[bookmark: _GoBack]Ada Fundamentals with GNAT: Workshop 4
1. Stack package
Objective: This problem illustrates information hiding through private types, and also provides practice with discriminated records.
One of the standard “container” data structures in computer science is a pushdown stack, which has the following properties (we are assuming that the elements in the stack are integers):
· The maximum size of a stack object is specified when the object is created
· A stack object has a current size, an integer between 0 and its maximum size, inclusive. When a stack object is created, its current size is 0
· There are four client-visible subprograms defined for stacks
· procedure Push(S : in out Stack, E : in Integer);
Add element E to stack S. Precondition: S is not full
· function Top(S : Stack) return Integer;
Return the most recent value Pushed onto S, without removing it. Precondition: S is not empty
· procedure Pop(S : in out Stack; E : out Integer);
Remove the element at the top of the stack (i.e. the one most recently Pushed), and assign it to E. Precondition: S is not empty.
· function Current_Size(S : Stack) return Natural;
Returns the number of elements Pushed onto, and not yet Popped from, S
Define a package named Int_Stack_Pkg that implements the stack type Stack and these operations. Declare Stack as either a private type or a limited private type. (Which is preferable? Why?)
Declare exceptions Overflow and Underflow. Push should raise Overflow when called with a full stack (i.e., when the current size = max size). Pop and Top should raise Underflow when called with an empty stack (when current size = 0).
Test the program with the main procedure from the workshop directory.

2. “Stubbing” the Stack package body
Objective: This problem illustrates subunits.
After completing problem 1, revise the Stack package body so that one or more of the subprograms is implemented as a subunit.
3. Extending the Stack package
Objective: This problem illustrates child units
Add the following declarations in a package Int_Stack_Pkg.Utilities that is a child of Stack_Pkg:
· procedure Flush(S : in out Stack);
Resets S so that its current length is 0
· procedure Display(S : in Stack);
Outputs each element of S, from bottom to top, without popping.
Test the program with the main procedure from the workshop directory.
Why do these declarations need to be in a child package versus a “client” package that “with”s Stack_Pkg?
Why not add these declarations to the original Stack_Pkg?

Ada Programming with GNAT: Fundamentals		Workshop 4
© 2018 Ada Core Technologies		Page 1
