
Explicit Assumptions - A Prenup for Marrying
Static and Dynamic Program Verification

Johannes Kanig2, Rod Chapman1, Cyrille Comar2, Jerôme Guitton2,
Yannick Moy2, and Emyr Rees1

1 Altran UK, 22 St Lawrence Street, Bath BA1 1AN (United Kingdom)
{rod.chapman, emyr.rees}@altran.com

2 AdaCore, 46 rue d’Amsterdam, F-75009 Paris (France)
{comar, guitton, kanig, moy}@adacore.com

Abstract. Formal modular verification of software is based on assume-
guarantee reasoning, where each software module is shown to provide
some guarantees under certain assumptions and an overall argument
linking results for individual modules justifies the correctness of the
approach. However, formal verification is almost never applied to the
entire code, posing a potential soundness risk if some assumptions are
not verified. In this paper, we show how this problem was addressed in
an industrial project using the SPARK formal verification technology,
developed at Altran UK. Based on this and similar experiences, we pro-
pose a partial automation of this process, using the notion of explicit
assumptions. This partial automation may have the role of an enabler
for formal verification, allowing the application of the technology to iso-
lated modules of a code base while simultaneously controlling the risk
of invalid assumptions. We demonstrate a possible application of this
concept for the fine-grain integration of formal verification and testing
of Ada programs.

Keywords Formal methods, Program Verification, Test and Proof, Assumptions

1 Introduction

Formal modular verification of software is based on assume-guarantee reasoning,
where each software module is shown to provide some guarantees under certain
assumptions, and an overall argument linking results for individual modules jus-
tifies the correctness of the approach. Typically, the assumptions for the analysis
of one module are part of the guarantees which are provided by the analysis of
other modules. The framework for assume-guarantee reasoning should be care-
fully designed to avoid possible unsoundness in this circular justification. For
software, a prevalent framework for assume-guarantee reasoning is Hoare logic,
where subprograms3 are taken as the software modules, and subprogram con-
tracts (precondition and postcondition) define the assumptions and guarantees.

3 In this paper, we use the term subprogram to designate procedures and functions,
and reserve the more common term of function to subprograms with a return value.

Formal verification tools based on Hoare logic analyze a subprogram without
looking at the implementation of other subprograms, but only at their contract.

Although verification is done modularly, it is seldom the case that the results
of verification are also presented modularly. It is tempting to only show which
components have been verified (the guarantees), omitting the assumptions on
which these results depend. This is indeed what many tools do, including the
SPARK tools co-developed by Altran UK and AdaCore. In theory, the correct-
ness of the approach would depend, among other things, on formal verification
being applied to all parts of the software, which is never the case for industrial
projects. Even when considered desirable to maximize formal verification, there
are various reasons for not applying it to all components: too difficult, too costly,
outside the scope of the method or tool, etc. In practice, expertise in the formal
verification method and tool is required to manually justify that the implicit
assumptions made by the tool are valid.

The care with which this manual analysis must be carried out is an in-
centive for system designers to minimize boundaries between formally verified
modules and modules that are verified by other means. For example, this can
be achieved by formally verifying the entire code except some difficult-to-verify
driver code, or by formally verifying only a very critical core component of the
system. However, such a monolithic approach is hindering a wider adoption of
formal methods. Modules that are not formally verified are usually verified using
other methods, often by testing. If combining verification results of e.g., proof
and test was easy, projects could freely choose the verification method to ap-
ply to a given component, based on tool capabilities and verification objectives.
We propose to facilitate the effective combination of modular formal verifica-
tion and other methods for the verification of critical software by extending the
application of assume-guarantee reasoning to these other methods.

1.1 SPARK

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. SPARK builds on the strengths of Ada for creating
highly reliable and long-lived software. SPARK restrictions ensure that the be-
havior of a SPARK program is unambiguously defined, and simple enough that
formal verification tools can perform an automatic diagnosis of conformance be-
tween a program specification and its implementation. The SPARK language
and toolset for formal verification has been applied over many years to on-board
aircraft systems, control systems, cryptographic systems, and rail systems [3,11].

In the versions of SPARK up to SPARK 2005, specifications are written as
special annotations in comments. Since version SPARK 2014 [10], specifications
are written as special Ada constructs attached to declarations. In particular, var-
ious contracts can be attached to subprograms: data flow contracts (introduced
by global), information flow contracts, and functional contracts (preconditions
and postconditions, introduced respectively by pre and post). An important
difference between SPARK 2005 and SPARK 2014 is that functional contracts

2

are executable in SPARK 2014, which greatly facilitates the combination be-
tween test and proof (see Section 4). The definition of the language subset is
motivated by the simplicity and feasability of formal analysis and the need for
an unambiguous semantics. Tools are available that provide flow analysis and
proof of SPARK programs.

Flow analysis checks correct access to data in the program: correct access to
global variables (as specified in data and information flow contracts) and correct
access to initialized data. Proof is used to demonstrate that the program is free
from run-time errors such as arithmetic overflow, buffer overflow and division-
by-zero, and that the functional contracts are correctly implemented.

The different analyses support each other - for example, proof assumes that
data flow analysis has been run without errors, which ensures that all variables
are initialized to a well-defined value before use, that no side-effects appear in
expressions and function calls, and that variables are not aliased. The latter
point is partly achieved by excluding access (pointer) types from the language,
and completed by a simple static analysis. For the purposes of this paper, we
consider the SPARK analysis as a whole in Section 4 and will discuss interaction
between the different analyses in Section 5.

1.2 Related Work

Neither the idea of explicit assumptions nor the idea of combining different types
of analyses on a project are new. However, the focus of this line of research has
been to show how different verification techniques can collaborate on the same
code and support each other’s assumptions. Examples are the explicit assump-
tions of Christakis et al. [5], the combination of analyses [7] in Frama-C [9],
the EVE tool for Eiffel [13] and the work of Ahrendt et al. [1]. In contrast, we
focus on the combination of verification results for different modules. Another
line of research is the Evidential Tool Bus (ETB [8]), which concentrates on
how to build a safe infrastructure for combining verification results from differ-
ent sources and tracking the different claims and supporting evidence. An ETB
could be used as the backbone for the framework that we describe in this paper.

1.3 Outline

In Section 2, we describe how the problem of heterogeneous verification was ad-
dressed in an industrial project using the SPARK formal verification technology,
developed at Altran UK, using an ad-hoc methodology. In Section 3, we propose
a framework for combining the results of different verification methods that can
be partly automated, and thus lends itself to a more liberal combination of ver-
ification methods. In Sections 4 and 5, we present our experiments to combine
at coarse-grain and fine-grain levels proof and test on Ada programs, using the
SPARK technology that we develop.

3

2 Assumptions Management in a Large Safety-Critical
Project

Project X4 is a large, mission-critical, distributed application developed by Al-
tran UK, and now in operational service. The software consists of several pro-
grams that execute concurrently on a network of servers and user workstations.
The latter machines include a user-interface that is based on the X11/Motif UI
framework.

Almost all of the software for Project X is written in SPARK 2005 and is
subject to extensive formal verification with the SPARK 2005 toolset. Two other
languages are used, though:

– Ada (not SPARK subset, but still subject to a project coding standard) is
used where SPARK units need to call operating-system or compiler-defined
run-time libraries.

– C code is used to form a layer between the SPARK code and the underlying
X11/Motif libraries, which is implemented in C.

One program, called the UI Engine, is a multi-task SPARK program that
uses the RavenSPARK subset of Ada’s tasking features [3]. This mitigates many
common problems with concurrent programming, such as deadlock and priority
inversion. The C code is only ever called from a single task of the main SPARK
program - a major simplification which prevents interference between the imple-
mentation languages, because the C code does not have global side effects. Also,
in this way the C code does not need to worry about reentrance. The UI engine
component is 87kloc (logical lines of code), comprising of 61kloc SPARK and
26kloc MISRA C.

2.1 The Requirements Satisfaction Argument

The fitness-for-purpose of Project X is justified at the top-level by a “Require-
ments Satisfaction Argument”. This is essentially structured as a tree of goals,
justifications, assumptions, and evidence, expressed in the Goal Structured No-
tation (GSN).

A large section of the GSN is devoted to non-interference arguments that
form the core of the safety argument for Project X. Part of that non-interference
argument includes detailed justifications for the integration of software written in
multiple languages, and the prevention of defects that could arise. The leaves of
the GSN typically refer to verification evidence (e.g., test specifications, results,
provenance of COTS components, static analysis results and so on) or standards
(such as the coding standards for SPARK and C used by the project).

2.2 From SPARK to C (and Back Again)

In Project X, SPARK code calls C code to implement various user-interface el-
ements. Beyond that point, the formal analyses offered by the SPARK toolset

4 This is not its actual name, which we cannot mention.

4

Assumption How verified

Parameter types match AUTO
Variables initialized MISRA
Outputs in expected subtype REVIEW, TEST
No side effects MISRA
No aliasing MISRA, REVIEW
Data flow contract respected REVIEW
No thread/task interaction REVIEW
No dynamic allocation MISRA
Functional contract respected REVIEW, TEST
Absence of run-time errors TEST

Table 1: SPARK to C assumptions and verification

are not available, so we cannot rely on these analyses to prove the assumptions
made to analyze the SPARK code. Instead, the project manages an explicit list of
assumptions that must be enforced across each such boundary. Essentially, the
SPARK code assumes that the called C function is “well-behaved” according
to a set of implicit project-wide rules (e.g., the function terminates, and pa-
rameters are passed using the expected types and mechanism) and the explicit
SPARK contract (e.g., precondition and postcondition) applied to the SPARK
specification of that function.

Each of these assumptions is verified on the C code through a combination
of one or more of:

– AUTO. Automated code generation. In particular, the Ada and C type dec-
larations that are used to communicate across the language boundary are
automatically generated from a single description.

– MISRA. Automated static analysis using the MISRA C:2004 rules [2].

– REVIEW. Checklist-driven manual code review. In particular, parameter
passing mechanisms and types are carefully reviewed to ensure they match
across such a language boundary.

– TEST. Specific unit test objectives.

The set of MISRA rules enforced and the review checklist items were chosen
to cover the assumptions needed to support the verification of the SPARK units.
The project maintains a detailed analysis of every MISRA rule and how its use
meets the assumptions required by the SPARK analysis. A small number of
MISRA rules are not used by the project, or deviations may be justified on a
case-by-case basis. Again, detailed records are maintained to make sure that
these deviations do not undermine the analysis of the SPARK code. Table 1
shows how each major assumption made by the SPARK code is verified in the
C code.

5

procedure Set_Off_Button
(Button_Enabled : Boolean;
Background_Colour : Background_Colour_T);

--# global in out Shutdown.Error_Flag;
--# in out Shutdown.Do_Shutdown_SO;

(a) The SPARK specification of Set Off Button

void TB_Set_Off_Button_SC (
const bool Button_Enabled ,
const HMI_Types__Background_Colour_T Background_Colour ,

HMI_Types__Status_T* Error);

(b) The C specification of TB Set Off Button SC

procedure Set_Off_Button
(Button_Enabled : Boolean;
Background_Colour : Background_Colour_T)

i s
Button_Enabled_C : C_Base_Types.C_Bool;
Background_Colour_C : HMI_Types.C.Background_Colour_T;
Error : HMI_Types.C.Status_T;

−− Here is the interface to C function TB Set Off Button SC
procedure TB_Set_Off_Button

(Button_Enabled_C : C_Base_Types.C_Bool;
Background_Colour_C : HMI_Types.C.Background_Colour_T;
Error : out HMI_Types.C.Status_T);

pragma Import (C, TB_Set_Off_Button , "TB_Set_Off_Button_SC");
begin

Button_Enabled_C := C_Base_Types.To_C_Bool (Button_Enabled);
Background_Colour_C :=

HMI_Types.C.To_C.Background_Colour_T (Background_Colour);

−− Call to C here
TB_Set_Off_Button

(Button_Enabled_C => Button_Enabled_C ,
Background_Colour_C => Background_Colour_C ,
Error => Error);

Common_Error.Log_And_Handle_If_Error
(Message => Error ,
Gate => HMI_DM_Fatal_Error_In_C_Code);

end Set_Off_Button;

(c) The SPARK body of Set Off Button

Fig. 1: Excerpt of mixed SPARK/C code in Project X.

6

/∗ PRQA S:R14 1 S002 1503 1 ∗/
void TB_Set_Off_Button_SC (

const bool Button_Enabled ,
const HMI_Types__Background_Colour_T Background_Colour ,

HMI_Types__Status_T* Error)
{

CF_Set_OK (Error);
CF_Set_Widget_Sensitivity(tb_OffButton , Button_Enabled);

switch (Background_Colour)
{

case HMI_Types__Active_Colour:
{

XtVaSetValues (tb_OffButton ,
XmNbackground , /∗ PRQA S:R11 5 S001 0311 ∗/
Alert_Colour ,
NULL);

break;
}
case HMI_Types__No_Colour:
{

XtVaSetValues (tb_OffButton ,
XmNbackground , /∗ PRQA S:R11 5 S001 0311 ∗/
Background_Colour ,
NULL);

break;
}
default: /∗ PRQA S:R14 1 S001 2018 ∗/
{

CF_Set_Not_OK_Str_Int (Error ,
"Invalid Off Background Colour , Enum ",
(int) Background_Colour);

/∗ Note that analysis deemed that a fa i lure to decode an ∗/
/∗ enumeration is l i k e l y to have been caused by a memory ∗/
/∗ corruption , and to continue processing would be unsafe . ∗/
/∗ Assign the category as force shutdown . ∗/
CF_Set_Category (Error ,

HMI_Common_Types__Force_Shutdown ,
CF_On_Error_Abort);

} break;
}

}

(d) The C implementation of TB Set Off Button SC

Fig. 1: (continued) Excerpt of mixed SPARK/C code in Project X.

7

2.3 Example

This section shows an example of how SPARK code interfaces to a UI function
that is written in C. The SPARK specification is given Listing 1a. Note the data
flow contract introduced by global. This specifies the frame condition of the
procedure - stating exactly the set of objects that may be referenced and/or
updated by the procecure and (implicitly) defining that no other objects are
used. In this case, we see that the procedure may read and update two objects
in package Shutdown, both of which record the need to terminate the system in
response to a fatal error.

The SPARK implementation is given in Listing 1c. Ada’s pragma Import here
specifies Convention “C” for the nested procedure - this instructs the compiler
to pass parameters as would be expected in C, according to a set of rules given
in the Ada Reference Manual.

The corresponding C header is provided in Listing 1b. Note the careful use
of naming conventions here to ease the task of both generating and reviewing
the Ada/C interface. Finally, the C implementation is given in Listing 1d. Note
that the coding is overtly defensive, dealing with the possibility of a memory
corruption leading to the default branch of the switch statement being executed.
The “PRQA” comments are instructions to the MISRA analysis tool to suppress
particular warnings. All of these comments are collated and verified as part of
the satisfaction argument.

Consider one particular verification objective for this code: the output
parameter Error on the SPARK declaration of the imported procedure
TB Set Off Button. In SPARK, output parameters must be defined by the
called procedure in all cases. This ensures that Error is properly initialized
when calling Log And Handle Error inside the body of Set Off Button. If
the body of TB Set Off Button were written in SPARK, then the flow analy-
sis engine would verify this obligation, but since the body is in C, additional steps
are needed. In this case, an explicit review checklist item requires C function pa-
rameters that correspond to SPARK output parameters to be unconditionally
initialized - hence the call to CF Set OK that initializes Error at the top of the
function body, for cases which do not result in an error.

2.4 Summary

This approach has proven reliable in practice, owing to judicious architectural
design, a strong desire to minimize the volume of C code (although 26kloc does
still feel a little too large for comfort in an 87kloc application), and strict ad-
herence to design and coding disciplines through automated analysis, review
checklists and focussed testing.

The main drawback is the time, expense and paperwork required to maintain
the satisfaction argument and its supporting evidence across a long-lived project,
which has absorbed several major UI re-designs in its lifetime.

8

3 Tool Assisted Assumptions Management

Reading the previous section, the reader may ask the questions of how we came
up with the left column of Table 1 and how all subprograms at the interface
have been identified. This is in fact the result of expert knowledge of the SPARK
technology as well as specificities of the project. We want to present here a more
systematic way to achieve the same goal.

The work done on Project X to develop Table 1 and to apply it at the
boundary between formal verification and other methods can be broken down
into three steps:

– listing all assumptions of formal verification,
– verifying the non-formally-verified modules using some other method, so that

the previous assumptions are verified, and
– checking that all assumptions have been taken care of.

It is clear that for the first and the last step, tool support is possible and
welcome, and this is the topic of this paper. We propose to enhance formal ver-
ification tools to not only output verification results, but also the assumptions
these results rely on - a more detailed version of the left column of Table 1. As
non-formal methods may rely on assumptions as well, we may also require that
these other methods explicitly list all their assumptions and guarantees when
applied to a module. These should be precise enough to avoid holes in the justifi-
cation, or subtly different interpretations of the properties in different methods.
As an extreme example, “module M is correct” is not at the appropriate level
of precision. For formal methods, this requires an explicit enumeration of the
usually implicit assumptions made for the verification of a component, like non-
aliasing of subprogram parameters, non-interference of subprogram, validity of
the data accessed, etc. For informal methods, this requires defining methodolog-
ical assumptions and guarantees that the method relies upon.

Formally, each verification activity is a process whose output is a list of Horn
clauses, that is, implications of the form

A1 ∧A2 ∧ · · · ∧An → C

where C is a claim5, and the Ai are assumptions. The exact form of claims and
assumptions differs for each method and tool. The next sections will provide
examples based on SPARK.

Compared to the manual process in the previous section, the advantage is
that the “checklist” of verification activities at the boundary between verification
methods is simply provided by each tool, and does not require that users possess
this level of expertise about the tool. The assumptions still need to be verified
of course - that is the right column of Table 1.

5 We prefer to use the word “claim” here over “guarantee”, as it more clearly conveys
the idea that until the corresponding assumptions are verified, no guarantee can be
given.

9

If explicit assumptions are gathered for all verification activities on the
project, we can simply consider together all Horn clauses, and simple queries
such as

– Is claim C completely verified?
– On which unverified assumptions is claim C based on?
– Which verification activities are left to do to verify claim C ?
– If assumption A turns out to be invalid, which claims does this impact?

can be answered simply by analyzing these Horn clauses.
Other forms of explicit assumptions are possible. Christakis et al. [5] and Cor-

renson and Signoles [7] describe assumptions and claims as formulas at program
points, which is more precise than our approach. The drawback is the complexity
to generate and exploit these assumptions, as their formulation implies the use of
a weakest precondition calculus in the former work, or trace semantics in the lat-
ter work, in order to interpret the meaning of a formula at a program point. Also,
simply formulating these formulas already requires choosing a memory model.
Instead, we prefer to see claims and assumptions as well-defined, parameterized
properties uniquely identified by a tag. For example, where Christakis et al. use
the formula c 6= d to express non-aliasing of two parameters at subprogram en-
try, we prefer to write it as the property Nonaliased(c, d) where the names c and
d are given in a format which allows their unique identification, and Nonaliased
is a tag which is unambiguously defined to mean that two variables do not share
any memory. Similarly, to denote an assumption on the precondition of some
subprogram p, we would write Pre(p) instead of the formula which constitutes
the precondition.

This choice, together with the choice of Horn clauses as data format, makes
it much simpler to feed assumptions to existing tools such as the ETB [8] and
opens the door to tool assisted assumptions management.

4 Coarse-Grain Assumptions Management

We have described in some previous work [6] a coarse-grain application of the
framework described in the previous section, to combine the results of test and
proof on Ada programs (proof being restricted to SPARK subprograms) in the
context of certification of avionics software following the do-178c [12] certifica-
tion standard. In this context, tests with MC/DC coverage [4] or proofs are two
acceptable methods to verify a module, where modules here are subprograms.
We can reexpress the goal of verifying a subprogram P using Horn clauses as
described in the previous section:

Tests Passed(P) ∧MCDC Covered(P)→ Verified(P)

Contract Proved(P) ∧No Runtime Errors(P)→ Verified(P)

Note that assumptions made during proof are still implicit in the Horn clauses
above. Assumptions related to functional contracts, like the guarantee that called

10

subprograms respect their postcondition, or that the subprogram proved is only
called in a context where its precondition holds, are discharged either by the
proof of the callees/callers, or by executing the corresponding contracts dur-
ing the test of the callees/callers. Thus, it is essential for the combination that
functional contracts are executable. Other assumptions related to non-aliasing
of parameters, or validity of variables, are discharged by having the compiler in-
strument the tested programs to check the assumptions. Finally, the assumptions
that cannot be tested are guaranteed by the combination of a coding standard
and a static analysis on the whole program. The coding standard forbids in par-
ticular calls through subprogram pointers, so that the call-graph is statically
known. The static analysis forbids aliasing between parameters of a call and
global variables that appear in the data flow contract for the called subprogram.

We built a prototype tool in Python implementing this approach, allowing
users to specify the generic Horn clauses above in some special syntax. This
monolithic specially crafted approach for SPARK was not completely satisfying,
as it was not easily extensible or customizable by users. This is why we switched
to a finer-grain approach where assumptions are explicit.

5 Fine-Grain Assumptions Management

We consider now the combination of verification results for individual subpro-
grams whose declaration is in SPARK. As described in Section 1.1, various con-
tracts can be attached to such subprograms: data flow contracts, information
flow contracts, and functional contracts (preconditions and postconditions).

5.1 Claims and Assumptions

We provide a detailed definition of claims and assumptions for SPARK. We
assume subprograms are uniquely identified, for example by using their name and
the source location of the declaration. We also assume that calls to subprograms
are uniquely identified, again using e.g., the source location of the call. We use
capital letters such as P for subprograms, and write P@ to indicate a specific
call to a subprogram.

It should be noted that some fundamental assumptions, e.g., correctness of
the verification tool, compiler and hardware, are out of scope of this framework
and are not taken into account here.

SPARK formal verification tools may be used to ensure that the following
claims are satisfied by a subprogram P or a call to P :

– Effects(P) - the subprogram P only reads input variables and writes output
variables according to its data flow contract.

– Init(P) - the subprogram P is only called when all its input parameters, and
all the input variables in its data flow contract, are initialized.

– Init(P@) - in this specific calling context of P , all its input parameters, and
all the input variables in its data flow contract, are initialized.

11

– Nonaliasing(P) - the subprogram P is not called with parameters which
would create aliasing.

– Nonaliasing(P@) - in this specific calling context of P , the values of param-
eters do not create aliasing.

– AoRTE (P) - the subprogram P is free of run-time errors.
– Contract(P) - the subprogram P respects its contract, that is, the precon-

dition is sufficient to guarantee the postcondition.
– Pre(P) - the subprogram P is only called in a context that respects its

precondition.
– Pre(P@) - in this specific calling context of P , its precondition is respected.
– Term(P) - the subprogram P terminates.

The output of the SPARK tools can then be described as follows. Given a
subprogram P which contains the calls Ri@, if flow analysis is applied without
errors, then the following set of Horn clauses holds:

Effects(Ri) ∧ Init(P) ∧Nonaliasing(P) −→Effects(P) ∧
Init(Ri@) ∧
Nonaliasing(Ri@) (1)

and if proof is applied without unproved properties being reported, then the
following set of Horn clauses holds:

Effects(Ri) ∧ Init(P) ∧Nonaliasing(P) ∧
AoRTE (Ri) ∧ Contract(Ri) ∧ Pre(P) −→AoRTE (P) ∧

Pre(Ri@) (2)

Effects(Ri) ∧ Init(P) ∧Nonaliasing(P) ∧
Contract(Ri) −→Contract(P) (3)

For the sake of succinctness, we have taken the liberty to merge Horn clauses
with different conclusions, but identical premises - this is only a shortcut for
the equivalent expansion using only Horn clauses. The result of successful flow
analysis of subprogram P , as expressed in Formula 1, is that, assuming P ’s callees
respect their data flow contract, and assuming P is always called on initialized
inputs and non-aliased inputs/outputs, then P respects its data flow contract,
and calls inside P are done in a context which does not introduce uninitialized
inputs or aliasing for the callee. For proof, there are in fact two different sets of
results and assumptions. The first one, expressed in Formula 2, is that, assuming
P ’s callees respect their data flow contract and their pre/post contract, and they
do not raise run-time errors, and assuming P is always called on initialized inputs
and non-aliased inputs/outputs, in a context where its precondition holds, then P
does not raise run-time errors, and calls inside P are done in a context where their
precondition holds. The second one, expressed in Formula 3, is that assuming P ’s
callees respect their data flow contract and their pre/post contract, and assuming
P is always called on initialized inputs and non-aliased inputs/outputs, then P
also respects its pre/post contract.

12

Note that the precondition of P is not an assumption of Formula 3, because
the tag Contract already includes the precondition. In this manner, as can be
easily seen, Formula 3 propagates assumptions about contracts down the call
graph, while Formula 2 propagates the assumptions on preconditions up the call
graph.

Note that Pre, Init and Nonaliasing applied to a subprogram are a bit special:
they only appear as assumptions and not as claims. They are in fact assumptions
on the calling context, and the only way to discharge them is to verify that they
hold for all calling contexts. As a consequence, a non-modular analysis is needed
here to identify all calls to a subprogram, so we add Horn clauses of the form:

tag(P@) −→ tag(P) (4)

where tag is any of Pre, Init and Nonaliasing and P@ are all calls to a given
subprogram P . An important special case is that, for main subprograms (which
are not called by any other subprogram), we obtain the immediate guarantees
of the form:

tag(P) (5)

By combining Formulas 1, 4, and 5, it can be checked easily that, if for-
mal verification is applied to the entire program6, then Effects(P), Init(P) and
Nonaliasing(P) hold for every subprogram P . Similarly, by combining Formu-
las 2 to 5 together with the guarantees just obtained, it can be checked easily
that, if formal verification is applied to the entire program, then AoRTE (P),
Pre(P) and Contract(P) hold for every subprogram P . As we did not check
termination here, this corresponds exactly to partial correctness of the program.

But, as we argued earlier, it is almost never the case that formal verification is
applied to a complete program. In that very common case, it is not immediately
clear what guarantees the application of formal verification gives. In particular,
a user is probably interested in knowing that no run-time errors can be raised,
which corresponds in our formalization to AoRTE (P) and Pre(P@) and that the
subprogram contracts are respected, which corresponds in our formalization to
Effects(P) and Contract(P). With our formulation of formal verification results
as Horn clauses, we can precisely compute on which unverified assumptions these
claims depend.

Termination. We have not discussed termination (represented by the tag Term)
yet. In fact, termination is not an assumption of Formulas 2 and 3, because
the properties claimed there are formulated in terms of partial correctness. For
example, the most precise formalization of Contract is: if the precondition holds,
and if the control flow of the program reaches the end of the subprogram, then
the postcondition holds. Assuming absence of recursion, the SPARK tools can
in fact establish termination by adding the following set of Horn clauses for each
subprogram:

Term(Ri) ∧ Term(Lk) −→ Term(P)

6 We are assuming absence of recursion in the program. Recursion requires a more
advanced treatment.

13

assumption verification strategy

assumption on call

Init(P@) coding standard, run-time initialization checking
Nonaliasing(P@) static analysis, run-time non-aliasing checking, review
Pre(P@) unit testing with assertions enabled

assumption on subprogram

Effects(P) static analysis, review, coding standard
AoRTE(P) unit testing with run-time checks enabled
Contract(P) unit testing with assertions enabled
Term(P) unit testing, review

Table 2: Assumptions and possible verification strategies

where the Ri are the subprograms called and the Lk are the loops occurring in
the subprogram P . Termination of loops can be established in SPARK by two
means: for-loops terminate by construction in Ada, and more general loops can
be annotated with a variant, wich allows to prove termination of the loop.

5.2 Discharging Assumptions

As visible from Formulas 1 to 3, the SPARK tools provide claims for the formal
verification of one subprogram that discharge assumptions for the formal verifi-
cation of another subprogram. It remains to see how to discharge assumptions
at the boundary between formally verified and non-formally verified code.

Table 2 summarizes the assumptions of SPARK and presents possible verifi-
cation strategies when the SPARK tools cannot be applied to the code on which
the assumption is issued. The possibility in Ada to perform exhaustive run-time
checking allows applying unit testing for verifying the absence of run-time er-
rors. The possibility to also execute functional contracts is only available with
SPARK 2014, not SPARK 2005, and it allows applying unit testing for verifying
functional contracts.

Assumptions on the calling context are a bit more difficult to verify. Table 2
does not contain entries for assumptions on the calling context, so the first step
is to find out all callers. Once all call points are identified, one needs to verify
that each call verifies the assumptions that have been made for the verification
of the called subprogram. This poses another interesting challenge: How to verify
by testing that, e.g., the precondition of a call deep inside the tested subpro-
gram holds? How can one be sure that enough testing was applied? We are not
answering these questions in this paper, but raising the issue.

Finally, SPARK lets the user insert assumptions inside the program for both
flow analysis and proof. A typical example is a counter whose incrementation
could overflow in theory, but never does in practice because it would require that
the system runs for longer that its longest foreseen running time. In that case,
the user can insert a suitable code assumption before the counter is incremented:

14

pragma Assume (Cnt < Integer ’Last , "system is rebooted every day");
Cnt := Cnt + 1;

Such assumptions can also be part of the output of the tools, so that a review
of all remaining assumptions can assess their validity.

5.3 A Concrete Example

In this section, we exercise the assumptions mechanism on the example pro-
vided in Section 2. Let us assume that we apply the SPARK tools only to
Set Off Button, and in the remainder of this section we assume that flow anal-
ysis and proof have been applied successfully. We therefore obtain the following
verification results:

Effects(Ri) ∧ Init(P) −→ Effects(P) ∧ Init(Ri@)

Effects(Ri) ∧ Init(P) ∧AoRTE (Ri) −→ AoRTE (P)

where P is Set Off Button and the Ri are the subprograms called by
Set Off Button: To C Bool, Background Color T, TB Set Off Button, and
Log And Handle If Error.

Note that the above statement is somewhat shorter than the general one be-
cause the tags Pre and Contract do not apply (no preconditions or postconditions
appear in the example), just as the tag Nonaliasing . In fact, it is impossible for
aliasing to occur in the example, partly due to the types of parameters that can-
not alias in some calls, and partly because scalar input parameters are passed
by copy in Ada, and thus cannot alias with anything. The other claims that
SPARK could provide do not apply, because Set Off Button doesn’t have a
postcondition, and the called subprograms do not have preconditions.

There are three assumptions in the above Horn clauses, for which we can find
both which verification was actually performed in Project X, in Table 1, and to
which general verification strategy this corresponds, in Table 2, as summarized
in Table 3:

Assumption How verified in Project X Verification strategy applied

Effects(Ri) MISRA coding standard
Init(P) MISRA coding standard
AoRTE(Ri) TEST unit testing

Table 3: Discharging assumptions by other methods in a concrete example

In fact, most assumptions from Table 1 also appear in Table 2. Those that do
not appear are project-specific. For example, the use of SPARK tools does not
prevent the use of dynamic allocation in other parts of the program, in general.
It happens to be a requirement of the project described in this paper.

15

6 Conclusion

We have presented the current state of the art in industrial software when apply-
ing formal verification on part of the code only. We reused the notion of explicit
assumptions, which has already been present in other works, but used differently
and for different purposes, to show how to render formal verification truly mod-
ular by proper tool support. We have experimented with a coarse-grain variant
of explicit assumptions to realize the combination of proof and test, and have
presented a more fine-grain model.

Future Work. Our immediate plan is to implement explicit assumptions in the
SPARK technology, using the evidential tool bus as the back-end for assumptions
management. More work is required to make the application of the framework
truly usable. For example, all the presented tags simply have a subprogram name
or call as argument. To increase precision, it would be better to also include tags
with variable arguments, e.g., a tag such as Nonaliasing(x , y). Such support
is not very different from what we describe here, but much more complex to
write down, and the non-modular analysis to match call guarantees with calling
context assumptions requires more work.

Our ultimate goal is to provide support for assumptions management and
a smooth combination of test and proof in a future version of the commercial
SPARK tools.

References

1. W. Ahrendt, G. J. Pace, and G. Schneider. A unified approach for static and
runtime verification: framework and applications. In Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering Change,
pages 312–326. Springer, 2012.

2. M. I. S. R. Association. MISRA C:2004 - Guidelines for the use of the C language
in critical systems. 2004.

3. J. Barnes. SPARK: The Proven Approach to High Integrity Software. Altran
Praxis, 2012.

4. J. J. Chilenski. An Investigation of Three Forms of the Modified Condition/Deci-
sion Coverage (MCDC) Criterion. Technical Report DOT/FAA/AR-01/18, Apr.
2001.

5. M. Christakis, P. Müller, and V. Wüstholz. Collaborative verification and testing
with explicit assumptions. In D. Giannakopoulou and D. Méry, editors, FM 2012:
Formal Methods, volume 7436 of Lecture Notes in Computer Science, pages 132–
146. Springer Berlin Heidelberg, 2012.

6. C. Comar, J. Kanig, and Y. Moy. Integrating formal program verification with
testing. In Proc. ERTS, 2012.

7. L. Correnson and J. Signoles. Combining Analyses for C Program Verification. In
M. Stoelinga and R. Pinger, editors, Formal Methods for Industrial Case Studies
(FMICS’12), volume 7437 of Lecture Notes in Computer Science, pages 108–130.
Springer, Aug. 2012.

16

8. S. Cruanes, G. Hamon, S. Owre, and N. Shankar. Tool integration with the eviden-
tial tool bus. In Verification, Model Checking, and Abstract Interpretation, pages
275–294. Springer, 2013.

9. P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson, B. Monate,
V. Prevosto, and A. Puccetti. Experience report: OCaml for an industrial-strength
static analysis framework. SIGPLAN Not., 44(9):281–286, Aug. 2009.

10. C. Dross, P. Efstathopoulos, D. Lesens, D. Mentré, and Y. Moy. Rail, space,
security: Three case studies for spark 2014. In Proc. ERTS, 2014.

11. I. O’Neill. SPARK – a language and tool-set for high-integrity software devel-
opment. In J.-L. Boulanger, editor, Industrial Use of Formal Methods: Formal
Verification. Wiley, 2012.

12. RTCA. DO-178C: Software considerations in airborne systems and equipment
certification, 2011.

13. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verification of object-
oriented programs by combining static and dynamic techniques. In Software En-
gineering and Formal Methods, pages 382–398. Springer, 2011.

17

	Explicit Assumptions - A Prenup for Marrying Static and Dynamic Program Verification

