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2 Introduction

Recently, I endeavored to start learning Ada and SPARK for a new research task, focusing on the 
process of developing verifiable programs for autonomous applications. In order to learn the 
intricacies of the language, I took on a task to implement the Quicksort algorithm and to prove 
properties on its functional behavior. I chose Quicksort for its simplicity and its role in the heart 
of algorithmic theory – the rare implementation with a poor worst-case performance but highly 
desirable standard-case. Quicksort is used in a wide variety of applications, and as such having 
an implementation verified to be bug-free and correct could be quite useful.

While having a bug-free implementation is the threshold of this effort, some thought was taken 
in what level of rigor to attain for the SPARK version of Quicksort. There are increasing levels of 
rigor [1] allowed by analyses that SPARK enables. These levels referenced here are often referred 
to as bronze, silver, gold, and platinum, with platinum referring to full functional verification. The 
goal of this effort is to produce a platinum level implementation of Quicksort as a way to build a 
knowledge base with the SPARK suite of automatic verification tools. While existing permutation 
proofs, such as the one in the SPARK User’s Manual, could have short-circuited the process, 
the goal was to develop such a proof from scratch. For the sake of simplicity it is assumed that 
this implementation is only accepting integer type variables within a narrowly defined subset, 
although the same proofs will apply for any orderable arrays as inputs, and the algorithm has no 
optimizations for large data sets.

In Section 3, the Quicksort algorithm will be described, detailing the properties to be proven 
for this implementation with SPARK. Section 4 develops the variable types to be used in the 
implementation for context. Section 5 develops the functions that are not used directly in 
the program flow but are used in the proofing steps. Section 6 details the specification of the 
Quicksort implementation, QS(). Section 7 describes the operations involved in implementing 
and proving the Partition step of the Quicksort algorithm. Section 8 describes the operations 
involved in implementing and proving the Recursive step of the Quicksort Algorithm. Finally, 
Section 9 concludes with a discussion on the lessons learned in this process.

3 Quicksort

3.1 A brief introduction to Quicksort.

A sorting algorithm that is widely used for its low growth rate related to problem size in the 
average case, Quicksort can be divided into three basic operations. The first operation is a 
partition of all elements around a pivot element... usually the element in a preselected position of 
the array to be sorted, although more advanced strategies exist.

The second operation is to recursively sort the low part of the array. The final operation is to 
recursively sort the elements in the high part of the array in the same way.
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The partitioning strategy utilized here is Lomuto’s partitioning scheme[2], choosing the last 
element of the input array as the “pivot” around which the array is to be recursively sorted.

In the pseudocode presented in Figures 1 and 2, “low” is the index of the first element of the 
region of the array “array” to be sorted, and “high” is the index of the last element. Similarly, the 
“swap” operation simply exchanges the location of two elements of “array.” At the end of the 
partitioning operation, “array” has three distinct sections: the chosen “pivot” is in the correct 
location, while every element before it in “array,” those with lesser indices, has a lower value than 
“pivot” and every element after it in the array, with greater indices, has a higher value than “pivot.”

3.2 Properties of the Quicksort Implementation.

In creating a SPARK implementation of the Quicksort algorithm, I endeavored to maintain four 
properties of that implementation. These properties are the absence of runtime exceptions, 
termination of the recursive execution, the output array being a permutation of the input array and 
output array resulting in a total ordering of the elements of the input array from lowest to highest.

3.2.1 Absence of Runtime Exceptions. 

For a SPARK implementation to have an absence of runtime exceptions means that there must 
be no computation errors (overflow, divide-by-zero, etc.), memory access errors, or any other 
problems that might demonstrate proper syntax but would result in an exception at runtime. Any 
code being checked by SPARK (“in SPARK mode,” achieved by utilizing the SPARK_Mode pragma) 
will be checked to ensure that no runtime exceptions will be generated.

The absence of runtime exceptions (“AoRTE”) is the hallmark of the silver level of proof. 
Maintaining a silver-level Quicksort implementation requires the use of preconditions to limit 
input arguments to a computable range, both for QS() itself and for the Swap procedure (to 
prevent bad memory accesses).

3.2.2 Termination. 

A termination proof for recursion requires two elements: A base case or cases that will 
always converge when used as the argument for a function, and a condition that any case will 
monotonically transform to that base case as inputs derived from that case are recursively 
called. In the case of QS(), the base case is any input with less than two elements, as these are 

Figure 1. Quicksort Pseudocode

Figure 2. Partition Pseudocode
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Figure 1. Quicksort Pseudocode

1 procedure quicksort(array, low, high):
2 if low < high:
3 pivotIndex = partition(array, low, high)
4 quickSort(array, low, pivotIndex - 1)
5 quickSort(array, pivotIndex + 1, high)

The partitioning strategy utilized here is Lomuto’s partitioning scheme, choosing the last element of the input
array as the “pivot" around which the array is to be recursively sorted.

Figure 2. Partition Pseudocode

1 function partition(array, low, high):
2 pivot = array[high]
3 k = low
4 for i = low to high - 1:
5 if array[k] <= pivot:
6 swap array[k] with array[i]
7 k = k + 1
8 swap array[k] with array[pivot]
9 return k

In the pseudocode presented in Figures 1 and 2, “low" is the index of the first element of the region of the array
“array" to be sorted, and “high" is the index of the last element. Similarly, the “swap" operation simply exchanges
the location of two elements of “array." At the end of the partitioning operation, “array" has three distinct sections:
the chosen “pivot" is in the correct location, while every element before it in “array," those with lesser indices, has
a lower value than “pivot" and every element after it in the array, with greater indices, has a higher value than
“pivot."

3.2 Properties of theQuicksort Implementation
In creating a SPARK implementation of the Quicksort algorithm, I endeavored to maintain four properties of that
implementation. These properties are the absence of runtime exceptions, termination of the recursive execution,
the output array being a permutation of the input array and output array resulting in a total ordering of the
elements of the input array from lowest to highest.

3.2.1 Absence of Runtime Exceptions. For a SPARK implementation to have an absence of runtime exceptions
means that there must be no computation errors (overflow, divide-by-zero, etc.), memory access errors, or any
other problems that might demonstrate proper syntax but would result in an exception at runtime. Any code
being checked by SPARK (“in SPARK mode," achieved by utilizing the SPARK_Mode pragma) will be checked to
ensure that no runtime exceptions will be generated.
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already sorted and will result in a return of the input. The monotonic property in this case exists 
because one element, the pivot element, is never sorted on the recursive call, so the recursion 
always reduces in length by at least one element from the original input; therefore, the length of 
the input array strictly decreases to the base case across recursive calls.

Since proving recursive termination is so formulaic, SPARK has a straightforward statement 
that is used with recursive functions that states the condition that must hold for termination 
to be proven. The Subprogram_Variant statement includes both the monotonic direction of the 
termination and the variable that follows this relationship (in our case, the length of our input 
array). SPARK will check that this condition holds in any program path that includes the recursive 
call, and thus will guarantee that the recursion will not recur indefinitely.

3.2.3 Permutation. 

It is desired that any output of QS() is a permutation of the input, which means that each 
element of the input is present in the output with equal cardinality to the input; more intuitively, 
a permutation is simply a reordering. Permutations are always reflexive and transitive. The SPARK 
User’s Guide [3] includes the development of a rigorous proof of permutation directly based 
on the counts of elements in the proof of a different sorting algorithm, Selection Sort. This 
implementation deliberately avoids copying that approach in order to develop an independent 
proof of permutation, which utilizes the concept of permutation maps.

Permutation maps are maps of one array to its permutations, and are simply arrays of indices 
that map each element of the initial array to a single position in a permutation. Stating that array 
“A” is a permutation of array “B” is equivalent to stating the existence of at least one permutation 
map that maps “B” to “A”. While permutations are reflexive, these maps are not, so utilizing this 
fact in an implementation to prove permutation requires careful ordering of arrays to ensure 
validity. SPARK will verify the construction of a permutation map across QS()’s operations to 
prove that QS()’s output is a permutation of its input.

3.2.4 Ordering. 

The output array of QS() should increase monotonically. Since the base case of the Quicksort 
recursion (an array with two or more elements) is always sorted, it suffices to show that the pivot 
element is sorted to the proper location in each non-base example and that larger arrays will 
be broken down to strictly smaller arrays around pivot elements. Induction then indicates that 
eventually every element will be sorted to its proper place, resulting in an ordered output.

4 Variable Types

Bearing in mind the goals and properties to be achieved by QS(), it is now time to systematically 
develop a QS() implementation that meets those properties. In this section, the variables that will 
be utilized by QS() are developed to provide context for its operations.

4.1 Index and Index_Array.

Index types are used directly in the basic implementation of Quicksort for the partitioning and 
swap operations, and indirectly to define the element arrays to be operated on. The range of the 
index type IndexType here is arbitrary, and may be altered to any necessary size, although QS() 
is not optimized for big data arrays. Index arrays of the Index_Array type are used exclusively for 
the partitioning proofs for this implementation.

Figure 3. Index Definitions
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Figure 3. Index Definitions

1 subtype IndexType is Integer range 1..2999;
2 type Index_Array is array(IndexType range <>) of IndexType;

4.2 Element and Element_Array
As with indices, the range of allowed elements is arbitrary. Element’s underlying type is also arbitrary, and can be
modified to any sortable type. The Element_Array type is used to define the input and output types for QS().

Figure 4. Element Definitions

1 subtype Element is Integer range -1000 .. 1000;
2 type Element_Array is array(IndexType range <>) of Element;

4.3 The Permutation_Array Type
In order to introduce the permutation map concept, it is necessary to define the conditions under which an array
may be considered a permutation map. A permutation array has the following properties: it must map onto itself,
and each element of the array must be unique. Any permutation array 𝑃𝑃 that contains as its elements the indices
with an arbitrary array 𝐴𝐴 and is the same length as 𝐴𝐴 will form a permutation of 𝐴𝐴, 𝐵𝐵, by mapping indices in
the following manner: 𝐴𝐴(𝑃𝑃 (𝐼𝐼 )) = 𝐵𝐵(𝐼𝐼 ). Conversely, if 𝐵𝐵 is a permutation of 𝐴𝐴, then there will exist at least one
permutation map 𝑃𝑃𝐴𝐴−>𝐵𝐵 that satisfies this relationship.

4.3.1 Type definition. For the purposes of QS(), the permutation map is proved by construction, which means
that it is convenient to define a permutation array type that maintains the two properties listed.

Figure 5. Spanning Predicate

1 function Spanning_Predicate(Perm_Map : Index_Array) return Boolean is
2 (for all I in Perm_Map'Range => --Perm_Map(I) in Perm_Map'Range
3 (for some J in Perm_Map'Range =>
4 Perm_Map(J) = I
5 )
6 );
7 --with Ghost;

The spanning predicate illustrated in Figure 5 ensures that each element of the permutation array is mapped to
by at least one of its indices. For simple integer index types this is sufficient for the permutation map properties
already stated, but to ensure a more generally applicable type it is necessary to also establish uniqueness directly.
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Figure 6. Uniqueness Predicate

1 function Is_Unique(Perm_Map : Index_Array) return Boolean is
2 (for all I in Perm_Map'Range =>
3 (for all J in Perm_Map'Range =>
4 (if not (I=J) then
5 Perm_Map(I) /= Perm_Map(J)
6 )
7 )
8 );
9 --with Ghost;

Figure 7. Permutation Array

1 function Perm_Map_Properties_Hold(Perm_Map : Index_Array) return Boolean is
2 (--Uniqueness Property
3 Is_Unique(Perm_Map) and then
4 --Spanning Property
5 Spanning_Predicate(Perm_Map)
6 );

The uniqueness predicate presented in Figure 6 ensures that no two elements are identical in the permutation
array. QS() often uses both the Spanning_Predicate() predicate and the Is_Unique() predicate simultaneously. It is
thus convenient to combine them into a single predicate, Perm_Map_Properties_Hold(), illustrated in Figure 7.

Finally, the Permutation_Array type illustrated in Figure 8 incorporates both predicates with a simple combined
function. Since all permutation arrays are by definition index arrays, it uses the Index_Array type as its supertype
and includes the combined Perm_Map_Properties_Hold() as its only predicate. The predicates on types and
subtypes are checked at assignment, including on the return from subprograms where they are declared as “out" or
“in out" variables, and on declaration if there’s any initialization component. The predicate of the Permutation_Array
type guarantees that if two arrays form a permutation, then the permutation array that maps the first of them to
the second is a permutation map for that permutation.

5 HELPER FUNCTIONS
QS() includes the frequent use of helper functions to bundle common operations and information that is used
frequently, such as statements on preconditions and postconditions or for the logical grouping of related formalisms.

5.1 Perm_Lengths_Match
Perm_Lengths_Match(), in Figure 9, is a helper function that enforces index equivalence between arrays that are

to be checked as permutations, and serves as the precondition for the actual check on permutation, Is_Permutation().
It ensures an absence of runtime exceptions by rigorously enforcing that the indices are all identical, and, so long
as the array isn’t empty, the indices all fall in the legal range for index types. It is overspecified by design, as
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The uniqueness predicate presented in Figure 6 ensures that no two elements are identical in the 
permutation array. QS() often uses both the Spanning_Predicate() predicate and the Is_Unique() 
predicate simultaneously. It is thus convenient to combine them into a single predicate, Perm_
Map_Properties_Hold(), illustrated in Figure 7.

Finally, the Permutation_Array type illustrated in Figure 8 incorporates both predicates with a 
simple combined function. Since all permutation arrays are by definition index arrays, it uses the 
Index_Array type as its supertype and includes the combined Perm_Map_Properties_Hold() as 
its only predicate. The predicates on types and subtypes are checked at assignment, including 
on the return from subprograms where they are declared as “out” or “in out” variables, and on 
declaration if there’s any initialization component. The predicate of the Permutation_Array type 
guarantees that if two arrays form a permutation, then the permutation array that maps the first 
of them to the second is a permutation map for that permutation.

5 Helper Functions

QS() includes the frequent use of helper functions to bundle common operations and information 
that is used frequently, such as statements on preconditions and postconditions or for the logical 
grouping of related formalisms.

5.1 Perm_Lengths_Match.

Perm_Lengths_Match(), in Figure 9, is a helper function that enforces index equivalence between 
arrays that are to be checked as permutations, and serves as the precondition for the actual 
check on permutation, Is_Permutation().

It ensures an absence of runtime exceptions by rigorously enforcing that the indices are all 
identical, and, so long as the array isn’t empty, the indices all fall in the legal range for index 
types. It is overspecified by design, as having each of these statements as unique statements 
that can be relied upon by the SPARK provers aids the speed of proof when any given individual 
one is required.
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Figure 8. Permutation Array

1 subtype Permutation_Array is Index_Array with
2 --Predicates: These are enforced in and out of all
3 --subprograms and at assignment
4 Predicate => (
5 Perm_Map_Properties_Hold(Permutation_Array)
6 );
7 --To be converted to Ghost_Predicate upon ghost argument implementation

Figure 9. Perm_Lengths_Match() Declaration

1 function Perm_Lengths_Match (Left, Right : Element_Array;
2 Perm_Map : Index_Array) return Boolean is
3 (
4 (if Perm_Map'Length > 0 then (
5 Perm_Map'First >= IndexType'First and then
6 Perm_Map'Last <= IndexType'Last
7 )
8 ) and then
9 Perm_Map'Length = Left'Length and then
10 Perm_Map'Length = Right'Length and then
11 Right'Length = Left'Length and then
12 Perm_Map'First = Left'First and then
13 Perm_Map'Last = Left'Last and then
14 Perm_Map'First = Right'First and then
15 Perm_Map'Last = Right'Last and then
16 Right'First = Left'First and then
17 Right'Last = Left'Last
18 ) with
19 Ghost;

having each of these statements as unique statements that can be relied upon by the SPARK provers aids the
speed of proof when any given individual one is required.

5.2 Is_Permutation
Is_Permutation(), in figure 10, is the fundamental boolean function that determines whether or not two arrays are
permutations of each other, essential for one of our four key properties for QS().

Between the restrictions of Perm_Lengths_Match() and the predicates on the Permutation_Array type, Is_Permutation()
simply needs to affirm that the actual mapping between the two arrays is correct; if so, then a valid permutation
map has been demonstrated and it can be affirmed that the two arrays form a permutation.
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5.2 Is_Permutation.

Is_Permutation(), in figure 10, is the fundamental boolean function that determines whether or not 
two arrays are permutations of each other, essential for one of our four key properties for QS(). 
Between the restrictions of Perm_Lengths_Match() and the predicates on the Permutation_Array 
type, Is_Permutation() simply needs to affirm that the actual mapping between the two arrays is 
correct; if so, then a valid permutation map has been demonstrated and it can be affirmed that 
the two arrays form a permutation.

5.3 IndexArrayOf.

The Index_Array_Of() function (Figure 11) takes in an arbitrary element array and returns an index 
array of equivalent size and index bounds where each index is mapped to itself. This is the identity 
permutation map PA−>A, since A(PA−>A(I)) = A(I =) for all I .
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11 Right'Length = Left'Length and then
12 Perm_Map'First = Left'First and then
13 Perm_Map'Last = Left'Last and then
14 Perm_Map'First = Right'First and then
15 Perm_Map'Last = Right'Last and then
16 Right'First = Left'First and then
17 Right'Last = Left'Last
18 ) with
19 Ghost;

having each of these statements as unique statements that can be relied upon by the SPARK provers aids the
speed of proof when any given individual one is required.

5.2 Is_Permutation
Is_Permutation(), in figure 10, is the fundamental boolean function that determines whether or not two arrays are
permutations of each other, essential for one of our four key properties for QS().

Between the restrictions of Perm_Lengths_Match() and the predicates on the Permutation_Array type, Is_Permutation()
simply needs to affirm that the actual mapping between the two arrays is correct; if so, then a valid permutation
map has been demonstrated and it can be affirmed that the two arrays form a permutation.
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Figure 10. Is_Permutation() Declaration

1 function Is_Permutation(Left, Right : Element_Array;
2 Perm_Map : Permutation_Array) return Boolean is
3 --Perm_Map has unique entries, (Predicate of permutation maps)
4 --Left and Right have the same length,
5 --Perm_Map(I) spans the range of Left for I in the range of Perm_Map,
6 --I spans the range of Right for I in the range of Perm_Map
7 -- (logical result of spanning + uniqueness)
8 --I maps each entry of Left onto Right
9 (
10 (for all I in Perm_Map'Range => Perm_Map(I) in Left'Range) and then
11 (for all I in Perm_Map'Range => Left(Perm_Map(I)) = Right(I)
12 )
13 )
14 with
15 Pre => (Perm_Lengths_Match(Left, Right, Perm_Map)),
16 Ghost,
17 Global => Null;

5.3 IndexArrayOf
The Index_Array_Of() function (Figure 11) takes in an arbitrary element array and returns an index array of
equivalent size and index bounds where each index is mapped to itself. This is the identity permutation map
𝑃𝑃𝐴𝐴−>𝐴𝐴, since 𝐴𝐴(𝑃𝑃𝐴𝐴−>𝐴𝐴 (𝐼𝐼 )) = 𝐴𝐴(𝐼𝐼 ) for all 𝐼𝐼 .

IndexArrayOf()’s postconditions guarantee to SPARK that the lengths of the arrays match and that they share
their first and last index, and that the index array is in fact a permutation of the input. The actual function body
itself consists of a loop doing the index assignments and the Loop_Invariant verifying to SPARK the contents of
the array. Broadly speaking, a Loop_Invariant can be seen as an assertion that exists only in loops and can be
proved inductively.
IndexArrayOf()’s postconditions are important because they establish a base case for a permutation map that

will be modified later. As long as those modifications are tracked to ensure the result remains a valid permutation,
a chain can be established between a final permutation and an original array. This is precisely what needs to
happen for QS() to prove that its final permutation map forms a valid permutation between its input and its output.

6 QS SPECIFICATION
Much of the context is now set to describe a specification of QS() which attempts to demonstrate the absence of
runtime exceptions, termination of the implementation, total ordering of the resulting output array, and that the
output array is a permutation of the input array.

Of the properties discussed, there are two (the permutation and ordering properties) that are fully described in
the postconditions, one that is implicit to the use of SPARK_Mode (absence of runtime exceptions), and one that
is captured by the Subprogram_Variant statement (termination). The first stated postcondition ensures than any
output of QS() will be sorted, while the second ensures that any output of QS() will be a permutation of the input.
Thus, all four of the desired properties are covered.
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IndexArrayOf()’s postconditions guarantee to SPARK that the lengths of the arrays match and 
that they share their first and last index, and that the index array is in fact a permutation of the 
input. The actual function body itself consists of a loop doing the index assignments and the 
Loop_Invariant verifying to SPARK the contents of the array. Broadly speaking, a Loop_Invariant 
can be seen as an assertion that exists only in loops and can be proved inductively.

IndexArrayOf()’s postconditions are important because they establish a base case for a 
permutation map that will be modified later. As long as those modifications are tracked to ensure 
the result remains a valid permutation, a chain can be established between a final permutation and 
an original array. This is precisely what needs to happen for QS() to prove that its final permutation 
map forms a valid permutation between its input and its output.

6 Qs Specification

Much of the context is now set to describe a specification of QS() which attempts to demonstrate 
the absence of runtime exceptions, termination of the implementation, total ordering of the resulting 
output array, and that the output array is a permutation of the input array. Of the properties 
discussed, there are two (the permutation and ordering properties) that are fully described in the 
postconditions, one that is implicit to the use of SPARK_Mode (absence of runtime exceptions), 
and one that is captured by the Subprogram_Variant statement (termination). The first stated 
postcondition ensures than any output of QS() will be sorted, while the second ensures that any 
output of QS() will be a permutation of the input. Thus, all four of the desired properties are covered.

7 Partition

The first step of the Quicksort algorithm is the Partition step. Leaving this step, it is necessary 
that four things be true: First, the pivot element must be properly placed within the array, which 
means that each element preceding the pivot within the array must have a value less than the 
pivot (the “low” property), and each element subsequent to the pivot within the array must have a 
value greater than or equal to the pivot (the “high” property). Secondly, there must be no runtime 
exceptions during the execution of this step. Third, the program must proceed through the step 
without exiting prematurely. Finally, the array leaving this step must be a permutation of the array 
that entered it.

7.2 Code Preamble.

Looking now at the implementation details, QS() begins by setting up important variables and 
initializing the permutation array, then asserting that it forms a permutation map from the 
beginning (the identity map), and establishing the conditional escape for the base case to ensure 
termination of any recursion. Figure 13 shows the creation and initialization of the initial variables. 
“Pivot” is the index of the Quicksort pivot element; “K” is the first index after the end of the “low” 
part of the array. “Init” is the stand-in for the input array in the QS() postcondition; it’s a constant 
to allow SPARK to make that logical leap easily. The “A_Previous” array is also initialized to “A.” The 
“A_Previous” array exists to store “A” before each modification of “A” so that statements about 
that modification can be automatically verified by SPARK. “Init,” similarly, stores the input array 
so that statements about the input array can be made in the body of QS(), and serves the same 
role as SPARK’s automatically defined postcondition-scope “A’Old.” When statements are verified 
about the relationship of “A” to “Init”, the same statements hold for the relationship of “A” to 
“A’Old” in the postcondition (and are recognized to do so by the automatic verifier): notably, that 
“A” is a permutation of “A’Old.”
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Figure 11. IndexArrayOf() Definition

1 function IndexArrayOf(A : Element_Array) return Permutation_Array
2 --A helper function that populates an array with the indices of A
3 -- This is the identity case of a permutation array, which maps A to itself.
4 with
5 Global => Null,
6 Post => (
7 IndexArrayOf'Result'First = A'First
8 and then IndexArrayOf'Result'Last = A'Last
9 and then IndexArrayOf'Result'Length = A'Length
10 and then (for all J in A'Range => IndexArrayOf'Result(J) = J)
11 and then Perm_Map_Properties_Hold(IndexArrayOf'Result)
12 and then Is_Permutation(A, A, IndexArrayOf'Result)
13 );
14

15 function IndexArrayOf(A : Element_Array) return Permutation_Array is
16 Ind : Index_Array(A'Range) := (others => IndexType'First);
17 begin
18 for I in A'Range loop
19 Ind(I) := I;
20 pragma Loop_Invariant(for all J in Ind'First .. I => Ind(J) = J);
21 end loop;
22 return Ind;
23 end IndexArrayOf;

7 PARTITION

7.1 Introduction
The first step of the Quicksort algorithm is the Partition step. Leaving this step, it is necessary that four things be
true: First, the pivot element must be properly placed within the array, which menas that each element preceding
the pivot within the array must have a value less than the pivot (the “low" property), and each element subsequent
to the pivot within the array must have a value greater than or equal to the pivot (the “high" property). Secondly,
there must be no runtime exceptions during the execution of this step. Third, the program must proceed through
the step without exiting prematurely. Finally, the array leaving this step must be a permutation of the array that
entered it.

7.2 Code Preamble
Looking now at the implementation details, QS() begins by setting up important variables and initializing the
permutation array, then asserting that it forms a permutation map from the beginning (the identity map), and
establishing the conditional escape for the base case to ensure termination of any recursion.
Figure 13 shows the creation and initialization of the initial variables. “Pivot" is the index of the Quicksort

pivot element; “K" is the first index after the end of the “low" part of the array. “Init" is the stand-in for the input
array in the QS() postcondition; it’s a constant to allow SPARK to make that logical leap easily. The “A_Previous"
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Figure 12. QS() Specification

1 pragma SPARK_Mode (On);
2 --...
3 procedure QS(A : in out Element_Array;
4 Ghost_Perm_Map : out Permutation_Array
5 )
6 with
7 --Converges
8 Subprogram_Variant => (Decreases => A'Last-A'First),
9 Pre => (A'First in IndexType'Range and then
10 A'Last in IndexType'Range and then
11 Ghost_Perm_Map'Length = A'Length and then
12 Ghost_Perm_Map'First = A'First and then
13 Ghost_Perm_Map'Last = A'Last
14 ),
15 Post => ( --Permutation Property
16 Is_Permutation(A, A'Old, Ghost_Perm_Map) and then
17 --Ascending or 1 or 0 elements property
18 (if (A'Last > A'First) then
19 (for all I in A'First .. A'Last - 1 =>
20 A(I) <= A(I + 1))
21 )
22 );

array is also initialized to “A." The “A_Previous" array exists to store “A" before each modification of “A" so that
statements about that modification can be automatically verified by SPARK. “Init," similarly, stores the input array
so that statements about the input array can be made in the body of QS(), and serves the same role as SPARK’s
automatically defined postcondition-scope “A’Old." When statements are verified about the relationship of “A" to
“Init", the same statements hold for the relationship of “A" to “A’Old" in the postcondition (and are recognized to
do so by the automatic verifier): notably, that “A" is a permutation of “A’Old."
Maintaining the mapping of “A" to “Init" as “A" is modified via “Ghost_Perm_Map" will thus satisfy the

permutation postcondition. “Ghost_LPM" is an index array that can be modified without breaking the permutation
map predicate; it will used to store updates to “Ghost_Perm_Map" in preparation of those predicates being proven
to allow the assignment. In general, therefore, the program flow will consist of modifications to “A" via the Swap()
procedure or QS() recursion, with the permutation map for those modifications being stored in "Ghost_LPM" and
the previous state of “A" being stored in “A’Previous." Some work will then be done to update “Ghost_Perm_Map"
to maintain it as the proper permutation map between “A" and “Init."
Figure 14 shows the initialization of several variables after the “begin" statement. The body of QS() will then

follow the steps laid out in the pseudocode. First will be the partitioning loop, which will systematically alter
the contents of “A" until “A" is properly partitioned, maintaining the permutation link from “A" to “Init" in the
meantime. Finally, the recursive steps will be invoked to complete the algorithm, using the postconditions of the
recursion to aid in establishing the postconditions of the algorithm.

Figure 11. IndexArrayOf() Definition

Figure 12. QS() Specification

Maintaining the mapping of “A” to “Init” as “A” is modified via “Ghost_Perm_Map” will thus satisfy 
the permutation postcondition. “Ghost_LPM” is an index array that can be modified without 
breaking the permutation map predicate; it will used to store updates to “Ghost_Perm_Map” in 
preparation of those predicates being proven to allow the assignment. In general, therefore, the 
program flow will consist of modifications to “A” via the Swap() procedure or QS() recursion, with 
the permutation map for those modifications being stored in “Ghost_LPM” and the previous state 
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of “A” being stored in “A’Previous.” Some work will then be done to update “Ghost_Perm_Map” to 
maintain it as the proper permutation map between “A” and “Init.”

Figure 14 shows the initialization of several variables after the “begin” statement. The body of 
QS() will then follow the steps laid out in the pseudocode. First will be the partitioning loop, 
which will systematically alter the contents of “A” until “A” is properly partitioned, maintaining 
the permutation link from “A” to “Init” in the meantime. Finally, the recursive steps will be invoked 
to complete the algorithm, using the postconditions of the recursion to aid in establishing the 
postconditions of the algorithm.

The output permutation map is set to the identity permutation map for “A,” and that permutation 
relationship is immediately asserted for SPARK to verify via the postconditions on Index_Array_
Of() (Figure 11), using the “Init” array as the target. Maintaining this relationship between each state 
of “A” and “Init” is sufficient for the permutation postcondition. “Pivot” is set to the last element 
of “A,” an example of the Lomuto partitioning scheme [2]. “K,” as the end of the “low” end, is set to 
the first element of “A.” Finally, the relationship between “A” and “A_Previous” via “Ghost_LPM,” 
the identity permutation, is established.

The if statement (Line 16) of Figure 14 provides an escape for the base case; if the check yields 
false, the input array is already sorted. The partitioning and recursion steps are only invoked if the 
array needs further sorting after this point.

7.3 Partition Loop.

The partitioning step of Quicksort (Figure 2) involves a loop followed by a final swap to set the 
pivot in the correct place. QS() follows the logic listed in the pseudocode in Figure 19, swapping 
the element at position “K” with the element at position “I” (the loop index) if the element at “I” 
is less than the pivot, and then advancing “K”. By the time “I” has traversed the indices of the 
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Figure 13. QS() Body - Local Variables

1 procedure QS (A : in out Element_Array;
2 Ghost_Perm_Map : out Permutation_Array) is
3 Pivot : IndexType;
4 K : IndexType;
5 --Init is used for the permutation property preservation.
6 --A_Previous is the bridge for that property.
7 A_Previous : Element_Array := A; --with Ghost;
8 Init : constant Element_Array := A; -- with Ghost;
9 --Ghost_LPM receives records of permutations from Swap and Quicksort
10 --(Index_Array for partial changes)
11 Ghost_LPM : Index_Array := IndexArrayOf(Init); --with Ghost
12

Figure 14. QS() Body - Initialization

13 begin
14 Ghost_Perm_Map := IndexArrayOf(A);
15 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
16 if A'Length > 1 then -- Empty and one-element arrays are sorted.
17 Pivot := A'Last;
18 K := A'First;
19 pragma Assert(Is_Permutation(A, A_Previous, Ghost_LPM));

The output permutation map is set to the identity permutation map for “A," and that permutation relationship
is immediately asserted for SPARK to verify via the postconditions on Index_Array_Of() (Figure 11), using the
“Init" array as the target. Maintaining this relationship between each state of “A" and “Init" is sufficient for the
permutation postcondition. “Pivot" is set to the last element of “A," an example of the Lomuto partitioning scheme
[2]. “K," as the end of the “low" end, is set to the first element of “A." Finally, the relationship between “A" and
“A_Previous" via “Ghost_LPM," the identity permutation, is established.

The if statement (Line 16) of Figure 14 provides an escape for the base case; if the check yields false, the input
array is already sorted. The partitioning and recursion steps are only invoked if the array needs further sorting
after this point.

7.3 Partition Loop
The partitioning step of Quicksort (Figure 2) involves a loop followed by a final swap to set the pivot in the correct
place. QS() follows the logic listed in the pseudocode in Figure 19, swapping the element at position “K" with the
element at position “I" (the loop index) if the element at “I" is less than the pivot, and then advancing “K". By the
time “I" has traversed the indices of the input array, “K" will be in the correct position for the pivot, the element at
“K" will be greater than or equal to the pivot, the pivot element will still be the last element of the array, every
element of index less than “K" will be less than the pivot element and every element between “K" and the pivot
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Figure 13. QS() Body - Local Variables

1 procedure QS (A : in out Element_Array;
2 Ghost_Perm_Map : out Permutation_Array) is
3 Pivot : IndexType;
4 K : IndexType;
5 --Init is used for the permutation property preservation.
6 --A_Previous is the bridge for that property.
7 A_Previous : Element_Array := A; --with Ghost;
8 Init : constant Element_Array := A; -- with Ghost;
9 --Ghost_LPM receives records of permutations from Swap and Quicksort
10 --(Index_Array for partial changes)
11 Ghost_LPM : Index_Array := IndexArrayOf(Init); --with Ghost
12

Figure 14. QS() Body - Initialization

13 begin
14 Ghost_Perm_Map := IndexArrayOf(A);
15 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
16 if A'Length > 1 then -- Empty and one-element arrays are sorted.
17 Pivot := A'Last;
18 K := A'First;
19 pragma Assert(Is_Permutation(A, A_Previous, Ghost_LPM));

The output permutation map is set to the identity permutation map for “A," and that permutation relationship
is immediately asserted for SPARK to verify via the postconditions on Index_Array_Of() (Figure 11), using the
“Init" array as the target. Maintaining this relationship between each state of “A" and “Init" is sufficient for the
permutation postcondition. “Pivot" is set to the last element of “A," an example of the Lomuto partitioning scheme
[2]. “K," as the end of the “low" end, is set to the first element of “A." Finally, the relationship between “A" and
“A_Previous" via “Ghost_LPM," the identity permutation, is established.

The if statement (Line 16) of Figure 14 provides an escape for the base case; if the check yields false, the input
array is already sorted. The partitioning and recursion steps are only invoked if the array needs further sorting
after this point.

7.3 Partition Loop
The partitioning step of Quicksort (Figure 2) involves a loop followed by a final swap to set the pivot in the correct
place. QS() follows the logic listed in the pseudocode in Figure 19, swapping the element at position “K" with the
element at position “I" (the loop index) if the element at “I" is less than the pivot, and then advancing “K". By the
time “I" has traversed the indices of the input array, “K" will be in the correct position for the pivot, the element at
“K" will be greater than or equal to the pivot, the pivot element will still be the last element of the array, every
element of index less than “K" will be less than the pivot element and every element between “K" and the pivot

Figure 13. QS() Body - Local Variables

Figure 14. QS() Body -- Initialization
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input array, “K” will be in the correct position for the pivot, the element at “K” will be greater than 
or equal to the pivot, the pivot element will still be the last element of the array, every element 
of index less than “K” will be less than the pivot element and every element between “K” and the 
pivot element’s index will be greater than the pivot element. At that point, it only takes a swap 
operation between “K” and the pivot’s index to complete the partitioning. However, the properties 
maintained in this loop need to established for SPARK to verify them.

7.3.1 Loop_Invariant. 

SPARK’s powerful Loop_Invariant pragma allows SPARK to verify information about a loop through 
each iteration, by verifying it first at the first iteration and then on an arbitrary iteration, given its 
truth in a previous iteration, by induction. Loop_Invariants are the only way to inform the solver 
of the “work” done by the loop. A simple rule of thumb is that if an element is unmodified by the 
loop its relevant properties should be contained in an assertion, if necessary, but if the element is 
modified by an arbitrary iteration of the loop then the relevant properties should be established 
in a loop invariant. The Loop_Invariant will be presented first here, for clarity.

The Loop_Invariant pragma in the Quicksort partition step provided in Figure 15 maintains that “K,” 
the index of the element after the “low” end, stays in bounds. This ensures that “K” will not drift out 
of the range of “A,” regardless of the branches taken within the loop, and enables SPARK to ensure 
an absence of runtime exceptions regarding access to “A.”

The Loop Invariant (Figure 16) also maintains that “K” stays less than or equal to “I,” the loop 
variable, in order to maintain the two divisions of the partition (since “K” is the end of the “low” 
part and “I” is the end of the “high” part).

The Loop Invariant (Figure 17) maintains that the elements in the “low” part stay less than the pivot 
and elements in the “high” part stay greater than or equal to the pivot. Since the Loop_Invariant 
is placed at the start of the loop, SPARK will need to carry that logic forward through the last 
iteration of the loop in order to satisfy the ordering postcondition.

Finally, the Loop Invariant (Figure 18) ensures that “Ghost_Perm_Map” is being maintained as 
a permutation from the updated array to the array’s initial state after each loop iteration. This 
ensures the permutation postcondition is maintained throughout the loop.

7.3.2 Loop Body. 

With the Loop Invariant understood, the remainder of the loop, Figure 19 can now be shown 
directly. The loop checks if the conditions for a swap hold, then initializes “A_Previous” to “A,” 
performs the swap, and then calls “Trans_Perm_Update” to update the permutation map. The 
swap only occurs if “K” is not equal to “I” (since nothing is gained by swapping an element with 
itself). “K” is then advanced.
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element’s index will be greater than the pivot element. At that point, it only takes a swap operation between
“K" and the pivot’s index to complete the partitioning. However, the properties maintained in this loop need to
established for SPARK to verify them.

7.3.1 Loop_Invariant. SPARK’s powerful Loop_Invariant pragma allows SPARK to verify information about a
loop through each iteration, by verifying it first at the first iteration and then on an arbitrary iteration, given its
truth in a previous iteration, by induction. Loop_Invariants are the only way to inform the solver of the “work"
done by the loop. A simple rule of thumb is that if an element is unmodified by the loop its relevant properties
should be contained in an assertion, if necessary, but if the element is modified by an arbitrary iteration of the
loop then the relevant properties should be established in a loop invariant. The Loop_Invariant will be presented
first here, for clarity.

Figure 15. Loop_Invariant - Bounded K

20 for I in A'First..(Pivot - 1) loop
21 pragma Loop_Invariant(
22 --K stays in "bounds"
23 K >= A'First
24 and then K <= A'Last

The Loop_Invariant pragma in the Quicksort partition step provided in Figure 15 maintains that “K," the index
of the element after the "low" end, stays in bounds. This ensures that “K" will not drift out of the range of “A,"
regardless of the branches taken within the loop, and enables SPARK to ensure an absence of runtime exceptions
regarding access to “A."

Figure 16. Loop_Invariant - Partition Area Logic

25 --End of Low End <= End of High End
26 and then K <= I

The Loop Invariant (Figure 16) also maintains that “K" stays less than or equal to “I," the loop variable, in order
to maintain the two divisions of the partition (since “K" is the end of the “low" part and “I" is the end of the “high"
part).
The Loop Invariant (Figure 17) maintains that the elements in the “low" part stay less than the pivot and

elements in the “high" part stay greater than or equal to the pivot. Since the Loop_Invariant is placed at the start
of the loop, SPARK will need to carry that logic forward through the last iteration of the loop in order to satisfy
the ordering postcondition.

Finally, the Loop Invariant (Figure 18) ensures that “Ghost_Perm_Map" is beingmaintained as a permutation from
the updated array to the array’s initial state after each loop iteration. This ensures the permutation postcondition
is maintained throughout the loop.

7.3.2 Loop Body. With the Loop Invariant understood, the remainder of the loop, Figure 19 can now be shown
directly. The loop checks if the conditions for a swap hold, then initializes “A_Previous" to “A," performs the swap,
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element’s index will be greater than the pivot element. At that point, it only takes a swap operation between
“K" and the pivot’s index to complete the partitioning. However, the properties maintained in this loop need to
established for SPARK to verify them.

7.3.1 Loop_Invariant. SPARK’s powerful Loop_Invariant pragma allows SPARK to verify information about a
loop through each iteration, by verifying it first at the first iteration and then on an arbitrary iteration, given its
truth in a previous iteration, by induction. Loop_Invariants are the only way to inform the solver of the “work"
done by the loop. A simple rule of thumb is that if an element is unmodified by the loop its relevant properties
should be contained in an assertion, if necessary, but if the element is modified by an arbitrary iteration of the
loop then the relevant properties should be established in a loop invariant. The Loop_Invariant will be presented
first here, for clarity.

Figure 15. Loop_Invariant - Bounded K

20 for I in A'First..(Pivot - 1) loop
21 pragma Loop_Invariant(
22 --K stays in "bounds"
23 K >= A'First
24 and then K <= A'Last

The Loop_Invariant pragma in the Quicksort partition step provided in Figure 15 maintains that “K," the index
of the element after the "low" end, stays in bounds. This ensures that “K" will not drift out of the range of “A,"
regardless of the branches taken within the loop, and enables SPARK to ensure an absence of runtime exceptions
regarding access to “A."

Figure 16. Loop_Invariant - Partition Area Logic

25 --End of Low End <= End of High End
26 and then K <= I

The Loop Invariant (Figure 16) also maintains that “K" stays less than or equal to “I," the loop variable, in order
to maintain the two divisions of the partition (since “K" is the end of the “low" part and “I" is the end of the “high"
part).
The Loop Invariant (Figure 17) maintains that the elements in the “low" part stay less than the pivot and

elements in the “high" part stay greater than or equal to the pivot. Since the Loop_Invariant is placed at the start
of the loop, SPARK will need to carry that logic forward through the last iteration of the loop in order to satisfy
the ordering postcondition.

Finally, the Loop Invariant (Figure 18) ensures that “Ghost_Perm_Map" is beingmaintained as a permutation from
the updated array to the array’s initial state after each loop iteration. This ensures the permutation postcondition
is maintained throughout the loop.

7.3.2 Loop Body. With the Loop Invariant understood, the remainder of the loop, Figure 19 can now be shown
directly. The loop checks if the conditions for a swap hold, then initializes “A_Previous" to “A," performs the swap,

Figure 15. Loop_Invariant - Bounded K

Figure 16. Loop_Invariant - Partition Area Logic
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There are two subprograms invoked here that are yet to be defined: Swap(), which swaps two 
elements within an array (and provides the permutation map between its input and output), 
and Trans_Perm_Update(), which updates the global permutation map “Ghost_Perm_Map” and 
proves that “A” and “Init” form a permutation by the transitive property. The following examines 
these subprograms in detail to show how they are used to establish the abscence of runtime 
exceptions, the relative ordering of elements and the permutation between the current “A”, the 
previous “A”, and the initial “A” input to QS().

7.3.3 Swap - Specification.

Swap() is the fundamental unit of work in the Quicksort sorting algorithm. As such, it is necessary 
to completely define it for SPARK.

In the code block presented in Figure 20, the preconditions ensure that there are no access 
errors within Swap() due to either of the swap variables “I” or “K” being out of range of “A,” and 
that input array “A” and the permutation array “Ghost_Perm_Map” are indexed equally.

In the code block presented in Figure 21, the first postcondition ensures that Swap() generates 
a permutation. The second defines that only the values at the K and I indices are exchanged 
between the input array and the output array and that all other elements are untouched, which 
is used to prove the ordering Loop_Invariants of the partitioning step (and later orderings).
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Figure 17. Loop_Invariant - Partition Properties

27 --Low End has Lo Property
28 and then (for all J in A'First..K-1 =>
29 A(J) < A(Pivot))
30 --Hi End has Hi Property
31 and then (for all J in K .. I-1 =>
32 A(J) >= A(Pivot))

Figure 18. Loop_Invariant - Permutation Properties

33 -- Permutation Property preserved (Global)
34 and then
35 (Perm_Map_Properties_Hold(Ghost_Perm_Map))
36 and then (
37 Is_Permutation(A, Init, Ghost_Perm_Map)
38 )
39 );

Figure 19. Loop Body

40 if (A(I) < A(Pivot) and Pivot > K) then
41 if (K < I) then
42 A_Previous := A;
43 Swap (A, Ghost_LPM, I, K);
44 Ghost_Perm_Map :=
45 Trans_Perm_Update(Ghost_Perm_Map, Ghost_LPM,
46 A, A_Previous, Init);
47 end if;
48 K := K + 1;
49 end if;
50 end loop;

and then calls “Trans_Perm_Update" to update the permutation map. The swap only occurs if “K" is not equal to
“I" (since nothing is gained by swapping an element with itself). “K" is then advanced.

There are two subprograms invoked here that are yet to be defined: Swap(), which swaps two elements within
an array (and provides the permutation map between its input and output), and Trans_Perm_Update(), which
updates the global permutation map “Ghost_Perm_Map" and proves that “A" and “Init" form a permutation by the
transitive property. The following examines these subprograms in detail to show how they are used to establish
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the absence of runtime exceptions, the relative ordering of elements and the permutation between the current “A",
the previous “A", and the initial “A" input to QS().

7.3.3 Swap - Specification. Swap() is the fundamental unit of work in the Quicksort sorting algorithm. As such, it
is necessary to completely define it for SPARK.

Figure 20. Swap() Specification

1 procedure Swap(A : in out Element_Array;
2 Ghost_Perm_Map : out Permutation_Array;
3 I, K: in IndexType)
4 with
5 Pre => (
6 I in A'Range and then
7 K in A'Range and then
8 A'First = Ghost_Perm_Map'First and then
9 A'Last = Ghost_Perm_Map'Last
10 ),

In the code block presented in Figure 20, the preconditions ensure that there are no access errors within Swap()
due to either of the swap variables “I" or “K" being out of range of “A," and that input array “A" and the permutation
array “Ghost_Perm_Map" are indexed equally.

Figure 21. Swap() Specification - Postconditions

11 Post =>(
12 --Permutation Property
13 Is_Permutation(A, A'Old, Ghost_Perm_Map) and then
14 --Swap Property
15 A(K) = A'Old(I) and then A(I) = A'Old(K) and then
16 (for all J in A'Range =>
17 (if not((J=I) or (J=K)) then A'Old(J) = A(J))
18 )
19 );

In the code block presented in Figure 21, the first postcondition ensures that Swap() generates a permutation.
The second defines that only the values at the K and I indices are exchanged between the input array and the
output array and that all other elements are untouched, which is used to prove the ordering Loop_Invariants of
the partitioning step (and later orderings).

7.3.4 Swap - Body. With the contracts in place, the crucial properties can be proved for the Swap() subprogram
based on its body implementation.

As seen in Figure 22, Swap() utilizes the postconditions of the IndexArrayOf() function, along with the predicate
functions of a permutation array upon the final assignment (Figure 7), to ensure the permutation postcondition.
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7.3.4 Swap - Body. 

With the contracts in place, the crucial properties can be proved for the Swap() subprogram 
based on its body implementation. As seen in Figure 22, Swap() utilizes the postconditions of the 
IndexArrayOf() function, along with the predicate functions of a permutation array upon the final 
assignment (Figure 7), to ensure the permutation postcondition.

The local variable that stores the permutation map until the swap is completed, “GP_Map,” must 
be an index array, not a permutation array, because the permutation predicates will be violated 
after the swap operation is begun but before it is finalized. In order to prove to SPARK that Swap 
properly spans, the SwapSpanning() lemma is employed (see the next section).

It is of particular convenience that there is no question that Swap() has been properly implemented 
here, because SPARK() has the full swap operation definition as a required postcondition. Should 
some human error have caused the steps of Swap() to be taken out of order, for example, SPARK 
would not verify that postcondition upon subprogram exit. The presence of a possible error 
both in the postcondition and the implementation would, in turn, cause other proofs to fail down 
the line. Only the ultimate postconditions in QS() must be satisfactory to the skeptic; SPARK’s 
attempts to verify those will fail if anything else fails to uphold the logical structure.

7.3.5 SwapSpanning. 

SwapSpanning() is a lemma that states that if a subset of an Index_Array that contains two 
fewer elements than the original spans, and that those two other indices contain each other as 
elements, then the entire array spans. The code for this lemma does not require any statements 
in the body, because devoid of other context SPARK can easily prove this assertion. Creating this 
lemma simplifies the Swap proof to showing that the preconditions hold, and invoking this lemma.

7.3.6 Trans_Perm_Update - Specification. 

Now that the details of the Swap() subprogram have been fully explicated, it is time to turn back 
to the Trans_Perm_Update() function used in the loop body to perform the partition step of 
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Figure 22. Swap() Body

1 procedure Swap (A : in out Element_Array;
2 Ghost_Perm_Map : out Permutation_Array;
3 I, K : in IndexType
4 )
5 is
6 GP_Map : Index_Array := IndexArrayOf(A);
7 Temp : Element;
8

9 begin
10 Temp := A (I);
11 A (I) := A (K);
12 A (K) := Temp;
13 GP_Map(I) := K;
14 pragma Assert(for all J in GP_Map'Range =>
15 (if not (J = I) then GP_Map(J) = J));
16 pragma Assert(GP_Map(I) = K);
17 GP_Map(K) := I;
18 pragma Assert(for all J in GP_Map'Range =>
19 (if not (J = I or J = K) then GP_Map(J) = J));
20 pragma Assert(GP_Map(K) = I);
21 pragma Assert(for all J in GP_Map'Range =>
22 (if not (J = I or J = K) then
23 (for some Z in GP_Map'Range =>
24 GP_Map(Z) = J and not (Z = I or Z = K)))
25 );
26 SwapSpanning(GP_Map, I, K);
27 pragma Assert(Spanning_Predicate(GP_Map));
28 Ghost_Perm_Map := GP_Map;
29 end Swap;

The local variable that stores the permutation map until the swap is completed, “GP_Map," must be an index array,
not a permutation array, because the permutation predicates will be violated after the swap operation is begun
but before it is finalized. In order to prove to SPARK that Swap properly spans, the SwapSpanning() lemma is
employed (see the next section).
It is of particular convenience that there is no question that Swap() has been properly implemented here,

because SPARK() has the full swap operation definition as a required postcondition. Should some human error
have caused the steps of Swap() to be taken out of order, for example, SPARK would not verify that postcondition
upon subprogram exit. The presence of a possible error both in the postcondition and the implementation would,
in turn, cause other proofs to fail down the line. Only the ultimate postconditions in QS() must be satisfactory to
the skeptic; SPARK’s attempts to verify those will fail if anything else fails to uphold the logical structure.
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7.3.5 SwapSpanning. SwapSpanning() is a lemma that states that if a subset of an Index_Array that contains two
fewer elements than the original spans, and that those two other indices contain each other as elements, then the
entire array spans. The code for this lemma does not require any statements in the body, because devoid of other
context SPARK can easily prove this assertion. Creating this lemma simplifies the Swap proof to showing that the
preconditions hold, and invoking this lemma.

Figure 23. SwapSpanning() Lemma

1 procedure SwapSpanning(P: Index_Array;
2 I: IndexType;
3 K: IndexType) with
4 Ghost,
5 Pre => (
6 I in P'Range and then
7 K in P'Range and then
8 (for all J in P'Range =>
9 (if not (J = I or J = K) then
10 (for some Z in P'Range =>
11 P(Z) = J and not (Z = I or Z = K)))
12 )
13 and then P(I) = K and then P(K) = I
14 ),
15 Post => (
16 Spanning_Predicate(P)
17 );

7.3.6 Trans_Perm_Update - Specification. Now that the details of the Swap() subprogram have been fully expli-
cated, it is time to turn back to the Trans_Perm_Update() function used in the loop body to perform the partition
step of QS(). Trans_Perm_Update() acts as a combination lemma (asserting the transitive property of permuta-
tions) and update function to transfer the elements of the Index_Array “Ghost_LPM" to the Permutation_Array
“Ghost_Perm_Map." In doing so it proves to SPARK that there is still a permutation map from the updated “A" to
“Init," and it is necessary to invoke it upon each call to Swap().

Besides ensuring an absence of runtime exceptions from bad array access, the preconditions to Trans_Perm_Update()
in Figure 24 are that “A" and “B" are permutations (by the “AToB" permutation map) and “B" and “C" are permuta-
tions (by the “BToC" permutation map).
Similarly, the postconditions provided in Figure 25 ensure that the indices are properly set up for the output

permutation and then state the transitive result, that “A" and “C" are permutations mapped by the output.
Additionally, the statements on equivalent first index and length is used to ensure absence of runtime exceptions
when using a single iterator to reference both the resulting permutation map and the input permutation map
“BToC," which is necessary in establishing the permutation link between the input to QS(), “Init," the previous
partition loop iteration value “A_Previous," and the current value of “A" after the swap operation.
Examining the preconditions and postconditions of Trans_Perm_Update() thus yields the classic definition of

transitivity: If there’s a map from “A" to “B," and a map from “B" to “C," there’s a map from “A" to “C," which is
then returned by this function.

Figure 22. Swap() Body

Figure 23. SwapSpanning() Lemma



adacore.com

QS(). Trans_Perm_Update() acts as a combination lemma (asserting the transitive property of 
permutations) and update function to transfer the elements of the Index_Array “Ghost_LPM” 
to the Permutation_Array “Ghost_Perm_Map.” In doing so it proves to SPARK that there is still a 
permutation map from the updated “A” to Init,” and it is necessary to invoke it upon each call to 
Swap().

Besides ensuring an absence of runtime exceptions from bad array access, the preconditions 
to Trans_Perm_Update() in Figure 24 are that “A” and “B” are permutations (by the “AToB” 
permutation map) and “B” and “C” are permutations (by the “BToC” permutation map). Similarly, 
the postconditions provided in Figure 25 ensure that the indices are properly set up for the 
output permutation and then state the transitive result, that “A” and “C” are permutations 
mapped by the output.

Additionally, the statements on equivalent first index and length is used to ensure absence of 
runtime exceptions when using a single iterator to reference both the resulting permutation map 
and the input permutation map “BToC,” which is necessary in establishing the permutation link 
between the input to QS(), “Init,” the previous partition loop iteration value “A_Previous,” and the 
current value of “A” after the swap operation.

Examining the preconditions and postconditions of Trans_Perm_Update() thus yields the classic 
definition of transitivity: If there’s a map from “A” to “B,” and a map from “B” to “C,” there’s a map 
from “A” to “C,” which is then returned by this function.

7.3.7 Trans_Perm_Update - Body.

Given the preconditions, the only actual work to be done by the update is to map each element 
of the output (the Index_Array “AToC”) via the application of the transitive property. This work 
will be done in a loop that constructs “AToC” by referencing “AToB” via the elements of “BToC.” 
“AToC” is then returned on function exit.
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Figure 24. Trans_Perm_Update() Specification

1 function Trans_Perm_Update(BToC, AToB : in Permutation_Array;
2 A, B, C : Element_Array) return Permutation_Array
3 --Returns the permutation array that maps the transitive permutation from
4 -- A to C.
5 with
6 Pre => (Perm_Map_Properties_Hold(AToB) and then
7 Perm_Map_Properties_Hold(BToC) and then
8 Perm_Lengths_Match(A, B, AToB) and then
9 Perm_Lengths_Match(B, C, BToC) and then
10 (for all I in BToC'Range =>
11 I in AToB'Range) and then
12 (for all I in BToC'Range =>
13 BToC(I) in AToB'Range) and then
14 Is_Permutation(A, B, AToB) and then
15 Is_Permutation(B, C, BToC)),

Figure 25. Trans_Perm_Update() Specification - Postconditions

17 Post => (Trans_Perm_Update'Result'First = BToC'First and then
18 Trans_Perm_Update'Result'Length = BToC'Length and then
19 Perm_Map_Properties_Hold(Trans_Perm_Update'Result) and then
20 Is_Permutation(A, C, Trans_Perm_Update'Result));

7.3.7 Trans_Perm_Update - Body. Given the preconditions, the only actual work to be done by the update is to
map each element of the output (the Index_Array “AToC") via the application of the transitive property. This work
will be done in a loop that constructs “AToC" by referencing “AToB" via the elements of “BToC." “AToC" is then
returned on function exit.
In Figure 26, “AToC" must be an index array, instead of the expected permutation array, because it violates

the permutation array predicates while it is being constructed; after it is constructed, proving it to satisfy the
permutation predicates allows it to be assigned to the output. It is easily shown that while it is under construction,
each entry of “AToC" satisfies the condition that it maps an element of the “A" array to the “C" array, and the
assertions placed here maintain that.
The loop invariant, shown in Figure 27, shows that the growing sub-array maintains almost all the necessary

conditions for a permutation from “A" to “C" are observed, saving only the full spanning proof. First, it shows that
“AToC" assigns elements from “A" to “C," converting the assertions from the loop body (which apply only to the
latest element) into a general statement about “AToC." After confirming inductively that the entire permutation
array being built is being constructed from the concatenation of the two provided to the function (lines 14 – 16),
the loop invariant establishes uniqueness (lines 18–25) and the permutation property (28 – 30). However, spanning
can not be proven for an array as it is being built, since it requires access to all the elements to check against the
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Figure 24. SwapSpanning() Lemma
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In Figure 26, “AToC” must be an index array, instead of the expected permutation array, because 
it violates the permutation array predicates while it is being constructed; after it is constructed, 
proving it to satisfy the permutation predicates allows it to be assigned to the output. It is easily 
shown that while it is under construction, each entry of “AToC” satisfies the condition that it 
maps an element of the “A” array to the “C” array, and the assertions placed here maintain that.

The loop invariant, shown in Figure 27, shows that the growing sub-array maintains almost all the 
necessary conditions for a permutation from “A” to “C” are observed, saving only the full spanning 
proof. First, it shows tha “AToC” assigns elements from “A” to “C,” converting the assertions from 
the loop body (which apply only to the latest element) into a general statement about “AToC.” 
After confirming inductively that the entire permutation array being built is being constructed 
from the concatenation of the two provided to the function (lines 14 – 16), the loop invariant 
establishes uniqueness (lines 18–25) and the permutation property (28 – 30). However, spanning 
can not be proven for an array as it is being built, since it requires access to all the elements to 
check against the range. A weaker but necessary precondition, that the elements of the array do 
fall in the range, is instead proven inductively (lines 32 – 34). Quicksort Verified by SPARK • 17

Figure 26. Trans_Perm_Update() Body Part 1

1 function Trans_Perm_Update(BToC, AToB : in Permutation_Array;
2 A, B, C : Element_Array) return Permutation_Array
3 is
4 AToC : Index_Array := BToC;
5 begin
6 for I in BToC'Range loop
7 AToC(I) := AToB(BToC(I));
8 pragma Assert(for all J in AtoC'First..I =>
9 A(AToB(J)) = B(J) and then
10 B(BToC(J)) = C(J) and then
11 A(AToC(J)) = C(J));

Figure 27. Trans_Perm_Update() Body Part 2

12 pragma Loop_Invariant(
13 --Assignment proof
14 (for all J in BToC'First..I =>
15 AToC(J) = AToB(BToC(J)))
16 and then
17 --Uniqueness proof
18 (for all J in BToC'First..I =>
19 (for all K in BToC'First..I =>
20 (
21 if not (J = K) then not
22 (AToC(J) = AToC(K))
23 )
24 )
25 )
26 and then
27 --Perm map property
28 (for all J in AToC'First..I =>
29 A(AToC(J)) = C(J)
30 ) and then
31 --Spanning Property necessary
32 (for all J in AToC'First..I =>
33 AToC(J) in AToC'Range
34 )
35 );
36 end loop;
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Exiting the loop, a lemma is invoked to prove the spanning predicate for “AToC.” This is an example 
of “lemma offloading,” where statements that could logically be made at a point in execution are 
instead invoked in a procedure, to clear the context for SPARK and allow for faster proving.

7.3.8 Spanning_Trans_Lemma Specification. 

SPARK will, when proving Trans_Perm_Update(), prove only the preconditions for Spanning_Trans_
Lemma() and assume the postcondition to be true. Then, it will independently prove Spanning_
Trans_Lemma(), assuming the preconditions at that time and proving the postconditions.

First, the specification (Figure 29) contains some access assurances and context from the 
invocation point that might be useful to SPARK.

The relevant spanning properties, including the one established in the Loop_Invariant, are given 
as preconditions next (Figure 30). The postcondition is the one sought for “AtoC”’s spanning 
predicate, which is the last step necessary to assign it to the output of Trans_Perm_Update().

7.3.9 Spanning_Trans_Lemma Body.

Two assertions are included in the body of Spanning_Trans_Lemma() (Figure 29) as guideposts 
to SPARK to allow the proof to complete in a timely manner. These assertions are what would be 
required where Spanning_Trans_Lemma() was invoked, if the context were not overwhelming.

The first assertion (lines 4 – 8) is that every element of “AtoB” is mapped to by some index of 
“AtoB.” The second assertion (lines 9 – 13) is that every element of “AtoB” is mapped to by some 
index of “AtoC.” Together with the inherited context from the preconditions, this lets SPARK prove 
that “AtoC” satisfies the spanning predicate.

7.3.10 Post-Loop Swap. 

Returning now to the QS() partitioning step, it has been established that the elements of the 
“low” section have values less than the pivot and elements of the “high” section have values 
greater than or equal to the pivot. The pivot remains the last element of “A,” so the only remaining 
operation to be completed from the partitioning pseudocode (Figure 2, line 8) is to swap the Ktℎ 
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range. A weaker but necessary precondition, that the elements of the array do fall in the range, is instead proven
inductively (lines 32 – 34).

Figure 28. Trans_Perm_Update() Body Part 3

37 Spanning_Trans_Lemma(AToB, BToC, AToC);
38 return AToC;
39 end;

Exiting the loop, a lemma is invoked to prove the spanning predicate for “AToC." This is an example of “lemma
offloading," where statements that could logically be made at a point in execution are instead invoked in a
procedure, to clear the context for SPARK and allow for faster proving.

7.3.8 Spanning_Trans_Lemma Specification. SPARK will, when proving Trans_Perm_Update(), prove only the
preconditions for Spanning_Trans_Lemma() and assume the postcondition to be true. Then, it will independently
prove Spanning_Trans_Lemma(), assuming the preconditions at that time and proving the postconditions.

Figure 29. Spanning_Trans_Lemma() - Specification

1 procedure Spanning_Trans_Lemma(AtoB, BtoC : Permutation_Array;
2 AtoC : Index_Array)
3 --Spanning property is transitive.
4 with Ghost,
5 Always_Terminates,
6 Pre => (
7 AtoB'Length = AtoC'Length and then
8 BtoC'Length = AtoC'Length and then
9 AtoB'Length = BToC'Length and then
10 Spanning_Predicate(AtoB) and then
11 Spanning_Predicate(BtoC) and then
12 Is_Unique(AtoB) and then
13 Is_Unique(BtoC) and then
14 Is_Unique(AtoC) and then

First, the specification (Figure 29) contains some access assurances and context from the invocation point that
might be useful to SPARK.

The relevant spanning properties, including the one established in the Loop_Invariant, are given as preconditions
next (Figure 30). The postcondition is the one sought for “AtoC"’s spanning predicate, which is the last step
necessary to assign it to the output of Trans_Perm_Update().

7.3.9 Spanning_Trans_Lemma Body. Two assertions are included in the body of Spanning_Trans_Lemma() (Figure
29) as guideposts to SPARK to allow the proof to complete in a timely manner. These assertions are what would
be required where Spanning_Trans_Lemma() was invoked, if the context were not overwhelming.
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element with the pivot. It has also been established that Ghost_Perm_Map shows that the value 
of the updated “A” is a permutation of the initial input array “Init.”

The last swap places the pivot element in its correct position. SPARK is capable of following the 
logic involved with “K”’s placement without any guideposting assertions, thanks to the Swap() 
operation being fully defined in its postcondition (Figure 21). The pivot element is now positioned 
between the “low” part and the “high” part.

7.3.11 Leaving the Partition Step. 

Exiting the partition step, the properties that must be maintained can be affirmed. First, with 
regards to ordering, the pivot element has been properly placed between the “low” and “high” 
parts, and for the “low” part, all elements have a value less than the value of the pivot and for 
the “high” part all elements have a value greater than or equal to the value of the pivot. Secondly, 
SPARK has automatically verified the absence of runtime exceptions based on the preconditions 
on the input. Finally, thanks to the invocations of the Trans_Perm_Update() function, the fact that 
“A” remains a permutation of “Init” has been maintained for SPARK.
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Figure 30. Spanning_Trans_Lemma() - Specification cont.

15 (for all I in BtoC'Range =>
16 BtoC(I) in AtoB'Range) and then
17 (for all I in AtoC'Range =>
18 I in BtoC'Range) and then
19 (for all I in AtoC'Range =>
20 AtoC(I) = AtoB(BtoC(I))
21 )
22 ),
23 Post => (Spanning_Predicate(AtoC));

Figure 31. Spanning_Trans_Lemma() - Body

1 procedure Spanning_Trans_Lemma(AtoB, BtoC : Permutation_Array;
2 AtoC : Index_Array) is
3 begin
4 pragma Assert(for all I in AtoB'Range =>
5 (for some J in AtoB'Range =>
6 AtoB(J) = I
7 )
8 );
9 pragma Assert(for all I in AtoB'Range =>
10 (for some J in AtoC'Range =>
11 AtoC(J) = AtoB(I)
12 )
13 );
14 end;

The first assertion (lines 4 – 8) is that every element of “AtoB" is mapped to by some index of “AtoB." The second
assertion (lines 9 – 13) is that every element of “AtoB" is mapped to by some index of “AtoC." Together with the
inherited context from the preconditions, this lets SPARK prove that “AtoC" satisfies the spanning predicate.

7.3.10 Post-Loop Swap. Returning now to the QS() partitioning step, it has been established that the elements of
the “low" section have values less than the pivot and elements of the “high" section have values greater than or
equal to the pivot. The pivot remains the last element of “A," so the only remaining operation to be completed
from the partitioning pseudocode (Figure 2, line 8) is to swap the 𝐾𝐾𝑡𝑡𝑡 element with the pivot. It has also been
established that Ghost_Perm_Map shows that the value of the updated “A" is a permutation of the initial input
array “Init."

The last swap places the pivot element in its correct position. SPARK is capable of following the logic involved
with “K"’s placement without any guideposting assertions, thanks to the Swap() operation being fully defined in
its postcondition (Figure 21). The pivot element is now positioned between the “low" part and the “high" part.
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equal to the pivot. The pivot remains the last element of “A," so the only remaining operation to be completed
from the partitioning pseudocode (Figure 2, line 8) is to swap the 𝐾𝐾𝑡𝑡𝑡 element with the pivot. It has also been
established that Ghost_Perm_Map shows that the value of the updated “A" is a permutation of the initial input
array “Init."

The last swap places the pivot element in its correct position. SPARK is capable of following the logic involved
with “K"’s placement without any guideposting assertions, thanks to the Swap() operation being fully defined in
its postcondition (Figure 21). The pivot element is now positioned between the “low" part and the “high" part.
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Figure 32. QS() - Post-loop swap

51 --Swap K and Pivot
52 A_Previous := A;
53 Swap (A, Ghost_LPM, K, Pivot);
54 Ghost_Perm_Map :=
55 Trans_Perm_Update(Ghost_Perm_Map, Ghost_LPM,
56 A, A_Previous, Init);

7.3.11 Leaving the Partition Step. Exiting the partition step, the properties that must be maintained can be
affirmed. First, with regards to ordering, the pivot element has been properly placed between the “low" and “high"
parts, and for the “low" part, all elements have a value less than the value of the pivot and for the “high" part all
elements have a value greater than or equal to the value of the pivot. Secondly, SPARK has automatically verified
the absence of runtime exceptions based on the preconditions on the input. Finally, thanks to the invocations
of the Trans_Perm_Update() function, the fact that “A" remains a permutation of “Init" has been maintained for
SPARK.

8 RECURSION

8.1 Introduction
The final step of the Quicksort algorithm is to invoke it recursively on both the “low" part (those elements, now
before the pivot, that have value less than the pivot) and the “high" part (those elements, now after the pivot, that
have value greater than the pivot). Because QS() will be invoked on sub-arrays of the array “A”, it is also at this
point that those sub-arrays must satisfy the preconditions for QS(), along with the permutation map that is sent
to record the permutation.

8.2 “Low" Recursion
The first branch of the recursive step (Figure 33) begins with a conditional check on the length of the low part.
This is done to simplify range checks on K, ensuring the absence of runtime exceptions.

Figure 33. QS() Body - Recursive Step, first branch

57 if (K > A'First) then -- Don't need to sort 0 elements
58 A_Previous := A;
59 Ghost_LPM := IndexArrayOf(A);
60 QS(A(A'First..K-1), Ghost_LPM(Ghost_LPM'First..K-1));
61 Max_Perm_Lemma(A(A'First..K-1), A_Previous(A_Previous'First..K-1),
62 Ghost_LPM(Ghost_LPM'First..K-1), A_Previous(K));

In Figure 33 “Ghost_LPM" is set to “A"’s identity permutation map to ensure that the indices match properly
for the QS() call. “A_Previous" is set to “A" to have a comparison of the entire working array both before and
after the call, which will be used to establish the chain of permutations. SPARK always assumes that subprogram
postconditions are true at the point of subprogram invocation, so after the call to QS(), it is established that

Figure 30. Spanning_Trans_Lemma() - Specification cont.

Figure 31. Spanning_Trans_Lemma() - Body

Figure 32. QS() - Post-loop swap
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8 Recursion

8.1 Introduction.

The final step of the Quicksort algorithm is to invoke it recursively on both the “low” part (those 
elements, now before the pivot, that have value less than the pivot) and the “high” part (those 
elements, now after the pivot, that have value greater than the pivot). Because QS() will be invoked 
on sub-arrays of the array “A”, it is also at this point that those sub-arrays must satisfy the 
preconditions for QS(), along with the permutation map that is sent to record the permutation.

8.2 “Low” Recursion.

The first branch of the recursive step (Figure 33) begins with a conditional check on the length 
of the low part. This is done to simplify range checks on K, ensuring the absence of runtime 
exceptions.

In Figure 33 “Ghost_LPM” is set to “A”’s identity permutation map to ensure that the indices 
match properly for the QS() call. “A_Previous” is set to “A” to have a comparison of the entire 
working array both before and after the call, which will be used to establish the chain of 
permutations. SPARK always assumes that subprogram postconditions are true at the point of 
subprogram invocation, so after the call to QS(), it is established that the low slice of the new 
“A” is a permutation of the low slice of “A_Previous,” that it is properly ordered, and that the 
permutation map is now stored in the passed slice of “Ghost_LPM,” since these are all yielded 
by the QS() postconditions (Figure 12). Utilizing these facts going forward makes it possible to 
establish those same postconditions on the entirety of “A,” but it requires a few steps to show 
SPARK how to integrate from the slice to the whole.

There are two things that need to happen to integrate these results into the full verification the 
of QS() postconditions. The first is to assert that the “low” part of the array, combined with the 
pivot, is properly ordered. Yielding to a moment of anthropomorphization, SPARK knows that “K” 
(now the pivot index) is greater than anything that was in the “low” part before it was sorted 
(established in the partition step), it knows that the “low” part is properly sorted now (thanks to 
the QS() postconditions), and it knows that the new “low” is a permutation of the old “low” (again, 
from the QS() postconditions). What needs to be shown to SPARK to prove the full ordering of the 
“low” part with the pivot is that permutations preserve maximums, that is, if a number is greater 
than or equal to every element of an array, then it is greater than or equal to every element of a 
permutation of that array.

This is where the Max_Perm_Lemma() comes in.equal to every element of an array, then it is 
greater than or equal to every element of a permutation of that array. This is where the Max_
Perm_Lemma() comes in.
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Figure 32. QS() - Post-loop swap
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52 A_Previous := A;
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have value greater than the pivot). Because QS() will be invoked on sub-arrays of the array “A”, it is also at this
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The first branch of the recursive step (Figure 33) begins with a conditional check on the length of the low part.
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postconditions are true at the point of subprogram invocation, so after the call to QS(), it is established that
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8.2.1 Max_Perm_Lemma. 

The specification for Max_Perm_Lemma() is shown in Figure 34. First, the preconditions establish 
that “Left” and “Right” are a permutation (lines 8–9) and that “K” is a maximum of “Right” (lines 
10 – 12). Then, the postcondition (lines 13 – 16) establishes that “K” is also a maximum of “Left.” 
Note the “Ghost” property declared in the “with” block (line 5). This aspect will cause SPARK to 
ensure that this subprogram is not compiled unless a specific compiler flag is set, preventing it 
from interfering with QS() at runtime while allowing its use in the verification of QS().

Thanks to the definitions established, SPARK is able to prove the postcondition of this lemma directly 
from the preconditions, obviating the need for a body beyond a “null” statement (not shown).

8.2.2 Sub_Perm_Left_Update. 

Returning briefly to the body of QS(), now that QS() itself is being invoked on portions of the initial 
array, additional logic (Figure 35) is needed to prove to SPARK that the result still has a permutation 
map mapping the resulting semi-sorted array to the original initial value of the input array.

The permutation map returned by the recurring QS() doesn’t contain all the original indices, so this 
permutation has two parts. The elements that weren’t passed to QS() are mapped by the identity 
permutation map (i.e., they are identical), and the ones that were passed are mapped by QS()’s 
returned permutation map. Linking the two together involves the use of another update function 
that also proves to SPARK that the result is a valid permutation map.

This function is split into two parts for ease of use, with the “left” update being invoked where the 
first recursion returns, and the “right” update being invoked after the second recursion. In Figure 
36, after the carefully preventing access errors (lines 13–21) by enforcing that the first and last 
elements of the arrays are the same and that the ranges are identical, the next precondition of Sub_
Perm_Left_Update() (lines 24–28) is that the first part of the array “Left” (as defined by the range 
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the low slice of the new “A" is a permutation of the low slice of “A_Previous," that it is properly ordered, and
that the permutation map is now stored in the passed slice of “Ghost_LPM," since these are all yielded by the
QS() postconditions (Figure 12). Utilizing these facts going forward makes it possible to establish those same
postconditions on the entirety of “A," but it requires a few steps to show SPARK how to integrate from the slice to
the whole.
There are two things that need to happen to integrate these results into the full verification the of QS()

postconditions. The first is to assert that the “low" part of the array, combined with the pivot, is properly ordered.
Yielding to a moment of anthropomorphization, SPARK knows that “K" (now the pivot index) is greater than
anything that was in the “low" part before it was sorted (established in the partition step), it knows that the “low"
part is properly sorted now (thanks to the QS() postconditions), and it knows that the new “low" is a permutation
of the old “low" (again, from the QS() postconditions). What needs to be shown to SPARK to prove the full ordering
of the “low" part with the pivot is that permutations preserve maximums, that is, if a number is greater than or
equal to every element of an array, then it is greater than or equal to every element of a permutation of that array.
This is where the Max_Perm_Lemma() comes in.

Figure 34. Max_Perm_Lemma() Specification

1 procedure Max_Perm_Lemma(Left, Right : Element_Array;
2 Perm_Map : Permutation_Array;
3 K : Element) with
4 --Permutations preserve maximums.
5 Ghost,
6 Always_Terminates,
7 Pre => (
8 Perm_Lengths_Match(Left, Right, Perm_Map) and then
9 Is_Permutation(Left, Right, Perm_Map) and then
10 (for all I in Right'Range =>
11 Right(I) <= K)
12 ),
13 Post => (
14 (for all I in Left'Range =>
15 Left(I) <= K)
16 );

8.2.1 Max_Perm_Lemma. The specification for Max_Perm_Lemma() is shown in Figure 34). First, the precondi-
tions establish that “Left" and “Right" are a permutation (lines 8–9) and that “K" is a maximum of “Right" (lines 10
– 12). Then, the postcondition (lines 13 – 16) establishes that “K" is also a maximum of “Left." Note the “Ghost"
property declared in the “with" block (line 5). This aspect will cause SPARK to ensure that this subprogram is not
compiled unless a specific compiler flag is set, preventing it from interfering with QS() at runtime while allowing
its use in the verification of QS().

Thanks to the definitions established, SPARK is able to prove the postcondition of this lemma directly from the
preconditions, obviating the need for a body beyond a “null" statement (not shown).
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8.2.2 Sub_Perm_Left_Update. Returning briefly to the body of QS(), now that QS() itself is being invoked on
portions of the initial array, additional logic (Figure 35) is needed to prove to SPARK that the result still has a
permutation map mapping the resulting semi-sorted array to the original initial value of the input array.

Figure 35. QS() Body - Recursive Step, First Branch cont.

63 Ghost_Perm_Map :=
64 Trans_Perm_Update(Ghost_Perm_Map,
65 Sub_Perm_Left_Update(
66 Ghost_LPM(Ghost_LPM'First..K-1),
67 A, A_Previous),
68 A, A_Previous, Init);

The permutation map returned by the recurring QS() doesn’t contain all the original indices, so this permutation
has two parts. The elements that weren’t passed to QS() are mapped by the identity permutation map (i.e., they are
identical), and the ones that were passed are mapped by QS()’s returned permutation map. Linking the two together
involves the use of another update function that also proves to SPARK that the result is a valid permutation map.
This function is split into two parts for ease of use, with the “left" update being invoked where the first recursion
returns, and the “right" update being invoked after the second recursion.

In Figure 36, after the carefully preventing access errors (lines 13–21) by enforcing that the first and last elements
of the arrays are the same and that the ranges are identical, the next precondition of Sub_Perm_Left_Update()
(lines 24–28) is that the first part of the array “Left" (as defined by the range of the input “Perm_Map”) is mapped
to the first part of the array “Right,” which is inherited from the postcondition of the QS() recursion, along with
the precondition required for that declaration.

In Figure 37, the second part of the “Left" array is identical to the “Right" array (as neither were altered in the
QS() recursive call). That relationship is presented in the final precondition.
Finally, in Figure 38, the postcondition states that “Sub_Perm_Left_Update’Result" is, in fact, a permutation

map from “Left" to “Right," which is what SPARK needs to proceed with the QS() proof.
To satisfy this postcondition, the construction of the full permutation array is carried out in two loops. The first

(Figure 39, line 7– Figure 41, line 26) copies over the permutation map inherited from the recursive QS() call, and
the second (Figure 42, lines 31 – 48) fills out the remainder with the identity map.

The Index_Array “Perm_Map_Update" array is initialized to inherit the necessary length and indices of “Right."
Two assertions are then made to reiterate the important properties for SPARK that will be used in the loop
invariant to follow. The first loop, Figure 39 which copies over the inherited permutation map, has its own loop
invariant.

The first part of the Loop_Invariant (Figure 40) establishes the uniqueness predicate for “Perm_Map_Update,"
because it establishes that the growing array is just a copy of the corresponding elements of “Perm_Map,” and
thus it simply inherits uniqueness from the already constructed permutation map output by QS().

The fact that Perm_Map_Update() maps “Left" to “Right" is then established (lines 22 – 23, Figure 41). After the
loop, the full spanning predicate is checked as a guidepost to SPARK to show that this property was properly
verified (lines 27 – 30).

The second loop (Figure 42) is more straightforward, as the guiding permutation map is just the identity map, but
now that spanning has been established from the first loop updating it becomes slightly more complex. Adding a
single element that indexes itself to a spanning map is a specific example of the more general case of concatenating

Figure 34. QS() Body - Recursive Step, first branch

Figure 35. QS() Body - Recursive Step, First Branch cont.
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of the input “Perm_Map”) is mapped to the first part of the array “Right,” which is inherited from 
the postcondition of the QS() recursion, along with the precondition required for that declaration.

In Figure 37, the second part of the “Left” array is identical to the “Right” array (as neither were 
altered in the QS() recursive call). That relationship is presented in the final precondition.

Finally, in Figure 38, the postcondition states that “Sub_Perm_Left_Update’Result” is, in fact, a 
permutation map from “Left” to “Right,” which is what SPARK needs to proceed with the QS() proof.

To satisfy this postcondition, the construction of the full permutation array is carried out in two 
loops. The first (Figure 39, line 7– Figure 41, line 26) copies over the permutation map inherited 
from the recursive QS() call, and the second (Figure 42, lines 31 – 48) fills out the remainder with 
the identity map.

The Index_Array “Perm_Map_Update” array is initialized to inherit the necessary length and indices 
of “Right.” Two assertions are then made to reiterate the important properties for SPARK that will 
be used in the loop invariant to follow. The first loop, Figure 39 which copies over the inherited 
permutation map, has its own loop invariant.

The first part of the Loop_Invariant (Figure 40) establishes the uniqueness predicate for “Perm_
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Figure 36. Sub_Perm_Left_Update() Specification

1 function Sub_Perm_Left_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array
4 --If the first part of Left has a permutation map that maps to the
5 -- first part of Right and all elements outside that region are identical
6 -- between the two arrays, those arrays are permutations.
7 with
8 --Ghost,
9 Global => Null,
10 Pre => (
11 --Index Equality, with the caveat that Perm_Map applies only
12 -- to the first part of Left and Right
13 Perm_Map'Length > 0 and then
14 Right'Length > 0 and then
15 Left'Length = Right'Length and then
16 (for all I in Perm_Map'Range =>
17 I in Right'Range) and then
18 Left'First = Perm_Map'First and then
19 Right'First = Perm_Map'First and then
20 Right'Last >= Perm_Map'Last and then
21 (for all I in Right'Range => I in Left'Range) and then
22 --The first part of Perm_Map is a permutation map for the
23 -- first part of Left to the first part of Right
24 Perm_Lengths_Match(Left(Perm_Map'First..Perm_Map'Last),
25 Right(Perm_Map'First..Perm_Map'Last), Perm_Map) and then
26 Is_Permutation(Left(Perm_Map'First..Perm_Map'Last),
27 Right(Perm_Map'First..Perm_Map'Last),
28 Perm_Map) and then

Figure 37. Sub_Perm_Left_Update() Specification cont.

29

30 --The remainder of Left and Right are equivalent
31 (for all I in Perm_Map'Last + 1 .. Left'Last =>
32 Left(I) = Right(I))
33 ),

two spanning maps, which has been offloaded to the Spanning_Update_Lemma() (line 33), described below. The
final return (line 49), since it invokes the Permutation_Map predicates, when combined with the mapping loop
invariants serves as a robust check to ensure that Is_Permutation() is satisfied.
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Figure 36. Sub_Perm_Left_Update() Specification

1 function Sub_Perm_Left_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array
4 --If the first part of Left has a permutation map that maps to the
5 -- first part of Right and all elements outside that region are identical
6 -- between the two arrays, those arrays are permutations.
7 with
8 --Ghost,
9 Global => Null,
10 Pre => (
11 --Index Equality, with the caveat that Perm_Map applies only
12 -- to the first part of Left and Right
13 Perm_Map'Length > 0 and then
14 Right'Length > 0 and then
15 Left'Length = Right'Length and then
16 (for all I in Perm_Map'Range =>
17 I in Right'Range) and then
18 Left'First = Perm_Map'First and then
19 Right'First = Perm_Map'First and then
20 Right'Last >= Perm_Map'Last and then
21 (for all I in Right'Range => I in Left'Range) and then
22 --The first part of Perm_Map is a permutation map for the
23 -- first part of Left to the first part of Right
24 Perm_Lengths_Match(Left(Perm_Map'First..Perm_Map'Last),
25 Right(Perm_Map'First..Perm_Map'Last), Perm_Map) and then
26 Is_Permutation(Left(Perm_Map'First..Perm_Map'Last),
27 Right(Perm_Map'First..Perm_Map'Last),
28 Perm_Map) and then

Figure 37. Sub_Perm_Left_Update() Specification cont.

29

30 --The remainder of Left and Right are equivalent
31 (for all I in Perm_Map'Last + 1 .. Left'Last =>
32 Left(I) = Right(I))
33 ),

two spanning maps, which has been offloaded to the Spanning_Update_Lemma() (line 33), described below. The
final return (line 49), since it invokes the Permutation_Map predicates, when combined with the mapping loop
invariants serves as a robust check to ensure that Is_Permutation() is satisfied.

Figure 36. Sub_Perm_Left_Update() Specification

Figure 37. Sub_Perm_Left_Update() Specification cont.
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Map_Update,” because it establishes that the growing array is just a copy of the corresponding 
elements of “Perm_Map,” and thus it simply inherits uniqueness from the already constructed 
permutation map output by QS().

The fact that Perm_Map_Update() maps “Left” to “Right” is then established (lines 22 – 23, Figure 
41). After the loop, the full spanning predicate is checked as a guidepost to SPARK to show that this 
property was properly verified (lines 27 – 30).
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Figure 38. Sub_Perm_Left_Update() Specification Postcondition

34 Post => (
35 --The output is a full permutation map from Left to Right
36 Perm_Map_Properties_Hold(Sub_Perm_Left_Update'Result) and then
37 Perm_Lengths_Match(Left, Right,
38 Sub_Perm_Left_Update'Result) and then
39 Is_Permutation(Left, Right, Sub_Perm_Left_Update'Result)
40 );

Figure 39. Sub_Perm_Left_Update() Body

1 function Sub_Perm_Left_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array is
4 Perm_Map_Update : Index_Array(Right'First..Right'Last) :=
5 (others => IndexType'First);
6 begin
7 for I in Perm_Map'First..Perm_Map'Last loop
8 Perm_Map_Update(I) := Perm_Map(I);

Figure 40. Sub_Perm_Left_Update() Body - First Loop Invariant

9 pragma Loop_Invariant(--Perm_Map_Update's Uniqueness
10 (for all J in Right'First..I =>
11 Perm_Map_Update(J) = Perm_Map(J))
12 and
13 (for all J in Right'First..I =>
14 (for all K in Right'First..I =>
15 (if not (J = K) then not (
16 Perm_Map_Update(J) =
17 Perm_Map_Update(K))
18 )
19 )
20 ) and

8.2.3 Spanning Update Lemma. The Spanning_Update_Lemma() (Figure 43) procedure is used to verify to SPARK
that if an array is a concatenation of two sub-arrays that span when constricted to their respective ranges, the
full array spans. The full array is passed with a partition point (“PartPoint"), which is verified to be a legitimate
index (lines 8 – 9) and which marks the beginning of the second sub-array, and the spanning property is asserted
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Figure 38. Sub_Perm_Left_Update() Specification Postcondition

34 Post => (
35 --The output is a full permutation map from Left to Right
36 Perm_Map_Properties_Hold(Sub_Perm_Left_Update'Result) and then
37 Perm_Lengths_Match(Left, Right,
38 Sub_Perm_Left_Update'Result) and then
39 Is_Permutation(Left, Right, Sub_Perm_Left_Update'Result)
40 );

Figure 39. Sub_Perm_Left_Update() Body

1 function Sub_Perm_Left_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array is
4 Perm_Map_Update : Index_Array(Right'First..Right'Last) :=
5 (others => IndexType'First);
6 begin
7 for I in Perm_Map'First..Perm_Map'Last loop
8 Perm_Map_Update(I) := Perm_Map(I);

Figure 40. Sub_Perm_Left_Update() Body - First Loop Invariant

9 pragma Loop_Invariant(--Perm_Map_Update's Uniqueness
10 (for all J in Right'First..I =>
11 Perm_Map_Update(J) = Perm_Map(J))
12 and
13 (for all J in Right'First..I =>
14 (for all K in Right'First..I =>
15 (if not (J = K) then not (
16 Perm_Map_Update(J) =
17 Perm_Map_Update(K))
18 )
19 )
20 ) and

8.2.3 Spanning Update Lemma. The Spanning_Update_Lemma() (Figure 43) procedure is used to verify to SPARK
that if an array is a concatenation of two sub-arrays that span when constricted to their respective ranges, the
full array spans. The full array is passed with a partition point (“PartPoint"), which is verified to be a legitimate
index (lines 8 – 9) and which marks the beginning of the second sub-array, and the spanning property is asserted
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Figure 38. Sub_Perm_Left_Update() Specification Postcondition

34 Post => (
35 --The output is a full permutation map from Left to Right
36 Perm_Map_Properties_Hold(Sub_Perm_Left_Update'Result) and then
37 Perm_Lengths_Match(Left, Right,
38 Sub_Perm_Left_Update'Result) and then
39 Is_Permutation(Left, Right, Sub_Perm_Left_Update'Result)
40 );

Figure 39. Sub_Perm_Left_Update() Body

1 function Sub_Perm_Left_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array is
4 Perm_Map_Update : Index_Array(Right'First..Right'Last) :=
5 (others => IndexType'First);
6 begin
7 for I in Perm_Map'First..Perm_Map'Last loop
8 Perm_Map_Update(I) := Perm_Map(I);

Figure 40. Sub_Perm_Left_Update() Body - First Loop Invariant

9 pragma Loop_Invariant(--Perm_Map_Update's Uniqueness
10 (for all J in Right'First..I =>
11 Perm_Map_Update(J) = Perm_Map(J))
12 and
13 (for all J in Right'First..I =>
14 (for all K in Right'First..I =>
15 (if not (J = K) then not (
16 Perm_Map_Update(J) =
17 Perm_Map_Update(K))
18 )
19 )
20 ) and

8.2.3 Spanning Update Lemma. The Spanning_Update_Lemma() (Figure 43) procedure is used to verify to SPARK
that if an array is a concatenation of two sub-arrays that span when constricted to their respective ranges, the
full array spans. The full array is passed with a partition point (“PartPoint"), which is verified to be a legitimate
index (lines 8 – 9) and which marks the beginning of the second sub-array, and the spanning property is asserted
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Figure 41. Sub_Perm_Left_Update() Body - First Loop Invariant Part 3

21 --Permutation condition
22 (for all J in Right'First..I =>
23 Left(Perm_Map_Update(J)) = Right(J)
24 )
25 );
26 end loop;
27 pragma Assert(Spanning_Predicate(Perm_Map(Perm_Map'First..
28 Perm_Map'Last)));
29 pragma Assert(Spanning_Predicate(Perm_Map_Update(Perm_Map_Update'First..
30 Perm_Map'Last)));

Figure 42. Sub_Perm_Left_Update() Body - Second Loop

31 for I in Perm_Map'Last+1..Right'Last loop
32 Perm_Map_Update(I) := I;
33 Spanning_Update_Lemma(Perm_Map_Update(Perm_Map_Update'First..I), I);
34 pragma Loop_Invariant(--Uniqueness
35 (for all J in Perm_Map'Last+1..I =>
36 Perm_Map_Update(J) = J) and
37 --Spanning
38 Spanning_Predicate(Perm_Map_Update(
39 Perm_Map_Update'First..I))
40 and
41 --Permutation Condition
42 (for all J in Perm_Map'Last+1..I =>
43 J in Left'Range and then
44 Perm_Map_Update(J) in Left'Range and then
45 Left(Perm_Map_Update(J)) = Right(J)
46 )
47 );
48 end loop;
49 return Perm_Map_Update;
50 end;

on each subsection (lines 11 – 12). The postcondition, that the entire initial array spans, is verifiable by SPARK
without the need for any statements in the body.

8.2.4 Exiting the “Low" Recursion Step. Returning to QS() in Figure 44, there are three guideposting assertions at
the end of the first branch of the QS() recursive step that SPARK needs going forward to aid it in proving the
ordering and permutation postconditions.

Figure 38. Sub_Perm_Left_Update() Specification Postcondition

Figure 39. Sub_Perm_Left_Update() Body

Figure 40. Sub_Perm_Left_Update() Body - First Loop Invariant

Figure 41. Sub_Perm_Left_Update() Body - First Loop Invariant Part 3
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The second loop (Figure 42) is more straightforward, as the guiding permutation map is just the 
identity map, but now that spanning has been established from the first loop updating it becomes 
slightly more complex. Adding a single element that indexes itself to a spanning map is a specific 
example of the more general case of concatenating two spanning maps, which has been offloaded 
to the Spanning_Update_Lemma() (line 33), described below. The final return (line 49), since it 
invokes the Permutation_Map predicates, when combined with the mapping loop invariants serves 
as a robust check to ensure that Is_Permutation() is satisfied. 

8.2.3 Spanning Update Lemma. 

The Spanning_Update_Lemma() (Figure 43) procedure is used to verify to SPARK that if an array 
is a concatenation of two sub-arrays that span when constricted to their respective ranges, the 
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Figure 41. Sub_Perm_Left_Update() Body - First Loop Invariant Part 3

21 --Permutation condition
22 (for all J in Right'First..I =>
23 Left(Perm_Map_Update(J)) = Right(J)
24 )
25 );
26 end loop;
27 pragma Assert(Spanning_Predicate(Perm_Map(Perm_Map'First..
28 Perm_Map'Last)));
29 pragma Assert(Spanning_Predicate(Perm_Map_Update(Perm_Map_Update'First..
30 Perm_Map'Last)));

Figure 42. Sub_Perm_Left_Update() Body - Second Loop

31 for I in Perm_Map'Last+1..Right'Last loop
32 Perm_Map_Update(I) := I;
33 Spanning_Update_Lemma(Perm_Map_Update(Perm_Map_Update'First..I), I);
34 pragma Loop_Invariant(--Uniqueness
35 (for all J in Perm_Map'Last+1..I =>
36 Perm_Map_Update(J) = J) and
37 --Spanning
38 Spanning_Predicate(Perm_Map_Update(
39 Perm_Map_Update'First..I))
40 and
41 --Permutation Condition
42 (for all J in Perm_Map'Last+1..I =>
43 J in Left'Range and then
44 Perm_Map_Update(J) in Left'Range and then
45 Left(Perm_Map_Update(J)) = Right(J)
46 )
47 );
48 end loop;
49 return Perm_Map_Update;
50 end;

on each subsection (lines 11 – 12). The postcondition, that the entire initial array spans, is verifiable by SPARK
without the need for any statements in the body.

8.2.4 Exiting the “Low" Recursion Step. Returning to QS() in Figure 44, there are three guideposting assertions at
the end of the first branch of the QS() recursive step that SPARK needs going forward to aid it in proving the
ordering and permutation postconditions.
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Figure 43. Spanning_Update_Lemma()

1 procedure Spanning_Update_Lemma(Perm_Map : Index_Array;
2 PartPoint : IndexType)
3 --If two partitions of a full map span their indepedent ranges,
4 -- then the full map spans. Partpoint denotes the separation of the
5 -- partitions (as the first element of the second partition)
6 with Ghost,
7 Always_Terminates,
8 Pre => (Perm_Map'First <= PartPoint and then
9 Perm_Map'Last >= PartPoint and then
10 Spanning_Predicate(Perm_Map(Perm_Map'First..PartPoint-1))
11 and then
12 Spanning_Predicate(Perm_Map(PartPoint..Perm_Map'Last))
13 ),
14 Post => (Spanning_Predicate(Perm_Map));
15

16

17 procedure Spanning_Update_Lemma(Perm_Map : Index_Array;
18 PartPoint : IndexType) is
19 begin
20 null;
21 end;

Figure 44. QS() Body - Recursive Step First Branch Final Lines

69 --Ordering of first K elements has now been established between the
70 --max and QS postcondition.
71 pragma Assert(for all I in A'First..K-1 => A(I) <= A(I+1));
72 pragma Assert(Perm_Map_Properties_Hold(Ghost_Perm_Map));
73 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
74 end if;

The Max_Perm_Lemma() shows SPARK that the 𝐾𝐾𝑡𝑡𝑡 element is greater than the first 𝐾𝐾 − 1 elements, where 𝐾𝐾
is the pivot element’s index, and the QS() postcondition shows that ordering has been maintained for the first
𝐾𝐾 − 1 elements. SPARK then requires this final ordering assertion (Figure 44) to tie those two elements together,
and then two signposting assertions are given to SPARK to affirm that the current state of the output array is still
a permutation of the input.

8.3 “High" Recursion
With the "low" part of the post-partition array having been fully sorted recursively, all that remains to be done is
to do the same thing for the "high" part.

Figure 42. Sub_Perm_Left_Update() Body - Second Loop

Figure 43. Spanning_Update_Lemma()
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full array spans. The full array is passed with a partition point (“PartPoint”), which is verified to be 
a legitimate index (lines 8 – 9) and which marks the beginning of the second sub-array, and the 
spanning property is asserted on each subsection (lines 11 – 12). The postcondition, that the entire 
initial array spans, is verifiable by SPARK without the need for any statements in the body.

8.2.4 Exiting the “Low” Recursion Step. 

Returning to QS() in Figure 44, there are three guideposting assertions at the end of the first branch 
of the QS() recursive step that SPARK needs going forward to aid it in proving the ordering and 
permutation postconditions.

The Max_Perm_Lemma() shows SPARK that the Ktℎ element is greater than the first K − 1 elements, 
where K is the pivot element’s index, and the QS() postcondition shows that ordering has been 
maintained for the first K − 1 elements. SPARK then requires this final ordering assertion (Figure 
44) to tie those two elements together, and then two signposting assertions are given to SPARK to 
affirm that the current state of the output array is still a permutation of the input.

8.3 “High” Recursion.

With the “low” part of the post-partition array having been fully sorted recursively, all that remains 
to be done is to do the same thing for the “high” part.

The second recursive branch (Figure 45) is a mirror of the first, although notably it does not 
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Figure 43. Spanning_Update_Lemma()

1 procedure Spanning_Update_Lemma(Perm_Map : Index_Array;
2 PartPoint : IndexType)
3 --If two partitions of a full map span their indepedent ranges,
4 -- then the full map spans. Partpoint denotes the separation of the
5 -- partitions (as the first element of the second partition)
6 with Ghost,
7 Always_Terminates,
8 Pre => (Perm_Map'First <= PartPoint and then
9 Perm_Map'Last >= PartPoint and then
10 Spanning_Predicate(Perm_Map(Perm_Map'First..PartPoint-1))
11 and then
12 Spanning_Predicate(Perm_Map(PartPoint..Perm_Map'Last))
13 ),
14 Post => (Spanning_Predicate(Perm_Map));
15

16

17 procedure Spanning_Update_Lemma(Perm_Map : Index_Array;
18 PartPoint : IndexType) is
19 begin
20 null;
21 end;

Figure 44. QS() Body - Recursive Step First Branch Final Lines

69 --Ordering of first K elements has now been established between the
70 --max and QS postcondition.
71 pragma Assert(for all I in A'First..K-1 => A(I) <= A(I+1));
72 pragma Assert(Perm_Map_Properties_Hold(Ghost_Perm_Map));
73 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
74 end if;

The Max_Perm_Lemma() shows SPARK that the 𝐾𝐾𝑡𝑡𝑡 element is greater than the first 𝐾𝐾 − 1 elements, where 𝐾𝐾
is the pivot element’s index, and the QS() postcondition shows that ordering has been maintained for the first
𝐾𝐾 − 1 elements. SPARK then requires this final ordering assertion (Figure 44) to tie those two elements together,
and then two signposting assertions are given to SPARK to affirm that the current state of the output array is still
a permutation of the input.

8.3 “High" Recursion
With the "low" part of the post-partition array having been fully sorted recursively, all that remains to be done is
to do the same thing for the "high" part.
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Figure 45. QS() Body - Recursive Step Second Branch

75 if (K < A'Last) then -- Don't need to sort 0 elements.
76 A_Previous := A;
77 Ghost_LPM := IndexArrayOf(A);
78 QS(A(K+1..A'Last), Ghost_LPM(K+1..Ghost_LPM'Last));
79 Min_Perm_Lemma(A(K+1..A'Last), A_Previous(K+1..A_Previous'Last),
80 Ghost_LPM(K+1..Ghost_LPM'Last), A_Previous(K));
81

82 Ghost_Perm_Map :=
83 Trans_Perm_Update(Ghost_Perm_Map,
84 Sub_Perm_Right_Update(
85 Ghost_LPM(K+1..Ghost_LPM'Last),
86 A, A_Previous),
87 A, A_Previous, Init);
88

89 -- Ordering of elements from K to the end has now been established
90 -- from the previous min and QS postcondition.
91 pragma Assert(Perm_Map_Properties_Hold(Ghost_Perm_Map));
92 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
93 end if;
94 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
95 end if;
96 pragma Assert(Is_Permutation(A, Init, Ghost_Perm_Map));
97 end QS;

The second recursive branch (Figure 45) is a mirror of the first, although notably it does not require the final
guideposting assertions. It may seem odd that the returning “Ghost_LPM" will work as a permutation map, since
the sub-array of “A" sent to QS() does not start with the first index of “A". Understanding why this works requires
understanding a key property of the language: Indices in Ada are not changed across subprogram calls, and SPARK
inherits this property. Thus, the input array for this recursive QS() call will maintain the indices that are sent
to it with “A", allowing “Ghost_LPM" to function properly as a permutation map with identically offset indices
(especially important when you consider how the Sub_Perm_Right_Update() will construct its own permutation
map).

The only remaining differences from the “Low" part are in the lemma and the update invoked. Concluding the
code are a series of signposting assertions to affirm to SPARK that the permutation postcondition is met through
all branches.

8.3.1 Min_Perm_Lemma. After the recursive QS() call on the “high" part (Figure 45, line 78), Min_Perm_Lemma()
is used to relate that the reordered “high" part still contains elements that are of greater than or equal value to the
pivot value. The construction of Min_Perm_Lemma() (Figure 46) simply involves reversing the inequalities in the
precondition and the postcondition from those of Max_Perm_Lemma(). To summarize, the preconditions ensure
access to arrays can happen without raising an exception, the “high" part after the recursive call is a permutation
of the “high" part before the call, and all elements of the “high" part before the call are greater than or equal to the

Figure 44. Spanning_Update_Lemma()

Figure 45. QS() Body - Recursive Step Second Branch



adacore.com

require the final guideposting assertions. It may seem odd that the returning “Ghost_LPM” will 
work as a permutation map, since the sub-array of “A” sent to QS() does not start with the first 
index of “A”. Understanding why this works requires understanding a key property of the language: 
Indices in Ada are not changed across subprogram calls, and SPARK inherits this property. Thus, 
the input array for this recursive QS() call will maintain the indices that are sent to it with “A”, 
allowing “Ghost_LPM” to function properly as a permutation map with identically offset indices 
(especially important when you consider how the Sub_Perm_Right_Update() will construct its 
own permutation map).

The only remaining differences from the “Low” part are in the lemma and the update invoked. 
Concluding the code are a series of signposting assertions to affirm to SPARK that the permutation 
postcondition is met through all branches.

8.3.1 Min_Perm_Lemma. 

After the recursive QS() call on the “high” part (Figure 45, line 78), Min_Perm_Lemma() is used to 
relate that the reordered “high” part still contains elements that are of greater than or equal value 
to the pivot value. The construction of Min_Perm_Lemma() (Figure 46) simply involves reversing 
the inequalities in the precondition and the postcondition from those of Max_Perm_Lemma(). To 
summarize, the preconditions ensure access to arrays can happen without raising an exception, 
the “high” part after the recursive call is a permutation of the “high” part before the call, and all 
elements of the “high” part before the call are greater than or equal to the value of the pivot. 
The postcondition affirms that the reordering of the “high” part after the call maintains that 
relationship with the pivot.

8.3.2 Sub_Perm_Right_Update. 

After establishing the ordering of the “high” part after the recursive call, Sub_Perm_Right_Update 
is invoked (Figure 45, line 88) to establish that the array on the return is a permutation of the 
array that was sent to QS(), in the same way that Sub_Perm_Left_Update() was used in the first 
recursion. The specification for the Sub_Perm_Right_Update() function is presented in Figure 47 
to clarify the differences between it and the Sub_Perm_Left_Update(). As the only difference in 
implementation is that the body reverses the order of the two loops, the body has been omitted 
for brevity.
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value of the pivot. The postcondition affirms that the reordering of the “high" part after the call maintains that
relationship with the pivot.

Figure 46. Min_Perm_Lemma()

1 procedure Min_Perm_Lemma(Left, Right : Element_Array;
2 Perm_Map : Permutation_Array;
3 K : Element) with
4 --Permutations preserve minimums.
5 Ghost,
6 Always_Terminates,
7 Pre => (
8 Perm_Lengths_Match(Left, Right, Perm_Map) and then
9 Is_Permutation(Left, Right, Perm_Map) and then
10 (for all I in Right'Range =>
11 Right(I) >= K)
12 ),
13 Post => (
14 (for all I in Left'Range =>
15 Left(I) >= K)
16 );

8.3.2 Sub_Perm_Right_Update. After establishing the ordering of the “high" part after the recursive call, Sub_Perm_Right_Update
is invoked (Figure 45, line 88) to establish that the array on the return is a permutation of the array that was
sent to QS(), in the same way that Sub_Perm_Left_Update() was used in the first recursion. The specification for
the Sub_Perm_Right_Update() function is presented in Figure 47 to clarify the differences between it and the
Sub_Perm_Left_Update(). As the only difference in implementation is that the body reverses the order of the two
loops, the body has been omitted for brevity.

8.4 Exiting
Finally, everything is tied together. The last thing to do (Figure 48) is escape the conditional branch that guarantees
the base case arrays will not be sorted.

When SPARK is run on this subprogram and all of the assertions pass, the absence of runtime exceptions property
is verified because the entire QS() implementation and all of the subprograms it invokes exist in SPARK_Mode. The
termination property is checked and passes because each recursive call to QS() omits at least one value (the pivot
element) from the input array, which satisfies the Subprogram_Variant condition. The permutation postcondition
is satisfied by the Sub_Perm_Lemma() invocations, combined with the permutation postcondition of QS() itself,
and the ordering postcondition is satisfied by itself combined with the relationship of the pivot to the rest of
the partition from the partition step; the latter is shown via the Max_Perm_Lemma() and Min_Perm_Lemma()
subprograms.

With all properties of Quicksort verified to hold for QS(), SPARK will verify that the relationship between the
QS() preconditions and postconditions holds: QS() sorts.

Figure 46. Min_Perm_Lemma()



adacore.com

8.4 Exiting.

Finally, everything is tied together. The last thing to do (Figure 48) is escape the conditional 
branch that guarantees the base case arrays will not be sorted.

When SPARK is run on this subprogram and all of the assertions pass, the absence of runtime 
exceptions property is verified because the entire QS() implementation and all of the subprograms 
it invokes exist in SPARK_Mode. The termination property is checked and passes because each 
recursive call to QS() omits at least one value (the pivot element) from the input array, which 
satisfies the Subprogram_Variant condition. The permutation postcondition is satisfied by the 
Sub_Perm_Lemma() invocations, combined with the permutation postcondition of QS() itself, 
and the ordering postcondition is satisfied by itself combined with the relationship of the pivot 
to the rest of the partition from the partition step; the latter is shown via the Max_Perm_Lemma() 
and Min_Perm_Lemma() subprograms.

With all properties of Quicksort verified to hold for QS(), SPARK will verify that the relationship 
between the QS() preconditions and postconditions holds: QS() sorts.
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Figure 47. Sub_Perm_Lemma_Right() Specification

1 function Sub_Perm_Right_Update(Perm_Map : Permutation_Array;
2 Left, Right : Element_Array)
3 return Permutation_Array
4 --If the second part of Left has a permutation map that maps to the
5 -- second part of Right and all elements outside that region are
6 -- identical between the two arrays, those arrays are permutations.
7 with
8 --Ghost,
9 Global => Null,
10 Pre => (
11 Perm_Map'Length > 0 and then
12 Right'Length > 0 and then
13 Left'Length = Right'Length and then
14 (for all I in Perm_Map'Range =>
15 I in Right'Range) and then
16 Left'Last = Perm_Map'Last and then
17 Right'Last = Perm_Map'Last and then
18 Left'First <= Perm_Map'First and then
19 Right'First <= Perm_Map'First and then
20 (for all I in Right'Range => I in Left'Range) and then
21 --The first part of Perm_Map is a permutation map for the
22 -- first part of Left to the first part of Right
23 Perm_Lengths_Match(Left(Perm_Map'First..Perm_Map'Last),
24 Right(Perm_Map'First..Perm_Map'Last), Perm_Map) and then
25 Is_Permutation(Left(Perm_Map'First..Perm_Map'Last),
26 Right(Perm_Map'First..Perm_Map'Last),
27 Perm_Map) and then
28 --The remainder of Left and Right are equivalent
29 (for all I in Left'First .. Perm_Map'First - 1 =>
30 Left(I) = Right(I))
31 ),
32

33

34 Post => (Perm_Map_Properties_Hold(Sub_Perm_Right_Update'Result) and then
35 Perm_Lengths_Match(Left, Right,
36 Sub_Perm_Right_Update'Result) and then
37 Is_Permutation(Left, Right, Sub_Perm_Right_Update'Result)
38 );

Figure 47. Sub_Perm_Lemma_Right() Specification
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9 Conclusions

The project to create a fully-verified implementation of Quicksort was a fascinating one when it 
came to learning the processes employed by an auto-active verifier. However, this implementation 
proof relies on the updating and passing of a permutation map that will essentially double the 
work involved in the sorting algorithm, as well as quite a bit of overhead in maintaining it. This 
is because the permutation maps can’t be passed as arguments to non-Ghost subprograms 
and declared to be Ghost variables at the same time. The good news is that Adacore is hard 
at work fixing this problem, and its slated to be a feature in 2026. The bad news is that, at the 
time of writing this paper, it is currently 2025. Nevertheless, as an exercise in semi-automatic 
verification, this experiment is a success, developing an independent definition of permutations 
and utilizing them in a platinum-level proof of QS() as an implementation of Quicksort.

While this experience presented the code guided by the program flow, this is not the way the 
project developed. When new languages are being learned, it is frequently done by iteration, 
where attempts are made and refined in reaction to the syntax checker, the compiler, and test 
problems showing errors in logic and implementation.

Learning SPARK was similarly iterative, except that it was a higher-level iteration, with SPARK 
acting as a logic checker, revealing to me areas where my implementation fell short and guiding 
me about what it needed to proceed logically. Just as a syntax checker is an invaluable tool to 
novice and expert coders alike in checking syntax, a verifier like SPARK is invaluable in checking 
logic, an area that is not nearly so tractable to developers (as the frequency of bugs even in 
mature code demonstrates).

Some lessons were not intuitive. It is, for example, possible to combine the two subarray 
permutation lemmas (Sub_Perm_Lemma_Left() and Sub_Perm_Lemma_Right()) into one 
more general Sub_Perm_Lemma(). While that results in fewer lines of code overall, the resulting 
conditional preconditions and postconditions are much more complex. Of the four resulting 
possible verifiable statements (with two preconditions and two postconditions),

SPARK is forced to attempt proof across three false statements(with two wrong preconditions 
and one correct precondition attached to the incorrect postcondition) disjunctively combined 
with the the single correct statement, resulting in a much larger search space for the automatic 
provers to explore. Splitting the general case into two simpler and more straightforward lemmas 
results in an easier program both for humans to read and for SPARK to prove. Coding for proof 
can lead to concessions being made when viewed through the lens of coding for succinctness.

The brilliance of SPARK, as mentioned in the discussion of the Sort() implementation, is that all the 
skeptic needs to believe is that, for a section fully implemented in SPARK_Mode, the preconditions 
and postconditions describe what they need to to ensure the relationship between inputs and 
outputs. This is reminiscent of, and allows the verification to work hand-in-hand with, traditional 
“black box” implementation strategies. The strength of this property is hard to overstate: The 
only true weakness of a “black box” implementation is in the debugging, where one must navigate 
the layers of black boxes to discover which contains a bug of either syntax or logic.

SPARK does that for you, meaning that finally the programmer can truly focus only on the section 
that requires development and trust the black boxes to do their job, so long as they prove.
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Figure 48. QS Body() - Final Lines

84 end if; -- Array'Length < 2
85 end QS;
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The project to create a fully-verified implementation of Quicksort was a fascinating one when it came to learning
the processes employed by an auto-active verifier. However, this implementation proof relies on the updating and
passing of a permutation map that will essentially double the work involved in the sorting algorithm, as well as
quite a bit of overhead in maintaining it. This is because the permutation maps can’t be passed as arguments to
non-Ghost subprograms and declared to be Ghost variables at the same time. The good news is that Adacore is
hard at work fixing this problem, and its slated to be a feature in 2026. The bad news is that, at the time of writing
this paper, it is currently 2025. Nevertheless, as an exercise in semi-automatic verification, this experiment is a
success, developing an independent definition of permutations and utilizing them in a platinum-level proof of
QS() as an implementation of Quicksort.

While this experience presented the code guided by the program flow, this is not the way the project developed.
When new languages are being learned, it is frequently done by iteration, where attempts are made and refined
in reaction to the syntax checker, the compiler, and test problems showing errors in logic and implementation.
Learning SPARK was similarly iterative, except that it was a higher-level iteration, with SPARK acting as a logic
checker, revealing to me areas where my implementation fell short and guiding me about what it needed to
proceed logically. Just as a syntax checker is an invaluable tool to novice and expert coders alike in checking
syntax, a verifier like SPARK is invaluable in checking logic, an area that is not nearly so tractable to developers
(as the frequency of bugs even in mature code demonstrates).

Some lessons were not intuitive. It is, for example, possible to combine the two subarray permutation lemmas
(Sub_Perm_Lemma_Left() and Sub_Perm_Lemma_Right()) into one more general Sub_Perm_Lemma(). While that
results in fewer lines of code overall, the resulting conditional preconditions and postconditions are much more
complex. Of the four resulting possible verifiable statements (with two preconditions and two postconditions),
SPARK is forced to attempt proof across three false statements(with two wrong preconditions and one correct
precondition attached to the incorrect postcondition) disjunctively combined with the the single correct statement,
resulting in a much larger search space for the automatic provers to explore. Splitting the general case into two
simpler and more straightforward lemmas results in an easier program both for humans to read and for SPARK
to prove. Coding for proof can lead to concessions being made when viewed through the lens of coding for
succinctness.
The brilliance of SPARK, as mentioned in the discussion of the Sort() implementation, is that all the skeptic

needs to believe is that, for a section fully implemented in SPARK_Mode, the preconditions and postconditions
describe what they need to to ensure the relationship between inputs and outputs. This is reminiscent of, and
allows the verification to work hand-in-hand with, traditional “black box" implementation strategies. The strength
of this property is hard to overstate: The only true weakness of a “black box" implementation is in the debugging,
where one must navigate the layers of black boxes to discover which contains a bug of either syntax or logic.
SPARK does that for you, meaning that finally the programmer can truly focus only on the section that requires
development and trust the black boxes to do their job, so long as they prove.
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