation. Instead, each will consist of a stubbed version: a package specification sufficient to provide 
the permitted functionality, and an “empty” package body (i.e., with null bodies for the implementation of the 
various subprograms). This is analogous to what is done for C and C++: header (.h) files and stubbed .c and 
.cpp files. 

The stubbed Ada run-time libraries do not include the POSIX or ARINC 653 APIs that are specified for the 
various profiles. These APIs should be included in the Gold Standard Libraries for Ada as part of the CTS 
GSL generation process for Ada. 

The stubbed Ada run-time libraries are specific to a particular version of the FACE Technical Standard. If a 
new version of the Technical Standard makes any modifications to the Ada capability sets, for example by 
permitting a feature that has previously been prohibited, then the corresponding stubbed run-time library will 
need to be adapted accordingly. 

The three stubbed run-time libraries are not an exact match for the restrictions in the capability sets; i.e., there 
are restrictions that are not enforced by the library. This is due to several reasons: 

• Some restrictions are syntactic in nature; for example, the rule that prohibits implementation-
defined pragmas from being applied to data structures from FACE interfaces. Such restrictions are 
not enforceable by link-time checks and instead require analysis and/or source code inspection. 
This issue applies not only to Ada but also to C and C++ (and Java). 

• Some restrictions would require retooling the compiler, resulting in a GNAT version that is not the 
same as the GNAT GPL 2017 edition. An example is the prohibition of Wide_Character and 
Wide_String. The declarations of these types are in the special predefined package Standard, 
and changing Standard would require a variant version of the GNAT GPL 2017 compiler. 
Instead, usages of these types can be detected by appropriate instances of pragma 
Restrictions5 in the source code of the UoC. In the presence of such pragmas, uses of these 
types are in error and will result in compile-time failures. An object file presented to the CTS for 
linkage will never contain a reference to the prohibited types. 

Capability set violations thus fall into two categories: 

• Usage of a prohibited feature that is excluded from the stubbed library. In almost all cases such 
violations will result in compile-time errors, since the compiler will fail to compile a program that 
uses a feature that is not included in its associated run-time. For readability the UoC developer 
may want to include relevant instances of pragma Restrictions, to document the intent to 
exclude such features. In rare cases a feature that is excluded from the stubbed library will be 
permitted by the compiler (for example, interfacing to a prohibited POSIX C function). In such a 

 
5 Pragma Restrictions is a language-defined pragma that allows a project to self-impose restrictions in the form of 
prohibitions (such as No_Task_Allocators) or limits (Max_Entry_Queue_Length). The Ravenscar subset of the 
Ada tasking model is defined by a set of Restrictions pragmas. 
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situation the violation will be caught by the link-time tests in the CTS. 

• Usage of a prohibited feature that is not excluded from the stubbed library. There are two sub-
cases: 

• Use of the feature can be detected by the compiler. An example is Wide_Character and 
Wide_String as noted above. Pragma Restrictions is needed to detect the violation6. The CTS 
documentation will identify the full list of pragmas that are needed for each capability set 
(AdaCore will furnish this information), and the UoC developer will need to use these pragmas 
when generating the object module used in the CTS and demonstrate to the Verification Authority 
that the pragmas were used during compilation.  

• Use of the feature is not detectable by the compiler. An example is the use of an implementation-
defined pragma on a FACE interface data structure. Analysis and/or source code inspection is then 
needed. As the supplier of the GNAT GPL Ada compiler and its associated stubbed run-time 
libraries, AdaCore will document all such features. A supplemental static analysis tool can assist 
in automating this step. 

The Conformance Verification Matrix (CVM) will identify, for each verifiable requirement, how the 
verification will be conducted. As is done now, it will either be through the CTS (link-time tests) or 
inspection. The following table, based on the CVM for the FACE Technical Standard 3.1, illustrates what 
this would look like for some of the requirements in the Safety Extended Capability Set for Ada 2012. The 
entry for Verification Method is marked as “Analysis / Inspection” rather than simply “Inspection”, since the 
UoC developer may find it helpful to use an automated tool. 
  

 
6 In this case pragma Restrictions(No_Wide_Characters) will report as errors any uses of Wide_Character, 
Wide_String, Wide_Wide_Character, or Wide_Wide_String. 
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Verification of Requirements for Ada 2012 Safety-Extended Capability Set 

Row 
ID 

Verification 
Needed Requirement Summary Verification 

Method Note 

F-433 Y No use of implementation-defined 
pragmas on FACE interface data 
structures 

Analysis / 
Inspection 

 

F-437 Y No Asynchronous Transfer of 
Control 

Test 
 

F-438 Y No use of synchronized, task or 
protected interfaces 

Analysis / 
Inspection 

 

F-439 Y No use of Exception_Information 
or Exception_Message functions 

Test 
 

F-440 Y No use of certain forms of generic 
formal packages 

Analysis / 
Inspection 

 

F-441 Y No use of deallocation Test 
 

F-442 Y No use of Wide_Character, 
Wide_String 

Test Need pragma Restrictions 
(No_Wide_Characters) 

F-443 Y No use of Wide_Wide_Character, 
Wide_Wide_String 

Test Need pragma Restrictions 
(No_Wide_Characters) 

F-444 Y No use of random number 
generation 

Test 
 

F-445 Y No use of input-output Test 
 

F-446 Y No use of containers library Test 
 

F-447 Y No use of Distributed Systems 
Annex 

Test 
 

F-448 Y No use of Information Systems 
Annex 

Test 
 

F-449 Y No use of Numerics Annex Test 
 

F-550 Y No use of unbounded strings Test 
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Target-Based Conformance Verification 
The approach to target-based verification is similar to host-based. The provider of the full Ada run-time 
library (either Ada 95, Ada 2012, or both) that is part of the cross-compilation toolchain needs to supply a 
subsetted stubbed library for each of the three capability sets. The Ada GSL for each capability set will be 
supplemented by the stubbed library for that capability set. The provider of these libraries may need to adapt 
entries in the CVM, for example if some requirement uses link-time tests for host-based verification but code 
inspection for target-based verification, or vice versa). 

 

Vetting an Ada Stubbed Run-Time Library 
A stubbed run-time library that is used to verify conformance of an Ada UoC needs to supply the 
functionality needed by that UoC. For the stubbed libraries included in the CTS for use during host-based 
verification, this means that each library must implement at least the features that are permitted by the 
capability set with which it is associated. The library provider can demonstrate this property by using a set of 
test cases that exercises the permitted features and by showing successful compilation of these tests. Target-
based verification does not need to carry out this step, since in such a situation the only requirement is that 
the specific candidate UoC is successfully compiled. 

As noted earlier, it is not possible for a stubbed run-time library to prohibit all features that are excluded from 
its associated capability set. Nevertheless, a quality aspect of the library is how closely it approximates this 
ideal (i.e., to minimize the number of excluded features that are allowed by the library). To this end, the 
library provider should use a set of tests exercising each of the language features prohibited from the 
corresponding capability set, and show that these result in compilation failures. (In this context, a compilation 
failure demonstrates successful rejection of an excluded feature.) In any event, the library provider needs to 
document each prohibited feature whose support is not excluded from the stubbed library, since this affects 
the verification method: either compilation of the UoC with a relevant pragma Restrictions is required, or 
else source inspection / static analysis will be needed. 

The implementation of the stubbed library is not relevant to conformance verification for the UoCs. Although 
the run-time library enables Ada source code portability, its implementation is not itself portable. Its API is 
compiler dependent (e.g., a stubbed library for GNAT will not work with a Green Hills Ada compiler, and 
vice versa), and its implementation invokes OS- and platform-specific services. In particular, the library 
implementation does not need to adhere to the restrictions in the targeted profile and capability set: 

• The Linux host OS is itself not FACE conformant, and the stubbed run-time library can be 
regarded as part of the host platform. 

• There are no such requirements on the implementation of the GSL functions that are used for C. 

 



FACE™ Conformance for Ada Software: Issues and Proposed Approach for non-OSS Ada UoCs 

 
www.opengroup.org T h e  O p e n  Gr o u p  F A C E™  a n d  S O S A™  U S  A i r  F o r ce  T I M  P a p e r  12 

Summary 
The current FACE conformance procedures do not handle non-OSS Ada UoCs. To address this issue, we 
have proposed an approach that involves stubbed run-time libraries. More specifically, for host-based 
conformance verification: 

• The CTS should use the publicly available GNAT GPL 2017 edition on Red Hat Enterprise Linux 
8 and on Windows 10. AdaCore can make available to the FACE Consortium this version of 
GNAT, which supports both Ada 95 and Ada 2012. GNAT GPL 2017 has licensing appropriate 
for use in the CTS, both by the Verification Authority and by software suppliers. 

• For each Ada capability set, the CTS for host-based conformance verification should generate a 
Gold Standard Library containing a stubbed version of subset of the standard Ada library 
supporting the permitted features, supplemented by a stubbed Ada run-time library that supports at 
least the features allowed by that capability set, and that excludes, to the extent practical, the 
features that are prohibited by that capability set. The Ada GSL should also include the C GSL 
functions for POSIX or ARINC 653 as appropriate, to facilitate verification of Ada UoCs that 
explicitly interface to these functions. 

• The supplier of the stubbed libraries (AdaCore) should show that the allowed features are 
supported, and how comprehensively the prohibited features are excluded, through an appropriate 
set of test cases. Tests of the permitted features should be compiled successfully, and tests of 
prohibited features should result in compilation errors. Since the latter might not always be 
possible, prohibited features that are not excluded need to be documented by the library provider. 
These steps need to be taken by the library provider (and demonstrated to the Verification 
Authority) before the libraries are incorporated into the CTS. 

• The full implementation of the stubbed libraries is irrelevant as far as usage in the CTS is 
concerned. 

• The CVM needs to be adapted to indicate the verification method (link-time test, or inspection / 
analysis) for each requirement  

Target-based conformance verification is similar in terms of the derivation of stubbed run-time libraries by 
the library provider, but there is no need to demonstrate that the libraries support all features permitted by the 
capability sets. 

These proposed modifications to the conformance test procedures are evolutionary and in the spirit of the 
existing methodology. They do not require access to the UoC source code, and they continue to rely on link-
time testing to ensure that there are no unresolved external references. The main difference between Ada and 
C or C++ is that in Ada, almost all violations of capability set restrictions will be caught at compile time, 
because of the language’s early error detection. As a result, the link-time tests will mainly be a confirmation 
of the already known conformance with the FACE requirements. 

Although the PCS is likely to be where Ada will mainly be used, for completeness the verification procedures 
should also cover Ada UoCs in the other segments of the FACE reference architecture. This is planned as a 
future effort. 
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