GNAT Pro 7.3

The latest version of the GNAT Pro development environment released during Q4 2014, GNAT Pro 7.3 includes all the improvements and bug fixes collected since the release of GNAT Pro 6.2 in December 2013 with the added support for Intel 64-bit, ARM, and the full Ada 2012 standard. GNAT Pro 7.3 also includes many key enhancements to the GNAT Pro IDE to improve system integration, configuration management, and build times.

QGen

QGen, a customizable and code-generating system, has been successfully deployed at Sandia National Labs and Sandia National Laboratory researchers have praised the system for its capabilities in generating complex code automatically, improving productivity, and reducing development time. QGen is designed to work seamlessly with GNAT Pro to create efficient, maintainable, and portable Ada code.

A Brief History of AdaCore and Education

AdaCore has been active in education through three activities: by promoting the usage of Ada and SPARK in academia, by offering live courses on the Ada and SPARK languages and the AdaCore tools, and by supplying online interactive courses for self-instruction. AdaCore has been active in education through these activities for over two decades. This special issue recounts the history of AdaCore’s major products and looks at some key events since the company’s founding. This special issue focuses on the history of AdaCore in celebration of the 20th anniversary of the company’s founding. In July 1994 three members of New York University in the Department of Computer Sciences formed the company GNAT which became AdaCore. This special issue recounts the history of AdaCore’s major products and looks at some key events since the company’s founding. This special issue focuses on the history of AdaCore in celebration of the 20th anniversary of the company’s founding.

GNAT Industrial User Day 2014

On June 14, AdaCore hosted its annual GNAT Industrial User Day in Paris where customers, partners, and academics who use GNAT Pro share their experiences. The day was divided into three sessions: industrial users, can be as long as 100 kilo bytes, and are sometimes several times larger, the complexity of Ada and SPARK real-time applications, especially where safety/certification is required. Gene Harris described three recent Ada and SPARK projects that were completed at Sandia National Labs and the challenges faced in developing and deploying them. Additionally, he discussed the results of a recent survey of SPARK practitioners that showed that Ada and SPARK are well-suited for developing high-integrity systems.

Conferences/Events

- **ARM Tech Symposium 2014**
 - September 30, 2014 / Barcelona, Spain
 - This annual event features presentations from leading industry experts on the latest advancements in the ARM ecosystem.

- **GNAT Pro Insider**
 - December 14, 2014 / Paris, France
 - This event offers a unique opportunity to exchange ideas and networking opportunities with AdaCore staff and other industry professionals.

- **Sterling International Automotive Electronics Conference**
 - January 23-24, 2015 / Yokohama, Japan
 - A conference for automotive electronics professionals to discuss the latest advancements and challenges in the industry.

- **RTCA Safety Day**
 - February 26, 2015 / New York, USA
 - A day dedicated to safety in the aviation industry, focusing on the latest developments in aviation safety and technology.

- **23rd Safety-critical Systems Symposium**
 - May 5–7, 2015 / Atlanta, USA
 - A symposium dedicated to the latest developments in safety-critical systems and their applications.

- **IEEE Real-Time Industrial Conference**
 - June 23–26, 2014 / Toulouse, France
 - This conference focuses on the latest developments in real-time systems and their applications.

Newsflash

- **Happy 20th Birthday, AdaCore!**
 - This special issue focuses on the history of AdaCore's celebration of the 20th anniversary of the company's founding. In July 1994 three members of New York University in the Department of Computer Sciences formed the company GNAT, which became AdaCore. This special issue recounts the history of AdaCore’s major products and looks at some key events since the company’s founding.

AdaCore US has moved

The company’s US headquarters has relocated in Marketing, expanding into larger office space, the company has relocated to 150 W. 30th Street, 8th Floor New York, NY 10014. The telephone and fax numbers (broadly on page of this newsletter) remain the same.

AdaCore CTQ

A Brief History of GNAT Pro

GNAT Pro began as a research project led by Robert Dewar and Michael New in the early 1980s, sponsored by the USA’s government. AdaCore was formed in 1994 by New and Dewar. This event was one of many workshops and conferences at which GNAT was showcased. GNAT became AdaCore and the product was known as “GNAT Pro” in 2001. The GNAT technology has evolved over the last two decades and has been incorporated into many products and applications. This is the same technology that is used in GNAT Pro.

Contact Us

AdaCore is an exhibitor at this event.

Newsflash

Happy 20th Birthday, AdaCore!

This special issue focuses on the history of AdaCore’s celebration of the 20th anniversary of the company’s founding. In July 1994 three members of New York University in the Department of Computer Sciences formed the company GNAT, which became AdaCore. This special issue recounts the history of AdaCore’s major products and looks at some key events since the company’s founding.
the relevant domain-specific standards. These include DO-178B/C for avionics; CENELEC EN 50126, time libraries) on a platform-dependent basis, demonstrating compliance with the highest levels of In summary, safety-critical systems are an excellent match for the Ada and SPARK languages, and certified code.

Furthermore, safety-critical systems are a prime target for the Ada and SPARK languages. This is because a safety-critical system must be designed, implemented, and verified to meet the stringent requirements of safety (e.g., DO-178B/C for avionics; CENELEC EN 50126, etc.) on a platform-dependent basis. This ensures that the system meets the highest levels of compliance with safety-related requirements.

Additionally, AdaCore provides specialized certification-related services. For example, AdaCore can prepare a traceability package for Ada code, which is often required for safety-critical systems. This package includes detailed documentation that demonstrates the traceability of the code to the safety-related requirements.

Differentiation of Ada from Other Languages

Ada distinguishes itself from other languages in several ways:

1. Formal verification: Ada contains formal verification tools, such as CodePeer, which can automatically check for correctness with respect to the Ada standard.
2. Separation of concerns: Ada provides a separation of concerns, allowing developers to focus on different aspects of the system independently.
3. Strict type system: Ada has a strong type system, which helps prevent errors due to type mismatches.
4. Memory safety: Ada guarantees memory safety by default, eliminating the need for explicit memory management. This makes it easier to develop correct software, especially for safety-critical systems.

AdaCore and Safety-Critical Development

AdaCore, the company that developed AdaCore, has a strong focus on safety-critical development. They have developed tools and services to support the development of safety-critical systems.

For example, AdaCore has developed the CodePeer tool, which automatically checks Ada code for correctness. This tool is particularly useful for safety-critical systems, where correctness is paramount.

AdaCore also provides a range of services to support the development of safety-critical systems, such as consultation, training, and certification services.

Conclusion

In conclusion, the Ada and SPARK languages are well-suited for safety-critical systems. These languages provide a strong foundation for developing correct and reliable software. AdaCore's services and tools further support the development of safety-critical systems, making them an excellent choice for such applications.

Acknowledgments

The authors would like to thank the team at AdaCore for their support and for providing the opportunity to explore the potential of the Ada and SPARK languages in safety-critical development.

References

Interview with Robert Dewar, AdaCore President and Cyrille Comar, AdaCore Managing Director

AdaCore and Safety-Critical Development

Robert Dewar, AdaCore President: Hi! We have all heard of the importance of developing software that is safe and reliable, especially in safety-critical domains. Ada is well suited for such domains due to its formal semantics and strong type system. We have seen many success stories with safety-critical applications developed in Ada. Can you tell us more about AdaCore's involvement in this area?

Cyrille Comar, AdaCore Managing Director: Absolutely! AdaCore has been involved in many safety-critical projects, and we have seen the benefits of using Ada for such applications. We have provided services for certification, including preparation of the necessary documentation and support throughout the certification process. We have also developed tools, such as CodePeer, to help with the verification of Ada code.

Robert Dewar: That's great! Can you give us an example of a recent project where AdaCore was involved in a safety-critical application?

Cyrille Comar: Sure! One recent example was the development of software for a critical system in the aerospace industry. We provided consultation and support throughout the development process, including preparing the necessary documentation for certification and providing training for the development team. The project was successful, and the software was certified for use in the safety-critical application.

Robert Dewar: That sounds impressive! What are some of the key benefits of using Ada for safety-critical applications?

Cyrille Comar: Ada offers several key benefits for safety-critical applications. Firstly, its formal semantics make it easier to reason about the program's behavior, reducing the likelihood of bugs and errors. Secondly, its strong type system helps prevent type-related errors. Thirdly, Ada has built-in support for memory safety, which is crucial in safety-critical applications. Finally, Ada has a long history of use in safety-critical domains, which adds to its credibility.

Conclusion

In conclusion, Ada is well-suited for safety-critical applications due to its formal semantics, strong type system, and built-in support for memory safety. AdaCore has been involved in many such projects, and we continue to see the benefits of using Ada in this area.
AdaCore and Safety-Critical Systems

AdaCore offers a range of tools and services to support the development of safety-critical systems. This includes the GNAT Pro high-integrity development environment, certified for DO-178B (now known as DO-278C), which provides a comprehensive suite of tools for developing and certifying safety-critical software. AdaCore has also developed a variety of tools that have been qualified, or are in the process of being qualified, for safety-critical applications.

The GNAT Pro High-Integrity Edition for DO-178B provides a comprehensive suite of tools for developing and certifying safety-critical software. It includes a certified Ada compiler, a comprehensive suite of tools for developing and certifying safety-critical software, and a range of supplemental services.

GNATcoverage is a component-level tool that supports formal verification and static analysis of Ada code. It allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATtest is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion is a comprehensive, open-source tool for Ada development. It includes a comprehensive suite of tools for developing and certifying safety-critical software, and a range of supplemental services.

GNATbench is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNAT Pro Compiler Class T3

GNAT Pro Compiler Class T3 is a comprehensive and certified Ada compiler that supports the development of safety-critical software. It includes a comprehensive suite of tools for developing and certifying safety-critical software, and a range of supplemental services.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage with AdaCore-Inria ProofInUse joint lab

GNATcoverage with AdaCore-Inria ProofInUse joint lab is a comprehensive tool for component-level formal verification and static analysis of Ada code. It allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, is implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcoverage, a component-level tool that supports formal verification and static analysis of Ada code, allows developers to detect and fix faults in Ada code at an early stage, reducing the risk of software failures and improving safety and reliability.

GNATbench, launched in 2006, is a comprehensive unit and system testing environment for Ada code. It includes a comprehensive suite of test cases, a powerful test-case generator, and a range of test automation features.

GNATcompanion, an open-source tool for Ada development, was implemented through GtkAda and was nearly an IDE; all that was needed was a front-end. The IDE was developed at AdaCore with major contributions from Pat Rogers, Quentin Ochem and Philippe Gil.
AdaCore and Safety Certification

AdaCore and Safety Certification

The workshop identified a number of memory safety errors: buffer overflow, segment violation, dereferencing a null pointer, null by reference, use of an invalid pointer, release of an already freed pointer, invalid reference to a freed object, attempts to write to a non-writable object, invalid reference to a non-existent object (e.g., memory fragmentation), lock on an unlocked object, reading from an unlocked object, use of an object that has not been initialized, use of a null pointer, "dangling reference", use of uninitialized memory, and illegal free (i.e., freeing an already-freed pointer or a non-malloced pointer). The full Ada programming language and tools can provide assurance that formally specified security properties can be enforced (e.g., bounds checking, null pointer checking, and pointer arithmetic, etc.) while supporting customers who need stability in order to maintain their very long-lived systems such as for aircraft or trains. We are currently working on a number of safety-critical avionics and high-security systems applications which need formal techniques to help bring in a higher level of assurance. In many cases our customers have told us they are looking for a commercial solution which can be delivered on time and on budget. This is where AdaCore can bring value by combining formal techniques with a high-quality, high-performance Ada compiler and an extensive suite of development tools to deliver solutions that are both cost-effective and reliable.

AdaCore has defined the Object-Oriented Technologies and Related Techniques supplement to DO-178C. The new supplement is intended to provide an overview of the Object-Oriented Design (OOD) process, and to address not only the development of new Object-Oriented systems, but also the analysis of existing systems. The new supplement also includes a series of use cases to illustrate the application of the new techniques. This is a major step forward in the evolution of the avionics domain. The new supplement is currently being reviewed by the cooperative directors of the avionics domain (CDARs) and is expected to be published in the near future. AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore and the SPARK Project

In 2010 AdaCore and Altran started a research project to improve the SPARK toolset. The goal of the project was to develop a new version of the SPARK tools that is more automated and more interactive. Simultaneously, work is in progress to improve the SPARK language and toolset to support the activity described in section 6.4.4.2b of the DO-178B and DO-178C standards: for example, for the development of a formal specification of the Ada programming language. AdaCore has also defined the Object-Oriented Technologies and Related Techniques supplement to DO-178C. The new supplement is intended to provide an overview of the Object-Oriented Design (OOD) process, and to address not only the development of new Object-Oriented systems, but also the analysis of existing systems. The new supplement also includes a series of use cases to illustrate the application of the new techniques. This is a major step forward in the evolution of the avionics domain. The new supplement is currently being reviewed by the cooperative directors of the avionics domain (CDARs) and is expected to be published in the near future.

The third area is our customer support infrastructure. Our main way of operating is through annual subscriptions that combine software products, development tools, and support services.

Additionally, AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.

AdaCore is also working on a number of other initiatives to improve the safety and security of software systems. These include:

- Improving the security of AdaCore's GNAT Pro Safety-Critical environment, including further tool qualification, is planned.
- Adding new features to the CodePeer verification tool, such as support for the new SPARK 2014 language and toolset.
- Developing new tools for the analysis of complex systems, such as the GVD tool for visualizing Ada code.
- Improving the performance and scalability of the GNAT Pro compiler, including the addition of new optimization techniques.
Happy 20th Birthday, AdaCore!

The special issue focuses on the history of AdaCore in celebration of the company’s 20th anniversary. In February 1995 three new members of the AdaCore team—Robert Dewar, Richard Henderson, and Edmond Schonberg at New York University in the Joint Program Office. The goal was to build a prototype of the GNAT compiler for use in the work of the National Aeronautics and Space Administration (NASA) Spacelab Program. The GNAT compiler became AdaCore's first product in 1997.

A Brief History of AdaCore and Education

AdaCore has always been a leader in education through three activities: by promoting the usage of Ada and SPARK in universities, by offering training courses on Ada and SPARK, and by running contest series on Ada and SPARK. An early, but significant, education initiative was the concept of the Ada Workshops. These events were aimed at educating developers on the features, best practices, and tools related to the Ada programming language. Each year, AdaCore organizes an annual Ada Workshop, which is a key event for the Ada community.

A Brief History of the GNAT Pro Development Stack

The GNAT Pro Company

The GNAT Pro Company is a software development company that specializes in the Ada programming language. The company was founded in 1995 by Robert Dewar, Richard Henderson, and Edmond Schonberg at New York University in the Joint Program Office. The goal was to build a prototype of the GNAT compiler for use in the work of the National Aeronautics and Space Administration (NASA) Spacelab Program. The GNAT compiler became AdaCore's first product in 1997.

The GNAT Pro Development Stack is a suite of tools and services that includes the GNAT Pro compiler, the GNAT Pro Development Environment (GDE), and the GNAT Pro Studio. The GNAT Pro Development Stack is designed to help developers write high-quality, reliable, and maintainable Ada code.

Upcoming releases:

GNAT Pro 7.3

The latest version of the GNAT Pro development stack released during Q1 2015.

GNAT Pro 7.3 includes enhancements to GNAT Pro, the GNAT compiler, and the GNAT Pro Development Environment (GDE). These enhancements improve the performance and flexibility of the GNAT Pro Development Stack, making it more productive for developers.

QGen

QGen is a configurable and customizable code generator and model editor for Stdlib and Standfor...
GNAT Pro 7.3

The latest version of the GNAT Pro development environment was released during October 2014. GNAT Pro 7.3 is based on GNAT 6.6 released in the fall of 2013 and is designed to enhance the full-featured, professional development environment and to improve the ability of GNAT Pro to meet the needs of developers in the real-time, safety-critical domain.

QGen

QGen is a customizable and reusable code generator and model editor for Simulink and Stateflow. It will be launched during Q1 2015. This tool can generate simple and memory-efficient code, and it offers a scalable structure to support applications for non-expert developers. With support for large systems, it is extensively used for real-time applications, especially where code efficiency is key. (G)Simware has over 100 libraries, developed by experts over 10 years. The tool supports the development of structural and functional models, and it is tailored to support the needs of non-expert developers.

GNAT Industry Day 2014

On December 8, 2014, AdaCore hosted its annual GNAT Industry Day in Paris where customers, partners, and members of the Ada community gathered for technical discussions. The event was widely attended during Q1 2014. The company gave presentations on the latest projects in GNAT Pro 6.6 and the completed version of the GNAT Pro 7.3 release.

Conference: Events December 2014 – May 2015

Learn more about conferences where AdaCore will be attending in December 2014 – May 2015. The company’s US headquarters has moved to 144 Desoto Street, New York, NY 10001, USA. For up-to-date information on conferences where AdaCore is participating, please visit www.adacore.com/events/

Upcoming Releases

GNAT Pro

The latest version of the GNAT Pro development environment was released during October 2014. GNAT Pro 7.3 is based on GNAT 6.6 released in the fall of 2013 and is designed to enhance the full-featured, professional development environment and to improve the ability of GNAT Pro to meet the needs of developers in the real-time, safety-critical domain.

QGen

QGen is a customizable and reusable code generator and model editor for Simulink and Stateflow. It will be launched during Q1 2015. This tool can generate simple and memory-efficient code, and it offers a scalable structure to support applications for non-expert developers. With support for large systems, it is extensively used for real-time applications, especially where code efficiency is key. (G)Simware has over 100 libraries, developed by experts over 10 years. The tool supports the development of structural and functional models, and it is tailored to support the needs of non-expert developers.

GNAT Industry Day 2014

On December 8, 2014, AdaCore hosted its annual GNAT Industry Day in Paris where customers, partners, and members of the Ada community gathered for technical discussions. The event was widely attended during Q1 2014. The company gave presentations on the latest projects in GNAT Pro 6.6 and the completed version of the GNAT Pro 7.3 release.

Conference: Events December 2014 – May 2015

Learn more about conferences where AdaCore will be attending in December 2014 – May 2015. The company’s US headquarters has moved to 144 Desoto Street, New York, NY 10001, USA. For up-to-date information on conferences where AdaCore is participating, please visit www.adacore.com/events/

Upcoming Releases

GNAT Pro

The latest version of the GNAT Pro development environment was released during October 2014. GNAT Pro 7.3 is based on GNAT 6.6 released in the fall of 2013 and is designed to enhance the full-featured, professional development environment and to improve the ability of GNAT Pro to meet the needs of developers in the real-time, safety-critical domain.

QGen

QGen is a customizable and reusable code generator and model editor for Simulink and Stateflow. It will be launched during Q1 2015. This tool can generate simple and memory-efficient code, and it offers a scalable structure to support applications for non-expert developers. With support for large systems, it is extensively used for real-time applications, especially where code efficiency is key. (G)Simware has over 100 libraries, developed by experts over 10 years. The tool supports the development of structural and functional models, and it is tailored to support the needs of non-expert developers.

GNAT Industry Day 2014

On December 8, 2014, AdaCore hosted its annual GNAT Industry Day in Paris where customers, partners, and members of the Ada community gathered for technical discussions. The event was widely attended during Q1 2014. The company gave presentations on the latest projects in GNAT Pro 6.6 and the completed version of the GNAT Pro 7.3 release.

Conference: Events December 2014 – May 2015

Learn more about conferences where AdaCore will be attending in December 2014 – May 2015. The company’s US headquarters has moved to 144 Desoto Street, New York, NY 10001, USA. For up-to-date information on conferences where AdaCore is participating, please visit www.adacore.com/events/

Upcoming Releases

GNAT Pro

The latest version of the GNAT Pro development environment was released during October 2014. GNAT Pro 7.3 is based on GNAT 6.6 released in the fall of 2013 and is designed to enhance the full-featured, professional development environment and to improve the ability of GNAT Pro to meet the needs of developers in the real-time, safety-critical domain.

QGen

QGen is a customizable and reusable code generator and model editor for Simulink and Stateflow. It will be launched during Q1 2015. This tool can generate simple and memory-efficient code, and it offers a scalable structure to support applications for non-expert developers. With support for large systems, it is extensively used for real-time applications, especially where code efficiency is key. (G)Simware has over 100 libraries, developed by experts over 10 years. The tool supports the development of structural and functional models, and it is tailored to support the needs of non-expert developers.

GNAT Industry Day 2014

On December 8, 2014, AdaCore hosted its annual GNAT Industry Day in Paris where customers, partners, and members of the Ada community gathered for technical discussions. The event was widely attended during Q1 2014. The company gave presentations on the latest projects in GNAT Pro 6.6 and the completed version of the GNAT Pro 7.3 release.

Conference: Events December 2014 – May 2015

Learn more about conferences where AdaCore will be attending in December 2014 – May 2015. The company’s US headquarters has moved to 144 Desoto Street, New York, NY 10001, USA. For up-to-date information on conferences where AdaCore is participating, please visit www.adacore.com/events/