Build Software
that Matters

AdaCore

Zenseact Chooses SPARK
for Automotive Safety



Executive Summary

Zenseact is advancing road safety through the development of highly reliable Autonomous
Driving (AD) and Advanced Driver Assistance Systems (ADAS). The company is committed to
delivering software that enables safe, unsupervised automated driving.

To achieve this, Zenseact has adopted a rigorous approach to software development grounded
in the use of high-integrity languages and formal verification. SPARK was selected after a
detailed assessment of multiple formal-methods technologies. SPARK's ability to eliminate
undefined behaviour and provide mathematical guarantees of correctness offers a practical
and certifiable foundation for software aligned with ISO 26262 - particularly for ASIL C and D
components, where formal verification is strongly recommended.

Zenseact's development strategy applies strict criticality classification across its systems.
Components with the highest ASIL requirements are implemented in SPARK, enabling the
organisation to verify functional correctness and absence of run-time errors across an entire
subsystem. Lower-criticality components may be implemented in C++, but only where the risk
profile permits. This structured approach ensures that verification efforts are directed where
they have the greatest impact on safety.

The adoption of SPARK has been supported by targeted onboarding, internal knowledge sharing,
and ongoing collaboration with AdaCore. Developers without prior experience in Ada and

SPARK have adapted quickly to these languages. At the same time, the discipline of writing
contracts and proofs has become a valued engineering approach that attracts and retains
skilled practitioners. As the SPARK team grows, Zenseact is becoming increasingly capable of
delivering product features that meet stringent safety requirements with confidence.

Building the safest cars in the world

Zenseact is a safety-focused software company 3 / ) Zenseac.[

dedicated to building the safest autonomous
driving software in the world.

When looking at the most common causes of
car crashes, a pattern can be seen: the driver

represents a single component at fault in all Zenseactis a safety—
of these fatalities. Human reaction times are focused software
several orders of magnitude slower than those company dedicated
of a suitably designed computer system. While to bui|ding the safest
people's ability to assess risks in nominal settings autonomous driving
can be debated, this judgment is often inhibited software in the world.

by intoxication, drowsiness, and distractions
such as cell phones and entertainment systems.
Computer systems do not suffer from these
faults, which is why Zenseact's strategy is to push

towards unsupervised automated driving — in other words, full self-driving. Zenseact believes
that the more unsupervised self-driving that can be offered, the safer the car and the happier
the customer!

'Zenseact, Towards Zero. Faster — A Strategy Outline, https://zenseact.com/ (accessed 4 December 2025).

Build Soft
AdaCore | i




AdaCore

Developing safe software

Ada is a modern programming language

designed for large, long-lived applications —
and embedded systems in particular — where
safety and security are essential.

Ada was developed in the late 1970s and
early 1980s, when the programming language
landscape was rapidly shifting. Methodological
advances - structured programming, strong
typing, encapsulation, object orientation, safe
concurrency, genericity - allowed software
developers to write code that was readable
and reliable, expressed at a high level. The Ada
design successfully integrated these advances
into a coherent syntactic and semantic whole.
At the same time, Ada allowed programmers to
write low-level code when the requirements
called for it, and ensured that compilers
could generate efficient object code on target
environments ranging from bare metal to
mainframe processors and operating systems.

That era (late 1970s) was also witnessing
ongoing research into formal proofs of program
correctness. Although Ada is a full-featured
general-purpose language, it includes features
that support formal verification (such as an
annex on safety and security, and a compiler
directive that allows excluding features that
might complicate analysis). The attention paid
to high assurance in Ada's design made it an
ideal candidate as the basis for a safe and
secure subset; in fact, the SPARK language
used Ada as its foundation.

SPARK: a tried and tested solution

SPARK is a programming language derived
from Ada, designed to eliminate undefined
behavior and enable formal verification. By
restricting certain language features, SPARK
guarantees determinism and analyzability
while enriching Ada with precise semantics
and annotations that allow developers to

Build Software
that Matters

prove the absence of defects and verify
functional correctness. Writing in SPARK
means working in a full-featured imperative
language that compiles directly to the
hardware and delivers formally proven, high-
performance code that can be trusted.

Investigating Formal Methods

In 2018, Zenseact investigated several formal
verification methods. Following this exploration,
SPARK was chosen as the best fit for the
certification requirements.

Tamatea McGlinn, one of the developers
involved with the adoption of SPARK at
Zenseact for high-criticality components,
explains the decision:

“l realised that high-criticality
software in the automotive
field faces the same challenges
as that in other fields, such as

military, aviation, spaceflight,
and train-control, which already
use Ada or SPARK. So why not
use it in our cars, too?”

“| realised that high-criticality software in the
automotive field faces the same challenges as
that in other fields, such as military, aviation,
spaceflight, and train-control, which already
use Ada or SPARK. So why not use it in our
cars, too?”

Since ISO 26262 recommends that ASIL C and
D code be formally verified, SPARK was a natural
choice. Moreover, unlike the other formal
methods investigated, the SPARK tools are
already qualified to the highest level required
by ISO 26262.

“We needed a way of working that satisfies ISO
26262's recommendations for components
with ASIL C and D requirements. Previously,
we had thought this could be done from C++,
but the complexity of the language makes
this impractical.”




AdaCore

Determining criticality

Not all code written at Zenseact is written in
SPARK. For components deemed less critical
(ASIL A and B) according to safety analysis,
Zenseact continues to use C++. This approach
is practical, since the majority of Zenseact's
programmers are familiar with C++.

Zenseact uses SPARK for components that are
deemed most critical (ASIL D). Although Ada
has strong capabilities for linking with existing
C++ code, Zenseact instead rewrites the
component in SPARK with the aim of verifying
that the entire component meets its safety
requirements. Mixing SPARK and C++ would
mean that the C++ elements would still require
verification.

“We break up the whole systeminto subsystems
and assign an Automotive Safety Integrity
Level (ASIL) to the requirements of each, based
on the potential severity and probability of
exposure to risk. This criticality classification
dictates our verification strategy: we prioritize
the ‘highly recommended’ methods listed in
the ISO-26262 standard for the specific ASIL,
ensuring that any deviation is backed by a
strong, documented rationale. Each subsystem
has its own requirements and is further broken
down into components, which are also paired
1-to-1 with requirements. Each requirement
then corresponds to one contract, which is
fed into the SPARK proof system to verify they
hold and continue to hold, even as the code is
changed to accommodate new requirements.
Ultimately, the goal is not just to tick boxes
in a table, but to rigorously fulfill the safety
objectives defined for that specific phase of
development.”

Build Software
that Matters

Using Unit Tests

“For our lower criticality components, we do
use unit testing at Zenseact in conjunction
with other forms of testing. But for those
components that we've determined are
most critical to the system'’s safety, we have
introduced formal verification.”

In order to use software to assist or even take
over the driving responsibility safely, Zenseact
ensures the development process is sound all
the way from requirements down to production
code. Most software companies do this by
constructing a large number of unit tests. This
means setting up scenarios, each consisting
of specific descriptions of exactly what will
happen in what order, and expected outputs
from the component.

For Example:

Component: Distance-evaluation function

Input: SensorReading = 010 m

Threshold: 0.50 m

Expected output: true
(indicating that the distance is unsafe)

This approach is time-tested, but it is also
expensive, even when testing is automated.
Reducing the amount of unit testing by using
formal methods saves time and developer
fatigue in the development process. Some
unit tests will be replaced by formal proof,
while some unit tests will be retained (for
those requirements that cannot be or are too
expensive to formalize).




AdaCore

Figure 1: Example of code

procedure
(Sample : in Boolean;
Accelerator_Pressed : out Boolean)
is
begin
if Sample then

if Current_Accelerator_Samples < Accelerator_Samples’Last then

Current_Accelerator_Samples
end if;
else
Current_Accelerator_Samples
end if;

Accelerator_Pressed :=

:= Current_Accelerator_Samples + 1;

:= Accelerator_Samples’First;

Current_Accelerator_Samples = Accelerator_Samples’lLast;

end H

Using SPARK to Remove Undefined
Behavior

SPARK proves that key properties hold
throughout the code, providing strong
guarantees that would be difficult to achieve
through code review or unit testing alone.
For example, the following procedure (from
an earlier version of a component called the
Ride Mode Manager) determines whether the
accelerator pedal should be considered to be
pressed based on consecutive input samples
as in Figure 1 above.

This procedure counts consecutive “pressed”
samples, prevents counter overflow, and sets
Accelerator_Pressed to true only when a stable
sequence of positive samples is observed.

SPARK ensures that:

« For all if-statements, there are possible
input values that lead to the true condition,
and also those that lead to the false
condition

+ No assignments are being done to input
values (Sample:= 5; would be a mistake)

« All output values are being assigned to
(Accelerator_Pressed)

« There are no implicit conversions

« There are no out-of-bounds array

accesses, null pointers being dereferenced,
or uninitialized values being used

+ Side-effects are disallowed where they can
cause undefined behaviour in C / C++

Build Software
that Matters

Without these checks, which are defined in
the Ada language and proved statically by
SPARK, Zenseact would have to rely solely on
code review and/or testing to demonstrate the
absence of undefined behavior, both of which
are more error-prone, slower, and much more
expensive. For more complex examples, dealing
with calculations and especially floating point
values, the list of subtleties the code reviewer
must be aware of only grows. As a result,
reviewers tend to accept code that has hidden
vulnerabilities waiting to be triggered. Unit
testing can only cover cases that the writer of
the tests knows about. If the author has never
heard of floating point underflow, chances
are there will be no test for such conditions
in their code, and again, the code reviewer
may not correct this mistake. SPARK provides
automated, static verification, reducing the risk
of hidden vulnerabilities and ensuring that the
code behaves as intended.




AdaCore

The SPARK adoption process

Companies can be hesitant about adopting a
new language for their teams. Zenseact built a
new team and shared its onboarding insights,

“From the beginning, the problem was always
that it was hard to find developers with prior
experience in Ada, but | have found that C++
developers only need to learn a few syntax
changes, which seem large but actually are
quite trivial. Competent programmers learn
SPARK very rapidly and are immediately

effective. The similarity to programming in
other languages is a big advantage compared
to model-based development methodologies,
which require a very different way of working.”

“Writing code contracts is difficult. It requires
a level of reasoning that takes a lot of practice
to master. On the other hand, we've found that
within the existing teams, proofs present a
unique puzzle that draws engineers all by itself.
At Zenseact, we have a very fluid and flexible
structure that allows engineers to find the
problems they find mostinteresting, and an open
environment that facilitates internal teaching
and collaboration across disparate feature sets.
| believe this is essential in fostering in-house
SPARK expertise. The process of teaching and
developing the necessary knowledge of working
with proofs should not be underestimated; it is
quite significant.”

Build Software

that Matters

“AdaCore has been very good
in responding quickly and
handling our issues, which

have mostly just been in
finding and understanding
the correct documentation
for the tools they provide.

The project is going well;
we have a growing team of
SPARK engineers, and the
significant benefit is that
we can now release product
features with high criticality
requirements.”

“AdaCore has been very good in responding
quickly and handling our issues, which have
mostly justbeenin finding and understanding
the correct documentation for the tools
they provide.

The project is going well; we have a growing
team of SPARK engineers, and the significant
benefit is that we can now release product
features with high criticality requirements.”

Conclusion

Through the use of full program contracts and
formal verification thereof using SPARK tools
in the CI system, Zenseact is able to push
the boundaries of software development.
As the automotive industry continues its
transition towards increasingly autonomous,
software-defined vehicles, Zenseact's use of
SPARK shows how formal verification can be
applied pragmatically to meet the highest
safety requirements. By combining proven
technology with disciplined engineering
practice, Zenseact is building a foundation of
trust that supports its ambition to deliver the
safest cars in the world.




0101 11 0111c

1 111 1010001

00 11 00 0 0011011C

0 1 0 110110110C
11100000010C

1 1 o1 1

Build Soft
AdaCore | i

adacore.com L ! * X


https://www.linkedin.com/company/adacore/
https://github.com/adacore
https://x.com/AdaCoreCompany/
https://bsky.app/profile/adacore.bsky.social

