
Auto-Active Proof of Red-Black Trees in
SPARK?

Claire Dross and Yannick Moy

AdaCore, F-75009 Paris

Abstract Formal program verification can guarantee that a program is free from
broad classes of errors (like reads of uninitialized data and run-time errors)
and that it complies with its specification. Tools such as SPARK make it cost
effective to target the former in an industrial context, but the latter is much less
common in industry, owing to the cost of specifying the behavior of programs
and even more the cost of achieving proof of such specifications. We have chosen
in SPARK to rely on the techniques of auto-active verification for providing cost
effective formal verification of functional properties. These techniques consist in
providing annotations in the source code that will be used by automatic provers
to complete the proof. To demonstrate the potential of this approach, we have
chosen to formally specify a library of red-black trees in SPARK, and to prove
its functionality using auto-active verification. To the best of our knowledge, this
is the most complex use of auto-active verification so far.

1 Introduction

Formal program verification allows programmers to guarantee that the programs
they write have some desired properties. These properties may simply be that the
program does not crash or behave erratically, or more complex critical properties
related to safety or security. Being able to guarantee such properties will be
essential for high assurance software as requirements are increasingly complex
and security attacks more pervasive.

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. GNATprove is a tool that analyzes SPARK code
and can prove absence of run-time errors and user-specified properties expressed
as contracts. GNATprove is based on modular deductive verification of programs,
analyzing each function in isolation based on its contract and the contracts
of the functions it calls. The main benefit of this approach is that it allows
using very precise semantics of programming constructs and powerful automatic
provers. The main drawback is that top-level specifications are not sufficient.
Programmers need to provide many intermediate specifications in the form of
additional contracts, loop invariants and assertions.
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Providing the right intermediate specifications is a difficult art, but progress
has been achieved in recent years through a method known as auto-active verifi-
cation. Various languages and tools now provide features for effective auto-active
verification. SPARK is among these. In this paper, we explore the capabilities of
auto-active verification for automatically proving complex algorithms. We have
chosen to target red-black trees because they are well-known, commonly used
in practice, and yet sufficiently complex that no implementation of imperative
red-black trees has been formally verified using auto-active verification. Our im-
plementation of red-black trees, with all the code for auto-active verification, is
publicly available in the repository of SPARK. 1

2 Preliminaries

2.1 SPARK 2014

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. SPARK builds on the strengths of Ada for creating
highly reliable and long-lived software. SPARK restrictions ensure that the be-
havior of a SPARK program is unambiguously defined, and simple enough that
formal verification tools can perform an automatic diagnosis of conformance be-
tween a program specification and its implementation. The SPARK language and
toolset for formal verification have been applied over many years to on-board
aircraft systems, control systems, cryptographic systems, and rail systems [18].

In the versions of SPARK up to SPARK 2005, specifications are written as
special annotations in comments. Since version SPARK 2014 [17], specifications
are written as special Ada constructs attached to declarations. In particular, var-
ious contracts can be attached to subprograms: data flow contracts, information
flow contracts, and functional contracts (preconditions and postconditions, intro-
duced respectively by Pre and Post). An important difference between SPARK
2005 and SPARK 2014 is that functional contracts are executable in SPARK
2014, which greatly facilitates the combination of test and proof. The definition
of the language subset is motivated by the simplicity and feasibility of formal
analysis and the need for an unambiguous semantics. Tools are available that
provide flow analysis and proof of SPARK programs.

Flow analysis checks correct access to data in the program: correct access to
global variables (as specified in data and information flow contracts) and correct
access to initialized data. Proof is used to demonstrate that the program is free
from run-time errors such as arithmetic overflow, buffer overflow and division-by-
zero, and that the functional contracts are correctly implemented. GNATprove
is the tool implementing both flow analysis and proof of SPARK code.

1 https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/
red black trees

https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/red_black_trees
https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/red_black_trees


2.2 Auto-active Verification

The term auto-active verification was coined in 2010 by researcher Rustan
Leino [16] to characterise tools where user input is supplied before VC gener-
ation [and] therefore lie between automatic and interactive verification (hence
the name auto-active). This is in contrast to fully automatic verifiers for which
the specification is fixed and interactive verifiers for which the user input is sup-
plied after VC generation, which is the typical case when the reasoning engine
is an interactive proof assistant. Auto-active verification is at the center of the
academic formal program verification toolsets Dafny [14], the Eiffel Verification
Environment (EVE) [9], Why3 [8] as well as the industrial formal program ver-
ification toolsets Frama-C 2 and SPARK 3.

In all these toolsets, auto-active verification consists in a set of specification
features at the level of the source language, and a set of tool capabilities to
interact with users at the level of the source code. The specification features
consist at least in constructs to specify function contracts (preconditions and
postconditions) and data invariants, as well as specialized forms of assertions
(loop invariants and loop variants, assumptions and assertions). All the toolsets
mentioned above also support ghost code, a feature to instrument code for ver-
ification. Ghost functions are also called lemmas when their main purpose is
to support the proof of a property that is later used at the point where the
function is called. See [12] for a comparison of how ghost code differs between
Why3, Frama-C and SPARK. Various tool capabilities facilitate user interac-
tion at source level: fast running time that exploits multiprocessor architectures
and minimizes rework between runs, the ability to trade running time for more
verification power, feedback from the toolset when verification is unsuccessful
(counterexamples in particular).

Auto-active verification in the above toolsets has been used to fully verify
algorithms, libraries and even full applications: examples include a container
library in Eiffel [19], distributed systems in Dafny [10], secure execution of apps
in Dafny [11], binary heaps in Why3 [21], allocators in SPARK [5].

2.3 Red-Black Trees

Red-black trees are a kind of self-balancing binary search trees. Nodes in the tree
are colored red or black, and balance is maintained by ensuring that two prop-
erties are preserved: (1) a red node can only have black children, and (2) every
path from the root to a leaf has the same number of black nodes. The conse-
quence of these two properties is that the path from the root to a leaf can be at
most twice as long as the path from the root to another leaf.

Implementations of red-black trees are used in the Linux kernel (in C) and
standard container libraries for various languages (C++ STL, Java.util, Ada).
The insertion and deletion algorithms work by inserting or deleting the node

2 http://frama-c.com/
3 http://www.adacore.com/sparkpro/
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as in a binary search tree, which may violate properties (1) and (2) above, and
then restoring the balance by working their way up on the path from the root
to the point of insertion or deletion. At every node on this path, the algorithms
may rotate the subtree, which consists in a local rearrangement of nodes to
restore properties (1) and (2). These algorithms are sufficiently complex that no
implementation of imperative red-black trees has been formally verified in Dafny,
Eiffel or Why3. See Section 5 for a list of the closest works, including some using
auto-active verification. We are following the algorithm from Cormen et al. [4]
for insertion in a red-black tree. We did not implement the deletion algorithm,
which would be very similar to insertion. In the same way, we did not verify that
every branch in a red-black tree contains the same number of black nodes.

3 Red-Black Trees in SPARK

3.1 Invariants and Models

Implementing red-black trees correctly from the pseudo-code algorithm in a text-
book is straightforward, but understanding why the algorithm is correct is tricky,
and thus the implementation is hard to verify formally. The main point of com-
plexity is that it forces one to reason about different levels of properties all at
once. Instead, we have divided the implementation into three distinct parts, each
one concerned with one property level: binary trees, search trees and red-black
trees. Binary trees maintain a tree structure on the underlying memory. Search
trees build on binary trees by associating values to tree nodes and maintain the
order of values in the tree. Red-black trees build on search trees and enforce
balancing using the classical red-black tree coloring mechanism.

The property enforced at each level is expressed in a type invariant. In
SPARK, the invariant may be temporarily violated inside the implementation of
the functions that operate on the type, but are guaranteed to hold for external
users of objects of that type. More precisely, functions that operate on a type
can assume the invariant on entry and must restore it on exit (which leads to
verification conditions in SPARK).

Binary trees: As explained in Section 3.2, binary trees are implemented as arrays,
using the representation described in Figure 1. Each node contains a reference
to its left and right children, if any, as well as a reference to its parent and a
position, which may be Top for the root, Right or Left otherwise depending on
the node position with respect to its parent. The invariant of binary trees states
that values of these fields are consistent across the tree. For example, the left
child of a node has position Left and the node as parent.

To reason about the tree structure at a higher level, we provide a model (an
abstract representation) of binary trees which makes explicit the access paths
from the root to every node in the tree. It associates a sequence of directions,
namely Right or Left, with each node in the binary tree, corresponding to the
path from the root to the node. As the underlying array also contains unused cells
that do not correspond to tree nodes, an additional boolean encodes whether the
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Fig. 1. (from left to right) Representation of nodes in binary trees. Example of a binary
tree, for readability, parents and positions are not represented. A higher level view of
the same binary tree.

node belongs to the tree. Figure 2 gives the model of the binary tree presented
in Figure 1. In this example, all the nodes belong to the tree except the last one.
The access paths written below each node can be used to reconstruct easily the
high level view of the tree.
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Fig. 2. Example of model of a binary tree.

Search trees: The invariant of search trees states that the value stored in each
node of the tree is larger than all the values stored in the subtree rooted at its
left child and smaller than all the values stored in the subtree rooted at its right
child. It is given in Figure 3, together with an example of values that would
fit the tree from Figure 1. To express this invariant, we use the model of the
underlying binary tree. The value stored at node J belonging to the subtree
rooted at node I (where path inclusion from the root is used to determine that
J belongs to the subtree rooted at node I) is smaller (resp. greater) than the
value stored at node I if J belongs to the subtree rooted at the left (resp. right)
child of I.

Red-black trees: The invariant of red-black trees states that a red node can only
have black children. It is given in Figure 4. An example of colors that would fit the
tree from Figure 3 is also given in Figure 4. This corresponds to property (1) of
red-black trees as presented in Section 2.3. Verifying property (2) would require
implementing a new inductive model function over binary trees, like the one we
defined for reachability. As it would be very similar to the work presented here,
and would essentially double the effort, we did not attempt it.



( for al l I in I ndex Type ⇒
( for al l J in I ndex Type ⇒

( i f Model (T) ( I ) . Reachab le
and Model (T) ( J ) . Reachab le
and Model (T) ( I ) . Path < Model (T) ( J ) . Path

then ( i f Get (Model (T) ( J ) . Path ,
Length (Model (T) ( I ) . Path ) + 1 ) = L e f t

then Va lues ( J ) < Va lues ( I )
else Va lues ( J ) > Va lues ( I ) ) ) ) )

2

1 4

3 5

Fig. 3. Type invariant of search trees. For a search tree T, Model (T) returns the
model of the underlying binary tree of T. For each index I in the underlying array, if
Model (T) (I).Reachable is true then I is reachable in T and Model (T) (I).Path is
the sequence of directions corresponding to the path from the root of T to I. < stands
for prefix order on paths.

( for al l I in I ndex Type ⇒
( i f Parent (T . St ruc t , I ) = Empty

or else T . Co lo r ( Parent (T . St ruc t , I ) ) = Red
then T . Co lo r ( I ) = Black ) )

2

1 4

3 5

Fig. 4. Type invariant of red-black trees.

3.2 Implementation

Our implementation of red-black trees differs on two accounts from the straigh-
forward implementation of the algorithm. First, as stated above, we used an array
as the underlying memory for trees, instead of dynamically allocating nodes. This
is to comply with a restriction of SPARK which does not allow pointers, but only
references and addresses. The rationale for this restriction is that pointers make
automatic proof very difficult due to possible aliasing. Hence trees are bounded
by the size of the underlying array. As the algorithm for balancing red-black
trees requires splitting and merging trees, we had the choice of either copying
arrays for generating new trees, or sharing the same array between disjoint trees
(coming from the splitting of a unique tree). For obvious efficiency reasons, we
chose the latter. Hence we are defining a type Forest for possibly representing
disjoint binary trees sharing the same underlying array.

The other distinguishing feature of our implementation is the layered design.
Each module defining a type with an invariant also needs to provide functions for
manipulating objects of the type while preserving their invariant. As an example,
binary trees are not updated by direct assignments in the implementation of
search trees, but using two new functions, Extract and Plug, which split and
merge disjoint trees while preserving the forest invariant.

At the next layer, search trees are defined as records with two components:
a binary tree along with an additional array of values. For search trees, we only
need to consider forests that hold one tree identified through its root. Only
intermediate values will hold true forests with multiple roots, while the tree is



being rotated. The module defining search trees provides basic set functions,
namely inserting a value into the tree and testing a value for membership in
the tree. It also provides balancing functions for the upper layer of red-black
trees. They allow rotating nodes of a search tree to the left or to the right
while preserving the order between values. An example of such a rotation is
given in Figure 5. Defining these balancing functions inside the implementation
of search trees rather than inside the implementation of red-black trees allows
keeping all order-related concerns in the search tree layer. Indeed, balancing
functions do not preserve balance, as they are to be called on unbalanced trees,
but they do preserve order. Note that implementing the balancing functions at
this level avoids the need for lifting low-level tree handling functions such as
Plug and Extract at the next layer. All the functions defined on search trees
are implemented using functions over binary trees.

4
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Fig. 5. Example of application of Right Rotate.

Red-black trees are implemented in the same way as search trees by adding
an array of colors to a search tree and using balancing functions to rebalance
the tree after an insertion.

3.3 Specification

Functional specifications of the insertion and membership functions that operate
on red-black trees consist in simple contracts (preconditions and postconditions)
presented in Figure 6. These contracts use a model function Values that returns
the set of values in the tree. Mem returns true if and only if the element is in the
tree and Insert adds a new element in the tree.

function Va lues (T : Rbt ) return Va lue Se t with
Post ⇒ ( i f S i z e (T) = 0 then I s Empty ( Values ’ R e s u l t ) ) ;

function Mem (T : Rbt ; V : Natu ra l ) return Boolean with
Post ⇒ Mem’ Re su l t = Mem ( Va lue s (T) , V) ;

procedure I n s e r t (T : in out Rbt ; V : Natu ra l ) with
Pre ⇒ S i z e (T) < Max ,
Post ⇒ ( i f Mem (T’Old , V) then Va lues (T) = Va lues (T’Old)

else I s Add ( Va lues (T’Old) , V , Va lue s (T) ) ) ;

Fig. 6. Specification of red-black trees.



The most complex specifications have to do with the four properties to main-
tain over red-black trees:

1. A red-black tree is always a valid binary tree (we can navigate it from the
root in the expected way).

2. There is no memory leak (if we have inserted fewer than Max elements, there
is still room enough in the data structure to insert a new element).

3. The values stored in the tree are ordered (it is a valid search tree).
4. The tree stays balanced (we only verify this property partially, that is, that

red nodes can only have black children).

As already discussed, each property is specified at the most appropriate layer.
The first property is enforced at the level of binary trees. The invariant on binary
trees (see Section 3.1) ensures that the fields of a node (Parent, Position, Left,
and Right) are consistent. This is not enough to ensure that all the allocated
nodes in the forest belong to well-formed binary trees though, as it does not rule
out degenerate, root-less, cyclic structures that would arise from linking the root
of a binary tree as the child of one of its leafs. Still, this is enough to ensure that
red-black trees are always well formed, as red-black trees always have a root.
Note that the fact that every node in the forest is part of a well formed binary
tree is ensured at the level of binary trees by enforcing that such degenerate
structures can never be created in the contracts of functions operating on binary
trees.

The second property is enforced at the level of search trees. It is specified as
a postcondition of every function operating on search trees. Figure 7 shows the
part of the postcondition of Right Rotate ensuring that it has not introduced
any dangling node. It uses the function Model described in Section 3.1 to reason
about node reachability.

procedure R igh t Ro ta t e (T : in out Sea rch Tree ; I : I ndex Type ) with
Post ⇒
−− The s i z e o f the t r e e i s p r e s e r v e d
S i z e (T) = S i z e (T) ’Old

−− Nodes i n the t r e e a r e p r e s e r v e d
and ( for al l J in I ndex Type ⇒

Model (T) ( J ) . Reachab le = Model (T’Old) ( J ) . Reachab le ) ;

Fig. 7. Postcondition of Right Rotate dealing with absence of memory leaks.

The third and fourth properties are expressed in the type invariant of respec-
tively search trees and red-black trees as explained in Section 3.1.

Apart from these top-level specifications, many more specifications are
needed on subprograms at lower layers (binary trees and search trees) in or-
der to be able to prove the properties at higher layers (respectively search trees
and red-black trees). This is inherent to the modular style of verification sup-
ported by GNATprove. For example, as Right Rotate on search trees calls Plug
and Extract on binary trees, the contracts for these functions need to provide
enough information to verify both the absence of memory leaks as stated in the



postcondition of Right Rotate and the preservation of the order of values as
stated in the invariant of search trees.

3.4 Proof Principles

Verifying our implementation of red-black trees has proved to be challenging,
and above the purely automatic proving capabilities of GNATprove. There are
several reasons for this:

– The imperative, pointer-based implementation of red-black trees makes it
difficult to reason about disjointness of different trees/subtrees in the forest.

– Reasoning about reachability in the tree structure involves inductive proofs,
which automatic provers are notoriously bad at.

– Reasoning about value ordering involves using transitivity relations, to de-
duce that ordering for two pairs of values (X,Y ) and (Y,Z) can be extended
to the pair (X,Z). This requires in general to find a suitable intermediate
value Y , which usually eludes automatic provers.

– The size of the formulas to verify, number of verification conditions, and
number of paths in the program are large enough to defy provers scalability.

To work around these limitations, we used auto-active verification techniques,
which, as described in Section 2.2, can guide automatic provers without requiring
a proof assistant. We explain some of these techniques in this section.

Intermediate lemmas: One of the classical techniques in manual proof consists
in factoring some useful part of a proof in an intermediate lemma so that it
can be verified independently and used as many times as necessary. In auto-
active verification, this can be done by introducing a procedure with no output,
which, when called, will cause the deductive engine to verify its precondition and
assume its postcondition. In Figure 8, we show an intermediate lemma which can
be used to verify that two trees of a single forest with different roots are disjoint.
A caller of this function will have to verify that T1 and T2 are different valid
roots in F and as a consequence we know that there can be no node reachable
from both roots in F. Naturally, the lemma is not assumed, its actual proof is
performed when verifying the procedure Prove Model Distinct.

procedure Pro v e Mode l D i s t i n c t (F : Fo r e s t ; T1 , T2 : I ndex Type ) with
−− Trees r oo t ed at d i f f e r e n t i n d e x e s i n the f o r e s t a r e d i s j o i n t .

Pre ⇒ T1 6= T2
and then Va l i d Roo t (F , T1)
and then Va l i d Roo t (F , T2) ,

Post ⇒ ( for al l I in I ndex Type ⇒
(not Model (F , T1) ( I ) . Reachab le

or not Model (F , T2) ( I ) . Reachab le ) ) ;

Fig. 8. Intermediate lemma stating disjointness of trees in a forest.



Reasoning by induction: Though some automatic provers are able to discharge
simple inductive proofs, inductive reasoning still requires manual interaction
in most cases. In auto-active style, an inductive proof can be done using loop
invariants. GNATprove splits the verification of a loop invariant in two parts.
First, it verifies that the invariant holds in the first iteration of the loop and then
that it holds in any following iteration knowing that it held in the previous one.
This behavior is exactly what we want for a proof by induction. For example,
Figure 9 demonstrates how the intermediate lemma presented in Figure 8 can
be verified using a loop to perform an induction over the size of the path from
the root T1 to any node reachable from T1 in F. The loop goes from 1 to the
maximum size of any branch in the forest F. We have written the property we
wanted to prove as a loop invariant. To verify this procedure, GNATprove will
first check that the invariant holds in the first iteration of the loop, that is, that
T1 itself cannot be reached from T2. Then, it will proceed by induction to show
that this holds for any node reachable from T1 in F.

procedure Pro v e Mode l D i s t i n c t
(F : Fo r e s t ; T1 , T2 : I ndex Type ) i s

begin
for N in I ndex Type loop

pragma Loop Invariant
( for al l I in I ndex Type ⇒

( i f Model (F , T1) ( I ) . Reachab le
and Length (Model (F , T1) ( I ) . Path ) < N

then not Model (F , T2) ( I ) . Reachab le ) ) ;
end loop ;

end Pro v e Mode l D i s t i n c t ;

Fig. 9. Proof by induction over the path length from the root to a node in the tree.

Providing witnesses: When reasoning about value ordering, it is common to
use transitivity. For example, when searching for a value in a search tree, we
only compare the requested value with values stored along a single path in the
tree, that is, the path where it was expected to be stored. All other values are
ruled out by transitivity of the order relation: if value X is not found on this
path, it cannot be equal to another value Z in the tree, as X and Z are on two
opposite sides of the value Y at the root of the subtree containing both X and
Z. Unfortunately, due to how they handle universal quantification, automatic
provers used in GNATprove are usually unable to come up with the appropriate
intermediate value to use in the transitivity relation. To achieve the proofs, we
provided provers with the appropriate term whenever necessary. For example,
function Find Root in Figure 10 computes the first common ancestor of two
nodes in a search tree.

3.5 Ghost Code

In this experiment, we made an extensive use of ghost code, that is, code meant
only for verification, that has no effect on the program behavior. We used it



function Find Root (F : Fo r e s t ; R, I , J : I ndex Type ) return I ndex Type with
Post ⇒
−− The node r e t u r n e d i s i n the t r e e
Model (F , R) ( Find Root ’ R e s u l t ) . Reachab le

−− The node r e t u r n e d i s on the path o f I
and Model (F , R) ( Find Root ’ R e s u l t ) . Path ≤ Model (F , R) ( I ) . Path

−− The node r e t u r n e d i s on the path o f J
and Model (F , R) ( Find Root ’ R e s u l t ) . Path ≤ Model (F , R) ( J ) . Path

−− The common an c e s t o r o f I and J i s e i t h e r I , o r J , o r an an c e s t o r
−− node such tha t the paths o f I and J d i v e r g e at t h i s p o i n t .
and ( I = Find Root ’ R e s u l t

or else J = Find Root ’ R e s u l t
or else Get (Model (F , R) ( I ) . Path ,

Length (Model (F , R) ( Find Root ’ R e s u l t ) . Path ) + 1 )
6= Get (Model (F , R) ( J ) . Path ,

Length (Model (F , R) ( Find Root ’ R e s u l t ) . Path ) + 1 ) ) ;

Fig. 10. Function that computes a witness for transitivity applications.

for two different purposes. The first use of ghost code is for specifying complex
properties about our algorithms, in particular through model functions. As ghost
code can be executed in SPARK, these ghost model functions can be used to
produce complex test oracles that can be exercised in the test campaign.

The second use of ghost code in our experiment is for auto-active verification.
In particular, the procedures used to encode intermediate lemmas are ghost, as
they have no effect. What is more, we strived to keep all verification-only code
inside ghost procedures so that it can be removed by the compiler and will
not slow down the execution of the program. It is all the more important since
the code is very inefficient, involving multiple loops and model constructions.
As functional behaviors are complex, coming up with contracts for these ghost
procedures can be painful, and produce huge, hard to read specifications. To
alleviate this problem, we can benefit from a feature of GNATprove which inlines
local subprograms with no contracts, allowing the proof to go through with less
annotation burden. In this way, we can choose, on a case-by-case basis, if it is
worthwhile to turn a chunk of auto-active proof into an intermediate lemma with
its own contract, allowing for a modular verification, or if we prefer to have the
tool automatically inline the proof wherever we call the ghost procedure.

4 Development and Verification Data

All the execution times and verification times reported in this section were ob-
tained on a Core i7 processor with 2,8 GHz and 16 GB RAM.

The code implementing the core algorithm for red-black trees, even when
split in three modules for binary trees, search trees and red-black trees, is quite
small, only 286 lines overall. But this code only accounts for 14% of the total
lines of code, when taking into account contracts (22%) and more importantly
ghost code (64%). Table 1 summarizes the logical lines of code as counted by the
tool GNATmetric. It took roughly two weeks to develop all the code, contracts
and ghost code to reach 100% automatic proof.



code contracts ghost total

binary trees 92 (10%) 250 (28%) 548 (62%) 890
search trees 127 (12%) 188 (17%) 780 (71%) 1095
red-black trees 67 (52%) 18 (14%) 45 (35%) 130

total 286 (14%) 456 (22%) 1373 (64%) 2115

Table 1. Number of lines of code for operational code, contracts and ghost code.

There are few simple top-level contracts for red-black trees (see Table 2).
Many more contracts and assertions are needed for auto-active verification, in
the form of subprogram contracts, type invariants, type default initial condi-
tions, loop invariants and intermediate assertions which split the work between
automatic provers and facilitate work of individual provers.

on types on subprograms on loops assertions total

binary trees 10 155 (73) 42 12 219
search trees 2 138 (60) 20 68 228
red-black trees 2 4 (4) 8 10 24

total 14 297 (177) 70 90 471

Table 2. Number of conjuncts (and-ed subexpressions) in contracts on types, on
subprograms, in loop invariants and in assertions. Numbers in parentheses correspond
to conjuncts for contracts on externally visible subprograms.

Taking both tables into account, it is clear that verification of search trees
was the most costly in terms of overall efforts, with a large part of ghost code
(71%) and many intermediate assertions needed (68 conjuncts). Verification of
red-black trees on the contrary was relatively straighforward, with less ghost
code than operational code (35% compared to 52%) and few intermediate as-
sertions needed (10 conjuncts). This matches well the cognitive effort required
to understand the correction of search trees compared to red-black trees. Note
that the verification of red-black trees would probably have needed roughtly the
same effort as binary trees if the second propery of red-black trees had been con-
sidered. Overall, ghost code accounts for a majority (64%) of the code, which
can be explained by the various uses of ghost code to support automatic proof
as described in Section 3.4.

The automatic verification that the code (including ghost code) is free of
run-time errors and that it respects its contracts takes less than 30 minutes,
using 4 cores and two successive runs of GNATprove at proof levels 2 and 3. As
automatic provers CVC4, Z3 and Alt-Ergo are called in sequence on unproved
Verification Conditions (VCs), it is not surprising that CVC4 proves a majority
of VCs (3763), while Z3 proves 103 VCs left unproved by CVC4 and Alt-Ergo
proves the last 3 remaining VCs, for a total of 3869 VCs issued from 2414 source
code checks (1185 run-time checks, 231 assertions and 998 functional contracts).

As the code has been fully proved to be free of run-time errors and that all
contracts have been proved, it is safe to compile it with no run-time checks, and
only the precondition on insertion in red-black trees activated (since this might



be violated by an external call). Disabling run-time checks is done through a
compiler switch (-gnatp) and only enabling preconditions in red-black trees is
done through a configuration pragma in the unit. Inserting one million integers
in a red-black tree from 1 to 1 million leads to a violation of the balancing in
999,998 cases, which requires 999,963 left rotations and no right rotations. The
running time for performing these 1 million insertions is 0.65 seconds without
run-time checks, and 0.70 seconds with run-time checks (which are few due to
the use of Ada range types for array indexes), or 0.65 microseconds (respectively
0.70 microseconds) per insertion.

Enabling all contracts and assertions at run-time is also possible during tests.
Here, ghost code is particularly expensive to run, as constructing the model
for a binary tree is at worst quadratic in the size of the tree, and contracts
contain quantifications on the maximal size of the tree that call functions which
themselves quantify over the same size in their own contracts or code. In addition,
the expensive operation of constructing the model is performed repeatedly in
contracts, as SPARK does not yet provide a let-expression form. As a result,
inserting one element in a tree of size one takes 2 minutes.

5 Related Work

There have been several previous attempts at verifying red-black trees implemen-
tations. In particular, red-black trees are used in the implementation of ordered
sets and maps in the standard library of the Coq proof assistant [1,7]. As part of
these libraries, the implementations have been proven correct using interactive
proofs in Coq. These implementations notably differ from our work because they
are written in a functional style, using recursive data types instead of pointers
and recursive functions instead of loops. Similar libraries are provided for the
Isabelle proof assistant [13]. Functional implementations of red-black trees have
also been verified outside of proof assistants, using characteristic formulas [3],
or in the Why3 programming language as part of VACID-0 competition [15].
This last implementation differs from the previous ones in that it is mostly
auto-active, even if it uses Coq for a few verification conditions.

Verifying imperative implementations of red-black trees is more challenging
as it involves reasoning about the well-formedness of the tree structure, which
comes for free in the functional implementations. As part of VACID-0, attempts
have been made at verifying red-black trees in C using VCC and in Java using
KeY [2]. Both attempts seem to have been left in preliminary stages though.

More recently, imperative implementations of red-black trees in C and Java
have been verified using more specialized logics. Enea et al. obtained an au-
tomatic verification of a C implementation of red-black trees using separation
logic, a logic specialized for the verification of heap manipulating programs [6].
In the same way, Stefănescu et al. were able to verify several implementations
of red-black trees in particular in Java and C using matching logic [20]. As used
in this work, matching logic provides a very precise, low-level view of the heap
structure, allowing for powerful proofs on this kind of programs. Both works



use specialized tools, which are specifically designed for verifying low-level, heap
manipulating programs but which have never been used, to the best of our
knowledge, to verify higher-level software.

6 Conclusion

In this article, we have explained how, using auto-active techniques, we could
achieve formal verification of key functional properties of an imperative imple-
mentation of red-black trees in SPARK. This is not an example of what should
be a regular use of the SPARK toolset but rather a successful demonstration of
how far we can go using such technology.

However, the techniques presented on this example can be reused with signifi-
cant benefits on a much smaller scale. In particular, we have shown that inductive
proofs can be achieved rather straightforwardly using auto-active reasoning. The
multi-layered approach, using type invariants and model functions to separate
concerns, can also be reused to reason about complex data structures.

To popularize the use of auto-active techniques, we are also working on in-
tegrating simple interactive proof capabilities in GNATprove. This would allow
applying the same techniques in a simpler, more straightforward way, and also
to avoid polluting the program space with ghost code which is never meant to
be executed.
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