AdaCor

DG1




AdaCore

DIGEST

INn This Issue

This issue of the AdaCore Digest covers a mix of different topics. We provide the latest
updates on events, public training courses and Ada-related press, but we also provide a
deeper background on some of the projects we are working on and what is happening in
the community.

Specifically, we cover the following topics:
e AdaCore Release 26.1 announcement
e An update from Olivier Henley on Capstone projects, projects done by final year
students using Ada to build a project end-to-end.
e A first-hand experience of using Alire
e A description of our upcoming Polyglot beta
e Recent blog posts
e Upcoming events and training
e AdaCorein the press

We hope you enjoy reading this issue of the AdaCore Digest, and feel free to reach out if
you have any suggestions for future content.

26.1 Release

AdaCore is proud to announce the availability of the first stable version of our release
branch 26: Release 26.1. If you select this branch for productization builds, it is possible
to subscribe to the assurance product on that specific branch and receive critical bug
fixes passed this date.

Full release notes for the 26.1 release are available on our documentation website. The
new contributions cover many phases in the software development life cycle, from
architecture support and language features to compiler enhancements as well as
improvements to our testing suite.

Our technical team will provide a deep dive on the top new capabilities in a webinar on
March 19th.


https://docs.adacore.com/live/wave/release-notes-26/html/release_notes_26/index.html
https://bit.ly/3ZZhlNR

Capstone: Open Source Debug Probe in Ada on
Bare Metal Hardware

By Olivier Henley

Academia plays a key role in shaping the next generation of engineers. Through the
GNAT Academic Program (GAP), AdaCore supports universities working with Ada,
SPARK, formal methods, and low-level systems engineering. A central part of this effort
is supporting Capstone projects, where small student teams apply their knowledge to
concrete, real-world engineering problems.

AdaCore contributes to these projects through regular coaching and mentoring
sessions. The focus is practical and technical, covering embedded hardware bring-up,
bare-metal Ada programming, and sound system design practices.

Two such Capstone projects are currently underway at Penn State Behrend and Rose-
Hulman Institute of Technology. The objective is to designh and implement an open-
source hardware programmer and debug probe, targeting platforms such as STM32
devices or the Raspberry Pi Pico. Rather than relying on fixed off-the-shelf probes, the
programmer itself is implemented as firmware running directly on an MCU, with native
USB device support written in Ada.

The projects use Ada’s fine-grained runtimes directly on bare metal, without an RTOS,
and rely on open-source HAL and middleware components distributed through Alire.
The intended outcome is an open-source Alire crate, allowing others to study, reuse, and
extend the work.

This approach reflects a broader philosophy shared by GAP. Effective systems
engineering requires building complete, end-to-end solutions. By focusing on firmware-
driven tooling implemented in Ada, these projects combine hands-on embedded
development with sustainable, open-source engineering practices.

The work is ambitious, but deliberately structured to remain manageable. It
demonstrates in a concrete way that using Ada instead of C on bare metal is not only
viable but advantageous in terms of correctness, maintainability, and long-term control.
It also establishes a foundation that can be extended by future Capstone teams and,
potentially, adopted by the wider community.


https://behrend.psu.edu/
https://www.rose-hulman.edu/index.html
https://www.rose-hulman.edu/index.html

At present, one team is focused on bringing up USB support on an STM32FO70xx MCU,
while the other is working with the Raspberry Pi Pico (RP2040). This phase is already
producing useful design feedback, including evaluation of cost, performance, and
available headroom. The near-term milestone is a host application capable of issuing
commands to the programmer, enabling reliable read and write access to target flash
memory for programming both an initial FPGA bitstream and subsequent softcore
firmware running on the FPGA.

The teams have until the end of April to deliver a functional system. If time permits,
either later this year or with a future cohort, the next phase will explore debugging
support.

Overall, development is progressing well. Once the academic year concludes, | will share
further updates and project resources. This is a hands-on effort focused on building real
infrastructure under real constraints, using Ada throughout, while giving students direct
exposure to the realities of serious systems engineering.

A first-hand experience using Alire (with or
without Al)

Alire, the Ada Llbrary REpository is a command-line tool that manages the dependencies
for your Ada project for you. It provides an easy-to-use interface to define dependencies,
including the compiler and runtime environment, automatically download them, and even
upload your own libraries (aka ‘crates’) back to the Alire ecosystem.

The getting started pages provide easy instructions to download Alire from the provided
releases on GitHub, download the needed compilers and libraries, and then build and run a
simple HelloWorld example by simply running alr get -build hello.

Alire works with a community set of crates, which is a great place to start for your
personal or community projects. It includes support for many embedded hardware boards
as well; getting something to run on a Raspberry Pi Pico or an ST Micro evaluation board
is very straightforward.

At the same time, Alire is powerful enough that you can use it with a more private index of
curated crates. This capability allows corporations to define and maintain a set of
approved crates for internal use.

Making a small example for a Raspberry Pi Pico, if you happen to have one (or more) lying
around, is as simple as creating a new project with alr init, answering the questions,
stepping into the project directory, adding dependencies to the pico_bsp and embedded_rp2040
with alr with pico_bsp and alr with embedded rp2040 will automatically download the
required libraries and compilers.


https://alire.ada.dev/
https://alire.ada.dev/docs/#first-steps

Flashing an LED on the pico is then as simple as:

with Pico;
with RP.GPIO;

procedure Test is

begin

Pico.LED.Configure (RP.GPIO.Output);

loop
Pico.LED.toggle;
delay 0.5;
end loop

end Test;

Then to build: “alr build > and you have a binary that you can deploy to your target.
There will be a demo of a full fledged GitLab project of this functionality on the AdaCore
blog soon, including the use of a Lauterbach nTrace hardware debug tool which provides
source level debugging capabilities for Ada, but there is a wonderful community
supported hardware Pico Debug Probe and the Capstone project in the previous topic is
working to create something similar completely done in Ada.

Alire supports both Ada and SPARK and works with the AdaCore GNAT Pro suite as
well as with the FSF compilers, so it is a great location for makers to get started.

Want more assistance? Most Large Language Models are very much aware of Alire and
a prompt like the following ‘Can you create a blinky example using Alire and the AdaCore
Drivers Library targeting the STM32F469_discovery’ will get your lights blinking easily.
More information on some of the embedded boards that will work well is available on
ada-lang.io.

Polyglot Beta

There is aresurgence of interest in memory safety driven by regulators in different parts
of the world. People are exploring switching from traditional programming languages to
memory safe approaches either for their entire software project, or specifically for the
layers in their project that matter most. Whether that is security, encryption,
scheduling, task management, you name it. Popular memory safe languages are Ada as
well as SPARK and of course Rust. Interestingly, as of the writing of this article, Ada is
ahead of Rust in the PyPL Popularity of Programming Language index, maintained by
Google, Ada is on the 9th spot with tremendous increase in the past 12 months, while
Rust dropped a bit to the 10th spot.



https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html
https://ada-lang.io/docs/learn/getting-started/embedded/
https://ada-lang.io/docs/learn/getting-started/embedded/
https://pypl.github.io/PYPL.html

Multi-language systems introduce a new challenge, how do you build a project
consisting of multiple languages. How do you connect an Ada encryption module to a
large existing C++ application? The languages support this binding, but how can you
make this easy for the development team?

By ‘easy’ we mean that:
1.Creating the mapping between API calls and data structures from one language to
another needs to be easy and not require tedious manual work
2.The expressiveness of the data structures needs to be maintained; we need to avoid
forcing development teams to create elaborate pieces of code to map a C++ data
structure to another language
3.If the data structure or APl changes, then the binding needs to adapt.

At AdaCore, we have supported customers with multi-language systems for years. The
GNAT Pro and SPARK Pro suites of toolchains as well as our static and dynamic
analysis solutions were designed with multi-language support in mind.

We have been working in the background to encode our knowledge of multi-language
bindings into an automated tool that we dubbed Polyglot. We are looking for a set of
beta users that are interested in trying Polyglot with us.

Polyglot works by positioning a proxy between an object (which could be a data
structure in memory, or an API) on the callee side as well as the caller side. Development
teams do not have to be concerned about the proxies themselves, they are by-products
of the compilation and linking process. They can simply call through these proxies to
reach functionality in the other language.

Initially, we are looking for projects that call an Ada or SPARK application from C++. So
maybe a QT style user interface that calls Ada logic, or a C++ networking app that calls

an encryption/decryption module in SPARK.

Let us know if you are interested in trying Polyglot in your environment. Reach out to
your AdaCore technical contact and we will set-up a conversation.

Recent Blog Posts

Our blog at adacore.com has a steady stream of interesting content, here is a selection
of recent posts:

e Advent of Ada 2025 contest results

e Video: Proving Correctness of Al-Generated Code Using Formal Methods
e Memory management in Rust: The Playroom Analogy

e Suprising places where Ada is used

o MISRA for Memory Safety

¢ [Video] A Day in the Life of a Software Engineer



https://bit.ly/4ktqVSO
https://bit.ly/4ktqVSO
https://bit.ly/4kstVi3
https://bit.ly/3OdI6eT
https://bit.ly/4kvvsnJ
https://bit.ly/4kvvsnJ
https://bit.ly/4tthSoP
https://bit.ly/4rBjs6o
https://bit.ly/461BPt0

Events

Save the date:
e Embedded World 2026:10-12 March 2026 - Booth 4-116, Nuremberg, Germany
e Army Aviation Warfighting Summit: 15-17 April - Booth 221, Nashville TN
e High Integrity Software Conference: 13 October 2026, Birmingham, UK
e Paris Tech Day - 3 November 2026

Coming soon:
e Polyglot webinar - exact date to be announced
e Boston Tech Day - in September 2026
e Michigan Tech Day - in September 2026

Webinar: AdaCore 26: Accelerating the High-Integrity Software Development Lifecycle
AdaCore is constantly evolving the tools available to build high-integrity software. Join
us in this webinar where we provide a high-level overview of the new capabilities in the
26 release of our solutions before we do an engineer-led technical deep dive into the top
features. Sign up for the webinar

Training

We offer Public AdaCore Training (for Ada) at fixed intervals throughout the year,
making our classroom experience with expert instructors accessible for teams of all
sizes. This course is a cost-effective way to access our most popular Ada course. The
remaining dates for 2026 are:

e US: March16 - 20
e EU:June8-12
e US: September 14 -18

We look forward to seeing you there. See more information here.
If you'd like to take your training a step further, or have a more critical time-based need,

we offer Enterprise Training solutions for Ada, Rust and our most popular tool suites
(GNAT SAS and GNAT DAS). You can explore all of our options here.


https://bit.ly/400eLHv
https://bit.ly/400eLHv
https://bit.ly/3MvsItU
https://bit.ly/4bMn5Sy
https://bit.ly/4ap0pFt
https://bit.ly/3ZZhlNR
https://bit.ly/3ZWrjj8
https://bit.ly/3Offyle

AdaCore in the press

Recently, The New Stack investigated the recent rise in popularity of Ada and asked us
for our opinion. Last March, Ada broke into the TIOBE Index top 20 (reaching number
18), and by July, Ada broke the top 10 (reaching number 9 — its highest-ever position on
TIOBE). It is now back to number 18.

Moreover, this month Ada also broke into the top 10 in the PopularitY of Programming
Language Index (PYPL), landing at number 9.

While programming languages such as Python, C/C++, and Java continue to rank
amongst the most popular languages, the resurgence of interest in Ada could partially
be explained by the push to use more memory-safe languages.

You can read the full article by Darryl Taft, here: https://thenewstack.io/2025-the-
year-of-the-return-of-the-ada-programming-language/

Have you seen the resources section on our website? From here, you can read our Blogs,
Case Studies, and Papers. We also have a dedicated newsroom where our most recent
press releases and editorials are available.

If you have questions about any of the technologies or services mentioned
above, please reach out to your Account Manager or email us at

AdaCore

DIGEST



mailto:info@adacore.com
https://thenewstack.io/feds-critical-software-must-drop-c-c-by-2026-or-face-risk/
https://thenewstack.io/2025-the-year-of-the-return-of-the-ada-programming-language/
https://thenewstack.io/2025-the-year-of-the-return-of-the-ada-programming-language/
https://bit.ly/4rFxiVi
https://bit.ly/4rFxiVi
https://bit.ly/401zkmS

