Ada Fundamentals with GNAT:  Workshop 2
1. Enumeration “math”
Objective: This problem illustrates enumeration types and program structure.
The workshop directory contains a main procedure Day_Test and the following package specification
package Day_Pkg is
   type Day is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
   function "+"(D : Day; N : Integer) return Day;
   function "-"(D1, D2 : Day) return Integer);
end Day_Pkg;
The operation D+N should return a Day value corresponding to N days after D.  For example. Mon + 3 = Thu, Fri + 14 = Fri, Sun + (-2) = Fri.
Analogously,  D1-D2 is the smallest non-negative number N such that D2+N = D1 (i.e., the number of days from D2 to D1.)  Thus Fri-Mon = 4; Mon-Sat = 2.
Implement the package body and test it with the main procedure.
2. Vector package
Objective: This problem illustrates array features and program structure
The workshop directory contains source files for Vector_Pkg (specification and partially implemented body) and a main procedure Vector_Test, based on the class notes (slides 24 and 25 in Part 2, page 2/13 in the course notebook).  Complete the implementation of the package body.
3. Random permutations
Objective: This problem illustrates array features
The workshop directory contains a main procedure Array_Test and the following package specification:
package Array_Handling is
  type Array_Type is array( Positive range <> ) of Float;
  procedure Shuffle( Data : in out Array_Type );
  -- Rearranges Data through a random permutation
end Array_Handling;
Implement the package body.  Reuse the Random_Numbers package from Workshop 1.
Note: generating a random permutation is not completely trivial.  Check with the instructor if you need some guidance.
4. Recovery from data input errors
Objective: This problem illustrates exception handling
The procedure Day_Test from Exercise 1 is not very robust; if the user enters improperly formed input at any of the prompts, the program terminates with an unhandled exception.  Modify the program as follows:
if an incorrect Day value is entered, the program will substitute the value Sun and output a message to this effect.
if an incorrect integer is entered, the program will iterate the request for input until a proper value is received 
5. Propagating and handling program-defined exceptions
Objective: This problem illustrates exception handling
The package Vector_Pkg_2 adds the following declarations to Vector_Pkg from Exercise 2:
function "*"(L, R: Vector) return Float;
Parameter_Length_Error : exception;
Implement the “*” function to return the “dot product” of L and R (i.e. the sum of the products of corresponding elements of L and R), where L'Length=R'Length is the required precondition.  If the lengths of the parameters are not the same, then the function raises Parameter_Length_Error.
[bookmark: _GoBack]The procedure Vector_Test_2 tests the function but does not handle the Parameter_Length_Error exception.  Modify the procedure to handle the exception by displaying a message, without terminating the loop.  The message displayed should be the string returned from the function Ada.Exceptions.Exception_Information.
6. Alternative style to Integer'Value
Objective: This problem illustrates exception handling
The predefined attribute function Integer'Value converts a String to an Integer, raising an exception if the String does not spell out a valid Integer value.  It is sometimes more convenient to return a status value instead of raising an exception.  Implement the following procedure to have such an effect:
procedure Integer_Value(Item   : in String;
                        Result : out Integer;
                        Valid  : out Boolean);
If Integer'Value(Item) does not raise an exception, then Result should be the integer returned from this invocation, and Valid should be True.  Otherwise Valid should be False, and Result should not be assigned a value.  Use the main program in the workshop directory to test your implementation.
Ada Programming with GNAT: Fundamentals		Workshop 2
© 2018 AdaCore		Page 2
