
A Proof Infrastructure for Binary Programs

Ashlie B. Hocking1, Benjamin D. Rodes1, John C. Knight1,
Jack W. Davidson2, and Clark L. Coleman2

1 Dependable Computing, Charlottesville, VA USA
{ben.hocking,ben.rodes,john.knight}@dependablecomputing.com

2 Zephyr Software LLC, Charlottesville, VA USA
{jwd,clc}@zephyr-software.com

Abstract Establishing properties of binary programs by proof is a de-
sirable goal when the properties of interest are crucial, such as those
that arise in safety- and security-critical applications. Practical develop-
ment of proofs for binary programs requires a substantial infrastructure
to disassemble the program, define the machine semantics, and actually
undertake the required proofs. At the center of these infrastructure re-
quirements is the need to document semantics in a formal language. In
this paper we present a work-in-progress proof infrastructure for binary
programs based on AdaCore’s integrated development and verification
environment, SPARKPro. We illustrate the infrastructure with proof of
a security property.

1 Introduction
Establishing properties of binary programs by proof is a desirable goal receiving
significant attention recently [2,4,5,6]. Any approach to proving software prop-
erties requires a comprehensive infrastructure that: (a) defines the semantics of
the target machine architecture, (b) translates binary programs into a represen-
tation suitable for proof based on the defined machine architecture semantics,
and (c) operates on translated binary representations to generate proof.

Many languages could be used to define machine semantics, and many proof
tools exist. Our infrastructure is based on an application of AdaCore’s inte-
grated development and verification environment, SPARKPro [1] and our custom
binary-to-SPARK-Ada translator. SPARKPro was chosen for many reasons:

– The SPARK Ada language [1] has been designed for proof and includes syn-
tactic structures to enable definition of the necessary verification conditions.

– SPARK Ada is familiar to many in the community and simple to use.
– SPARKPro proof tools provide the capability to establish necessary proofs.
– SPARKPro has industrial-strength support thereby allowing the technology

to be adopted by practitioners.
– SPARKPro provides an executable specification that can be tested.

In this paper, we present a work-in-progress binary proof infrastructure based
on SPARKPro. We illustrate the infrastructure with an example binary program
and prove the program possesses a desired security property.



2 Authors Suppressed Due to Excessive Length

Binary 
Program

Desired 
Properties

SPARKPro 
proof tools

SPARK Ada 
Translator 

SPARK Ada Machine 
Representation Library

Instruction 
Set

Machine 
Architecture

SPARK Ada 
Translation Proof ReportBinary 

Analyzer

Figure 1. Architecture of proof infrastructure for binary programs. The SPARK Ada
Machine Representation is the focus of this paper, and light gray elements indicate
other supporting aspects of our work.

2 Proof Infrastructure
Figure 1 shows the architecture of our proof infrastructure. A binary program
is first processed by a static analyzer to disassemble the program and recover
important program structures. Of particular importance in the analysis is the
recovery of function boundaries and control structures such as conditions and
loops. A translator then converts the binary program to a SPARK Ada repre-
sentation. The translator accesses semantics of the target machine architecture
and instruction set, both defined within our SPARK Ada library. It also accesses
a description of desired program properties to prove and merges them into the
representation of the subject program. Finally, the composite representation of
the subject program and desired properties is submitted to the SPARK prover.

The proof infrastructure could be applied to any instruction set architecture
(ISA); however, our current research focuses on X86–64. Figure 2 shows a high-
level organization of the two semantic definitions of the X86–64 ISA.

SPARK Ada Machine Representation Library
Instruction SetMachine Architecture

Integer
Registers

…

Flags

Floating Point
Registers

…

Memory

…

Specification

Implementation

Figure 2. X86–64 Semantic Definition Library

RAX

ALAH
AX

EAX

Figure 3. RAX register and
alternate access methods

Central to the machine semantics are registers. The integer registers are rep-
resented as Ada integers with modulus 264 (Unsigned64). As shown in Figure 3,
a general-purpose X86–64 register (e.g., RAX) can be accessed multiple ways.
RAX is modeled as Unsigned64 and is directly accessed for reading and writing.
EAX is modeled by read/write functions as shown in Figure 4. The read function



A Proof Infrastructure for Binary Programs 3

(EAX) returns the lower 32-bits of RAX and Write_EAX sets those bits, while
setting the upper bits to zero. AL, and AH and AX are specified similarly, except
with appropriate bits preserved instead of set to zero. Each function includes a
post-condition in the SPARK Ada syntax describing the expected result. These
post-conditions are verified by the SPARKPro proof tools. Flag registers (OF,
SF, ZF, AF, CF, and PF) are modeled as Boolean. Floating-point registers (e.g.,
XMM and YMM) are not currently modeled.

133 function EAX return Unsigned32 with
134 Global => (Input => RAX),
135 Post => (EAX’Result = Unsigned32(RAX and 16#00000000FFFFFFFF#));
136 procedure Write_EAX(Val : in Unsigned32) with
137 Global => (In_Out => RAX),
138 Post => ((EAX = Val) and ((RAX and 16#FFFFFFFF00000000#) = (16#0000000000000000#)));

Figure 4. EAX specification

Memory is modeled as an array of 264 8-bit elements. The declaration of this
array is shown in Figure 5, along with 16-bit reads and writes operating on the
memory array.

12 type Mem_Array is array (Unsigned64) of Unsigned8;
13 Memory: Mem_Array := Mem_Array’(others => 0);
14 function ReadMem16(addr: in Unsigned64) return Unsigned16 with
15 Global => (Input => Memory),
16 Post => (((ReadMem16’Result and 16#00FF#) = Unsigned16(Memory(addr))) and
17 ((ReadMem16’Result and 16#FF00#) = Unsigned16(Memory(addr+1))*16#100#));
18 procedure WriteMem16(addr : in Unsigned64; Val : in Unsigned16) with
19 Global => (In_Out => Memory),
20 Post => ((ReadMem16(addr) = Val) and (for all i in Unsigned64 =>
21 (if ((i /= addr) and (i /= addr + 1)) then (Memory(i) = Memory’Old(i)))));

Figure 5. Memory type specification

Many X86–64 instructions are modeled as SPARK Ada functions operating
on memory and registers. For example, the instruction setnbe is specified as
shown in Figure 6. In some cases, instructions match an operator in Ada (e.g.,
addition), and for those instructions the Ada operator is used directly. Similarly,
jump instructions are modeled using Ada control statements (e.g., loops). Other
approaches to modeling jumps are possible, but difficult to prove. For example,
a binary program could be modeled as an array of instructions and a location
counter that is used as an array pointer. Jump instructions could then set the
instruction counter accordingly. The lack of loop details, however, would make
synthesis of loop invariants and subsequent proof almost impossible.

622 procedure setnbe_CL with
623 Global => (Input => (ZeroFlag, CarryFlag), In_Out => RCX),
624 Post => (if ((not CarryFlag) and (not ZeroFlag)) then (CL = 1) else (CL = 0));

Figure 6. Specification of setnbe

3 Example
To illustrate the proof infrastructure and to highlight areas of current work, we
examine an example challenge function for security, zero_array, the C repre-
sentation of which is shown in Figure 7. The zero_array function is passed a



4 Authors Suppressed Due to Excessive Length

pointer to an array and a size parameter. The function proceeds to zero out size
elements of the array. This function presents a typical security challenge since
zero_array might result in a buffer overflow that could corrupt, among other
things, function return addresses depending on the value of the size parameter.

24 void zero_array(int *array, int size) {
25 for (int i = 0; i < size; i++) array[i] = 0;
26 }

Figure 7. Implementation of zero_array

In an example program (not illustrated) zero_array is called from two dif-
ferent functions, each of which passes a pointer to an array of a different size. In
the program, the size parameter is always set to the size of the array, i.e., while
zero_array is potentially dangerous, its use in this example does not introduce
a security vulnerability. The example program was compiled with gcc and the
raw disassembled binary as produced by objdump was examined.3

The SPARK Ada representation of the zero_array function is shown in Fig-
ure 8, with the associated disassembled code included as comments. Line 19 of
Figure 8 represents the mov instruction as Write_EAX; however, for lines 9–11,
instead of modeling the test instruction as a procedure, the result of test (i.e.,
assignment of flag registers) is represented explicitly in the translated code. Ad-
ditionally, the binary analysis detects write-after-write situations affecting flags.
For example, the flags that would be set by the add instruction (lines 23–24)
are not read prior to the following cmp instruction, so there is no need to model
the setting of these flags.

The loop on line 20 and the if statement on line 13 are examples of control
structures recovered by the static analyzer from analysis of jump instructions.

To prove security properties about the SPARK Ada representation, con-
straints are added to the initial version of the representation (not illustrated).
So as to prove the integrity of other items on the stack, the constraint in this
example is that the loop index of zero_array will not exceed the size parameter.
With this constraint in the example, using the SPARKPro prover (gnatprove)
with the cvc4 backend we are able to prove that the example program will not
overwrite any function’s return address.

This proof requires approximately 8 seconds to complete when using all 8
cores of a MacBook Pro (Retina, Mid 2012). We plan to publish further discus-
sion of automatic constraint development in the future.

4 Related Work
Zhao et al. [6] propose binary software fault isolation techniques (ARMor) based
on a model of the ARM ISA [3] and Hoare logic. Their approach modifies a bi-
nary program by inserting guards at possibly dangerous instructions. Proofs are
then generated about security of the modified code. XFI is an approach similar
to Zhao et al. developed to support binary programs on Windows [2]. XFI’s veri-
fication is based primarily on the defined properties of security guards. Software
3 The binary analyzer uses a combination of objdump and IDA Pro.



A Proof Infrastructure for Binary Programs 5

6 procedure zero_array is
7 begin
8 --100000ed4: test esi,esi
9 X86.ZeroFlag := (X86.ESI = 0);

10 X86.SignFlag := (X86.ESI > X86.MaxSignedInt32);
11 X86.OverflowFlag := False;
12 --100000ed6: jle 100000eec <_zero_array+0x18>
13 if (X86.ZeroFlag or X86.SignFlag /= X86.OverflowFlag) then
14 --100000eec: f3 c3 repz ret
15 X86.RSP := X86.RSP + 8;
16 return;
17 end if;
18 --100000ed8: mov eax,0x0
19 X86.Write_EAX(0);
20 loop
21 --100000edd: DWORD PTR [rdi+rax*4],0x0
22 X86.WriteMem32(X86.RDI +(X86.RAX*4), 0);
23 --100000ee4: add rax,0x1
24 X86.RAX := X86.RAX + 1;
25 --100000ee8: cmp esi,eax
26 X86.ZeroFlag := ((X86.ESI - X86.EAX) = 0);
27 X86.SignFlag := (X86.ESI < X86.EAX);
28 X86.OverflowFlag := ((X86.SignFlag and (X86.EAX > X86.MaxSignedInt32) and
29 (X86.ESI <= X86.MaxSignedInt32)) or ((not X86.SignFlag) and
30 (X86.ESI > X86.MaxSignedInt32) and (X86.EAX <= X86.MaxSignedInt32)));
31 --100000eea: jg 100000edd <_zero_array+0x9>
32 exit when(not(X86.ZeroFlag=False and X86.SignFlag=X86.OverflowFlag));
33 end loop;
34 --100000eec: repz ret
35 X86.RSP := X86.RSP + 8;
36 return;
37 end zero_array;

Figure 8. Implementation of zero_array

modifications simplify the development of constraints and proofs; however, mod-
ifications add overhead and do not allow isolation of weaknesses in the original
binary program. In our approach, binary modifications are not necessary, but
could be used as a last resort when proofs cannot be established.

AUSPICE is also an approach based on a model of the ARM ISA using Hoare
logic [5]. AUSPICE supports security property verification for binary programs
without the need for modifications. To avoid manual development of invariants
and function pre-/post-conditions, AUSPICE makes simplifying assumptions. In
particular, machine-code instructions are not allowed to alter memory addresses
greater than the current function’s frame pointer address. This restriction is not
practical for most real-world programs.

Prior versions of the Binary Analysis Platform (BAP) support some security
analysis through manual insertion of predicates into intermediate representations
of the binary program [4]. This approach is limited to intraprocedural analysis of
functions that do not call other functions. Further, the BAP approach does not
complete proofs unless loops are unrolled and the code is free of indirect jumps.
More recent versions of BAP no longer appear to support formal analysis.

5 Conclusion
Reverse engineering of binary programs into a formal language and including for-
mal specifications of desired properties admits the possibility of proving those



6 Authors Suppressed Due to Excessive Length

properties. We have presented our infrastructure based on SPARKPro for prov-
ing properties about binary programs. Binary programs are analyzed and trans-
lated into SPARK Ada. Properties are specified using SPARK Ada and proven
using the SPARKPro toolchain. We illustrated the application of our approach
with an example binary program, proving an important security property.

The SPARKPro toolchain has the advantage of being able to run multiple
proofs in parallel with most proofs discharged automatically. Additionally, the
SPARK Ada representation can be compiled into an executable program that
could allow for verification by testing for representational accuracy. A current dis-
advantage of the toolchain is that, when proofs are not discharged automatically,
completing the proof manually can be difficult. We plan to discuss specific details
of translating binary programs and producing constraints for security properties
in future publications; however, the work presented here lays the foundation for
and focuses the direction of further research and development.

Acknowledgments This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA) under contract W31P4Q–14-C–
0086. The views, opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. The authors thank the software
engineers of AdaCore, in particular, Yannick Moy for providing support.

References
1. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran Praxis

(2012)
2. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software

guards for system address spaces. In: Proceedings of the 7th Symposium on Operat-
ing Systems Design and Implementation. pp. 75–88. OSDI ’06, USENIX Association,
Berkeley, CA, USA (2006)

3. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: First International Conference on Interactive Theorem
Proving. pp. 243–258. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

4. Jager, I., Brumley, D.: Efficient directionless weakest preconditions (cmu-cylab-10-
002). CyLab p. 27 (2010)

5. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: AUSPICE: Automatic safety prop-
erty verification for unmodified executables. Working Conference on Verified Soft-
ware: Tools, Theories and Experimems (VSTTE) (2015)

6. Zhao, L., Li, G., De Sutter, B., Regehr, J.: ARMor: Fully verified software fault
isolation. In: Proceedings of the Ninth ACM International Conference on Embedded
Software. pp. 289–298. EMSOFT ’11, ACM, New York, NY, USA (2011)


