
2020.09.18

Toyota and NVIDIA focus on zero defects software development
mathematically

Hidemasa Kimura, Nikkei Xtech

The development method of zero defects (bugs) in in-vehicle software is attracting a lot of attention. This is because there is

an increasing need to improve the safety and security of software against the background of autonomous driving. JTEKT, a

major Toyota-affiliated electric power steering system (EPS) manufacturer, is in the process of introducing this method to

mass production, and NVIDIA in the United States, which is involved in the production of in-vehicle system-on-chip (SoC)

for autonomous driving, is also considering a similar method.

JTEKT and NVIDIA are considering what they call "theorem proving" (a type of formal method) to mathematically prove

that the software has no defects. With the practical application of autonomous driving and steer-by-wire (SBW), the safety

requirements for in-vehicle software are increasing rapidly. In the past, when a failure occurred in a system's main function,

it was simply a matter of shutting down the system using safety mechanisms. In contrast, with autonomous driving and

SBW, it is rather dangerous to shut down the system, so it is necessary to continue the minimum function (specified

function) by the safety mechanism.

Safety requirements change against the background of autonomous driving and SBW (Source: JTEKT)

 JTEKT CORPORATION

• As autonomous driving and by-wire systems become more practical, the safety
requirements for software are changing

Conventional safety requirements:
In the event of a fault, shut down the
system before the hazardous event occurs.

Background

Main function

Safety mech.

Systematic fault

Latest functional safety requirements:
Certain features are available
(ISO/FDIS 26262-10:2018 availability requirement)

Main function

Safety mech.

Systematic fault
Example:

However, this is very difficult (or impossible) in some case (e.g. I/O control, state
machine) !!!

Shut down if a fault is detected If a fault is detected, backup control keeps
it functioning.

Example:

Risk mitigation is made by combination of main
function and shut-down function.

Different functions for the main and safety
functions and their combination to reduce the
risk of systematic faults

However, the implementation of such a safety mechanism is "sometimes difficult,” said Shinya Yoneki, Advanced System

Development Department, Steering Business Division, JTEKT. Normally, the safety mechanism is implemented with

software that is different from the main function. With EPS, however, both the main function and the safety mechanism

must return the same output to the same input, making it difficult to change the implementation of the software. Therefore,

JTEKT was looking for a method of proving that the main function alone would not cause any problems even without the

safety mechanism.

Normally, the safety of in-vehicle software is verified during the testing process. However, it is difficult to prove that there

are no defects. There are an infinite number of test conditions, and no matter how comprehensive the testing process is, it is

impossible to say that there are no defects. Therefore, it is up to the customer to ultimately decide whether the product is

safe or not. In contrast, theorem proving can mathematically prove that the software has zero defects. "It could be used as a

basis for a decision that everyone can agree on," he said.

Select the SPARK language

The tool is SPARK Pro, provided by AdaCore (Press Release). Since we are currently in the implementation stage, we are

converting the C language source code into the theorem proving language, SPARK, and verifying it. After confirming that

there are no mistakes, we will convert the code to C source code again. In the future, we plan to use SPARK from the

beginning when we develop new software and convert it to C after theorem proving.

Utilize SPARK (Source: JTEKT)

The usage is "similar to code review," he said. However, the language is SPARK, not C. In addition to the program,

SPARK allows you to describe the attributes you want to verify (such as input and output ranges in the specifications).

 JTEKT CORPORATION

SPARK

• Utilize AdaCore's SPARK.
– SPARK is a formal verification language and theorem proof is possible with the tool
– Proving by following steps.

1. Transform from C to SPARK:

2. Define property to be proved

3. Execution

When you run the verification tool, you can immediately see whether the program is wrong, or the specification is wrong.

"It's like replacing code review with a machine," he said.

For example, if a program is found to be inconsistent with the specifications, even though they know from past experience

that the program is correct, "we can find out that there was an omission in the specifications," he said. Such defects could be

found in the testing process as well, but "if the software engineer could check the program by himself while writing it, it

would result in faster work," he said.

In the products that JTEKT had worked on in the past, the majority of defects found during the testing process were caused

by errors in the specifications and implementation (program) of the software itself. It is a great advantage to be able to

reduce errors in specifications and implementation, the two most common causes of defects, at the development stage.

Not all-purpose

However, "this method is not all-purpose," he said. Although we have confirmed that the theorem proving can be used as an

alternative to unit testing to some extent, it is necessary to weigh whether the defects found in SPARK can be found in

existing tools. "We are currently working on that," he said.

Mr. Yoneki Shinya, Advanced System Development at JTEKT

(Source: JTEKT)

And the biggest challenge is that the programs to which the theorem proving can be used are limited. "It's difficult to apply

unless the program has a high affinity with Hoare logic, which is the basis of the theorem proving," he said. For example,

"Programs that can clearly describe the upper and lower limits of the input/output range are suitable," he said. On the other

hand, "In the case of programs such as feedback control, where the output changes depending on the previous state, the

input/output range is difficult to describe and difficult to apply," he said. It is necessary to determine the compatibility of

each program.

JTEKT intend to use it first for end software components that would communicate directly with the hardware and for basic

control programs. These software programs do not have very complex controls, but if they malfunction, there are significant

safety implications.

Applied to the bottom of the V process currently (Source: JTEKT)

The size of the software that applies theorem proving (number of lines of code) is small, less than a few percent of the EPS

system as a whole. Nevertheless, it is important to be able to say that the part is zero defects. They want to increase the

overall safety of the system by first proving that the small end software components are zero defects and then building on

top of that the functions they want to achieve.

NVIDIA is also looking at AdaCore’s SPARK language and Ada language, which is the basis for SPARK (Press Release).

NVIDIA is considering rewriting some security-critical firmware from the C language to Ada and SPARK. As Autonomous

driving cars are connected to the outside world through communication functions, vulnerabilities in the in-vehicle SoC

firmware make it a target for cyber attacks. If the vulnerabilities can be eliminated by using theorem proving, it could

increase security.

Published in Nikkei xTECH, September 18, 2020
https://xtech.nikkei.com/atcl/nxt/column/18/00001/04594/

Translated by AdaCore with permission of the rights holders.

All rights reserved.

 JTEKT CORPORATION

More systematic approach

• Our absolute goal is to claim that our software does not need any safety mechanism for
software systematic fault!

• To achieve this, mode systematic approach from specification to implementation is
needed.

Theorem
proving J

Formal description
language + Model
Checking??

Formal description
language ??

W
e

ar
e

tr
yi

ng
 to

 a
pp

ly
 S

PA
R

K
fo

r t
he

se
 a

re
a

as
 a

 c
an

di
da

te
 s

ol
ut

io
n

