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Abstract. It is common practice in critical software development, and
compulsory in railway software developed according to EN 50128 stan-
dard, to separate software specification from software implementation.
Verification activities should be performed to ensure that the latter is a
correct refinement of the former. When the specification is formalized,
for example in B method, the refinement relation can even be formally
proved. In this article, we present how a similar proof of refinement can
be performed at the level of the programming language used for imple-
mentation, using the SPARK technology. We describe two techniques to
specify abstractly the behavior of a software component in terms of math-
ematical structures (sequences, sets and maps) and a methodology based
on the SPARK tools to prove automatically that an efficient imperative
implementation is a correct refinement of the abstract specification.

Keywords Formal methods, Verification and validation, Certification, Depend-
ability, EN 50128

1 Introduction

The railway standard EN 50128 [1] has been the first one in 2001 to recommend
formal methods for the development of critical software, an example later fol-
lowed by other domains such as avionics [17]. In EN 50128, formal methods are
recommended at levels SIL 1 and SIL2, and highly recommended at levels SIL3
and SIL4, both for software requirements (table A.2 of EN 50128) and for design
and implementation (table A.4 of EN 50128). Among formal methods, formal
proof is similarly (highly) recommended at the same levels for verification and
testing (table A.5 of EN 50128). Formal proof based on contracts is a particularly
good fit to the principles of high integrity software development enumerated at
the start of EN 50128 document, as it allows modular verification of individual
components with a clear description of dependences between components given
by their contract.
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Subprogram contracts were popularized in the Design-by-Contract ap-
proach [20] as a means to separate responsibilities in software between a caller
and a callee. The callee’s precondition states the responsibility of its caller, while
the callee’s postcondition states the responsibility of the callee itself. For example,
the following (incomplete) contract for procedure Swap specifies that it should
be called with index parameters within the range of the array parameter, and
that Swap will ensure on return that the corresponding values in the array have
been swapped. Attribute Old in the postcondition is used to refer to values on
entry to the subprogram.

procedure Swap (A : in out Arr; X, Y : Idx) with
Pre => X in A’Range and Y in A’Range,
Post => A(X) = A(Y)’Old and A(Y) = A(X)’Old;

The procedure declaration above is written in SPARK, a subset of the Ada
programming language targeted at safety- and security-critical applications.
SPARK builds on the strengths of Ada for creating highly reliable and long-
lived software. SPARK restrictions ensure that the behavior of a SPARK pro-
gram is unambiguously defined, and simple enough that formal verification tools
can perform an automatic diagnosis of conformance between a program spec-
ification and its implementation. The SPARK language and toolset for formal
verification has been applied over many years to on-board aircraft systems, con-
trol systems, cryptographic systems, and rail systems [5,21]. The latest version,
SPARK 2014 [12,19], builds on the new specification features added in Ada
2012 [4], so formal specifications are now understood by the usual development
tools and can be executed. SPARK toolset was qualified as a verification tool
(tool class T2) in a railway certification project subject to EN 50128 standard.

Compared to previous versions, the latest version of SPARK is used indus-
trially to prove automatically both absence of run-time errors and properties of
programs expressed as contracts. Contracts are mostly used to express low-level
specifications, close to the actual implementation, like the one on Swap above
(although they can be much more complex). In comparison, the B method [2]
used in railway industry allows expressing specifications abstractly in terms of
mathematical sequences, sets and maps (the abstract machine), while the im-
plementation uses a restricted subset of B called B0 that provides a thin layer
over concrete arrays and machine integers/floats (the concrete machine) in or-
der to allow generation of efficient machine code. The proof that the concrete
machine refines the abstract machine gives the confidence that the code indeed
implements an abstract specification more easily understood by humans and
shared among stakeholders. In this article, we show how a similar expression of
abstract specifications is possible in SPARK, and that the proof of refinement
can be performed automatically.

1.1 SPARK Verification Environment

Key Language Features The most useful feature in SPARK is the ability to
specify a contract on subprograms, given by a precondition and a postcondition
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as presented on Swap. Attribute Result in the postcondition of a function is
used to refer to the value returned by the function.

Instead of preconditions and postconditions, or in addition to them, sub-
program contracts may be specified by a set of disjoint and complete cases. For
example, the following contract for procedure Swap states separate sub-contracts
for the cases where the elements at indexes X and Y are equal or different. The
first case specifies that, if A(X) equals A(Y) on entry, then A should not be mod-
ified by the call. The second case specifies that, if A(X) is different from A(Y) on
entry, then A should be modified by the call.

procedure Swap (A : in out Arr; X, Y : Idx) with
Contract_Cases =>

(A(X) = A(Y) => A = A’Old ,
A(X) /= A(Y) => A /= A’Old);

Specific kinds of expressions make it easier to express contracts. If-expressions
and case-expressions are the expression forms which correspond to the usual if-
statements and case-statements. Note that an if-expression without an else-part
(if A then B) expresses a logical implication of B by A. Quantified expres-
sions (for all X in A => P) and (for some X in A => P) correspond to the
mathematical universal and existential quantifications, only on a bounded do-
main. Expression functions define a function using a single expression, like in
functional programming languages. As expression functions can be part of the
specification of programs (contrary to regular function bodies) in SPARK, they
provide a powerful way to abstract complex parts of contracts.

The second most useful feature in SPARK (after contracts) is the ability to
specify properties of loops. A loop invariant expresses the cumulated effect of
the loop up to that point. For example, the following loop invariant expresses
that the array A has been zeroed-out up to the current loop index J, and that
the rest of the array has not been modified. Attribute Loop_Entry is used to
refer to values on entry to the loop.

pragma Loop_Invariant
( for al l K in A’Range =>

( i f K <= J then A(K) = 0 else A(K) = A’Loop_Entry(K)));

To show loop termination, one can use a loop variant to express that a
quantity varies monotonically at each iteration of the loop. For example, the
following loop variant expresses that scalar variable J increases at each loop
iteration.

pragma Loop_Variant (Increases => J);

For-loops in SPARK are bounded by construction, so this is only needed for
while-loops and plain-loops.

Benefits of Executable Contracts Traditionally, contracts have been interpreted
quite differently depending on whether they were used for run-time assertion
checking or for formal program verification. For run-time assertion checking,
contracts have been interpreted as assertions on entry and exit of subprograms.
For formal program verification, assertions have typically been interpreted as
formulas in classical first-order logic. This was the situation with SPARK prior
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to SPARK 2014. Practitioners have struggled with this interpretation, which was
not consistent with the run-time assertion checking semantics [8].

SPARK reconciles the logic semantics and executable semantics of contracts,
so users can now execute contracts, debug them like code, and test them when
formal verification is too difficult to achieve. Furthermore, by keeping the an-
notation language the same as the programming language, users don’t have to
learn another language.

All the previously presented contracts and assertion pragmas lead to run-
time assertions. If a property is not satisfied at run time, an exception is raised
with a message indicating the failing property, for example on procedure Swap:

failed precondition from swap.ads:4

Another key benefit of executable contracts is that they can be used by other
tools working at the level of code. For example, the CodePeer1 static analysis
tool uses contracts and assertion pragmas to issue more precise messages. Most
notably, this also allows SPARK users to combine the results of formal verifica-
tion and testing, when only part of a program is formally analyzed [10].

Key Tool Features GNATprove is the formal verification tool that analyzes
SPARK code. It performs two different analyses: (i) flow analysis of the pro-
gram and (ii) proof of program properties.

Flow analysis checks correct access to data in the program: correct access to
global variables and correct access to initialized data. It is a fast static analysis
(analysis time typically comparable with compilation time).

Proof is used to demonstrate that the program is free from run-time errors,
and that the specified contracts are correctly implemented. It internally gener-
ates mathematical formulas for each property, that are given to the automatic
provers Alt-Ergo, CVC4 and Z3. If one of the automatic provers manages to
prove the formula in the given time, then the property is known to hold. Oth-
erwise, more work is required from the user to understand why the property is
not proved.

As proof requires interactions between the user and the tool until the speci-
fication can be proved automatically, the efficiency and the granularity at which
the tool can be applied are critical. For efficiency, GNATprove uses a compilation-
like model where only those parts that are impacted by a change need to be rean-
alyzed, and a fast generation of formulas. For convenient interaction, GNATprove
allows users to focus on a single unit, a single subprogram inside a unit, or even
a single line inside a subprogram.

A very useful feature of GNATprove to investigate unproved properties is its
ability to display counterexamples along paths that lead to unproved properties.
The counterexample and the path can be displayed in GPS2 or in Eclipse3, the
two Integrated Development Environments which support SPARK. The user can

1 http://www.adacore.com/codepeer
2 http://www.adacore.com/gnatpro/toolsuite/gps/
3 http://www.adacore.com/gnatpro/toolsuite/gnatbench/
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also change the parameters of the tool to perform more precise proofs, at the
expense of longer analysis time.

Finally, modular verification based on contracts can very easily exploit multi-
core architectures, as the generation of Verification Conditions (VCs) for different
units, or the proof of different VCs, can both be run in parallel. Typically,
projects contain hundreds of units, and lead to the generation of thousands of
VCs, which can be run by GNATprove on as many cores as are available. Note
also that GNATprove uses file timestamps to avoid re-generating VCs for units
which have not been updated, and file hashes to avoid re-proving VCs that have
already been proved. This is crucial when developing either the code or the
associated annotations, to avoid unnecessary rework.

1.2 Ghost Code in SPARK

Sometimes the variables and functions that are useful for the implementation
are not sufficient to specify a property in contracts. One approach is to introduce
additional variables and functions, which will then only be used for the purpose
of verification. But in a certification context such as EN 50128, the additional
code will need to be verified at the same level as the application. This means
performing structural coverage analysis, showing traceability to requirements,
and demonstrating absence of interference between this verification-related code
and the rest of the program if the verification code is to be deactivated in the
final executable. A better solution is to use so-called ghost code.

Ghost code is identified through an aspect named Ghost that can be attached
to variables, types, subprograms and packages to indicate that these entities are
only used in verification code. The compiler checks that such code indeed only
appears in contracts, assertions, and the definition of other ghost entities. As a
benefit, any unintended interference between verification-related and application
code is caught automatically, and the verification code can be removed when the
final executable is built (hence the name ghost code).

Various kinds of ghost code are useful in different situations:

– Ghost functions can express properties used in contracts.
– Global ghost variables can keep track of the current state of a program, or

maintain a log of past events. This information can then be referenced in
contracts.

– Ghost types are types that are only used for defining ghost variables.

In a SPARK context, the GNATprove tool will check additionally that ghost
code cannot have any effect on the behavior of the program. For an overview of
the possible uses of ghost code in SPARK, see the SPARK User’s Guide4 and
for the detailed rules defining ghost code, see the SPARK Reference Manual5.

4 http://docs.adacore.com/spark2014-docs/html/ug/spark_2014.html#

ghost-code
5 http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#

ghost-entities
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1.3 SPARK Library of Containers

Functional containers are part of the newly redesigned library of standard con-
tainers in SPARK. They consist in sequences, sets and maps. Functional contain-
ers are specified through a simple API with contracts, based on a few essential
functions. For example, the API of functional sets is defined over its effects on
the Mem function for membership. Here is the contract of function Inc that tests
inclusion of set S1 in set S2:

function Inc (S1, S2 : Set) return Boolean with
Post => Inc ’Result = ( for al l E in S1 => Mem (S2, E));

Quantification over a container content is achieved by means of a generic
mechanism in SPARK, which allows users to describe the functions used to
iterate over a given datatype. Similarly, the API of functional sequences is defined
over its effects on the functions Length and Get, and the API of functional maps
is defined over its effects on the functions Mem and Get.

SPARK also comes with a library of imperative containers (lists, vectors, sets
and maps). In the newly redesigned library, imperative containers are specified
through an API with contracts based on functional containers. The benefit of
this approach is that there is no need for a dedicated support for containers in
the SPARK tools or provers, as they are specified through contracts like any
other piece of code.

Naturally, client code that uses imperative containers can be specified us-
ing functional containers, and GNATprove can be used to prove that the code
implements its specification. In this article, we aim at showing that functional
containers can be used to express abstract specifications even when the imple-
mentation does not use imperative containers, and that the refinement proof can
nonetheless be made automatically with GNATprove. Thus, we are using only
functional containers in the rest of this article, in a way that is reminiscent of
their use in the contracts of imperative containers.

2 Extracting a Model From the Implementation

As initial example, we consider a simple (inefficient) memory allocator that main-
tains an array of boolean flags to indicate whether the nth resource is allocated
or not. For the purpose of better explaining how a given way of writing specifi-
cations is adapted to specific situations, we will present first the implementation
and only then the specification. In actual software development, the order would
be reversed.

2.1 A Simple Memory Allocator

In fact, in SPARK we can use an enumeration Status instead of a boolean,
and an array Data over a precise range Valid_Resource with values in this
enumeration as follows:
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Capacity : constant := 10_000;
type Resource i s new Integer range 0 .. Capacity;
subtype Valid_Resource i s Resource range 1 .. Capacity;
No_Resource : constant Resource := 0;

type Status i s (Available , Allocated );
type A i s array (Valid_Resource) of Status;

Data : A := (others => Available );

Deallocating a resource consists in setting the corresponding status flag to
Available when previously allocated:

procedure Free (Res : Resource) i s
begin

i f Res /= No_Resource and then Data (Res) = Allocated then
Data (Res) := Available;

end i f ;
end Free;

Allocating a resource consists in searching for the first available resource if any,
and then setting the corresponding status flag to Allocated before returning
the resource position:

procedure Alloc (Res : out Resource) i s
begin

for R in Valid_Resource loop
i f Data (R) = Available then

Data (R) := Allocated;
Res := R;
return;

end i f ;
end loop;
Res := No_Resource;

end Alloc;

2.2 Model as a Ghost Function

In the simple memory allocator, we define a model of the allocator as a ghost
function which will be used in the contracts of Free and Alloc. The model of
the allocator data consists in two sets of resources: a set of resources available
and a set of resources allocated.

package S i s new Functional_Sets (Element_Type => Resource ,
No_Element => No_Resource );

type T i s record
Available : S.Set;
Allocated : S.Set;

end record;

Ghost function Model returns a value of this type, which additionally verifies
additional properties relating the abstract model to the concrete data, expressed
in function Is_Valid:

function Is_Valid (M : T) return Boolean;
function Model return T with Post => Is_Valid (Model ’Result );

Ghost function Is_Valid expresses that sets Available and Allocated define
a partition of the range of resources Valid_Resource:
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function Is_Valid (M : T) return Boolean i s
(( for al l E in M.Available => E in Valid_Resource)

and then
( for al l E in M.Allocated => E in Valid_Resource)

and then
( for al l R in Valid_Resource =>

(case Data (R) i s
when Available => Mem (M.Available , R) and not Mem (M.Allocated , R),
when Allocated => not Mem (M.Available , R) and Mem (M.Allocated , R))));

All the specification code presented so far in this section could be marked ex-
plicitly as ghost code. A better way of achieving the same result is to gather this
code in a local package marked ghost as follows:

package M with Ghost i s
package S i s ...
type T i s ...
function Is_Valid ...
function Model ...

end M;

With this model, is is straightforward to express the functional contract of Alloc
and Free as contract cases, using the function Is_Add from the functional set
library, which expresses that a Result set is the addition of an element to an
input set. The same property could be expressed by using Add and equality on
sets, but using Is_Add results in fewer quantifiers being used, which facilitates
automatic verification. The notation Result => Arg uses the named parameter
passing mechanism instead of the positional one to clarify which call argument
corresponds to parameter Result.

procedure Alloc (Res : out Resource) with
Contract_Cases =>

−− When no resource is avai lable , return the special value No Resource
−− with the al locator unmodified .

(Is_Empty (Model.Available) =>
Res = No_Resource

and then
Model = Model ’Old ,

−− Otherwise , return an avai lab le resource which becomes al located

others =>
Is_Add (Model.Available , Res , Result => Model.Available ’Old)

and then
Is_Add (Model.Allocated ’Old , Res , Result => Model.Allocated ));

procedure Free (Res : Resource) with
Contract_Cases =>

−− When the resource is al located , make i t avai lab le

(Mem (Model.Allocated , Res) =>
Is_Add (Model.Available ’Old , Res , Result => Model.Available)

and then
Is_Add (Model.Allocated , Res , Result => Model.Allocated ’Old),

−− Otherwise , do nothing

others =>
Model = Model ’Old);
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Function Model is implemented as a simple loop that creates the two sets
Available and Allocated by iterating over the content of the array Data.

2.3 Automatic Proof of Refinement

GNATprove can be used to prove automatically that the code of the simple mem-
ory allocator presented in Section 2.1 is free of run-time errors and implements
the specification presented in Section 2.2. The loop-free implementation of Free
is proved easily with the default minimal proof settings (only one prover called
with a timeout of one second per proof). Indeed, setting Data(Res) to Available

directly maps at model level with removing Res from set Model.Allocated and
adding it to set Model.Available. The implementation of Alloc contains a loop
searching for the first resource available in Data, which requires the user to write
a loop invariant summarizing the effect of the loop on variables modified in the
loop (here Data is not modified while looping) and accumulating the information
gathered across iterations on all variables (here that no available resource has
been encountered yet):

pragma Loop_Invariant
(Data = Data ’Loop_Entry
and then ( for al l RR in 1 .. R => Data (RR) = Allocated ));

Once the first available resource R has been reached, setting Data(R)

to Allocated directly maps at model level with removing Res from set
Model.Available and adding it to set Model.Allocated. Then, the implemen-
tation of Alloc is proved easily at proof level 2 (all three provers called with a
timeout of 10s per proof).

The proof of function Model also requires a simple loop invariant expressing
that the property Is_Valid (from its postcondition) has been respected up to
the value of resource for the current iteration of the loop. With this loop in-
variant, the implementation of Model is proved easily with the default minimal
proof settings. Overall, the automatic proof of refinement of the simple memory
allocator takes 12s on a laptop with 2.7 GHz Intel Core i7 and 16 GB RAM
(using a single core).

3 Maintaining a Model Within the Implementation

As a more involved example, we consider a more realistic memory allocator
based on a free list. As before, we present first the implementation and then the
specification, to facilitate exposure and understanding, in reverse order compared
to the actual software development.

3.1 A Free List Memory Allocator

Compared to the simple memory allocator presented in Section 2.1, the free list
memory allocator uses an array Data of cells consisting of a status (available
or allocated) and a pointers to the next resource in a linked list. A variable
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First_Available points to the head of the linked list of available resources
(a.k.a. the free list).

Capacity : constant := 10_000;
type Resource i s new Integer range 0 .. Capacity;
subtype Valid_Resource i s Resource range 1 .. Capacity;
No_Resource : constant Resource := 0;

type Status i s (Available , Allocated );
type Cell i s record

Stat : Status;
Next : Resource;

end record;
type A i s array (Valid_Resource) of Cell;

Data : A := (others => Cell ’(Stat => Available , Next => No_Resource ));
First_Available : Resource := 1;

Allocating a resource consists in extracting and returning the free list head:

procedure Alloc (Res : out Resource) i s
Next_Avail : Resource;

begin
i f First_Available /= No_Resource then

Res := First_Available;
Next_Avail := Data (First_Available ).Next;
Data (Res) := Cell ’(Stat => Allocated , Next => No_Resource );
First_Available := Next_Avail;

else
Res := No_Resource;

end i f ;
end Alloc;

Deallocation is done by adding the deallocated resource to the free list head.

3.2 Model as a Ghost Variable

In the free list memory allocator, unlike the simple memory allocator, not every
configuration is a valid configuration of the software, thus we cannot represent
the model as a function. For example, the initial value of Data as seen in Sec-
tion 3.1 does not define a valid free list. What is needed is to add the following
code to the startup code of the compilation unit (the package elaboration code
in Ada parlance):

for R in Valid_Resource loop
i f R < Capacity then Data (R).Next := R + 1; end i f ;

end loop;

Thus, it is necessary to define what configurations are valid, and to prove both
that the configuration is valid at startup and that operations Alloc and Free

maintain the validity of the configuration. This is expressed with a boolean ghost
function Is_Valid:

function Is_Valid return Boolean;

Although it would be possible to express the specification of the free list
memory allocator based on a ghost function as seen in Section 2.2, this would
make it very difficult to prove automatically the refinement property. Indeed,
the relation between the abstract model and the concrete data would rely on
the reachability of resources in a linked list, thus making it necessary to reason

10



by induction, something automatic provers are not good at. Instead, we define
a model of the allocator as a ghost variable which will be used in the contracts
of Free and Alloc. The model of the allocator data consists in a sequence of
resources available and a set of resources allocated.

package S1 i s new Functional_Sequences (Element_Type => Resource );
package S2 i s new Functional_Sets (Element_Type => Resource ,

No_Element => No_Resource );
type T i s record

Available : S1.Sequence;
Allocated : S2.Set;

end record;

Ghost variable Model holds a value of this type:

Model : T;

The validity of the abstract model w.r.t. the concrete data at any given time
is expressed by ghost function Is_Valid:

function Is_Valid return Boolean i s
(( i f First_Available /= No_Resource then

Length (Model.Available) > 0 and then
Get (Model.Available , 1) = First_Available

else
Length (Model.Available) = 0)
and then

( for al l J in 1 .. Length (Model.Available) =>
Get (Model.Available , J) in Valid_Resource

and then
Data (Get (Model.Available , J)). Next =

( i f J < Length (Model.Available) then
Get (Model.Available , J + 1) else No_Resource)

and then
( for al l K in 1 .. J - 1 =>

Get (Model.Available , J) /= Get (Model.Available , K)))
and then

( for al l E in Model.Allocated => E in Valid_Resource)
and then

( for al l R in Valid_Resource =>
(case Data (R).Stat i s

when Available =>
Mem (Model.Available , R) and not Mem (Model.Allocated , R),

when Allocated =>
not Mem (Model.Available , R) and Mem (Model.Allocated , R))));

This somewhat impressive (at least at first sight) function consists in a conjunc-
tion of four properties:

1. First_Available is the first available resource.
2. Sequence Available is an accurate image of the free list.
3. Set Allocated only contains valid resources.
4. Sequence Available and set Allocated define a partition of the range of

resources Valid_Resource.

Like previously, all the specification code presented so far in this section is gath-
ered in a local package marked ghost as follows:

package M with Ghost i s
package S i s ...
type T i s ...
Model : T;
function Is_Valid ...

end M;
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With this model, it is straightforward to express the functional contracts of
Alloc and Free as contract cases, using the function Is_Prepend from the func-
tional sequence library, which expresses that a Result sequence is obtained by
prepending an element to an input sequence. The main difference with the con-
tracts of the simple memory allocator is that property Is_Valid is required in
precondition and in postcondition:

procedure Alloc (Res : out Resource) with
Pre => Is_Valid ,
Post => Is_Valid ,
Contract_Cases =>

−− When no resource is avai lable , return the special value No Resource
−− with the al locator unmodified .

(Length (Model.Available) = 0 =>
Res = No_Resource

and then
Model = Model ’Old ,

−− Otherwise , return an avai lab le resource which becomes al located

others =>
Is_Prepend (Model.Available , Res , Result => Model.Available ’Old)

and then
Is_Add (Model.Allocated ’Old , Res , Result => Model.Allocated ));

procedure Free (Res : Resource) with
Pre => Is_Valid ,
Post => Is_Valid ,
Contract_Cases =>

−− When the resource is al located , make i t avai lab le

(Mem (Model.Allocated , Res) =>
Is_Prepend (Model.Available ’Old , Res , Result => Model.Available)

and then
Is_Add (Model.Allocated , Res , Result => Model.Allocated ’Old),

−− Otherwise , do nothing

others =>
Model = Model ’Old);

Besides requesting that Alloc and Free maintain the validity of the configu-
ration, we should also express that the configuration should be valid at startup
with an initial condition on the package List_Allocator enclosing all the code
of the free list memory allocator:

package List_Allocator with
Initial_Condition => All_Available and Is_Valid

i s
...

This initial condition expresses both that all resources should be available at
startup and that the initial configuration should be valid.

3.3 Automatic Proof of Refinement

GNATprove can be used to prove automatically that the code of the free list
memory allocator presented in Section 3.1 is free of run-time errors and imple-
ments the specification presented in Section 3.2. First, the implementation of
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Alloc and Free must be augmented to express how the ghost variable Model is
modified in relation to modifications on concrete data. This is a difference with
the simple memory allocator where this was not needed, as Model in that case
was a function. In procedure Alloc, this consists in adding two ghost assign-
ments (in the case where allocation succeeds) to components of ghost variable
Model expressing that the sequence of available resources is stripped from its
first element, while the set of allocated resources is augmented with that same
element:

Model.Available := Remove_At (Model.Available , 1);
Model.Allocated := Add (Model.Allocated , Res);

In procedure Free, this consists in adding two ghost assignments (in the case
where deallocation succeeds) to components of ghost variable Model expressing
that the set of allocated resources is stripped from the element passed in argu-
ment to Free, while the sequence of available resources is prepended with that
same element:

Model.Allocated := Remove (Model.Allocated , Res);
Model.Available := Prepend (Model.Available , Res);

Package List_Allocator contains elaboration code to set the initial value of
array Data. Similarly, local ghost package M needs to set the initial value of the
ghost variable Model in its elaboration code. This initial value needs to be ex-
pressed in M’s initial condition so that it can be used to prove List_Allocator’s
initial condition presented in Section 3.2. The code and contracts are not shown
here for lack of space but can be found in a public repository (see reference in
conclusion).

Despite the complexity of the Is_Valid function relating the abstract model
to the concrete data, automatic proof is achieved as easily as for the simple
memory allocator at proof level 2 (with an additional switch to prevent use of
prover steps limit). Overall, the automatic proof of refinement of the free list
memory allocator takes 18s on a laptop with 2.7 GHz Intel Core i7 and 16 GB
RAM (using a single core).

4 Related Work

B Method [2] has been used extensively in the railway industry over the past
20 years to prove that an implementation is a correct refinement of a specifica-
tion [6]. While interactive proof was originally the main means to achieve proof,
automation of proofs has steadily increased until now [3,11], as well as auto-
matic refinement of abstract specifications [7]. The Isabelle Refinement Frame-
work pursues a similar goal of facilitating the proof of a stepwise refinement in
Isabelle/HOL from an abstract functional specification to an imperative imple-
mentation [16]. Our work aims at the same goal in the context of a programming
language, with all the associated benefits in terms of strong typing, expressiv-
ity and tool support. Prior experiments in that directions have been performed
in the context of the Eiffel programming language [22]. Our work achieves this
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goal in the context of a mature and industrially supported formal verification
environment.

Automatic proof that code implements a specification expressed as a con-
tract (precondition and postcondition) is the subject of active research, based
on advances in the underlying proof technology and the intermediate verifica-
tion languages, as visible from the activity in relevant workshops (in particular
the SMT workshop and Boogie workshop) and tool competitions (in particular
VerifyThis [14]).

Recent works [13,18] show how an abstract specification about mathemat-
ical quantities (real or integers) can be implemented efficiently in code (with
floating-point numbers or bitvectors), and the refinement relation be proved au-
tomatically in Why3 or SPARK.

Automatic proof of refinement with more complex data has lead to the in-
troduction of many concepts, some of which are used in this paper: ghost code,
model code, alias management policies (such as ownership, permissions, sepa-
ration logic) [9,23]. The difference in our approach is that the user can write
contracts and intermediate assertions (like loop invariants which are needed in
all these techniques) in the same programming language as the implementation.
In particular, all contracts and assertions in SPARK can be executed and de-
bugged, which greatly facilitates formal development. This was very useful during
the development of the memory allocator examples presented in this paper, to
catch bugs early on, before attempting automatic proof.

A recent work [15] examines which programming language features are useful
in proofs of refinement, some of which could be included in future versions of
the SPARK programming language.

5 Conclusion

This article presents two techniques to specify abstractly the behavior of a soft-
ware component in terms of mathematical structures (sequences, sets and maps)
and a methodology based on the SPARK tools to prove automatically that an
efficient imperative implementation is a correct refinement of the abstract spec-
ification. The proposed methodology is illustrated with challenging concrete ex-
amples of memory allocators.6 To the best of our knowledge, this is the first time
such refinement proof is done automatically with both the specification and the
implementation expressed in the same (executable) programming language.

In this article, we define two different abstract specifications for respectively
the simple memory allocator and the free list memory allocator: the simpler
specification based on sets is implemented by the simple memory allocator while
the more involved specification based on sets and sequences is implemented by

6 The results presented in this article can be reproduced with SPARK GPL 2016, which
will be available in June 2016 at http://libre.adacore.com. The source code of the
examples is available in the SPARK public repository at https://forge.open-do.

org/anonscm/git/spark2014/spark2014.git, under testsuite/gnatprove/tests/
allocators.
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the free list memory allocator. One could object that, as both allocators deliver
the same overall service (ignoring efficiency here), they could be refinements of
the same specification. Indeed, it would be interesting to prove that the simple
memory allocator is a refinement of the specification given in Section 3.2 and
to prove that the free list memory allocator is a refinement of the specification
given in Section 2.2. The latter would not be feasible in SPARK as it would
require a notion of package invariant to hide property Is_Valid (although a
sibling notion of type invariant will be supported in future versions of SPARK).
The former should be already possible in SPARK.

Although we do not present it in this article, this abstraction also allows
proving the correct use of the two allocators in client code, which would oth-
erwise require to expose implementation details to the client. Effects of calling
(de)allocation procedures on the concrete data and ghost model are visible from
client code, and can be either left implicit (for the tool to generate) or explicitly
stated. Note that if multiple allocators are needed in a project, the specification
and code presented can be shared by making the package generic, in which case
the automatic proof will be repeated for each instantiation of the generic.
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