GNAT: The GNU Ada Compiler

June, 2004

Copyright (C) Javier Miranda and Edmond Schonberg
jmiranda @iuma.ulpgc.es, schonberg @cs.nyu.edu

Applied Microelectronics Research Institute
University of Las Palmas de Gran Canaria
Canary Islands
Spain

Computer Science Department
New York University
U.S.A.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any latter published by the Free Software Foundation;

with the Invariant Sections being “GNU General Public Documentation
License”, the Front-Cover text being “GNAT: The GNU Ada Compiler”,
and the Back-Cover text being “Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Contents

I First Part: Introduction

1 The GNAT Project
L1 GCC . .o
1.2 The GNAT Compiler
1.3 CompilationModel
1.3.1 Traditional Compilation Model
1.3.2 GNAT Compilation Model

1.4 Summary

2 Overview of the Front-end Architecture
2.1 TheScanner
22 TheParser
2.2.1 The Abstract Syntax Tree
2.3 The Semantic Analyzer
24 TheExpander

25 Summary e

3 Error Recovery
3.1 Scanner Error Recovery

3.1.1 Use of the Casing of Identifiers

il

10
10
12
13
13
17

v

IT

CONTENTS

3.2 Parser ErrorRecovery
3.2.1 The Parser Scope-Stack
3.2.2 Example 1: Use of indentation
3.2.3 Example 2: Handling Semicolon Used in Place of ’is’
3.2.4 Example 3: Handling ’is’ Used in Place of Semicolon

33 Summary ... e e

Second Part: Semantic Analysis

Scopes and Visibility

4.1 Flags and Data Structures

4.2 Analysis of Records, Tasks and Protected Types..

4.3 Analysisof Packages

4.4 Analysis of Private Types
4.4.1 Private Entities Visibility
4.4.2 Private Type Declarations
4.4.3 Deferred Constants and Incomplete Types
444 Limited Types,
445 Analysisof ChildUnits.
4.4.6 Analysisof Subunits 0oL

4.5 NameResolution

4.6 Summary e e e

Overload Resolution
5.1 Resolution Algorithm

5.1.1 Additional Details for the Bottom-Up Pass

39

41
41
45
46
47
48
49
51
51
51
52
52
53

CONTENTS

5.2

5.1.2 DataStructureso
5.1.3 Additional Details for the Top-Down Pass

Summary

6 Analysis of Discriminants

6.1
6.2
6.3
6.4

Analysis of Discriminants
Analysis of Discriminants in Derived Types

Discriminals e

7 Generic Units

7.1

7.2

7.3

7.4
7.5
7.6

GenericUnits Lo
7.1.1 Analysis of Generic Units
7.1.2 Instantiation of Generic Units
7.1.3 Parameter Matching
7.1.4 Private Types
Nested Generic Units
7.2.1 Analysis of Nested Generic Units
7.2.2 Instantiation of Nested Generic Units
GenericChildUnits
7.3.1 Analysis of Generic Child Units
7.3.2 Instantiation of Child Generic Units
Delayed Instantiation of Bodies

Detection of Instantiation Circularities

8 Freezing Analysis

vi CONTENTS
8.1 Freezing Types and Subtypes 94

8.2 Freezing Expressions 95

8.3 Freezing Objects 96

8.4 Freezing Subprograms 96

8.5 Freezing Packages 97

8.6 Freezing GenericUnits 97

87 Summary 98
III Third Part: Expansion 99
9 Expansion of Tasks 101
9.1 TaskCreation 102

9.2 Task Termination 103

9.3 Task Abortion 103

9.4 Expansion of Task Type Declarations 104

9.5 TaskBody Expansion 105

9.6 Example of Task Expansion 106

9.7 Summary e 108

10 Expansion of Rendezvous and related Constructs 109
10.1 Entry Identification 110
10.2 Entry-Call Expansion 110
10.2.1 Expansion of Simple Entry-Calls 112

10.2.2 Expansion of Conditional and Timed Entry-Calls 112

10.3 Asynchronous Transfer of Control 113

10.3.1 ATC Implementation Models 114

CONTENTS vil

10.3.2 Expansionof ATC 116

10.4 Expansion of Accept Statements 117
10.4.1 Simple Accept Expansion 117
10.4.2 Timed and Selective Accept 118
10.4.3 Count Attribute Expansion 120

10.5 Summary 120
11 Expansion of Protected Objects 121
11.1 The ProxyModel 123
11.1.1 Implementation 124

11.2 Expansion of Protected Types 125
11.2.1 Expansion of Protected-Type Specification 125
11.2.2 Expansion of Protected Subprograms 127
11.2.3 Expansion of Entry Barriers 129
11.2.4 Expansion of Entry bodies 129
11.2.5 Table to Barriers and Entry-Bodies 130
11.2.6 Expansion of Entry Families 130

11.3 Optimizations o v v v it ettt e 130
11.4 Summary e 131
12 Expansion of Controlled-Types 133
12.1 Implementation Overview 134
12.1.1 Exceptional Block Exit 135
12.1.2 Finalization of Anonymous Objects 136
12.1.3 Finalization of Dynamically Allocated Objects 136
12.1.4 Problems Related to Mutable Objects 137

12.1.5 Controlled Class-Wide Objects 137

viil

CONTENTS

12.2 Expansion Activities for Controlled-Types 138
12.2.1 Expansion of Assignment 139

12.2.2 Expansion of Anonymous Controlled Objects 140

12.2.3 Objects with Controlled Components 141

12.3 Summary e 143

13 Expansion of Tagged-Types 145
13.1 Tagged and Polymorphic Objects 146
13.2 The DispatchTable 147
13.3 Primitive Operations 149
134 Summary 152
IV Fourth Part: Run-Time 155
14 Tasking 157
14.1 The Ada Task Control Block 157
142 Task States 158
14.3 Task Creation and Termination 159
14.4 Run-Time Subprograms for Task Creation and Termination 163
14.4.1 GNARL.Enter Master 165

1442 GNARL.Create_Task 165

14.4.3 GNARL.Activate Tasks 166

14.4.4 GNARL.Tasks Wrapper 168

14.4.5 GNARL.Complete_Activation 168

14.4.6 GNARL.Complete Task 169

1447 GNARL.Complete Master 169

CONTENTS

14.5 Summary

15 The Rendezvous
15.1 The Entry-CallRecord
15.2 Entriesand Queues e
15.3 Accepted-Calls Stack
15.4 Selective Accept
15.5 Run-Time Rendezvous Subprograms
15.5.1 GNARL.Call Simple
15.5.2 GNARL.Call_ Synchronous
15.5.3 GNARL.Task Do Or_ Queue
15.5.4 GNARL.Task Entry Call
15.5.5 GNARL.Accept_ Trivial
15.5.6 GNARL.AcceptCall
15.5.7 GNARL.Complete_ Rendezvous
15.5.8 GNARL.Exceptional Complete_Rendezvous
15.5.9 GNARL.Selective Wait
15.5.,10GNARL.Task Count

15.6 Summary

16 Protected Objects
16.1 TheLock
16.2 Run-Time Subprograms
16.2.1 GNARL.Protected Entry Call
16.2.2 GNARL PO Do OrQueue.
16.2.3 GNARL.Service Entries

163 Summary

X

170

171
172
173
174
174
176
176
176
177
177
177
178
178
178
179
180
180

17 Time and Clocks
17.1 Delay and Delay Until Statements
17.2 Timed Entry Call

17.3 Timed Selective Accept

17.4 Run-Time Subprograms

17.4.1 GNARL.Timed Delay

17.5 Summary

18 Exceptions
18.1 Data Structures

18.1.1 Exception_Id

18.1.2 The Exceptions Table

18.2 Run-Time Subprograms

18.2.1 GNARL.Raise

18.3 Summary

19 Interrupts
19.1 POSIX Signals
19.1.1 Reserved Signals

19.2 Data Structures

19.2.1 Interrupts Manager: Basic Approach

19.2.2 Server Tasks: Basic Approach

19.2.3 Interrupt-Manager and Server-Tasks Integration

19.3 Run-Time Subprograms
19.3.1 GNARL.Install Handlers

19.3.2 GNARL.Attach_Handlers

19.4 Summary

CONTENTS

187

CONTENTS

20 Abortion
20.1 Run-Time Subprograms
20.1.1 GNARL.Task Entry Call
20.1.2 GNARL.Locked_Abort_-To Level
20.1.3 GNARL.Locked_Abort To Level

20.2 Summary e

V Fifth Part: Appendix

A How to add new Keywords, Pragmas and Attributes
Al Drago e
A.2 First Step: Addition of new Keywords
A.3 Second step: Additionof new tokens L.
A.4 Third Step: Update the Scanner Initialization
A.5 Addition of Pragmas an Attributes
A.6 Addition of New Syntax Rules
A.6.1 First step: Addition of New Node Kinds
A.6.2 Second Step: High-level specification of the new nodes . .
A.6.3 Third Step: Automatic modification of the frontend
A.6.4 Fourth Step: Update of the Parser
A.7 Verification of the Semantics
A.8 Treeexpansion

A9 Summary

B Glossary

C GNU Free Documentation License

X1

211
214
215
215
215
216

219

221
221
222
223
224
225
225
226
227
228
228
229
230
230

231

237

Xii

CONTENTS

1. APPLICABILITY AND DEFINITIONS 238
2. VERBATIM COPYING 239
3. COPYING IN QUANTITY 240
4. MODIFICATIONS o oo o 241
5. COMBINING DOCUMENTS 243
6. COLLECTIONS OF DOCUMENTS 243
7. AGGREGATION WITH INDEPENDENT WORKS 244
8 TRANSLATION o .. 244
9. TERMINATION 244
10. FUTURE REVISIONS OF THISLICENSE 245

ADDENDUM: How to use this License for your documents 245

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

4.1
4.2
4.3
4.4
4.5

GNAT Compiler. 11
GNAT Front-End Phases. 12
GNAT Overall Structure. 14
Architecture of the GNAT Scanner 20
Structure of the GNAT Parser 21
Abstract Syntax Tree Construction. 22
Abstract Syntax Tree Packages. 23
Abstract Syntax Subtree associated with the package body rule. . . 24
Abstract Syntax Tree Decoration. 24
Structure of the Semantic Analyzer. 25
Abstract Syntax Tree Nodes Dispatching. 26
Abstract Syntax Tree Expansion. 27
Architecture of the GNAT Expander 28
The Scope Stack 42
List of entities in the same scope. 43
Lists of homonym entities. 44
The matrix of entities. 45
Analysisofarecord. L. 46

Xiv

4.6
4.7
4.8
4.9
4.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

10.1

11.2

13.1

14.1
14.2
14.3

15.1

LIST OF FIGURES

Analysis of a protected type., 47
Visible and Private Entities 49
Reference to the Full-View Entity 50
Swapping of the Private Declaration and the Full View 50
Deferred Constants Handling 51
Step 1: Copy the original generic AST. 73
Step 2: Analyze and decorate thecopy. 74
Step 3: Remove local references in the original AST. 74
Instantiation of genericunits. 75
Nested generic packages. 81
Analysis of generic package Gen_ Pkg_1. 82
Analysis of nested generic package Gen Pkg 2. 83
Saving global references. 83
Instantiation of nested generic units. 84
Sequence of steps to instantiate Child_Instance. 88
Data structures associated to an entry-call. 111
Proxy Model: Call-Back Implementation. 125
Proxy Model: In-Line Implementation. 125
Dispatch Table Example. 148
Run-Time Information Associated with Each Task. 158

Definition of Parent, Activator, Master of Task and Master Within. 161

GNARL Subprograms Called During the Task Life-Cycle 163

Data structures associated to an entry-call. 172

LIST OF FIGURES XV

15.2
15.3

16.1

17.1
17.2

17.3

17.4
17.5

18.1
18.2
18.3

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

20.1
20.2

A.l

Entry Queues. 174
Simple Accept. 175
Graphical Representation of the Protected Object. 183
GNARL Subprograms for the Delay Statement. 188
GNARL Subprograms for the Delay Statement in an Ada Program

without Tasks. L 188
GNARL Subprograms for the Delay Statement in an Ada Program

withTasks. o 189
GNARL Subprograms for Timed Entry Call. 190
GNARL Subprograms for Timed Selective Accept. 191
Exception Identifier Record 194
Occurrence Identifier. 195
HashTable. 196
Reserved Interrupts Table. 201
Table of User-Defined Interrupt-Handlers. 202
Basic Automaton Implemented by the Interrupts Manager. 203
Server Tasks Signal Handling. 204
Basic Automaton Implemented by the Server Tasks. 205
Simplified Server Tasks Automaton. 206
Server Tasks Automaton. 206
List of Interrupt Handlers in Non-Nested Style. 208
GNARL Subprograms for the Abort Statement. 214
Entry Calls Stack. 216

GNAT utility programs. 228

XVl LIST OF FIGURES

A.2 New parser structure.o 229

A.3 GNAT semantic utility program 229

Preface

The GNAT compilation system is a full implementation of Ada95 for a variety of
machines and operating systems. GNAT is part of the GCC suite of compilers, and
as such it is distributed under the GNU Public licence, with the suitable modified
library licences that allow its full use in industrial contexts.

The GNAT system was first developed as an academic project at New York
University (its was originally the acronym for the GNU NYU Ada Translator, but
it is now a name with no encrypted meaning). Ada Core has taken over main-
tenance and development of the system since 1995. A version of the system is
now part of the GCC sources, which has made Ada 95 into one of the core GCC
languages.

GNAT is nowadays a mature technology used for large-scale industrial projects,
as well as research and education in compiler technology. Though the system con-
tinues to evolve as it is ported to new targets, as more sophisticated optimizations
are implemented (and as occasional bugs are fixed), the architecture of GNAT has
been stable for a number of years. The purpose of the present document is to make
this architecture more accessible to users and researchers. The sources of GNAT
are very carefully documented, but a program of half-a-million lines is a daunt-
ing object to approach, and we hope that this document will make this approach
easier.

Understanding a compilation system requires mastering two complementary
subjects: the semantics of the programming language being implemented, and the
algorithms that realize the translation and implement the run-time semantics. We
have structured this document to serve as bridge between the two entities that are
the ultimate authorities on each: the Ada95 reference manual, and the full sources
of GNAT. We expect that the user of this document will navigate between it, the
ARM, and GNAT, as need and curiosity dictate. For this reason the document
has extremely numerous links to both, integrating them into a hypertext that is
flexible, reasonably complete, and easy to navigate.

2 Preface

The code generator for GNAT is the GCC back-end, whose portability has
allowed GNAT to be implemented on many targets. The architecture of GCC
has been the subject of many publications, and we do not discuss any of it here.
Therefore, this book is concerned only with the front-end of a full compilation
system. This is large enough a task!

The standard description of a compiler front-end distinguishes between the
context-free portions of the translation (lexical and syntactic translation), and the
context-sensitive phase (static semantics). In this book we focus mostly on the
second phase, for reasons of space, technical interest, and personal competence.

Audience

The book should be of interest to software practitioners interested in compiler
technology, language experts who want to examine the implementation of com-
plex constructs in a modern programming language, compiler writers looking for
ideas, and software engineers interested in Ada95, in concurrency, in distributed
programming and in real-time systems. Finally, the book will be useful to those
who want to experiment with language extensions, and want to modify portions
of GNAT to implement new constructs in Ada95 or the forthcoming Ada 2005
revision of the language.

In an educational context, the GNAT front-end is an interesting adjunct to
courses in programming languages, compilers, and operating systems. The GNAT
front-end translates a modern, complex imperative language with a rich type sys-
tem, object-oriented features, and genericity. These central aspects of modern
languages (Ada95, C++, Java, C#, etc.) are seldom discussed in detail in texts
on Compilers. The user of this book will find therein a summary of the central
implementation choices made in GNAT, and pointers to the detailed algorithms in
the sources.

The GNAT run-time supports concurrency (tasking, protected objects) on a
variety of operating systems, by means of a mostly-target-independent interface,
whose primitives are close to those of the POSIX standard. As such, it can be a
useful adjunct in a discussion of Operating Systems, of the semantics of concur-
rency, and on the efficiency of various synchronization primitives.

The book is not intended to be a stand-alone text in Compilers, nor a reference
in which to learn Ada. The reader is assumed to have some familiarity with the
language, and with basic compilation techniques, such as would be a found in a

Preface 3

senior course in Programming Languages. We have included brief descriptions
of the more interesting constructs in the language, to motivate the issues of im-
plementation that we want to discuss. We have also included numerous language
fragments to illustrate specific translation techniques. Many of these fragments
present not just a source program, but its rewriting and expansion into a simpler
form that is more amenable to translation into machine language.

Use of this Book

In order to facilitate the use of the book, it is distributed in several formats: Hyper-
Text Markup Language (HTML), PostScript (PS), and Portable Document Format
(PDF). The HyperText version is the recommended format because it is linked
with the GNAT sources, what allows the reader to analyze additional details not
discussed in this book. The other formats facilitate its printing.

Structure of the Book

The book is structured in four parts:

e Part I: Introduction. The three chapters in this part present an overview of
the GNAT compilation system, the architecture of the front-end, the data-
structures used in the abstract representation of a program, and the error
diagnostic and recovery techniques implemented in the GNAT parser and
semantic analyzer.

e Part II: Semantic Analysis. Here we discuss the implementation strategies
for the more interesting and complex aspects of the language, from the point
of view of their translation into a low-level target independent representa-
tion. The topics include the analysis of scope and visibility, type checking
and overloading, discriminants, generics, and freezing rules.

e Part III: Expansion. This part describes the first step in the synthesis of an
object program, namely the transformation of the first target-independent
representation into a simpler one, whose semantic level is close to that of
C and which is therefore easier to translate into machine language. The
complexity of this phase is a reflection of the richness of modern program-
ming languages. Constructs that present interesting expansion challenges,

4 Preface

and which we discuss at length, include aggregates, tagged types, controlled
types, protected objects, tasks, and everything having to do with intertask
communication.

e Part IV: The Run-Time. In this part, we discuss the structure of the run-
time system. We discuss the following in some detail: tasking (creation,
activation, termination, abortion), rendezvous, protected objects, clocks and
delay statements, exceptions, interrupts, and finally asynchronous transfer
of control.

e Part V: Appendix. This appendix describes how to modify the GNAT
front-end to implement language extensions. We sketch the techniques nec-
essary to add keywords, pragmas, attributes, and new constructs to the lan-
guage.

As explained above, the book does not discuss the implementation of the scan-
ner and the parser, which are more conventional portions of any compiler. The
interested reader will nevertheless find much elegant algorithms in those sections
of the sources. The scanner is engineered to handle multiple character encodings,
and the parser has what is considered to be the best set of error recovery strategies
of any Ada compiler in use. We trust that compiler engineers will find a wealth of
ideas in those sources.

Acknowledgements

The GNAT compiler is the product of several hundred person-years of work, start-
ing with the NYU team that created the first validated Ada83 translator more than
20 years ago, and continuing today with the dedicated and enthusiastic members
of Ada Core Technologies, and the myriad supportive users of GNAT whose sug-
gestions keep improving the system. It is impractical to aknowledge all of the
above by name, but we must express our very special thanks and admiration for
Robert Dewar, chief architect, team leader, creator of some of the most interest-
ing algorithms in GNAT, tireless enforcer of good programming practices, and an
unsurpassable example of how to write impeccable software.

Part of this work has been developed under grant of the Spanish Government,
reference code PR2002-0290.

Preface 5

Short Biography

Edmond Schonberg is professor and deputy Chair of the Department of Computer
Science at New York University, and one of the founders of Ada Core Technolo-
gies. He has a PhD in Physics from The University of Chicago, and a BA in piano
performance from the National Conservatory in Lima, Peru. His research inter-
ests are in programming languages, compilers, and optimization. He was part of
the team that created Ada/Ed, the first complete translator for Ada83, and was
one of the leaders of the GNAT project at New York University, that built the first
prototype compiler for Ada95.

Javier Miranda studied Computer Science Engineering at the University of
Las Palmas de Gran Canaria. He finished his studies on 1990 by implementing a
Modula-2 compiler and went to the Technical University of Madrid to do his PhD
under the direction of Angel Alvarez and Sergio Arévalo, on the design of an Ada
extension for programming distributed systems. The experimental integration of
this work into the GNAT compiler led him to become familiar with the internal
details of the GNU Ada compiler. On 2003 he went to New York to collaborate
with Edmond Schonberg on the writing of this book, which summarizes the ex-
perience achieved during these years. Currently his main line of research is the
integration of the new Ada 2005 features into the GNAT compiler.

New York and the Canary Islands, June, 2004

Preface

Part I

First Part: Introduction

Chapter 1

The GNAT Project

GNAT is an acronym for GNU Ada Translator; a Front-End and Run-Time system
for Ada 95 that uses the GCC back-end as a retargettable code generator, and is
distributed according to the guidelines of the Free Software Foundation. GNAT
was initially developed by two cooperating teams:

o New York University Team. This group, led by Prof. Robert B.K. Dewar,
and Edmond Schonberg was responsible for the development of the front-
end of the compiler.

e Florida State University Team. This group, also known as the POSIX Ada
Real-Time Team, was led by Prof. Theodore P. Baker, and was responsible
for the first design of the concurrency components of the run-time library.

The NYU project was sponsored by the U.S. government from 1991 to 1994.
In August, 1994 the members of the NYU team created the company Ada Core
Technologies, Inc., which provides technical support to industrial users of GNAT
and has transformed GNAT into an industrial-strength, full-featured compiler:
GNAT Pro). This compiler includes a modern tool suite and environment for the
development of Ada-based software (i.e. GPS). Nowadays Ada Core continues
investing resources to port GNAT to new architectures and operating systems, and
has an active participation in the new revision of Ada (Ada 2005). Ada Core pe-
riodically makes available public versions of the compiler to the Ada community
at large.

This chapter introduces the main components of GNAT. It is structured as fol-
lows: Section 1.1 briefly introduces GCC; Section 1.2 presents the main compo-

9

10 CHAPTER 1. THE GNAT PROJECT

nents of the GNAT compiler. Finally, Section 1.3 gives an overview of the GNAT
compilation model.

1.1 GCC

GCC [Sta04] is the compiler system of the GNU environment. GNU (a self-
referential acronym for ’GNU is Not Unix’) is a Unix-compatible operating sys-
tem, being developed by the Free Software Foundation, and distributed under the
GNU Public License (GPL). GNU software is always distributed with its sources,
and the GPL enjoins anyone who modifies GNU software and redistributes the
modified product to supply the sources for the modifications as well. Thus, en-
hancements to the original software benefit the software community at large.

GCC is the centerpiece of the GNU software. It is a compiler system with
multiple front-ends and a large number of hardware targets. Originally designed
as a compiler for C, it now includes front-ends for C++, Objective-C, Ada, For-
tran, Java, and treelang. Technically, the crucial asset of the GCC is its mostly
language-independent and target-independent code generator, which produces ex-
cellent quality-code both for CISC and RISC machines. Remarkably, the machine
dependences of the code generator represent less than 10% of the total code. To
add a new target to GCC, an algebraic description of each machine instruction
must be given using a Register-Transfer Language (RTL). Most of the code gen-
eration and optimization then uses the RTL, which GCC maps when necessary
into the target machine language. Furthermore, GCC produces high-quality code,
comparable to that of the best commercial compilers.

1.2 The GNAT Compiler

The first decision involved choosing the language in which GNAT compiler should
be written. GCC is fully written in C, but for technical reasons, as well as non-
technical ones, it was inconceivable to use anything but Ada for GNAT itself. In
fact, the definition of the Ada language depends heavily on hierarchical libraries,
and cannot be given except in Ada 95, so that it is natural for the compiler and the
environment to use child units throughout.

The GNAT team started using a relatively small subset of Ada83, and in typi-
cal fashion, extended the subset whenever new features became implemented. Six
months after the coding started in earnest, they were able to bootstrap the com-

1.2. THE GNAT COMPILER 11

piler, and abandon the commercial compiler they had been using up to that point.
As soon as more Ada95 features were implemented, they were able to write GNAT
in Ada9%s.

The GNAT compiler is composed of two main parts: the Front-End and the
Back-End (cf. Figure 1.1). The front-end of is written in Ada 95, and the back-end
is the GCC back-end extended to meet the needs of Ada semantics (i.e. exceptions
support).

Back-End N Object I
|
|

(Ada) (GCC)

Compiler

Figure 1.1: GNAT Compiler.

The front-end comprises five phases (cf. Figure 1.2): Lexical Analysis (Scan-
ning), Syntax Analysis (parsing), Semantic Analysis, Expansion, and GIGI phases.
The scanner analyzes the input characters and generates the associated Tokens.
The parser verifies the syntax of the tokens and creates the Abstract Syntax Tree
(AST). The semantic analyzer performs all static legality checks on the program
and decorates the AST with semantic attributes. The expander transforms high-
level AST nodes (nodes representing tasks, protected objects, etc.) into equivalent
AST fragments built with lower-level abstraction nodes and, if required, calls to
Ada Run-Time library routines. Given that code generation requires that such
fragments carry all semantic attributes, every expansion activity must be followed
by additional semantic processing on the generated tree (see the backward ar-
row from the expander to the semantic analyzer). At the end of this process the
GIGI phase transforms the AST into a tree which is read by the GCC back-end
(GNAT to GNU transformation phase). This phase is really an interface between
the GNAT front-end and the GCC back-end. In order to bridge the semantic gap
between Ada and C, several GCC code generation routines have been extended,
and others added, so that the burden of translation is also assumed by GIGI and
GCC whenever it is awkward or inefficient to perform the expansion in the front-
end. For example, there are code generation actions for exceptions, variant parts
and accesses to unconstrained types. As a matter of GCC policy, the code genera-
tor is extended only when the extension is likely to be of benefit to more than one
language.

12 CHAPTER 1. THE GNAT PROJECT

Syntax tree y Decorated tree

- -Scanner: <o Parser: Semantic - -
Source_g Lo A da): |- (AdR) D e O,/O\;O\ | Analyzer:: e O‘/O\;O\ —:
d
code i L ﬁ N L% Chdw SN LN |
Vs E S ¥ \D
Expanded and decorated tree N GCC tree fragments
;/O\ ;/O\ GCC
¥ O\ ’O\ ? ¥ O\ back-end
? O, O, O
HhTh Y !

Figure 1.2: GNAT Front-End Phases.

All these phases communicate by means of a compact Abstract Syntax Tree
(AST). The implementation details of the AST are hidden by several procedural
interfaces that provide access to syntactic and semantic attributes. It is worth men-
tioning that strictly speaking GNAT does not use a symbol table. Rather, all se-
mantic information concerning program entities is stored in defining occurrences
of these entities directly in the AST.

There is a further unusual recursive aspect to the structure of GNAT. The pro-
gram library (described in the next section) does not hold any intermediate rep-
resentation of compiled units. As a result, if the expander generates a call to a
Run-Time Library routine, the compiler requires the specification of the corre-
sponding Run-Time package to be analyzed as well (see the backward arrow from
the expander to the parser).

1.3 Compilation Model

The notion of program library is one of the fundamental contributions of Ada to
software engineering. The library guarantees that type safety is maintained across
compilations, and prevents the construction of inconsistent systems by excluding
obsolete units. In most Ada compilers, the library is a complex structure that
holds intermediate representations of compiled units, information about depen-
dences between compiled units, symbol tables, etc. GNAT has chosen a different
approach: the separate files that constitute the program are separately compiled,
and each compilation produces a corresponding object file. These object files are
then linked together by specifying a list of object files in a program. Thus, the

1.3. COMPILATION MODEL 13

Ada library consists of a set of such object files (there is no library file as such).
In the following sections we briefly present both alternatives.

1.3.1 Traditional Compilation Model

In the traditional model, an Ada library is a data structure that gathers the results
of a set of compilations of Ada source files. A compilation is performed in the
context of such a library, and the information in the library is used to enforce type
consistency between separately compiled modules. Unlike some other language
environments, all such type checking is performed at compile time, and Ada guar-
antees at the language level that separately compiled modules of a complete Ada
program are type consistent.

In this model, building an Ada program consists of selecting a main program
(a parameterless procedure compiled into the Ada library), and all the modules
on which this main program depends, and bound them into a single executable
program. A definite order of compilation is enforced by the language semantics
and implemented by means of the Ada library. Basically, before a compilation unit
is compiled, the specification of all the units on which it depends must be compiled
first. This gives the Ada compiler a fair amount of freedom in the compilation
order. An important consequence of this model is the notion of obsolete unit. If
a unit is recompiled, then units which depend on it become obsolete, and must be
recompiled. Again, the Ada library is the data structure used to implement this
requirement.

In the Ada Reference Manual [AAR9S5, Chapter 10], there are specific refer-
ences to a Library File, and this is often taken to mean that the Ada Library should
be represented using a file in the normal sense. Most Ada systems do in fact im-
plement the Ada library in this manner. However, it is generally recognized that
the Ada Reference Manual does not require this implementation approach. In this
view, an Ada library is a conceptual entity that can be implemented in any manner
that supports the required semantics. In fact the monolithic library approach is
ill-adapted to multi-language systems, and has been responsible for some of the
awkwardness of interfacing Ada to other languages.

1.3.2 GNAT Compilation Model

GNAT has chosen a completely different approach: sources are independently
compiled to produce a set of objects, and the set of object files thus produced is

14 CHAPTER 1. THE GNAT PROJECT

submitted to the binder/linker to generate the resulting executable (cf. Figure 1.3).
This approach removes all order of compilation considerations, and eliminates the
traditional monolithic library structure. The library itself is implicit, and object
files depend only on the sources used to compile them, and not on other objects.
There are no intermediate representations of compiled units, so that unit decla-
rations appearing in context clauses of a given compilation are always analyzed
anew. Dependency information is kept directly in the object files (in fact, they are
kept in a small separate file, conceptually linked to the object file), and amounts
to a few hundred bytes per unit.

T
|

| Object |
| code |

—=== e T T T e e — |

I :
Source | j N aer.) |
| Source | gl-OmpHer| o, Object | o BHIACK >
| (Ada) I_> GNAT) "GN Linker —b: Executable |

s R e R |

L E e N D PR PPN - —

Figure 1.3: GNAT Overall Structure.

Given the speed of the GNAT front-end, this approach is no less efficient than
the conventional library mechanism, and has the following advantages over it:

1. The compilation of an Ada unit is identical to the compilation of a module
or file in another language: the result of the compilation of one source is
one object file.

2. Given that inlining is always done from the source, there is no requirement
that the entities to be inlined should be compiled first. It is even possible
for two bodies to inline functions defined in each other, without fear of cir-
cularities. Thus inlining works in a much more flexible way than in normal
Ada compilers.

3. The standard system utilities to copy, rename and remove files can be re-
used to copy, rename and remove object modules.

4. Since GNAT uses the same compilation model as other languages, it is also
much easier to build programs where various parts of the program are built

1.3. COMPILATION MODEL 15

in different languages. Furthermore, GCC is committed to common system
standard conventions for calling sequences, object module formats, includ-
ing debugging information, and data structure layouts, so it is also easy to
integrate Ada with any language supported by GCC. GNAT even makes
possible to write multi-language programs whose main program is not itself
written in Ada.

5. It is more compatible with conventional configuration management tools
than the conventional library structure (tools ranging from the simple UNIX
make program to sophisticated compilation management environments).

In the GNAT model, a source file contains a single compilation unit, and a
compilation is represented as a series of source files, each of which contains one
compilation unit. Furthermore there is a direct mapping from unit names to file
names, so that from a unit name one can always determine the name of the file
that contains the source for that unit. The default file naming convention is as
follows: (1) The file name is the expanded name of the unit, with dots replaced by
minus sign, (2) The extension “.ads” is used for specifications, and the extension
“.adb” for bodies. Only the body produces an object file, so the fact that the spec-
ification and body have the same file name does not cause difficulties. The object
file conceptually contains the Ada Library Information for that source (extension
“.ali”’) whose most important component is a recording of the time stamps of the
compilation units on which a compiled unit depends.

In this model the compilation of a source file may require other source files.
These include:

1. The corresponding specification for a body.

2. The parent specification of a child library spec.

3. Specifications of with’ed units.

4. Parent body for a subunit.

5. Bodies of inlined subprograms.

6. Bodies of instantiated generics.

The key understanding is that in GNAT, dependencies are not established from

one compilation unit to another, but from object files to corresponding source files.
In this context GNAT is re-interpreting the Ada “order of compilation” rules to be

16 CHAPTER 1. THE GNAT PROJECT

“dependency on source files” rules. The rules regarding compilations that obsolete
other compilations are similarly reinterpreted. For example, a rule that says: The
body of package cannot be compiled until its specification has been compiled, is
re-interpreted to mean: The body of package cannot be compiled unless the source
of its specification is available. One interesting consequence of this approach is
that if all the sources of a program are available, there are in fact no restrictions on
the order of compilation. This feature facilitates the parallel compilation of Ada
programs.

The main argument against the GNAT model is that the compiler is constantly
recompiling the specification of with’ed units. However, the alternative is not
better. In traditional Ada library-based systems, the result of a compilation is
to place information, typically some kind of intermediate tree, in the library. A
subsequent with_clause then fetches this tree from the library. In practice, this tree
information can be huge, often much bigger than the source. Furthermore, it is
generally a complex interlinked data structure. Thus it is not clear that re-reading
and recompiling the source is less efficient than writing and reading back in these
trees. It’s true that recompiling means redoing syntax and semantic checking, but
this causes less Input/Output than reading and writing linked structures. On the
contrary, the GNAT model gives all the previously discussed advantages.

The Binder

Ada establishes the rules which determine valid orders of elaboration [AAR9S5,
Section 10.2]. It is also possible to construct programs for which no possible order
of elaboration exists. Such programs are illegal, and must be diagnosed prior to
execution. Because this work can not be established until all the object files are
available, GNAT needs an special pre-linker (the binder) which establishes a valid
sequence of calls to the initialization procedures for specifications and bodies (cf.
Figure 1.3).

Part of the processing in the GNAT binder ascertains that the program is con-
sistent by looking at time stamps in the ALI files associated with the compilation
units required for the program. The binder consistency checks can be done in one
of three modes:

1. From ALI files only.
2. From ALI files and any corresponding sources that can be located.

3. From ALI files and all corresponding sources, which must be available.

1.4. SUMMARY 17

Despite the clear advantages of operating in “source file” mode (second and
third alternative), it is more useful for the GNAT binder to operate in “ali files
only” mode. Not only is this mode faster, since no source files need to be accessed,
but more importantly, it means that GNAT programs can be linked from objects
even if the sources are not available. This is indispensable when linking libraries
that for proprietary reasons may be distributed without the sources for their bodies.
Therefore it is the mode implemented in the GNAT Binder.

1.4 Summary

This introductory chapter has presented the overall structure of the GNAT project.
The compiler has two main parts: the front-end and the back-end. The front-end
comprises five phases which communicate by means of an Abstract Syntax Tree.
The back-end is the GCC target independent code generator, what gives two main
advantages: portability and excellent-quality code generation.

The most novel aspect of the GNAT architecture is the source-based organi-
zation of the library. In most Ada compilers the library is a monolithic complex
structure that holds intermediate representations of compiled units. GNAT library
model follows the traditional model used by nearly all languages throughout the
entire history of programming languages: there is no centralized library, a source
file contains a single compilation unit, and a compilation specifies a source file and
generates a single object file. This model is fully conformant with the prescribed
semantics given in the Ada Reference Manual and, at the same time, enables the
use of many well-known configuration management tools (i.e. UNIX make), sim-
plifies the construction of multi-language programs, and allows the parallel com-
pilation of the Ada programs. Because the Ada language gives the rules which
govern the order of elaboration of the compilation units the GNAT model needs a
special pre-linker (the binder) which verifies the object files and generates a valid
order of elaboration.

18

CHAPTER 1. THE GNAT PROJECT

Chapter 2

Overview of the Front-end
Architecture

The GNAT front-end comprises four phases that communicate by means of a com-
pact Abstract Syntax Tree (AST): lexical analysis, syntax analysis, semantic anal-
ysis, and expansion. This chapter provides an overview of the architecture of these
phases. It is structured as follows: Section 2.1 presents the scanner architecture;
Section 2.2 gives an overview of the parser, describes the high-level specification
of the AST nodes and presents the mechanisms used to resynchronize it in case of
syntax errors; Section 2.3 describes the architecture of the semantic analyzer, and
finally Section 2.4 discusses the architecture of the expander.

2.1 The Scanner

For efficiency reasons no automatic tool was used to generate the GNAT scanner.
It is a subprogram of the parser that reads input characters, identifies the next
token, and returns it to the parser. To give support to various operating systems
and to multiple languages, it is engineered to handle multiple character encodings
(cf. Package Csets). Figure 2.1 presents its architecture: package Scn has most of
the implementation of the scanner; package Scans contains the Tokens definition
and the state of the automaton. Finally, package Snames has the standard names
(Ada keywords, pragmas and attributes). Low level package Namet handles name
storage and look up, and package Opt has the global flags set by command-line
switches and referenced throughout the compiler.

19

20

CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

Lexical Syntax
Analyzer Analyzer
Next_Token High

Source scn scans|| © 77777 Level
File token

G ! L

I oW
] w]l e
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.1: Architecture of the GNAT Scanner

2.2 The Parser

The GNAT parser is a hand-coded recursive descent parser. The main reasons
which justify this choice (rather than the traditional academic choice of a table-
driven parser generated by a tool) were [CGS94, Section 3.2]:

e Better error messages. GNAT generates clear and precise error messages.

Even in case of serious structural errors, including the interchange of “;”
and “is” between specification and body of a subprogram, the parser posts a
precise and intelligible message. Bottom-up parsers have serious difficulties
with such errors.

Clarity. The GNAT parser follows faithfully the grammar given in the Ada
Reference Manual [AAR9S5]. This has clear pedagogical advantages be-
cause the parser can be easily read in conjunction with the ARM, and makes
it easier to maintain, for example to add new error recovery techniques. The
Ada grammar given the ARM is ambiguous, and a table-driven parser would
be forced to modify the grammar to make it acceptable to LL (1) or LALR
(1) techniques. No such problem arises for a recursive descent parser, be-
cause when necessary the parser can perform arbitrary look-ahead.

Performance. The GNAT parser is as fast as any Ada table driven parser,
and arguably faster than a LALR parser.

In most of the cases the parser is guided by the next token provided by the

scanner. However, when dealing with ambiguous syntax rules the parser saves the
state of the scanner, and issues repeated calls to look-ahead the following tokens
and thus resolve the ambiguity (cf. Save_Scan_State and Restore_Scan _State in
package Scans).

2.2. THE PARSER 21

In addition to syntax verification, the GNAT parser builds the Abstract Syntax
Tree (AST), that is to say the structured representation of the source program.
This tree is subsequently used by the semantic analyzer to perform all the static
checks on the program, that is to say all the context-sensitive legality rules of the
language.

At the architectural level the main subprogram of the GNAT parser is an Ada
function (Par) that is called to analyze each compilation unit. The parser code is
organized as a set of packages (subunits of the top-level function) each of which
contains the parsing routines associated with one chapter of the Ada Reference
Manual [AAR95]. For example, package Par.Ch2 contains all the parsing sub-
programs associated with the second chapter of the Ada Reference Manual (cf.
Figure 2.2). In addition, the name of the parsing subprograms follow a fixed rule:
Prefix “P_" followed by the name of the corresponding Ada syntax rule (for ex-
ample, P_Compilation_Unit).

...

Figure 2.2: Structure of the GNAT Parser

The GNAT Parser also has several additional sub-units: Package Endh, con-
tains subprograms to analyze the finalization of the syntax scopes; package Sync,
contains subprograms to resynchronize the parser after syntax errors (cf. Chap-
ter 3); package Tchk, contains subprograms that simplify the verification of to-
kens; procedure Labl handles implicit label declarations; procedure Load controls
the loading into main memory of successive compilation units; function Prag an-
alyzes pragmas that affect with the behaviour of the parser (such as lexical style
checks), and finally package Util has general purpose subprograms used by all the
parsing routines.

Each parsing routine carries out two main tasks: (1) Verify that a portion of
the source obeys the syntax of one particular rule of the language, and (2) Build
the corresponding Abstract Syntax Subtree (cf. Figure 2.3).

22 CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

Abstract Tree

P

O

- O
RN W

Figure 2.3: Abstract Syntax Tree Construction.

Source_,
code

2.2.1 The Abstract Syntax Tree

The GNAT Abstract Syntax Tree (AST) has two kind of nodes: internal (struc-
tural) nodes that represent the syntactic structure of the progam, and extended
nodes that store information about Ada entities (identifiers, operator symbols and
character literal declarations). Internal nodes have 5 general purpose fields which
can be used to reference other nodes, lists of nodes (i.e. the list of statements in an
Ada block), names, literals, universal integers, floats, or character codes. Entity
nodes have 23 general purpose fields, and a large number of boolean flags, that
are used to store in the tree all relevant semantic attributes of each entity. In other
compilers this information is commonly stored in a separate symbol table.

Figure 2.4 describes the GNAT packages involved in the AST handling. Low
level package Atree implements and abstract data type that contains the definitions
related with structure nodes and entities, as well as subprograms to create, copy,
and delete nodes, and subprograms to read and modify the general purpose fields.
Low level package Nlists provides the support for handling lists of nodes. Pack-
ages Sinfo and Einfo contain the high-level specification of the nodes, that is, the
high-level names associated with the low-level general purpose node fields, and
subprograms to read and modify these fields with their high-level names. Pack-
age Nmake has subprograms to create high level nodes with syntax and semantic
information.

Let us examine the format of the high-level specification of the nodes by means
of an example. The Ada syntax rule for a package body is:

(f

PACKAGE_ BODY ::=
package body DEFININGPROGRAM_UNITNAME is
DECLARATIVE_PART
[begin
HANDLED _SEQUENCE OF STATEMENTS]
end [[PARENT_UNIT_NAME .] IDENTIFIER];

2.2. THE PARSER 23

NMake High Level
| Sinfo! |Einfo |
Atree NLists Low Level

Figure 2.4: Abstract Syntax Tree Packages.

The corresponding high-level node is specified in the package Sinfo as follows:

—— N_Package_Body

—— Sloc points to PACKAGE

—— Defining_Unit_Name (Nodel)

—— Declarations (List2)

—— Handled_Statement_Sequence (Node4) (set to Empty
—— if not present)

—— Corresponding_Spec (Node5—Sem)

—— Was_Originally_Stub (Flagl3—Sem)

The first line specifies the node kind (N_Package _Body), which is an enumer-
ated literal of type Sinfo.Node_Kind; the second line indicates that the source co-
ordinate (Sloc) for the node is the source coordinate of the keyword that is the first
token in the production. This source coordinate is used whenever errors or warn-
ings are posted on a given construct. The following lines specify the high-level
names given to the general purpose fields. Their format is: (1) High-level Name of
the field (chosen for its syntactic significance) and, (2) Data type, and placement
of the corresponding low-level general-purpose field (this information is enclosed
in parenthesis). In addition some fields may specify a default initialization value
For example, the field named Handled _Statement Sequence references the node
that represents the statements-sequence and the exception handlers found in the
optional package initialization. This field is placed in the fourth general-purpose
low-level field of a node, and is set to the value Empty if the package body has no
initialization code. To handle uniformly the AST, identical node fields associated
with different nodes are always assigned to the same low-level general purpose
fields. The last two lines specify two semantic attributes (indicated by the suffix
“-Sem”). Semantic attributes are computed and annotated into the tree by the Se-
mantic Analyzer in the next phase of the compiler (cf. Section 2.3). Figure 2.5
represents the subtree associated with this high-level node specification.

24 CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

N_Package_Body

| — Defining_Unit_Name

Declarations

Handled_Statements_Sequence X
nodes list

Structure
Node

N_Defining Identifier

v

N_Handled_Sequence_Of Statements

Entity
Node

Structure
Node

Figure 2.5: Abstract Syntax Subtree associated with the package body rule.

The high-level specification of the AST nodes is read by the GNAT tools xs-
info, xtreeprs and xnmake, which generate some complementary Ada packages of
the front-end that use the low-level package Atree to provide the specified func-
tionality.

2.3 The Semantic Analyzer

The GNAT Semantics Analyzer traverses the Abstract Syntax Tree built by the
parser, verifies the static semantics of the program, and decorates the AST, that is
to say adds the semantic information to the AST nodes (cf. Figure 2.6).

Abstract Tree

O

O

o . R
: N L%
i ﬁ/ ’ El

Figure 2.6: Abstract Syntax Tree Decoration.

Source
code

2.3. THE SEMANTIC ANALYZER 25

In general the static analysis carried out by the compiler implies the follow-
ing tasks: (1) Group entities in scopes and resolve referenced names, 2) Handle
private types, 3) Handle discriminants, 4) Analyze and instantiate generic units,
and 5) Handle freezing of entities. These topics will be discussed in detail in the
following chapters.

Figure 2.7 presents the architecture of the GNAT Semantic Analyzer. The
overall structure is similar to that of the parser, that is to say it parallels the or-
ganization of the ARM. For example, Sem_Ch3 deals handling of types and dec-
larations, Sem_Ch9 with concurrency, and Sem_Ch12 with generics and instan-
tiations. The name of individual semantic analysis subprogram follow a fixed
rule: they have the prefix “Analyze_” and a suffix that names the analyzed lan-
guage construct. ie. Analyze_Compilation_Unit. Exceptions to this general rule
are packages Sem_Prag and Sem_Attr which correspond to language elements that
are described throughout the ARM, and which also constitute a basic extension
mechanism for the compiler.

Sem

Sem_Chl13] |

ESem_Disp Sem_Dist | |Sem_Elab || Sem_Eval || Sem_Intr iSem_Res

ESem_Maps Sem_Mech| | Sem_Case || Sem_Util || Sem_Type Sem_Aggr

Figure 2.7: Structure of the Semantic Analyzer.

In addition, the GNAT Semantic Analyzer has some utility packages for spe-
cialized purposes. Sem_Disp has routines involved in the analysis of tagged types
and dynamic dispatching; Sem_Dist contains subprograms which analyze the Ada
Distributed Systems Annex [AAR95, Annex E]; Sem _Elab contains the routines
that deal the order of elaboration of a set of compilation units; Sem_Eval con-
tains subprograms involved in compile-time evaluation of static expressions and
legality checks for staticness of expressions and types. Sem_Intr analyzes the
declaration of intrinsic operations; Sem_Mech has a single routine that analyzes

26 CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

the declaration of calling mechanisms for subprograms (needed for the VMS ver-
sion of GNAT). Sem_Case has routines to process lists of discrete choices (such
lists can occur in 3 different constructs: case statements, array aggregates and
record variants); package Sem_Util has general purpose routines used by all the
semantics packages. Finally package Sem_Type has subprograms to handle sets
of overloaded entities, and package Sem_Res has the implementation of the well-
known two-pass algorithm that resolve overloaded entities (described in Chap-
ter 5). Package Sem_Aggr is conceptually an extension of Sem_Res; it has been
placed in a separate package because of the complexity of the code that handles
aggregates.

The main package (Sem) implements a dispatcher which receives one AST
Node and calls the corresponding analysis subprogram (cf. Figure 2.8). Called
routines recursively call Analyze to do a top-down traversal of the tree.

Sem_Ch9

Analyze_Abortable_Part () | ——

Sem_Ch9

/ Analyze_Abort_Statement ()

Sem

Analyze 7

Sem_Chl0

Analyze_With_Clause () |——

Figure 2.8: Abstract Syntax Tree Nodes Dispatching.

The resolution routines are called by the analysis routines to resolve ambigu-
ous nodes or overloaded entities. For example, the Ada syntax of a procedure-call
statement is exactly the same as that of an entry-call statement. Given this ambigu-
ous syntactic specification, the GNAT parser generates the same N_Procedure _Call
node for both cases, and the Semantic Analyzer must analyze the context, deter-
mine the nature of the entity being called, and, when needed replace the original
node by an entry-call statement node (which will be subject to completely dif-
ferent expansion that a procedure call). To resolve overloaded entities GNAT
implements a well-known two-pass algorithm. During the first (bottom-up) pass,
it collects the set of possible meanings of a name. In the second pass, the type
imposed by the context is used to resolve ambiguities and chose a unique mean-
ing for each overloaded identifier in the expression. This is described in detail in
Chapter 5.

2.4. THE EXPANDER 27

2.4 The Expander

The GNAT expander performs AST transformations for those constructs that do
not have a close equivalent in the C-level semantics of the back-end. (cf. Fig-
ure 2.9). Its main expansions are [CGS94, Section 3.3]:

e Replace nodes which represent high-level Ada constructs by nodes with rep-
resent lower-level abstractions. For example, the node which represents an
Ada task body is replaced by one node that represents a procedure, plus one
call to the Run-Time Library subprogram which creates the corresponding
thread of control (cf. Chapters 9 to 13).

e Replace nodes that represent a generic instantiation by a copy of the corre-
sponding AST, with appropriate substitutions (cf. Chapter 7).

e Build Type Support Subprograms (TSS), which are internally generated
subprograms associated with particular types. For example, implicit ini-
tialization subprograms, and subprograms to implement Ada Input/Output
attributes (cf. Package Exp_TSS).

Syntax tree Y Decorated tree

e e S
S = s)/O\ [:-:em'a""'lc:-: A “Expander:’

ource_, | (Aday] ’o\ e . @ ’@\ —] a
d i [CAday
A L T R T g e T
..... / RN / BN

Figure 2.9: Abstract Syntax Tree Expansion.

Given that code generation requires every AST node carry all needed seman-
tic attributes, every expansion activity must be followed by additional semantic
processing on the generated fragments (see backward arrows in Figure 2.9). As
a result the two phases (analysis and expansion) are recursively integrated into a
single AST traversal. After the whole AST is analyzed and expanded, the result-
ing AST is passed to Gigi in order to generate the GCC tree-fragments that are the
inputs to the back-end code generator.

The architecture of the GNAT Expander follows the same scheme of the pre-
vious phases: the expansion subprograms are grouped into packages following
the Ada Reference Manual chapters (cf. Figure 2.10), and the name of the sub-
programs follow a fixed rule: Prefix “Expand_” followed by the corresponding

28 CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

rule of the language (ie. Expand_Compilation_Unit). Similar to the Semantic An-
alyzer, the package Expander implements a dispatcher which receives one node
and calls the corresponding expander subprogram.

Expander
Exp_Ch2 | |Exp_Ch3 Exp_Prag||Exp_Attr| |Exp_Aggt | Exp_Disp| | Exp_Dist

Exp_Fixd| [Exp_Pakd| |Exp_Strm|| Exp_Intr | | Exp_TSS

,,,

Figure 2.10: Architecture of the GNAT Expander

The GNAT expander has the following packages: Exp_Prag, that groups rou-
tines to expand pragmas; Exp_Attr has subprograms to expand Ada attributes;
Exp_Aggr contains subprograms to expand Ada aggregates; Exp_Disp, with rou-
tines involved in tagged types and dynamic dispatching expansion; Exp_Dist has
routines used to generate the stubs of the Ada Distribution Annex [AAR95];
Exp_Fixd, subprograms to expand fixed-point data-type operations; Exp_Pakd,
routines to expand packed arrays; Exp_Strm, routines to build stream subprograms
for composite types (arrays and records); Exp_TSS, routines for Type Support Sub-
program (TSS) handling; Exp_Code, subprograms to expand the Ada code state-
ment [AAR9S5, Section 13.8], used to add machine code instructions to Ada source
programs; Exp_Util, utility subprograms shared by expansion subprograms; and
finally Exp_Dbug is a package with routines that generate special declarations
used by the debugger.

2.5 Summary

The GNAT scanner implements a deterministic automaton which is called by the
parser to get the next token. The GNAT Parser is a recursive-descent parser which
not only verifies the syntax of the sources but also generates the corresponding
Abstract Syntax Tree (AST). The AST has two kinds of nodes: structure nodes
which represent the program structure, and entity nodes which store the infor-
mation of Ada entities. Therefore GNAT has no separate symbol table; all the

2.5. SUMMARY 29

information traditionally stored in this table is kept in the AST entities.

The Semantic Analysis phase carries out a top-down traversal of the AST to
do the static analysis of the program and decorate the AST. This phase implements
a well-known two pass algorithm to resolve overloaded entities. The Expansion
phase replaces high-level nodes by sub-trees with low-level nodes which provide
the equivalent semantics and can be handled by the GCC code generator.

To help reading the sources the architecture of the parser, semantics and ex-
pander follow a fixed scheme: the subprograms are grouped into packages follow-
ing as reference the Ada Reference Manual, and their names follow a fixed rule:
one fixed prefix plus the corresponding rule of the Ada Reference Manual. The
main package of the semantics and the expander implement a dispatcher which
receives as input an AST node and calls the corresponding processing routine.

30 CHAPTER 2. OVERVIEW OF THE FRONT-END ARCHITECTURE

Chapter 3

Error Recovery

The GNAT scanner implements some basic error recovery techniques which sim-
plify the implementation of the parser. The GNAT parser has what is considered
to be the best set of error recovery strategies of any Ada compiler in use. In this
chapter we briefly present these strategies. It is structured as follows: Section 3.1
introduces the error recovery techniques implemented in the scanner, and Sec-
tion 3.2 presents the mechanisms used to resynchronize the parser. Section 3.2.1
presents the parser scope-stack which is used to handle nested scopes parsing;
Section 3.1.1 discusses the use of the programmer casing convention to distin-
guish keywords from user-defined identifiers, and finally Sections 3.2.3 and 3.2.4
discuss the special handling of the keyword ’is’ used in place of semicolon.

3.1 Scanner Error Recovery

The GNAT scanner implements a simple error recovery technique which simpli-
fies error handing to the parser. After detecting a lexical error, the scanner posts
the corresponding error message and returns one heuristic Token which masks the
error to the next phases of the compiler. For example:

e If the character “[“ is found, it assumes that the intention of the programmer
was to write “(“ (which is the right character used in Ada). Therefore, it
posts the corresponding error message and returns the “left parenthesis”
token to the parser.

e If the scanner detects the invalid Ada character sequence valid in other stan-
dard language, it assumes that the programmer intention was to use the

31

32 CHAPTER 3. ERROR RECOVERY

corresponding equivalence (if any) in Ada. For example, in front of the se-
quence “&&” (which is the syntax of the C and operator), it assumes that
the programmer intention was to use the Ada and operator. Thus it posts
the precise error message “&& should be ’and then’ ” and returns the “and
then” token to the Parser. The scanner has many error messages specific for
C programmers.

In most cases this simple but powerful mechanism helps masking lexical errors
to the parser. This simplifies the implementation of the parser, which does not
need to repeatedly handle them in many contexts. For additional details, read the
Scan, Nlit, and Slit subprograms in package Scn.

3.1.1 Use of the Casing of Identifiers

The GNAT scanner assumes that the user has some consistent policy regarding
the casing convention used to distinguish keywords from user-defined entities.
The scanner deduces this convention from the first keyword and identifier that
it encounters (cf. Package Casing). In the following example GNAT makes
use of the upper/lower case rule for identifiers to treat the word exception as an
indented identifier rather than the beginning of an exception handler (cf. subpro-
gram scan_reserved_identifier).

e N
procedure Wrongl is

Exception : Integer;

>>>reserved word “exception” cannot be used as identifier
begin

null ;

end Wrongl;
\N J

3.2 Parser Error Recovery

The GNAT parser includes a sophisticated error recovery system which, among
other things, takes indentation into account when attempting to correct scope er-
rors. When an error is encountered, a call is made to one parser routine to record
the error (cf. Package Errout). If the parser can recover locally, it masks the
failure to the next stages of the front-end by generating the AST nodes as if the
syntax were right, and the parsing continues unimpeded. On the other hand, if

3.2. PARSER ERROR RECOVERY 33

the error represents a situation from which the parser cannot recover locally, the
exception Error_Resync) is raised after the call to the routine that records the er-
ror. Exception handlers are located at strategic points to resynchronize the parser.
For example, when an error occurs in a statement, the handler skips to the next
semicolon and continues the scan from there.

In the GNAT sources, each parsing routine has a note with the heading “Error
recovery” which shows if it can propagate the Error_Resync exception (cf. Files
par-ch2.adb to par-chl3.adb). To avoid propagating the exception, a procedure
must either contain its own handler for this exception, or it must not call any other
routines which propagate the exception.

3.2.1 The Parser Scope-Stack

Many rules of the language define a syntax scope (rules ended with end’). For
example, the syntax rules of packages, subprograms and all the flow-of-control
statements. The GNAT parser uses a scope-stack to record the scope context. An
entry is made when the parser encounters the opening of a nested construct, and
then package Endh uses this stack to deal with ’end’ lines (including properly
dealing with end’ nesting errors).

In case of parsing resynchronization by means of the exception mechanism
(cf. Section 3.2), the arrangement of the exception handlers is such that it should
never be possible to transfer control through a procedure which made an entry in
the scope stack, invalidating the contents of the stack.

In some cases, at the end of a syntax scope, the programmer is allowed to
specify a name (ie. at the end of a subprogram body); other scope rules have a
rigid format (ie. at the end of a record-type definition). In the first case, it is a
semantic error to open a syntax scope with a name and to close it with a different
name. Although many Ada compilers detect this error in the phase of semantic
analysis, GNAT uses the parser scope-stack to detect it as soon as possible and
thus simplify the semantics.

34 CHAPTER 3. ERROR RECOVERY
3.2.2 Example 1: Use of indentation

The next example combines the use of the scope-stack plus the indentation to
match the statement:

procedure Wrong2 is
A, B : Integer;
begin
if A > B then
null ;
end Wrong2;

>>>"end.if;” expected for ”if” at line 4

Note that a more conventional approach to error recovery would have pro-
duced two errors: it would have identified the end with the if-statement, com-
plained about a missing “if”, and then complained about the missing end for the
procedure itself.

3.2.3 Example 2: Handling Semicolon Used in Place of ’is’

The two contexts in which a semicolon may have been erroneously used in place
of ’is’ are at the outer level, and within a declarative region. The first case corre-
sponds to the following example:

[Case 1: At the outer level
procedure X (Y : Integer);
Q : Integer;
begin
end ;
\)

In this case the GNAT parser knows that something is wrong as soon as it
encounters Q (or ’begin’, if there are no declarations), and it can immediately
diagnose that the semicolon should have been ’is’. The situation in a declarative
region is more complex, and corresponds to the following example:

3.2. PARSER ERROR RECOVERY 35

—— Case 2: Within a declarative region

declare
procedure X (Y : Integer); —<I>
Q : Integer;
begin ——<2>
end ;
begin
end ;

In this case, the syntax error (line <1>) has the syntax of a subprogram decla-
ration [AAR9S, Section 6-1]. Therefore, the declaration of Q is read as belonging
to the outer region. The parser does not know that it was an error until it en-
counters the ’begin’ (line <2>). It is still not clear at this point from a syntactic
point of view that something is wrong, because the ’begin’ could belong to the
enclosing syntax scope. However, the GNAT parser incorporates a bit of semantic
knowledge and note that the body of X is missing, so it diagnoses the error as
semicolon in place of ’is’ on the subprogram line. To control this analysis, some
global variables with prefix “SIS_” are used to indicate that we have a subprogram
declaration whose body is required and has not yet been found. For example, the
variable SIS_Entry_Active indicates that a subprogram declaration has been en-
countered, but no body for this subprogram has been encountered yet. The prefix
stands for “Subprogram IS” handling. Five things can happen to an active SIS
entry:

1. If a "begin’ is encountered with an SIS entry active, then we have exactly
the situation in which we know the body of the subprogram is missing.
After posting an error message, the parser rebuilds the AST: it changes the
specification to a body, re-chaining the declarations found between the spec-
ification and the word "begin’.

2. Another subprogram declaration or body is encountered. In this case the
entry gets overwritten with the information for the new subprogram decla-
ration. Therefore, the GNAT parser does not catch some nested cases, but it
does not seem worth the effort.

3. A nested declarative region (e.g. package declaration or package body) is
encountered. The SIS active indication is reset at the start of such a nested
region. Again, similar to the previous case, the parser misses some nested
cases, but it does not seem worth the effort to stack and unstack the SIS
information.

36 CHAPTER 3. ERROR RECOVERY

4. A valid pragma ’interface’ or import’ supplies the missing body. In this
case the parser resets the entry.

5. The parser encounters the end of the declarative region without encounter-
ing a ’begin’ first. In this situation the parser simply resets the entry: there
is a missing body, but it seems more reasonable to let the later semantic
checking discover this.

3.2.4 Example 3: Handling ’is’ Used in Place of Semicolon

This is a somewhat trickier situation, and although the GNAT parser can not catch
itin all cases, it does its best to detect common situations resulting from a “cut and
paste” operation which forgets to change the ’is’ to semicolon. Let us consider
the following example:

Vs

package body X is
procedure A;
procedure B is - <I>
procedure C;

procedure D is
begin

end ;
begin

end ; - <2>

s

The trouble is that the section of text from line <1> to line <2> syntactically
constitutes a valid procedure body, and the danger is that the parser finds out far
too late that something is wrong (indeed most compilers will behave uncomfort-
ably on the above example).

To control this situation the GNAT parser avoids swallowing the last ’end’ if
it can be sure that some error will result from doing so. In particular, the parser
will not accept the ’end’ it if it is immediately followed by end of file, *with’ or
"separate’ (all tokens that signal the start of a compilation unit, and which there-
fore allow us to reserve the ’end’ for the outer level). For more details on this
aspect of the handling, see package Endh. Similarly, if the enclosing package has
no ’begin’, then the result is a missing ’begin’ message, which refers back to the
subprogram header. Such an error message is not too bad (it’s already a big im-
provement over what many parsers do), but it’s not ideal, because the declarations

3.3. SUMMARY 37

following the ’is’ have been associated with the wrong scope.

To catch at least some of these cases, the GNAT parser carries out the follow-
ing additional steps. First, a subprogram body is marked as having a suspicious
’1s” if the declaration line is followed by a line which starts with a symbol that can
start a declaration in the same column, or to the left of the column in which the
“function’ or “procedure’ starts (normal style is to indent any declarations which
really belong a subprogram). If such a subprogram encounters a missing ’begin’
or missing ‘end’, then the parser decides that the ’is’ should have been a semi-
colon, and the subprogram body node is marked (by setting the Bad _Is_Detected
flag to true). This is not done for library level procedures since they must have a
body.

The processing for a declarative part checks to see if the last declaration
scanned is marked in this way, and if it is, the tree is modified to reflect the ’is’
being interpreted as a semicolon.

3.3 Summary

GNAT implements an heuristic error recovery mechanism on it which simplifies
the implementation of the parser: when an error is detected, the scanner generates
the corresponding error message, estimates a substitute token and returns it to the
parser. In most cases this simple, but powerful, mechanism helps the parser to
continue as if the source program had no lexical errors.

In case of simple errors the parser masks the failure and generates the right
nodes as if the source program were correct. In case of complex errors, the parser
implements a resynchronization mechanism based on exception handlers.

38

CHAPTER 3. ERROR RECOVERY

Part 11

Second Part: Semantic Analysis

39

Chapter 4

Scopes and Visibility

Modern high-level programming languages allow us to define names with a lim-
ited scope of visibility, to reuse them in different contexts and also to overload
them; It is responsibility of the compiler to keep track of scope and binding in-
formation about names. For this purpose the compilers generally use a separate
Symbol Table structure. In the case of GNAT, there is no separate symbol table.
Rather, semantic information concerning program entities is stored directly in the
Abstract Syntax Tree (AST). The GNAT AST is thus close in spirit to DIANA
[GWEBS3], albeit more compact.

This chapter is structured as follows: Section 4.1 presents the entity flags and
data structures used by the front-end to handle scopes and visibility; Section 4.2
describes the sequence of steps followed to analyze records, tasks, protected ob-
jects, context clauses, child units and subunits, and finally Section 4.5 describes
the sequence of steps followed to resolve names of records, tasks, protected ob-
jects, simple names and expanded names.

4.1 Flags and Data Structures

Entity nodes corresponding to defining entities have a set of flags and attributes
(entity-node fields) which are used by the semantic analyzer to handle scopes and
visibility. The basic flags used to verify the Ada rules of visibility are:

o Is Immediately Visible: The entity is defined in some currently open scope
[AAR9S5, Section 8.3(4)].

41

42 CHAPTER 4. SCOPES AND VISIBILITY

o Is Potentially Use Visible: The entity is defined in a package named in a
currently active use clause [AAR9S, Section 8.4(8)]. Note that potentially
use visible entities are not necessarily use visible [AAR9S5, Section 8.4(9-

1D)].

To keep track of the scopes currently been compiled the semantic analyzer uses
one stack (Scope_Stack). Defining entities corresponding to declaration scopes
(defining entities of packages, tasks, etc.) are placed in the scope stack while being
processed, and removed at the end. The first element in the Scope Stack references
the defining entity of package Standard. Figure 4.1 presents one example. On the
left side we have a procedure (Example) which has a local procedure (My_Proc)
with a local record type declaration (My_Record). The right side of this figure
represents the contents of the Scope Stack at the point of analysis of the record
type declaration. For simplicity, figures in the rest of this chapter do not have the
reference to the standard package.

Source Ada Program AST Entities

Standard

procedure Example is

Example

procedure My_Proc is ‘\
type My_Record is
My_Proc /
end record;

record
begin
end My_Proc; My Record

begin Scopes Stack

end Example;

Figure 4.1: The Scope Stack

The semantic analyzer links all defining entities declared in the same scope
through the Next_Entity attribute. The entity which defines the scope has two
attributes which reference the first and last entity in the scope. In addition, all en-
tities have an attribute which references the defining entity of their scope. These
attributes help the semantic analyzer to traverse entity scopes up and down. Fig-
ure 4.2 presents an example. On the left side we have an Ada program and, on the
right side the corresponding data structure at the point of analysis of the sequence-

4.1. FLAGS AND DATA STRUCTURES 43

of-statements of the local procedure (Local_Proc). For simplicity, only some se-
mantic attributes are represented in the figures presented in this chapter.

Source Ada Program AST Entities
procedure Example_2 is Exam|
Total : Natural; Example 2 Local_Proc
procedure Local_Proc is
Total : Natural;
Flag : Boolean; N
begin > Total Local_Proc
end Local_Proc; Scope Stack
- 1=/
begin |
\ Total Flag
oo >
end Example_2;
- - //

Figure 4.2: List of entities in the same scope.

Two entity definitions are homonyms if they have the same defining name and,
if both are over-loadable, their profiles are type conformant. For example, an in-
ner declaration hides any outer homonym declaration from direct visibility. The
Ada Reference Manual uses the term homograph to refer to this concept [AAR9S,
Section 8.3(8)]; we have preferred to use the term homonym because it is the
term used in the GNAT implementation. For example, the GNAT semantic an-
alyzer keeps track of homonym entities by means of the Homonym linked lists.
The head of each homonym list is saved in a general-purpose field of the Names
Table. To provide fast access to names, the Names Table is a hash table with no
duplicated names. In case of overloaded entities, the homonym list holds all the
possible meanings of a given identifier. The process of overload resolution uses
type information to select from this chain the unique meaning of a given identifier.

In the general case, the sequence of actions carried out by the Semantic Ana-
lyzer to handle scopes and visibility are: (1) Make immediately visible the defin-
ing entity of the new scope, (2) Open the scope, (3) Make immediately visible all
the local entities defined inside the new scope, and (4) Insert all the local entities
in the entity and homonym lists. Figure 4.3 presents one example. On the left side
there is an Ada program with one global entity (7otal) which has one homonym
inside the local procedure Local_Proc. On the right side the reader can see the
corresponding data structure after the local declarations have been analyzed and
the entities have been inserted into the corresponding chains. In the case of Total

44 CHAPTER 4. SCOPES AND VISIBILITY

we see the direct visibility of the local entity from the Names Table, and the link
to its hidden homonym entity in the scope of Example 2).

Source Ada Program AST Entities
procedure Example_2 is — E le 2

Total : Natural; Example 2, — | Local Proc
procedure Local_Proc is

Total : Float;

Flag : Boolean; N
begin > Total Local_Proc
end Local_Proc; Scope Stack

- T ==/

begin \
N Total Flag
end Example_2;
- - =/

Names Table

Figure 4.3: Lists of homonym entities.

When the analysis of the innermost scope is finished, the entities defined
therein are no longer visible. If the scope is not a package declaration, these
entities are never visible subsequently, and can be removed from visibility chains.
If the scope is a package declaration, its visible declarations may still be acces-
sible. Therefore the semantic analyzer leaves entities defined in such a scope in
the visibility chains, and only modifies their visibility (immediate or potential-use
visibility). This will be described in detail in Section 4.3.

In summary, all defining entities are chained twice: (1) In their scope, and (2)
In their homonym list. As a consequence, the entities name space can be view
as a sparse matrix where each row corresponds to a scope, and each column to
a name. Open scopes, that is to say scopes currently being compiled, have their
corresponding rows of entities in order, innermost scope first (cf. Figure 4.4).

In the rest of this chapter we will use the following expressions to refer to
handling these flags and data structures: “To make Immediately/Potentially-Use
Visible” an entity means to mark the entity as Immediately-Visible or Potentially-
Use-Visible; the expression “To open the scope” of an entity will mean to push
the reference of an entity in the Scope Stack, and finally the expression “To insert

4.2. ANALYSIS OF RECORDS, TASKS AND PROTECTED TYPES. 45

/ T - | -—-—-—-—-—— >
A
7 , "
! 1
\ 1
R, . :
! 1
4 ! 4 4 1
1 ! 1 ! 1
| I | I |
1 1
Scope Stack 1 ! !
. 1 1
. 1 r="
. 1 1
| 1 1
. 1 1
1 1
1 1

- -

+
1

e

] []

Names Table

Figure 4.4: The matrix of entities.

an entity in the matrix of entities” means to chain the entity in the corresponding
scope and homonym lists.

4.2 Analysis of Records, Tasks and Protected Types.

During the analysis of records, tasks, and protected types all their local entities
must be immediately visible. Thus the semantic analyzer (1) makes immediately
visible the defining entity of the record, task or protected type definition (2) opens
the corresponding scope, (3) makes immediately visible all the entities defined
inside the scope, and (4) insert them in the matrix of entities. The discriminants
(if any) are handled as additional components of the type, and thus they are un-
chained on exit from their homonym lists. Figures 4.5 and 4.6 represent these
steps during the analysis of a record type declaration and a protected type declara-
tion. According to Ada, from the outside these local entities are always accessed
as selected components (notation Prefix.X). Therefore, on exit from the scope the
semantic analyzer (1) makes the defining entity not immediately visible, (2) closes
the scope, and (3) removes the local entities from their homonym lists. As a conse-
quence, further analysis of selected components requires to sequentially traverse
the scope list named by Prefix. The analysis of the task-type and protected-type
bodies will temporarily re-chain their local entities in the homonym lists.

46 CHAPTER 4. SCOPES AND VISIBILITY

procedure Example is Example Count
Count : Integer; .
L B -
type My_Record is 2
record H \
Count : Natural; 2) : My_Record Count Name
Name : String (1 .. 30);
1 3 3
end record; Scope Stack A R @ . @
1
Lot ? ?
b . 1 1 1 1
egin 1 1 1 1
... et e oqe
end Example; Names Table

Figure 4.5: Analysis of a record.

4.3 Analysis of Packages

To analyze a package specification the semantic analyzer performs the following
actions: (1) make immediately visible the defining entity of the package specifi-
cation, (2) open the scope, (3) make immediately visible all the entities defined
in the package specification, and (4) insert them in the matrix of entities. On exit
the scope must be closed but, instead of removing all these entities from their
homonym lists, the GNAT semantic analyzer just un-marks them as immediately
visible. As a consequence, the analysis of the package body as well as subsequent
with and use clauses do not need to re-chain the visible entities but only to re-open
the scope and re-establish their direct visibility. Entities defined in the scope of
the package body are just made immediately visible and added to the matrix of
entities. Because the body is semantically an extension of the specification, these
entities are added at the end of the list of entities of the package specification.
To avoid visibility from the outside, on exit from the package body the entities
defined in the package body are completely removed from the matrix of entities.
Although these entities are not further required for analysis, they are saved in the
in the defining entity of the package body because they are needed to generate the
object code.

At a first sight, the analysis of use_clauses only needs to make Potentially-
Use-Visible all the entities defined in the visible part of the named package speci-
fications and, on exit from the scope of the use_clause, to reset the flag. However,
this simple approach is not enough because it is legal to name the same package
in nested contexts. To properly handle the general case, the defining entity of the

4.4. ANALYSIS OF PRIVATE TYPES 47

procedure Example is
type T_Bufferis. ..
Count : Natural := 0;
Example T pyffer Count

protected type T_Stack is
entry Push (X : in Item);
entry Pop (X : out Item);
private
Count : Natural := 0; (2)
Buffer :T_ Buffer;
end T_Stack;

A
]
1

T_Stack Push Pop Count Buffer

Scope Stack @ 3) 3) A3) 3

protected body T_Stack is

Y R -
Bl K

—|= ==

T T
L -
1 1 1 1

I N

end T_Stack; ’

cee Names Table
begin

end Example;

Figure 4.6: Analysis of a protected type.

package specification has a flag (In_Use which indicates it is currently in the scope
of an use_clause. In case of redundant use, a second flag (Redundant _Use) is set.
On exit from a scope S, the semantic analyzer scans in reverse order the list of
use clauses in the declarative part of S. The visibility flag is clear as long as the
package is not flagged as being in a redundant use clause, in which case the outer
use clause is still in effect, and the direct visibility of its entities must be retained.

In the case of use_type clauses the Semantic Analyzer collects the primitive
operators associated with the named types and makes them Potentially Use Visi-
ble.

4.4 Analysis of Private Types

Private types were Ada83’s fundamental contribution to Software Engineering.
Private types are the basic mechanism for encapsulation and information hiding:
they separate the visible interface of a type (those properties that a client can use)
from the implementation details of the type, which only the implementor of the
type need to have access to. In one way or another, similar privacy mechanisms
have found their way into other modern programming languages, in particular
C++ and Java.

48 CHAPTER 4. SCOPES AND VISIBILITY

Ada95 has extended the privacy mechanisms to tasks and protected types. For
protected types, information hiding means a complete separation between the op-
erations that apply to the protected data, and the structure of this data. This is the
modern realization of the notion of Monitor: the object provides some operations
on completely private data. All the client needs to know is that there is a locking
mechanism that ensures that the data is accessed in mutual exclusion.

Ada95 has also extended the syntax of private type declarations to include pri-
vate extensions and unknown discriminants. Finally, the management of privacy
is central to the semantics of child units.

The salient characteristic of private types is that their description is given in
two parts: a private type declaration introduces a partial view, which in general
provides no details as to the structure of the type, except for a few characteristics
that a client needs to know about (for example, whether the type has discriminants,
or whether it is tagged). The full declaration provides all the structural information
that the implementation of the type and its operations requires. In the compiler, the
treatment of private types needs to cope with these two views. It is central to the
organization of the compiler that a given entity is uniquely identified by a index
into the nodes table. In other words, the information concerning a given entity
is always as the same location during a compilation. To cope with the two-
views description of private types, the compiler includes various mechanisms that
exchange the partial and full views of these types depending on the context of the
compilation. For example, when compiling a package body, the full view of all its
types must be accessible, but when compiling a package specification that appears
in a with_clause of some compilation unit, only the partial view of its private types
must be visible to this unit. The view-exchange mechanism described below is
conceptually straightforward, but its interaction with generics and inlining is the
source of much complexity in the front-end.

The view-exchange mechanism applies to other entities that have two views,
either because they have two declarations (such a deferred constants) or because
their properties change with context (for example, a subtype of a private type
becomes a subtype of the full view of the parent is visible, and a type with a
private component may become non-private when the full view of the component
type is visible).

4.4.1 Private Entities Visibility

To distinguish between visible and private package declarations, the defining en-
tity of a package has an attribute that references the entity of the first private dec-

4.4. ANALYSIS OF PRIVATE TYPES 49

laration of the package specification (cf. First_Private_Entity in Figure 4.7). This
attribute is central to the implementation of the view-swapping mechanism, which
is invoked at the end of a package body and at various points in the compilation
of child units.

Source Ada Program AST Entities

Example_2

package Example is
Max : constant := ... ; First_Private

procedure Proc_1 (. ..); - ~a

. Y Max Proc_1 Max_2 T_Private_1

First_Entity \
~»

private
Max_2 : constant . . . ;
type T_Private_lis...; - - - = L o—» — =/
end Example;

Figure 4.7: Visible and Private Entities

Similar to the package specification, the defining entity of the task type and
the protected-object type also have the First_Private_Entity attribute to reference
the first private entry (if any).

4.4.2 Private Type Declarations

As mentioned above, the principle that each entity must have a single defining oc-
currence clashes with the presence of two separate declarations for private types,
and thus (syntactically) two defining occurrences: (1) the private type declaration,
which introduces the partial view, and (2) the full type declaration. The GNAT im-
plementation treats the defining entity of the partial view as the entity for the type.
This entity as an attribute Full_View, which denotes the entity of the full view. (cf.
Figure 4.8). There is no link in the opposite direction, and all view-swapping ac-
tivity starts from a partial view. Flag Has_Private View is used to indicate that
a given full type declaration is the completion of a private type declaration, and
if need be corresponding partial declaration can be retrieved by a traversal of the
public declarations of the package.

During semantic processing the defining occurrence also points to a list of pri-
vate dependents, that is to say access types or composite types whose designated
types or component types are subtypes or derived types of the private type in ques-
tion. After the full declaration has been seen, the private dependents are updated
to indicate that they have full definitions.

50 CHAPTER 4. SCOPES AND VISIBILITY

Source Ada Program AST Entities

Example

package Example is
type T_Data is private; -- (1) Private Type Decl. First_Private

private \ -
type T_Data is --(2) Full Type Decl. First_Entity \ T_Data T_Data
record e

end record; < [T —~*" > - .

end Example; Full_View™ =~ =~ - - =~

Figure 4.8: Reference to the Full-View Entity

Source Ada Program AST Entities

Example

package Example is
type T_Data is private; -- (1) Private Type Decl. First_Private

private X -
type T_Data is -- (2) Full Type Decl. First_Entity \ T_Data T_Data
record he

end record; TToTr T T > >

end Example; ~~_ __ -~ Full_View

Figure 4.9: Swapping of the Private Declaration and the Full View

Ada95 allows task specifications to include a private part. Given that a task _item
can only be an entry declaration or a representation_clause, this adds very little to
semantic processing of tasks. When analyzing the task body, these declaration
must be made visible. However, in this case there is no partial view, and therefore
no view-swapping is needed.

The private part of a protected-type declaration is more significant from a se-
mantic point of view: it encapsulates the state of an object of the type. When
analyzing the protected body, the operations of the type are rewritten to include
an implicit parameter, which is a record whose structure reflects the private part
of the protected type. Thus, to each protected type we associate a record struc-
ture which is its Corresponding Record. In turn, this record type has an attribute
Corresponding_Concurrent _Type, that denotes the protected type from which it is
defined. The Corresponding_Record eventually includes a run-time lock compo-
nent that insures mutual exclusion. The processing of protected bodies is for the

4.4. ANALYSIS OF PRIVATE TYPES 51

most part an expansion activity and is described in a separate chapter.

4.4.3 Deferred Constants and Incomplete Types

The mechanism described in the previous section is also used to handle deferred
constant declarations and incomplete type declarations. Thus, the defining entity
of a deferred constant declaration has a link to the corresponding full-type decla-
ration entity (cf. Figure 4.10).

Source Ada Program AST Entities

package Example is Example
type T_Data is private;
Empty : constant T_Data; -- (1) Deferred Decl. First_Private

private \' -~
type T_Data is First_Entity~ _ T _Data Empty T_Data Empty

record

end record; <! |- > - —» L ..

Empty : T_Data :=. .. ; -- (2) Full Declaration ~ o

end Example; Full_View™ ~ = -7
Full_View

Figure 4.10: Deferred Constants Handling

4.4.4 Limited Types

Limited types add no special complexity to the Semantic Analyzer; language-
defined copying operations are just restricted for them.

4.4.5 Analysis of Child Units

The analysis of a child units requires to have special care with visibility of private
entities. To analyze a public child package specification the Semantic Analyzer
carries out the following actions: 1) make immediately visible all the entities the
visible-part of the parent, 2) open the scope of the child package, 3) analyze the
visible-part of the child package specification, 4) verify that incomplete types de-
fined in the visible part have received their corresponding full declarations, 5)
make immediately visible the parent private entities, and finally 6) analyze the
private-part of the child package specification. In case of a private child pack-
age, the analysis is simpler because they have full visibility of the entities defined

52 CHAPTER 4. SCOPES AND VISIBILITY

in the parent. Therefore, step 1 makes immediately visible all the entities de-
clared in the visible and private parts of the parent, and follows steps 2, 3 and
5. The GNAT Semantic Analyzer has separate routines to make the visible and
private declarations visible at different times (see Install_Visible Declarations and
Install_Private_Declarations).

4.4.6 Analysis of Subunits

Subunits must be compiled in the environment of the corresponding stub. That
is to say with the same visibility and context available at the point of the stub
declaration, but with the additional visibility provided by the context clauses of
the subunit itself (if any). As a result, compilation of a subunit forces compilation
of the parent. At the point of the stub declaration, the Semantic Analyzer is called
recursively to analyze the proper body of the subunit, but without reinitializing the
Names Table nor the Scope Stack (i.e. standard is not pushed on the stack). Thus,
the context of the subunit is added to the context of the parent, and the subunit is
compiled in the correct environment.

4.5 Name Resolution

Name resolution is the process that establishes a mapping between names and
the defining entity referred to by the names at each point in the program. In the
context of the GNAT semantic analyzer name resolution involves to link each
node that denotes an entity with its corresponding defining-entity node. In case
of simple names the semantic analyzer only uses the homonym list. If the en-
tity 1s immediately visible, it is the one designated by the simple name. If only
potentially-use-visible entities are found in the list, the semantic analyzer verifies
they do not hide each other. In case of expanded names the semantic analyzer
looks for the entity at the intersection of the entity list for the scope (the prefix)
and the homonym list for the selector.

4.6. SUMMARY 53

4.6 Summary

The GNAT front-end stores all the semantic information concerning program en-
tities directly in defining entity nodes in the AST. Thus the AST contains not only
the full syntactic representation of the program, but also the results of the seman-
tic analysis. To handle the analysis of scope and visibility rules, all the entities
have two flags which indicate if the entity is immediately or potentially-use visi-
ble. In addition, all the entities in the same scope are inserted in two lists: the list
of entities in the scope, and the list of homonym entities. As a consequence, the
entities name space can be view as a sparse matrix where each row corresponds
to a scope, and each column to a name.

The semantic analyzer keeps all the entities defined in the package declaration
in a list; visible entities are in the front of this list and private entities are in the
rear. The semantic analyzer uses the reference to the first private entity as the limit
of visible entities. This scheme is also used to implement the private entities in
tasks and protected types. All the incomplete entities defined in the visible-part of
the package specification (deferred constants, incomplete types and private types)
have a reference to the corresponding full view in the private part. When the full-
view is made visible, this link is used to swap the two declarations and thus make
the full-definition available to the Ada programs.

54

CHAPTER 4. SCOPES AND VISIBILITY

Chapter 5

Overload Resolution

Ada supports the overloading of subprograms and operators [AAR9S, Section 8.3].
This means that an occurrence of an identifier or operator (a designator) may de-
note several entities that are simultaneously visible at that point. Overloaded sub-
programs must differ in at least one of the following respects: (1) whether the sub-
program is a procedure or function, (2) if the subprogram is a function, its result
type, (3) the number of parameters, (4) the type of each parameter. These prop-
erties are collectively called the subprogram’s parameter-and-result-type profile.
For example, the following operations can be visible at the same point:

function Op (x : Integer) return Integer; —— (Opl)
function Op (x : Integer; y : Integer) return Integer; —— (Op2)
function Op (x : Float) return Integer; —— (0p3)
function Op (x : Integer) return Float; —— (Op4)
procedure Op (x : Integer); —— (OpS)

Note that operations that only differ in the names of the formal parameters,
but not their types, cannot be visible at the same point: either one hides the other
through of scope and visibility rules, or else the declarations are illegal.

This notion is familiar from most other programming languages, where over-
loading is most commonly applied to operators. Overloading resolution is the
process of selecting among the visible entities at a point (the candidate interpre-
tations of the designator) the unique one that is compatible with the context in
which it appears. In the simplest case, operators are resolved from the type of
their operands: (A+B) denotes an integer addition or a floating-point addition, de-
pending on the types of A and B. This simple rule applies to subprograms as well,
where a candidate interpretation is retained if the types of the actuals in the call

55

56 CHAPTER 5. OVERLOAD RESOLUTION

are compatible with the formals of the subprogram.

Ada, unlike many other programming languages, also uses the context of the
call to resolve an overloaded name [AAR95, Section 8.6]. For example, a pro-
gram may declare several functions whose signature differs only in their return
type (cases (1) and (4) above). A consequence of the use of context is that type
checking of expressions and the identification of operators cannot be performed
in a single bottom-up traversal of the expression, as is the case for most other im-
perative languages. Instead, a two-pass algorithm is required (Algol68 had similar
resolution rules, and also required a multi-pass resolution algorithm).

In the rest of this chapter we present the two-pass resolution algorithm imple-
mented in GNAT. We first give a general description of the algorithm. Later we
complete this description with additional details, and the data structures used to
store the interpretations of an overloaded identifier.

5.1 Resolution Algorithm

The resolution algorithm has two main steps:

1. In a first step, we attach to each identifier the set of its candidate interpreta-
tions, and proceed to select from this set those interpretations that are com-
patible with the types of their arguments. If such a set has a single element,
the designator is unambiguous.

This upward pass is performed over each complete context, defined as a lan-
guage construct over which overload resolution must be performed without
examining a larger portion of the program. Each of the following con-
structs is a complete context: a context item, a declarative_item or decla-
ration, a statement, a pragma_argument_association, and the expression of a
case_statement [AAR95, Section 8.6(4-9)]. Procedure calls and assignment
statements are thus examples of complete contexts.

2. In the second pass, type information is imposed on the complete context to
select a single interpretation for each component of the construct. For ex-
ample, the right-hand side of an assignment may be an overloaded function
call, but if the type of the left-hand side is unique, it will identify uniquely
the function being called. Once the function is known, the types of its for-
mal parameters are used to resolve the possibly overloaded actuals in the
call, and so on.

5.1. RESOLUTION ALGORITHM 57

The problem of overload resolution is best explained by a simple example
(a detailed description of this problem as well as a formal specification of the
algorithm can be found in [vK87, Section 4.5]). Let us assume the following
functions:

-

declare
function F (A, B : Tl) return T is ... —— (Fl)
function F (A, B : T2) return Tl is ... —— (F2)
function F (A, B : T2) return T2 is ... —— (F3)
Varl, Var2, Res : T2;

begin
Res := F (Varl, Var2);

end ;

|

The type of the expression F(Varl,Var2) cannot be deduced from the function
call itself; the context in which it appears must be taken into account. In the first
scan, the bottom-up analysis restricts at each node in the expression subtree the
set of operators by discarding those operators whose formal-parameter types are
inconsistent with the types of the actual-parameter expressions. In this example,
the second and third version of F are valid candidate, so the processing attaches
the set {F2, F3} to the occurrence of F in the call. In the second pass, the top-
down analysis restricts the set by discarding any operator or function whose result
type is inconsistent with the context. In our example, the context requires the
result type 72. Taking this into account, the top-down scan reduces the set of
applicable functions to the F from the third definition.

5.1.1 Additional Details for the Bottom-Up Pass

The first pass can also select candidate interpretations on the basis of named pa-
rameter associations. Consider the two declarations:

function F (A: Integer; B: Integer := 0) return Integer;—— (Fl)
function F (C: Integer) return Integer; —— (F2)

These two functions have different parameter profiles, but the call F(5) is am-
biguous, regardless of the context: it can mean F(5,0) or F(5). However, it is
possible to write F(C=>5) to resolve the ambiguity because the named notation
indicates that only F2 is a candidate interpretation.

The details of overload resolution are complicated by construct-specific rules
that apply to different complete contexts and also to constituents of a context, and

58

CHAPTER 5. OVERLOAD RESOLUTION

finally by the existence of resolution rules that specify not a single type, but a class
of types. For example:

1. The bounds of an integer type declaration can be of any integer type.
2. The condition in an if-statement can be of any boolean type.

3. The operands of an equality operator must be non-limited.

Note that in the course of overload resolution, expressions themselves can be

seen as overloaded, in the sense that they have more than one candidate type. For
example, a selected component can be overloaded if its prefix is overloaded.

The bottom-up pass labels the subtree as follows:

e Numeric literals are labelled with the corresponding universal type; charac-

ter literals are labelled Some_Character, because they are compatible with
any character type or enumeration type that has character literals.

Aggregates, which are literal denotations for composite values, are labelled
Any_Composite, indicating that the context must be a record or array type.
Note that the components of an aggregate are not used in the bottom-up
pass: the aggregate is resolved from the context.

For identifiers, the visibility rules select an interpretation, and if the inter-
pretation is overloadable (i.e. it is a subprogram or enumeration literal) then
the full context is examined to locate other candidates interpretations. The
homonym chain for the entity is traversed to locate entities with the same
name that may be declared in outer scopes or in packages in the context
of the current compilation. All of them are added to a data structure that
is conceptually attached to the identifier, and which is described below (cf.
Section 5.1.2).

Each expression kind has specific resolution rules. In the semantic descrip-
tion of Ada, each type declaration creates some implicit operators that apply
to the type. For example, every non-limited type has its own equality oper-
ator, each arithmetic type has its own arithmetic operators, etc. Given that
type declarations are extremely common in Ada programs, it seems appro-
priate to find some compact or implicit description of these operators, rather
than making explicit entities for all of them. This will be discussed in detail
in the following paragraphs.

5.1. RESOLUTION ALGORITHM 59

In GNAT, all predefined operators are declared only once, in the internal rep-
resentation of package Standard. If the operands of an operator are overloaded,
different interpretations correspond to different types but the name of the operator
itself is unique. The absence of explicit operators for each type complicates some-
what type-checking, but represents a substantial saving in space and performance.
Operators have the following characteristics:

1. The types of both operands must be the same.

2. The context does not determine the expected type of the operands, given
that it only specifies that the result must be of type Boolean.

Consider the expression f{x)=g(y), where both f and g are overloaded func-
tions, and there are no user-defined equality operations, that is to say only the
predefined equality is visible. Bottom-up analysis determines the possible inter-
pretations of each call. We then look for types that appear in both sets of inter-
pretations, that is to say we take the intersection of the candidate types of both
operands. If this intersection contains more than one type, the construct is am-
biguous regardless of context. If it contains a single type, the equality operation
has a single interpretation with a boolean type.

In this section we have mentioned some typical resolution rules for expres-
sions. Additional details can be found in the front-end packages Sem_Ch4 and
Sem_Type.

5.1.2 Data Structures

The semantic analyzer stores the interpretations of an identifier in a global over-
loads table. An interpretation consists of a pair (identifier, type). Expressions can
also be overloaded, but do not have a name, so the corresponding interpretations
are pairs that just repeat the type. Standard iterator primitives: Get_First_Interp
and Get_Next_Interp, are used systematically in the analysis and resolution of
overloaded constructs. A common idiom in type processing consists in check-
ing whether a given overloaded node can be used in a given context. The routine
Has_Compatible_Type (T, N) iterates over the interpretations of N and yields True
if one of those has type 7. Details can be found in the front-end package Sem _Type.

60 CHAPTER 5. OVERLOAD RESOLUTION

5.1.3 Additional Details for the Top-Down Pass

The second pass of type resolution traverses the AST from root to leaves, and
propagates the type information imposed by the context to each subcomponent of
the context. For example, given the following:

declare
procedure P (X : Float; Y : Integer); —— PI1
procedure P (X : Float; Y : Float); —— P2
function F (X : Float) return Integer; —— F1
function F (X : Float) return Float; —— F2

begin
P (F (5.0), 2.2);

end ;

& J

The bottom-up pass determines that the call to F has the set of possible inter-
pretations: {F1,F2}. Similarly, the identifier P is either P/ or P2. The analysis of
the call itself selects P2, which in turns determines that the type of the first actual
must be Float. This type information is then applied to the call F(5.0) to select
F2.

Each language construct has a corresponding subprogram in the front-end
package Sem_Res, that applies the context information to the constituents of the
construct. For example, consider an overloaded indexed expression:

F(G(x))(H(y))

...where F, G and H are overloaded function calls. Once the context type CT
is known, we iterate over the interpretations of F' and retain the one that returns
an array type whose component type is C7. Once a unique interpretation of F' is
known, its formal parameter provides the unique type to resolve G(x), and the
component type of its return type is used to resolve H(y).

The language displays a syntactic ambiguity which requires special process-
ing. Consider the following declarations:

type Vector is array (Integer range <>) of Integer;
function F (X : Integer := 10) return Vector;

The expression F(5) has two possible interpretations: a function call with pa-
rameter 5 that returns a vector, i.e. F(X=;5), or the indexing of a parameterless

5.2. SUMMARY 61

function call that uses the default value, i.e. F(x=;10)(5). These two interpreta-
tions have different AST’s, and the proper interpretation is obtained from context:
the expected type of the call is either a Vector or an Integer. However, it is awk-
ward to carry two different trees for this construct. Rather, the parser builds the
first interpretation, and the resolution of function calls looks for this particular
case (see details in Analyze_Call and Resolve_Call.

5.2 Summary

Resolution of overloaded subprograms and operators requires a two-pass algo-
rithm. The first pass attaches to each identifier the set of its candidate interpreta-
tions with interpretations are compatible with the types of their arguments. If such
a set has a single element, the designator is unambiguous. In the second pass, type
information is imposed on the complete context to select a single interpretation for
each component of the construct. This analysis is performed over each complete
context, defined in Ada as a language construct over which overload resolution
must be performed without examining a larger portion of the program.

62

CHAPTER 5. OVERLOAD RESOLUTION

Chapter 6

Analysis of Discriminants

A discriminant is a special component that is used to parametrize objects of a
composite type. The components of a discriminated type can depend on the value
of the discriminants of the object: for example the constraints on the subtype of
a component, or the initial value of a component, can be given by the value of
a discriminant of the object. Discriminants are also used to describe variants of
a variant record type, that is to say the determine the existence of other record
components. With the exception of array types, all composite types in Ada can
have discriminants. Thus, record types, protected types and task types, as well as
the corresponding subtypes, may have discriminants.

A type with discriminants is unconstrained, that is to say, it does not have
sufficient information to build an object of the type; a declaration of an object of
such a type must supply values for the discriminants, by means of a discriminant
constraint. For example:

type My_Record (Max_Length : Positive) is
record

Name : String (1 .. Max_Length);
end record;

Obj : My_Record (30);

Because of the properties of components depend on the values of the discrimi-
nants, a discriminated object is self-consistent: the value of a discriminant implies
the truth of some invariant for the object, for example the size of an array compo-
nent. For that reason the values of discriminants cannot be changed arbitrarily, in-
dependently of the values of the components that depend on them. As a result the

63

64 CHAPTER 6. ANALYSIS OF DISCRIMINANTS

discriminants of an object must be treated semantically as constants, and unlike
other record components they cannot be modified by a component assignment, or
passed as out parameters in a call.

The above makes it clear that discriminated types are a parametrization mech-
anism, and that the discriminants are handled like parameters when creating a
discriminated object. This parallel extends to the syntax and semantics of dis-
criminant specifications and formal parameter specifications.

Like subprogram parameters, discriminant specifications may include a de-
fault expression. If the discriminants of a record have defaults, it is possible to
declare an object of the type without providing an explicit constraint, in which
case the object takes its discriminant values from the corresponding default ex-
pressions. Such an object is said to be unconstrained, and it is possible to modify
the object by means of an assignment to the object as a whole, that modifies the
discriminant values as well as those of the components that depend on them.

Discriminants serve similar purposes for tasks and protected types. In both
cases, they can be used to constrain components as well as entry families. It is
also common to use a discriminant to specify the priority of a task object, so that
different objects of the same task type have different priorities.

In Ada83 discriminants must be of a discrete type. This reflects the common
use of a discriminant as the expression in a case statement that describes the vari-
ants of a given record type. Ada95 introduces the notion of an access discriminant,
which allows an object to be parametrized by a pointer to another object. Such
access discriminants cannot be used to govern a variant, because they are not dis-
crete. A type with an access discriminant is a limited type, because assignment is
not meaningful for objects that contain pointers to other objects.

6.1 Analysis of Discriminants

At a first sight the analysis of discriminants adds no special complexity to the
compiler. The immediate scope of the discriminants is the type definition, which
includes the declarations of the remaining record components, but excludes the
discriminant specification itself. It would appear that the Semantic Analyzer just
needs to (1) enter the discriminants into the scope of the type declaration, (2)
verify that default expressions are provided either for all or for none of the dis-
criminants [AAR95, Section 3.7(11)], and (3) verify that the discriminant names
are not used in the default-expressions of other discriminants. However, things

6.1. ANALYSIS OF DISCRIMINANTS 65

are invariably more complicated.

For example, default expressions must be analyzed in a special fashion, be-
cause they correspond to per-object constraints [AAR9S, Section 3.3.1(9)]: each
object that is declared without explicit discriminants must evaluate the defaults
anew. That is to say, if the default is a function call, the call must be executed
for each object of the type, and not just when the type declaration is analyzed.
However, the compiler must perform all legality checks at the point of type defini-
tion. As aresult, analogous to the way in which generic units are analyzed, default
expressions in the type declaration are analyzed in a special mode that excludes
expansion. This analysis leaves the default expression marked as unanalyzed, al-
though the semantic analyzer evaluates static expressions and performs related
freezing operations (cf. detailed comment in package Sem). The semantic ana-
lyzer attaches this pre-analyzed expression to the defining entity of the discrimi-
nant, so it can easily retrieve it at points of use, that is to say when unconstrained
objects of the type are declared.

Another aspect of semantic analysis that is complicated by the presence of
discriminants is the handling of aggregates [AAR9S5, Section 4.3]. An aggregate
for a record type must provide values for all components of the type. Therefore, if
the type has discriminants, their values must be supplied as well. If the type has a
variant part, the aggregate must specify all the components of the particular variant
that corresponds to the given values of the discriminants. To allow the compiler to
identify the specified variant part and gather the components that must be present,
the discriminants in such an aggregate must be static. In case of nested variant
parts the semantic analyzer must recursively traverse the record type structure to
verify that the expressions corresponding to each discriminant ruling the nested
variant parts are static, see what variants are selected by the given discriminant
values, and verify that a value is given for all the components in that variant. For
example, let us consider the following example:

66 CHAPTER 6. ANALYSIS OF DISCRIMINANTS

1: declare

2: type T_Company is (Small, Big);

3: type T_Record (Company_Kind : T_Company;

4: Num_Departments : Natural) is
5: record

6: Num_Workers : Positive;

7: case Company is

8: when Small =>

9: Has_Benefits : Boolean;

10: when Big =>

11: case Num_Departments is

12: when 1 .. 10 =>

13: Value : Integer;

14: when others =>

15: null ;

16: end case;

17: end case;

18: end record;

19:

20: Obj_1 : T_Record (Small, 1);

21: Obj_2 : T_Record (Big, 7);

22: Obj_3 : T_Record (Big, 15);

23: begin

24: Obj_1 := (Num_Workers => 2, Has_Benefits => False);
25: Obj.2 := (Num_Workers => 100, Value => 10000);
26: Obj_3 := (Num_Workers => 150, Value => 15000); —— ERROR
27: end;

e

The example presents a record-type declaration with nested variant parts (lines
7 to 17), three object declarations (lines 20 to 22), and three statements which
initialize the objects by means of aggregates (lines 24 to 26). The third aggregate
is wrong because, at the point of the object declaration (line 22) the number of
departments was contrained to 15, and this value is used in the nested variant part
(lines 11 to 16) to specify that no additional information is required for this kind
of company.

To handle the general case, the analysis of a record aggregate proceeds by
building a map that associates each component with the corresponding expression
in the aggregate. The map contains at first the discriminants themselves, and even-
tually all components that appear in the selected variants (see details in package
Sem_Aggr, and in subprogram Gather_Components).

Extension aggregates for type extensions add further complexity to the analy-
sis, because the components may come from ancestors of the given type. In this
case the values of discriminants are used to traverse variant parts of the ancestors

6.2. ANALYSIS OF DISCRIMINANTS IN DERIVED TYPES 67

to collect the list of required components. In all cases the analyzer verifies that
values have been provided for all components, that they have the proper types,
and that no extraneous values are present.

6.2 Analysis of Discriminants in Derived Types

When a type with discriminants is derived, the discriminants of the parent type can
be inherited, constrained in the derivation, or renamed by the introduction of new
discriminants. The following are the basic rules for derivation [AAR9S, Sections
3.4(11), 3.7(13-15)]:

e If no discriminant is specified, the derived type inherits the discriminants
of the parent type (implicitly in the same order and with the same spec-
ifications and defaults). In this case the derivation simply copies the full
declaration of the parent, and the components of the derived type are in
one-to-one correspondence with those of the parent.

e If the derived type has discriminants, and the parent is not a tagged type,
each discriminant of the derived type shall be used in the constraint defining
a parent subtype.

The last rule guarantees that in the absence of representation clauses, the lay-
out of an untagged derived type is identical to that of its parent. The code gener-
ator only needs to refer to the physical layout of the original type. To handle the
renamings that may be introduced by the derivation, the defining entity of the dis-
criminant in the derived type includes an attribute Corresponding _Discriminant
that allows the Semantic Analyzer to find the original discriminant in the parent
type (cf. Comment in Build_Derived_Record_Type implementation).

In the presence of representation clauses, this simple model is not viable. be-
cause Ada allows the use of representation clauses in a derived untagged type D
that specify a different record layout from that its parent type P. Hence the corre-
sponding component can be placed in two different positions in the parent and in
the derived type. As a result, the two types cannot share the declarations of their
components, but must have fully disjoint complete declaration trees. The GNAT
semantic analyzer does a copy of the entire tree for component declarations of
P and builds a full type declaration for derived type D. Hence D appears as a
record type of its own, with its own representation clauses, if any. The entity for
D indicates that this is a derived type, and points to the parent subtype P.

68 CHAPTER 6. ANALYSIS OF DISCRIMINANTS

Representation clauses cannot be provided for tagged types because dispatch-
ing and polymorphism mandate the same representation for the common compo-
nents of the entire class.

6.3 Discriminals

The analogy between discriminants and parameters is even more apparent when
we examine object initialization. If a composite type has components that have
an implicit or explicit initial expression, objects of the type must be initialized
at the point of creation. For this purpose, the compiler generates initialization
procedures for each such type, and invokes this procedure each time an object of
the type is declared. If the type has discriminants, the initialization procedure has
parameters that are in one-to-one correspondence with the discriminants. Within
GNAT, these parameters are called discriminals, and there is a semantic link be-
tween a discriminant and its corresponding discriminal. The call to the initializa-
tion procedure includes a parameter list which is a copy of the discriminant values
used (implicitly or explicitly) in the object declaration. Details of initialization
procedures are discussed in a separate chapter. For example, let us consider the
following type declaration:

type Rec (D : Integer) is record

Value : Integer := D;

Name : String (1 .. D) = (1 .. D=> "1");
end record;

The corresponding initialization procedure is as follows:

procedure Init_Proc (Obj : in out rec; D : Integer) is
begin

Obj.Value := D;

Obj . Name = (1 .. D=> "1");
end ;

The declaration Obj1 : rec (17) results in the generation of the call:

Init_Proc (Objl, 17).

6.4. SUMMARY 69

6.4 Summary

A discriminant is a special component that acts as a parameter for objects of the
type. A default expression of a discriminant has a special significance: it allows
objects of the type to be unconstrained. To properly handle discriminants the
Ada compiler must takes special care with the analysis of default expressions,
which must be evaluated at the point of the object declaration, not at the point of
the type declaration. In addition, because the Ada representation clauses allow a
derived type to specify a completely different record layout from its parent type,
the derived type must copy all the components of the parent type. The analysis of
record aggregates must use the specified values for the discriminants to determine
the existence and properties of the remaining components of the object, in order
to verify the semantic correctness of the aggregate as a whole.

70

CHAPTER 6. ANALYSIS OF DISCRIMINANTS

Chapter 7

Generic Units

A generic unit is a parameterized template for a subprogram or package whose pa-
rameters can be types, variables, subprograms and packages. Generic units must
be instantiated, by suppling specific actuals for the parameters. Each instantia-
tion conceptually creates a copy of the specification and body of the generic unit,
which are appropriately customized by the actual parameters.

The semantics of Ada specify that the legality of generic templates is estab-
lished at the point of declaration of the generic, and not at the point of instantia-
tion. Therefore, a generic unit must be fully analyzed at the place it appears. For
an instantiation, the main legality checks involve verifying that the actuals pro-
vided in the instance match the generic formal parameters. The so-called “contract
model” [AAR9S, Section 12.3.1(a)] states that if the generic declaration is legal,
and the actuals match the formals, then the instantiation is known to be legal, and
semantic checks need not be performed on it.

The legality checks on a generic unit are similar to those of a regular, non-
generic unit. They mainly involve name resolution and type checking. Given
that the semantics of the generic are established at the point of definition, name
resolution involves global name capture: a reference to an entity that is external
to the generic is established when the generic is analyzed, and must be retained
for each instantiation. On the other hand, entities local to the generic will have a
different meaning in each instance.

Traditionally, there are two implementation techniques for generic instantia-
tion [SB94]: in-line expansion (often called Macro Expansion) and direct com-
pilation of generic units (also known as Shared Generics). The latter model is
known to be fraught with difficulties and GNAT, like most other compilers, im-

71

72 CHAPTER 7. GENERIC UNITS

plements generics by expansion. Therefore, each instantiation of a given generic
produces a copy of the generic code, suitably decorated with semantic information
from captured global entities and actual parameters. Note that this is quite distinct
from the macro-expansion of older programming languages, which is typically a
pure textual substitution with no semantic legality checks on the macro itself.

After analysis, a generic unit contains partial semantic information. At the
point of instantiation, the semantic information must be completed. This does
require a full pass of semantic analysis over the instance. In addition, code expan-
sion must be performed. Note that expansion cannot be performed on the generic
itself, because expansion typically depends on type information that is not avail-
able until the actual types are known. Given that semantic analysis and expansion
are inextricably linked in GNAT, we must perform full semantic analysis of the
instance, even though the contract model would indicate that some of it is super-
fluous.

The requirements of global name capture determine the architecture described
in this chapter. This architecture is complicated by two related aspects of Ada:
nested generic units (and instantiations within generic units) and generic child
units. In addition, private types complicate visibility analysis and require some
special machinery to insure that name resolution is consistent between the point
of generic definition and the points of instantiation.

This chapter is structured as follows: Section 7.1 presents the main details
of the GNAT approach to the analysis and instantiation of simple generic units.
This section also describes parameter matching and private types handling. Sec-
tion 7.2 discusses the analysis and instantiation of nested generic units; Section 7.3
presents the analysis and instantiation of generic child units; Section 7.4 describes
the instantiation of bodies in a separate phase, and Section 7.5 briefly discusses
the mechanisms used to detect instantiation circularities. We close with a brief
summary of the contents of this chapter.

7.1 Generic Units

7.1.1 Analysis of Generic Units

Generic specifications are analyzed wherever they appear. If a generic unit is
mentioned in a context clause of some unit U, it is analyzed before the unit U
itself. The result of this analysis is an Abstract Syntax Tree (AST) annotated with
partial semantic information. The analysis of a generic package or subprogram

7.1. GENERIC UNITS 73

specification involves the following sequence of actions:

1. Copy the AST of the generic unit. The first step is to create a copy of the
unanalyzed AST of the generic. The generic copy is a tree that is isomor-
phic to the original. Semantic analysis will be performed on the copy, and
only the relevant information concerning references to global entities will
be propagated back to the original tree. In order to perform this propaga-
tion, each AST node in the original that may eventually contain an entity
reference (typically identifiers and expanded names) holds a pointer to the
corresponding node in the copy. The left side of Figure 7.1 represents the
AST associated with an Ada program: an Ada compilation unit that has an
inner generic unit (indicated by the dotted rectangle). Circles represent non-
entity AST nodes (expressions, control structures, etc); rectangles represent
AST entities. Dark circles or rectangles represent nodes with semantic in-
formation (decorated nodes). The left side of the figure represents the AST
of the current compilation unit.

Compilation Unit

S T
i ' i :
1
TPV i R
1 _(EL ___________ 1! O\ O|
i[] o} i |
i ' i !
I I
Original AST Copied AST

Figure 7.1: Step 1: Copy the original generic AST.

2. Analyze the copy. The copy is semantically analyzed to perform name
resolution and all the required legality checks. Thus the copied AST is
annotated with full semantic information. Figure 7.2 shows the decorated
copy. The two arrows in the decorated AST (right side of the figure) repre-
sent a reference to a global entity, declared outside the generic unit, and a
reference to one local entity, declared in the scope of the generic unit itself.

3. Save non-local references. After semantic analysis, the front-end traverses
the original AST to identify all references to non-local entities (entities de-
clared outside the generic itself). This is done by examining the scope of

74

Compilation Unit

Original AST

CHAPTER 7.

GENERIC UNITS

Copied AST
(decorated)

Figure 7.2: Step 2: Analyze and decorate the copy.

definition of all entity references, and determining whether they occur out-
side of the current generic unit. References to local entities are simply re-
moved from the original AST. In this fashion, only global entity references
will be propagated from the original AST to the instances. In the left side
of Figure 7.3 the original node corresponding to a global entity reference is
now represented in black; this means it is semantically decorated and thus
its reference to the global entity will be preserved in all instances of this

generic unit.

Compilation Unit

Original AST

Copied AST
(decorated)

Figure 7.3: Step 3: Remove local references in the original AST.

7.1. GENERIC UNITS 75
7.1.2 Instantiation of Generic Units

At the point of generic instantiation, the original generic tree for the generic unit
is copied, and the relevant semantic information from the copy is retrieved and
added to it (cf. Figure 7.4). The new tree is treated as a regular (non-generic)
unit which is analyzed and for which code is now generated. Non-local references
are not analyzed anew (name resolution does not modify an entity reference that
already denotes an entity, see Find_Direct_Name). To each local entity in the
generic there corresponds a local entity in each instance, and name resolution for
these is performed as for non-generic units.

Generic Unit

Original AST

I
1
i Tree Copy
1
1

|
1
1
i
1
v

1
Instance #1
Tt T T T
Instance #2 |

i
Instance #3 |

(==

Figure 7.4: Instantiation of generic units.

7.1.3 Parameter Matching

The conventional model of instantiation is to replace each reference to a formal
parameter by a reference to the matching actual. This is usually carried out by
establishing a mapping from one set to the other, and applying this mapping to a
copy of the generic template. This mapping approach is complex and expensive
when nested generics are present, and GNAT follows a different approach, which
closely reflects the semantics of instantiation. To indicate that a reference to a
formal type is really a reference to the actual, the front-end inserts renaming dec-
larations within the instance so that any use of the name of a formal resolves to
the corresponding actual. The nature of the renaming declaration depends on the
generic parameter: object, type, formal subprogram or formal package. Thanks

76 CHAPTER 7. GENERIC UNITS

to this mechanism, the analysis of the instance can proceed as if the copy had
been inserted literally at the point of instantiation, even though the visibility en-
vironment at this point bears no relation to the visibility at the point of generic
declaration.

1. Objects. For each generic in parameter the GNAT front-end generates a
constant declaration; for each generic in out parameter generates an object
renaming declaration whose renamed object is the corresponding actual (out
mode formal objects are not allowed in Ada 95 [AAR9S, Section 12.4-1a].

2. Types. Generic types are renamed by means of subtype declarations.

3. Formal subprograms and packages. For each formal subprogram or for-
mal package the front-end generates the corresponding renaming declara-
tion.

To give the right visibility to the entities introduced by these renamings, GNAT
uses a different scheme for package and subprogram instantiations:

e Packages. In the case of packages, the list of renamings is inserted into the
package specification, ahead of the visible declarations of the package. The
renamings are thus analyzed before any of the text of the instance, and are
visible at the right place. Furthermore, outside of the instance, the generic
parameters are visible and denote their corresponding actuals. For example:

-

generic
In_Var : in Integer;
InOut_Var : in out Integer;

type T_Data is private;
package Example is
type T_Local is
procedure Dummy;
end Example;

package body Example is
procedure Dummy is
Aux : Example.T_Local;
begin
null ;
end Dummy;
end Example;

7.1. GENERIC UNITS 7

with Example;

procedure Use_Example is
My_Var_1 : Integer 1;
My_Var_.2 : Integer := 2;

package My_Instance is new Example

(In_Var => My_Var_1,
InOut_Var => My_Var_2,
T_Data => Integer);
begin
null ;
end Use_Example;
\\ J

The GNAT front-end generates the AST equivalent of the following code
for the instantiation:

s N
procedure use_example is ————— Front—end Translation
my_var_1 : integer := ... ;
my_var_2 : integer := ... ;

package my_instance is

in_var : constant integer := my._var_1; —— (1)
inout_var : integer renames my._var_2; — (2)
subtype t_data is integer; —— (3)

type T_Local is

package example renames my_instance; —— (4)
procedure dummy;
end my_instance;

package body my_instance is
procedure dummy is
Aux : Example.T_Local; —— (5)
begin
null ;
end dummy;
end my_instance;

begin
null ;

end use_example;
\\ J

Line (1) is the constant declaration corresponding to the in parameter; line
(2) is the renaming of the in out parameter; line (3) is the subtype dec-
laration used to rename the generic formal type T_Data. Finally, line (4)

78

CHAPTER 7. GENERIC UNITS

introduces a renaming for the generic unit itself. This corresponds to the
fact that within the generic, the name of the generic denotes the name of
the current instance. The need for this last renaming is made evident by the
declaration in line (5), which references a type that is originally local to the
generic, and now designates a type local to the current instance.

Subprograms. In this case there is no obvious scope in which the required
renaming declarations can be inserted. Instead, the front-end creates a wrap-
per package that holds the renamings followed by the subprogram instance
itself. The analysis of this package makes the renaming declarations visi-
ble to the subprogram. After analyzing the package, the front-end inserts
a subprogram renaming outside the wrapper package to give it the proper
visibility (thus the callable subprogram instance appears declared outside
the wrapper package). For example:

generic
In_Var : in Integer;
InOut_Var : in out Integer;

type T_Data is private;
function Example (A: T_Data) return Integer;

y

function Example (A: T_Data) return Integer is
begin

return 1;
end Example;

with Example;

procedure Use_Example is
My_Var_1 : Integer := ... ;
My_Var_.2 : Integer : e

function My _Instance is

new Example (In_Var => My_Var_1,
InOut_Var => My_Var_2,
T_Data => Integer);
begin
null ;

end Use_Example;

In this case the GNAT front-end carries out the following transformation:

7.1. GENERIC UNITS 79

e N
procedure use_example is —————— Front—end Translation
my_var_1 : integer := ... ;
my_var_2 : integer := ... ;

package my_instanceGP110 is

in_var : constant integer := my_var_1l; —— (1)
inout_var : integer renames my._var_2; —— (2)
subtype t_data is integer; —— (3)
function my_instance (a : t_data) return integer;

end my_instanceGP110;

package body my_instanceGP110 is

function example (a : t_data)

return integer renames my_instance; — (4)
function my_instance (a : t_data) return integer is
begin

return 1;

end my_instance;
end my_instanceGP110;

function my_instance —— (5)
(a : my_exampleGP110.t_data)
renames my_instanceGP110.my_instance;
begin
null ;

end use_example;
& J

Line (5) is the subprogram renaming which makes the subprogram visible in
the current scope. The reader should note that this renaming declaration can
not be replaced by an Ada use_clause on the wrapper package, because this
would render visible all the renamings associated with formal parameters
(not only the instantiated subprogram), which would be illegal.

If the subprogram instantiation is a compilation unit, the front-end gives the
wrapper package the name of the subprogram instance. This ensures that the elab-
oration procedure called by the GNAT Binder, using the compilation unit name,
calls in fact the elaboration procedure for the package.

80 CHAPTER 7. GENERIC UNITS
7.1.4 Private Types

The analysis of a generic unit leaves all non-local references decorated to ensure
that the proper entity is referenced to in the instantiations (cf. Section 7.1.1).
However, for private types this by itself does not insure that the proper View of the
entity is used (the full type may be visible at the point of generic definition, but not
at instantiation time, or vice-versa). To solve this problem the semantic analyzer
saves both views. At time of instantiation, the front-end checks which view is
required, and exchanges declarations, if necessary, to restore the correct visibility.
(cf. Chapter 4). After completing the instantiation, the front-end restores the
current visibility.

7.2 Nested Generic Units

7.2.1 Analysis of Nested Generic Units

The model presented in the previous section extends naturally to nested generics.
If a generic unit G2 is nested within G/, the analysis of G/ generates a copy CG/
of the tree for G/. Later, when G2 is analyzed, the front-end makes a copy CG2
of the tree for G2, and establishes links between this copy and the original tree
for G2 within CGI. An instantiation of G2 within G/ will use the information
collected in CG2. To see this in detail, consider the scheme in Figure 7.5 (Ada
elements which reference entities in the AST have been emphasized in Figure 7.5
with bold letters).

This example shows a non-generic package (Example) with two nested generic
packages (Gen_Pkg_I and Gen_Pkg_2). Data type T_Global is external (global) to
the generic packages; data type T_Semi_Global is local to Gen_Pkg _I but external
to Gen_Pkg_2. In addition, some objects of these data types are created in each
generic package (A_1, B_L1, A2, B2 and C_2).

To do the semantic analysis of Gen_Pkg_I the GNAT front-end makes a copy
of its AST and links the nodes which reference entities with their copy (cf. Fig-
ure 7.6). The semantic analysis of Gen_Pkg_I captures all occurrences of local
and non-local entities (see the arrows from A_I to T_Global, and from B_I to
T_Semi_Global).

To analyze Gen_Pkg_2 the front-end repeats the process: makes a new copy of
Gent_Pkg_2 AST and links the nodes which reference entities with their new copy

7.2. NESTED GENERIC UNITS 81

package Example is
type T_Global is . . .
jgeneric ~ ~ ~ ~ ~ ~ T 7 |

:[;a‘c‘kage Gen_Pkg_1 is

type T_Semi_Global is . . .

A_1:T_Global;

B_1 : T_Semi_Global;

|
- |
package Gen_Pkg 2is
|

type T_Localis....

|

A_2:T_Global, |

|

|
|
|
|
|
|
|
|
|
| C_2: T_Local;
|

|

end Gen_Pkg_2;

end Example;

Figure 7.5: Nested generic packages.

(cf. Figure 7.7). Again, its semantic analysis captures all occurrences of local
and non-local entities.

After the analysis of the nested generic units the front-end removes all the
local references in the original copy of the nested generic units (cf. Left side
in Figure 7.8). References to T_Semi_Global are not preserved because, in the
general case, they may depend on generic formal parameters of G/.

7.2.2 Instantiation of Nested Generic Units

If a generic unit G2 is nested within G/, the Ada programmer must first instanti-
ate G1 (say IGI) and then instantiate the nested generic unit G2 which is inside
IG1.The instantiation of GI produces a full copy of its AST, including the inner
generic G2.

Continuing with our previous example, let us consider the following instances

82 CHAPTER 7. GENERIC UNITS

package Example is
type T_Global is ... €==——=1+_ —
—.
o — ~.
: generic | | generic
. | N
: package Gen_Pkg_1 is I packege Gen_Pkg_1 is
| <

I i al is
| type T_Semi_Global is el P type TsSemi_Global is ...

=1 =
' A_1:T_Global; w LT /
| _1: T_Global; [A_l: T_Globaly,
| - ‘r T ——a
, B_1 : T_Semi_Global; \ B_1 : T_Semi_Global;
I

ffffffffff I ——— = = - - — =
|| generic \‘ ‘r generic I
by I .. !
| | package Gen_Pkg_2is N : package Gen_Pkg_2is !
(I N !
I | type T_Localis.... ! o ! type T_Local is ... |
. //,/k:- _____ ‘L\er\; ocal is |
I | A2:T Global; |, | A2:T Global. |
. e - T
| ey ! - !
| I B2: Tfsemlf(.loba‘l: | B_2 : T_Semi_Globgl;
I - —— - ’
I T Local ‘T A, !
L C_2: T_Local; “ I C_2: T_Local; |
Ly ! ! :
|, end Gen_Pkg 2; \: I end Gen_Pkg_2; |
ettt L N [Sy
|
jend Gen_Pkg_1; | end Gen_Pkg_1;
end Example;

Figure 7.6: Analysis of generic package Gen_Pkg_I.

of our generic packages Gen_Pkg_I and Gen_Pkg 2:

S

with Example;
procedure Instances is
package My_Pkg_ 1 is

new Example.Gen_Pkg_1 (...); ——1
package My_Pkg 2 is
new My_Pkg_1.Gen_Pkg. 2 (...); ——2
begin

end Instances;

At point 1 (instantiation of Gen_Pkg_I), the analysis of this instantiation in-
cludes the analysis of the nested generic, which produces a generic copy of Gen-
_Pkg_2, which will include global references to entities declared in the instance.
The instantiation at point 2 requires no special treatment (the front-end produces
a copy of the generic unit Gen_Pkg_2 in the instance My_Pkg_I and instantiates it
as usual).

Figure 7.9 presents the resulting code for this example. The Ada source lines
which instantiate the generic units have been kept in the figure as Ada comments to
help the reader see the corresponding instantiation (inside dotted rectangles). The

7.2.

NESTED GENERIC UNITS

package Example is

lgeneric T T
[
I package Gen_Pkg_1 is
!

A_1:T_Global;

|

|

|

!
type T_Semi_Global is ...|
!

!
- I
B_1 : T_Semi_Global; !
!

Ceneic T - " T~ I
| generic

|

R |
| package Gen_Pkg_2is |
!

type T_Local is ... !

I

|
|
| —_ |
I A_2:T_Global; |
|
l ="
| B2 : T_Semi_Globg;
I =1
|
| |
|
! !
!
| |
|
|

C.2: T Local;

end Example;

————— —L

—
-~
~.
~.
~N. sneric ~L
N ~
pacRege Gen_Pkg_1 is ‘\
Iypc}; emi_Global is ... \.
[T——a 4 Y. N
/ ~ .
A_L : T_Global; ~ AN
-—~_ - ~. .\
B_1 : T_Semi_Global; N ‘\
lamie =~ " T T~ \~
| generic \

: package Gen_Pkg_2 is
!
type T_Local is ...

T T
A_2:T_Global;

-1
| —_— =
I

i It
| C_2: T_Local;
!

I end Gen_Pkg_2;

end Gen_Pkg_1;

B_2: T_Semi_Globql

[S

\&eneric
}Mék:ige Gen_Pkg_2 is
S

I\/,];‘TiLoca] is ...

B *
A_Z:\'f_qubal;

At
B2 : T_/Sémi_Globc

— 7
C_2" T_Local;

end Gen_Pkg_2;

Figure 7.7: Analysis of nested generic package Gen_Pkg 2.

package Example is

| generic)
!

. |

I package Gen_Pkg_1 is |
!

!

type T_Semi_Global is ...|

A_1:T_Global;

P —- == = = = = |
| generic

!

R |
| package Gen_Pkg 2is |
!

type T_Local is ... |

I

A2: Ti/Global;

|

|

| |
|

| |

| ! |

| B2: T_Semi_Globa:I;

| |
|

| |
|

| 1
|

| |
|

|

end Gen_Pkg_1;

end Example;

_____ .

~.
~.
~ ~
| generic N
N <
packege Gen_Pkg_1 is N
type}_\Semi_Global is ... \‘
[T ——a A . - \~
A_L: T_Global, ~ AN
> N, \
B_1 : T_Semi_Global; N ‘\
lgemefic ~ — — ——~ \~
| generic \

| package Gen_Pkg_2 is
!
type T_Local is

—~ P -—
A_2:T_Global;

!

!

!

|

| - -
| C_2: T_Local;
!

|

end Gen_Pkg_2;

end Gen_Pkg_1;

— |
B_2: TisemLGlohql 5

[

Figure 7.8: Saving global references.

‘g{cncric

\pac\(;age Gen_Pkg_2is
.
}/AT?LOC&I is ...

Al)
A72:\T7quhal;
——— /

sz*: Tf/SémLGlohz

-
C72‘: T_Local;

end Gen_Pkg_2;

84 CHAPTER 7. GENERIC UNITS

first dotted rectangle is the instantiation of My_Pkg_I; the second dotted rectangle
is the instantiation of the generic unit in the instance My_Pkg_I.

with Example;
procedure Instances is

package My__PEg:I s T
<< Renamings of formal parameters >>

- - package My_Pkg_1 is new Example.Gen_Pkg_1 (. ..); -1
— == 1

type T_Semi_Global is ...
A_1:T_Global;
B_1 : T_Semi_Global;

package Gen_Pkg_2 is
type T_Local is
A_2: T _Global;
B_2 : T_Semi_Global;
C_2: T_Local;

end Gen_Pkg_2;

;- package My_Pkg 2is !
<< Renamings of formal parameters >>!
|

type T_Local is ...
A_2: T_Global;
B_2 : T_Semi_Global;
C_2: T_Local;

end My_Pkg_2;

end Instances;

Figure 7.9: Instantiation of nested generic units.

7.3 Generic Child Units

7.3.1 Analysis of Generic Child Units

The analysis of generic child units adds no additional complexity to the mech-
anisms described in the previous sections. Conceptually the child unit has an
implicit with_clause to its parents. Therefore the analysis of a generic child unit
recursively loads and analyzes its parents. For example, to analyze R (child of
P.Q) the front-end loads and analyzes P, then Q and finally R. This is identical to
what is done for non-generic units. Of course, the analysis of the generics ends

7.3. GENERIC CHILD UNITS 85

with the recovery of global names. References to entities declared in a generic
ancestor are not preserved, because at instantiation time they will resolve to the
corresponding entities declared in the instance of the ancestor.

7.3.2 Instantiation of Child Generic Units

Let us assume P is a generic library package, and P.C is a generic child package
of P. Conceptually, an instance / of P is a package that contains a nested generic
unit called I.C[AAR9S, Section 10.1.1(19)]. A generic child unit can only be
instantiated in the context of an instantiation of its parent, because of course it will
in general depend on the actuals and the local entities of the parent. This clause
of the RM simply indicates that a partially parameterized child generic unit is
implicitly declared within the instantiation of the parent. Nevertheless, given that
library packages are in general written in separate source files (this is mandatory
in the GNAT compilation model [Dew94]), the compilation of P does not really
contain information concerning /.C, and the front-end must handle generic child
units with care to find the proper sources. Let us examine this mechanism in detail,
and indicate how the proper visibility is established at the point of instantiation.

The RM paragraph just quoted allows generic child units to be instantiated
both as local packages and as independent compilation units. A common idiom
is to have an instantiation hierarchy that duplicates the generic hierarchy, but it
is also possible to instantiate several members of a generic hierarchy within a
common scope. Let us consider the following generic units in each case:

generic

1');1‘ckage Parent is

en(i. i:’arent;

generic

[');ckage Parent . Child is

end Parent.Child;

1. Local Instantiation. In the first case the instantiation of the generic hierar-
chy is done within the same declarative part. For example:

86

CHAPTER 7. GENERIC UNITS

: with Parent.Child;
: procedure Example is
package Parent_Instance is
new Parent (...);
package Child_Instance is
new Parent_Instance.Child (...);

0NN B W=

: end Example;

S J

First note that the name of the generic unit in the second instance (line
5) is that of the implicit child in the instance of the parent, and not that of
generic child unit that was actually analyzed. The first step in processing the
instantiation is to retrieve the name of the generic parent, and from there to
recognize that the child unit that we are about to instantiate is Parent.Child.

To analyze the instantiation of Parent.Child, we must place the tree for this
unit in the context of the instantiation of the Parent. This is so that a name
in the child that resolved to an entity in the parent will now resolve to an
entity in the instance of the parent. As a result, after producing the re-
quired copy of the analyzed generic unit for Parent.Child, the front-end
places Parent_Instance on the scope stack. The analysis of the child in-
stance will now resolve correctly. After analysis, the front-end removes
Parent_Instance from the scope stack, to restore the proper environment for
the rest of the declarative part.

. Library Level Instantiation. This case is more complex than that of a local

instantiation. Let us assume the following instantiation of the parent:

with Parent;
package Parent_Instance is new Parent (...);

The RM rule requires that the parent instance be visible at the point of in-
stantiation of the child, so it must appear in a with_clause of the current unit,
together with a with_clause for the generic child unit itself.

1: with Parent.Child;
2: with Parent_Instance;
3: package Child_Instance is new Parent_Instance.Child (...

The with_clause for the child (line 1) makes the implicit child visible within
the instantiation of the parent [Bar95, Section 10.1.3]. The instantiation at
line 3 names this implicit child.

7.3. GENERIC CHILD UNITS 87

Using a similar approach to the previous case, the front-end retrieves the
generic parent, verifies that a child unit of the given name is present in the
context, and retrieves the analyzed generic unit. Its analysis must again
be performed in the scope of the parent instance. Even though the parent
instance was separately compiled, all semantic information is available be-
cause it appears in the context. Therefore the front-end places it on the
scope stack (as before), and performs the analysis the child instance, after
which the parent instance is unstacked.

Clearly, more that one ancestor may be involved, and all of them have to
be placed on the scope stack in the proper order before analyzing the child
instance.

Figure 7.10 represents the sequence followed by the GNAT front-end to in-
stantiate Child_Instance (according to our previous example):

1. The upper two figures correspond to the analysis of line 1 (with Parent.Child).
First, the GNAT front-end loads and analyzes Parent (Step 1.1). During this
analysis the Scope Stack of the front-end provides visibility to all the enti-
ties in package Standard, plus the entities declared in Parent (see the Scope
Stack in the left side of the figure). After the Parent unit has been ana-
lyzed, the front-end loads and analyzes its generic Child (Step 1.2). Here
the Scope Stack of the front-end provides visibility to all the entities visible
to its parent plus the entities declared in the child. When the generic child
unit is analyzed the visibility to this hierarchy is removed from the Scope
Stack and the front-end is ready to analyze the next context clause.

2. The figure in the middle (Step 2) corresponds to line 2. Because the in-
stantiation of child generics requires the context of its parents, the analysis
of the second with_clause forces a new instantiation of Parent_Instance; the
AST of the generic parent is thus copied and analyzed in the global scope.
In analogy to the previous case, after the instance is analyzed its visibility
is removed from the Scope Stack.

3. The figure in the bottom (Step 3) corresponds to the instantiation of the
generic child (line 3). To provide the right visibility through the Scope
Stack, the front-end (1) retrieves the generic parent of Parent_Instance (ar-
row from Parent_Instance to its generic Parent), (2) verifies that a child unit
of Parent is present in the context (arrow from the generic Parent to its
generic Child), (3) installs Parent_Instance in the Scope Stack. (4) makes
a copy of the tree corresponding to the generic Child, (5) installs the child
instance on the Scope Stack, and finally analyzes it.

88 CHAPTER 7. GENERIC UNITS

Parent Scope Stack

STANDARD
Parent

Step 1.1: Analyze Parent

STANDARD

Parent_Instance

A

e
AL T
B
D/C\o L Child
o (O\o
@]

Step 2: Analyze and Instantiate Parent

Parent _ - - =~ Scope Stack () "7~ - - Parent_Instance
/C\\
\

. O
\
\
\

Parent_Instance (3)
Child_Instance
(5)

\

AN B
] %N

D O

. @
i Child_Instance

Q O

<

Step 3: Analyze and Instantiate Child

Figure 7.10: Sequence of steps to instantiate Child Instance.

7.4. DELAYED INSTANTIATION OF BODIES 89

7.4 Delayed Instantiation of Bodies

The front-end instantiates generic bodies in a separate pass, after it completes all
semantic analysis of the main unit. By delaying the instantiation of bodies, GNAT
is able to compile legal programs that include cross-dependences among several
package declarations and bodies. Such dependences present difficult problems in
the order of elaboration to other compilers. For example, consider the following
Ada code:

- Specifications
package A is

generic

package G_A is
end A;

package B is
generic
package GB is
end B;

—— Bodies
with B;
package body A is
package N_B is new B.GB (...);
end A;

with A;
package body B is

package N_A is new A.G.A (...);
end B;

Conventional compilation schemes either reject these instantiations as circular
(even though they are not) or are forced to use an indirect linking approach to the
instances, which is inefficient. In GNAT, the instantiated bodies are placed in-line
in the tree. This can only be done after regular semantic analysis of the main
unit is completed. Up to that point, only the declarations of instances have been
created and analyzed. It is worth noting that instantiations can appear before the
corresponding generic body, which indicates that the body of the corresponding
instance cannot be place at the same place as its specification, because it may
depend on entities defined after the point of instantiation. In that case, a delicate
analysis is required to locate the correct point at which an instance body must be
inserted.

90 CHAPTER 7. GENERIC UNITS

NOTE. The table Pending Instantiations (cf. Package Inline) keeps track of
delayed body instantiations. Inline handles the actual calls to do the body
instantiations. This activity is part of Inline, since the processing occurs at
the same point, and for essentially the same reason, as the handling of calls
to inlined routines. Note that an instance body may contain other instances,
and that the list of pending instantiations must be treated as a queue to which
new elements are added on the fly.

7.5 Detection of Instantiation Circularities

A circular chain of instantiations is a static error which must be detected at com-
pile time. The detection of these circularities is carried out at the point that the
front-end creates a generic instance specification or body. The circularity is de-
tected using one of several strategies. If there is a circularity between two compi-
lation units, where each contains an instance of the other, then the analysis of the
offending unit will eventually result in trying to load the same unit again, and the
parser detects this problem as it analyzes the package instantiation for the second
time. If a unit contains an instantiation of itself, the front-end detects the circular-
ity by noticing that the scope stack currently holds another instance of the generic.
If the circularity involves subunits, it is detected using a local data structure that
lists, for each generic unit, the instances that it declares.

7.6 Summary

A generic unit is essentially a macro for a subprogram or package, whose param-
eters can be types, variables, subprograms and packages. Generic units must be
instantiated, by suppling specific actuals for the parameters. This conceptually
creates a copy of the specification and body which are appropriately customized.

There are two main implementation techniques for generic instantiation known
as Macro Expansion and Shared Generics. GNAT implements generics by expan-
sion. Because the GNAT compilation model generates neither code nor interme-
diate representation in case of generic specifications, they are analyzed each time
they are found in an Ada context clause. This analysis involves the creation of a
copy of the fragment of the AST corresponding to the generic specification. The
front-end analyzes this copy and updates in the original fragment of the AST all
the non-local references to entities (the modified original tree). For each instance

7.6. SUMMARY 91

of the generic unit the front-end generates a new copy of this modified fragment
of the AST, adds some renaming declarations to handle actual parameters, and
analyzes and expands this copy. The GNAT front-end incorporates extensions to
this mechanism to analyze and instantiate nested generic units and generic child
units.

92

CHAPTER 7. GENERIC UNITS

Chapter 8

Freezing Analysis

Ada allows programmers to provide explicit information on the final representa-
tion of an entity [AAR9S5, Section 13]. The point at which the final representation
is fully determined is called a Freezing Point. Obviously, if no representation is
explicitly given the compiler has to take some default decision. When an entity
is frozen it causes freezing of all depending entities. Following table summarizes
the list of dependent entities to be frozen when a construct is frozen.

Construct being frozen Causes freezing of
Static Expression Entities in expression and their types,
plus the type of the expression
Non-static Expression Type of expression
Allocators Designated subtype of qualified expression or
subtype indication
Object Corresponding subtype (except deferred constants)
Subtype Corresponding type
Derived subtype Parent subtype
Type with components Component subtypes
Constrained Array Index subtypes
Subprograms and entries Parameter and result subtypes
Tagged type Corresponding Class-wide type
Tagged type extension Parent tagged type
Class-wide type Corresponding Tagged type
Generic Instantiation Parameter subtypes

GNAT generates a Freeze_Entity node at the point where an entity is frozen,
and sets a pointer from the defining entity to its corresponding freeze node. Freeze
nodes are later processed by the expander to generate associated code and data
which must be delayed until the representation of the type is frozen (for example,
an initialization subprogram). They are also used by Gigi to determine the point

93

94 CHAPTER 8. FREEZING ANALYSIS

at which the object must be elaborated. If the GNAT compiler were fully faithful
to the Ada model, it would generate freeze nodes for all entities, but that is a
bit heavy. Therefore it freezes at their point of declaration all the entities whose
representation characteristics can be determined at declaration time (cf. Package
Freeze).

Although the Ada Reference Manual defines the freezing points of the lan-
guage, the compiler must have special care with some details. These details are
discussed in the following sections.

8.1 Freezing Types and Subtypes

All declared types have freeze nodes. This includes anonymous base types created
for constrained type declarations, where the defining identifier is a first subtype of
the anonymous type. An obvious exception to this rule are access types, because
freezing an access type does not freeze its designated subtype. In addition, all
first subtypes have freeze nodes. Other subtypes only need freeze nodes if the
corresponding base type has not yet been frozen; if the base type has been frozen
there is no need for a freeze node because no representation clauses can appear
for the subtype in any case.

Types and subtypes are frozen by 1) object declarations, 2) bodies found in
the same declarative region (for example, a subprogram body), and 3) the end of
their corresponding declarative part. When a user-defined type is frozen generally
forces freezing of all the entities on which it depends (default expressions have
an special treatment, and will be described later). For example freezing a subtype
definition forces freezing of all the derivations found from this derived type to the
root type. Implicit types, types and subtypes created else by the semantic analyzer
or by the expander to reflect the underlying Ada semantics, are frozen when the
corresponding derived type is frozen. For example, constrained type definitions
are internally converted by the GNAT compiler into an implicit anonymous base
type definition plus a derived type definition:

8.2. FREEZING EXPRESSIONS 95

r

type T is new Integer;
—— Internally transformed by the compiler into:
—— type TB is new Integer;
—— subtype T is TB;

type T is array (1..10) of ...;
—— Internally transformed by the compiler into:
—— subtype TD is Integer;
—— type TB is array (TD range <>) of ...;
— subtype T is TB (1..10);

In this example 7B and TD are implicit types which will be frozen when their
derived type T is frozen. Freezing of implicit types introduced by component
declarations (i.e. component constraints) do not need to be delayed because the
semantic analyzer verifies that the parents of the subtypes are frozen before the
enclosing record is frozen (cf. Subprogram Build_Discriminated Subtype).

8.2 Freezing Expressions

In general, naming an entity in any expression causes freezing of the correspond-
ing type [AAR9S, Section 13.14]. However, the compiler must have special care
with default expressions used in discriminants and constraints of record compo-
nents; they must be frozen at the point of the corresponding object declarations
(not at the point of the type definition). For example:

type T_Int is new Integer;
type T_Name is array (T_Int range <>) of Character;

type T (Max : T_Int) is ——Do not freeze T_Int here

record
Name : T Name (1 .. Max); —— Do not freeze T_Int here
Length : T_Int := Max; ——Do not freeze T_Int here

end record;

My_Object : T (30); —— Freeze T_Int, T_-Name, T
——and My_Object

Similarly, default expressions used in subprogram parameters must be de-
ferred until the subprogram is frozen. In case of procedures this occurs when
a body is found, but in case of functions the compiler must also consider function
calls found in object initializations.

96 CHAPTER 8. FREEZING ANALYSIS

8.3 Freezing Objects

Simple objects are frozen at their point of declaration. Special care must be taken
with deferred constants, which can not be frozen until the point of the full constant
declaration. Objects with dynamic address clauses have a delayed freeze. In
the freezing point Gigi generates code to evaluate the initialization expression (if
present).

Protected types must be handled with special care because the protected-type
definition is expanded into a record-type definition. For example:

'd)
protected type PO (< Discriminants>) is

private
<Private_Data>; —— <I>
end PO;

—— Internally transformed by the GNAT compiler into:

—— type poV (Discriminants) is new Limited_Controlled with
—— record

—— <Private_Data> —— <2>

—— _object : Run_Time_Data_Type (< Num_Entries>);
—— end record;

(f

As a consequence, the subtypes of components of protected-type definitions
(line 1) do not need freezing. Freezing actions correspond to the equivalent com-
ponents in the record-type definition (line 2) and, according to the Ada freezing
rules, this must be delayed until the point of the first object declaration of type
poV.

8.4 Freezing Subprograms

Formal parameters are frozen when the associated subprogram specification is
frozen, so there is never any need for them to have delayed freezing. Subprograms
specifications are frozen at the point of declaration unless one or more of the
formal types, or the return type, have delayed freezing and are not yet frozen.
This includes the case of a formal access type where the designated type is not
frozen. Subprogram bodies freeze everything.

8.5. FREEZING PACKAGES 97

8.5 Freezing Packages

Freezing rules for packages are quite clear. The language specifies that the end
of a library package causes freezing of each entity declared within it, except for
incomplete and private types which must be deferred until the full-type decla-
ration is found. Special care must be taken with incomplete types because it is
legal to place it in the package body [AAR9S, Section 3.10.1(3)]. In addition, be-
cause the semantic analyzer keeps the entities of the partial and full views, it must
also propagate the freezing information from the full view to the partial view (cf.
Find_Type_Name subprogram).

In the case of local packages, the end of the package body causes the same
effect of a subprogram body; it causes freezing of the entities declared before it
within the same declarative part [AAR9S, Section 13.14(3)].

8.6 Freezing Generic Units

Obviously, because no code is generated for a generic unit, generic units do not
have freeze nodes; the freeze nodes must be generated in the instances. Library-
level instances freeze everything at the end of the corresponding body. However,
local instances only cause freezing of: (1) its real parameters as well as their
default-expressions (if any), and (2) the entities declared before it within the same
declarative part. This behavior avoids a premature freezing of global types used
in the generic. In addition, the compiler must have special care with early instan-
tiation of local packages. For example:

P
procedure Example is

generic
package G is
end G;
procedure Local is
package I (...) is new G; —— Early instantiation
—— Freezing point (freeze i)

begin

end ;

N

98 CHAPTER 8. FREEZING ANALYSIS

package body G is
end G;
begin

end Example;

At the point of the early instantiation, the Semantic Analyzer generates an
instance of the specification (required to continue the analysis of the subprogram
Local); the corresponding instance is generated in a latter pass (cf. described
in Section 7.4). However, the semantic analyzer must add a freezing node to
give GiGi the right order of elaboration of the packages (cf. Install_Body and
Freeze _Subprogram_Body subprograms).

8.7 Summary

Ada allows programmers to provide explicit information on the final representa-
tion of an entity. The compiler generates a Freeze _Entity node at the point where
an entity is frozen, and sets a pointer from the defining entity to its corresponding
freeze node. Freeze nodes are later processed by the expander to generate asso-
ciated code and data. Although the Ada Reference Manual defines the freezing
points of the language, the compiler must have special care with 1) anonymous,
implicit and incomplete types, 2) default expressions, 3) protected types, and 4)
generic units. These details have been discussed in this chapter.

Part 111

Third Part: Expansion

99

Chapter 9

Expansion of Tasks

A task type is a template from which actual task objects are created. A task object
can be created either as part of the elaboration of an object declaration occurring
immediately within some declarative region, or as part of the evaluation of an
allocator (an expression in the form “new...”). The Parent is the task on which a
task depends. If the task has been declared by means of an object declaration, its
parent is the task which declared the task object; if the task has been declared by
means of an allocator (an Ada expression in the form 'new ...’), its parent is the
task which has the corresponding access declaration. When a parent creates a new
task, the parent’s execution is suspended while it waits for the child to complete
its activation (either immediately, if the child is created by an allocator, or after
the elaboration of the associated declarative part). Once sevthe child has finished
its activation, parent and child proceed concurrently. If a task creates another task
during its own activation, then it must also wait for its child to activate before it
can begin execution (cf. [BW98, Chapter 4.3.1] and [Bar99, Chapter 17.7]).

Conceptually every Ada program has a task (called the Environment Task)
which is responsible for the program elaboration. The environment task is gen-
erally the operating system thread which initializes the run-time and executes the
main Ada subprogram. Before calling the main procedure of the Ada program,
the environment task elaborates all library units needed by the Ada main program.
This elaboration causes library-level tasks to be created and activated before the
main procedure starts execution.

The lifetime of a task object has three main phases: (1) Activation, elabo-
ration of the declarative part of the task body. The Activator denotes the task
which created and activated the task. All tasks created by the elaboration of ob-
ject declarations of a single declarative region (including subcomponents of the

101

102 CHAPTER 9. EXPANSION OF TASKS

declared objects) are activated together. Similarly, all tasks created by the evalu-
ation of a single allocator are activated together [AAR9S5, Section 9]; (2) Normal
execution, execution of the statements visible within the body of the task; and (3)
Finalization, execution of any finalization code associated with the objects in its
declarative part.

In order to provide this run-time semantics, the front-end performs substan-
tial transformations on the AST, and adds numerous calls to run-time routines.
Each tasking primitive (rendez-vous, selective wait, delay statement, abort, etc.)
is expanded into generally target-independent code. The run-time information
concerning each Ada task (task state, parent, activator, etc. [AAR9S5, Chapter 9])
is stored in a per-task record called the Ada Task Control Block (ATCB) (cf. Sec-
tion 14.1. In the examples that follow, the interface to the run-time is described
generically by the name GNARL, which in practice corresponds to a collection of
run-time packages with the same interface, and bodies that are OS-dependent.

Details are provided in the following sections. The description unavoidably
combines issues of run-time semantics with analysis and code expansion.

9.1 Task Creation

According to Ada semantics, all tasks created by the elaboration of object dec-
larations of a single declarative region (including subcomponents of the declared
objects) are activated together. Similarly, all tasks created by the evaluation of
a single allocator are activated together [AAR9S, Section 9.2(2)]. In addition,
if an exception is raised in the elaboration of a declarative part, then any task T
created during that elaboration becomes terminated and is never activated. As T
itself cannot handle the exception, the language requires the parent (creator) task
to deal with the situation: the predefined exception Tasking_Error is raised in the
activating context.

In order to achieve this semantics, the GNAT run-time uses an auxiliary list
(the Activation List). The front-end expands the object declaration by introducing
a local variable that holds the the activation list, and splits the OS call to create
the new thread into two separate calls to the GNAT run-time: (1) Create_Task,
which creates and initializes the new ACTB, and inserts it into both the all-tasks
and activation lists, and (2) Activate_Task, which traverses the activation list and
activates the new threads.

9.2. TASK TERMINATION 103

9.2 Task Termination

The concept of a master is the basis of the rules for task termination in Ada (cf.
[AAR9S, Section 9.3]). A Master is a construct that performs finalization of local
objects after it is complete, but before leaving its execution altogether. For final-
ization purposes, a master can be a task body, block statement, subprogram body
i.e. any construct that contains local declarations. The language also considers ac-
cept statements as masters because the body of an accept may contain aggregates
and function calls that create anonymous local objects that may require finaliza-
tion. Task objects declared by the master, or denoted by objects of access types
declared by the master, are said to depend on that master. Dependent tasks must
terminate before a master performs finalization on other objects that it has cre-
ated. Since accept statements have no declarative part, tasks are never dependent
on them, and so a master for purposes of task termination is a task body, block
statement, or subprogram body.

To properly implement task termination, the run-time must be notified of the
change in master-nesting whenever execution is about to enter or leave a non-
trivial master. Therefore, in this case the front-end generates calls to the run-time
subprograms Enter_Master and Complete_Master (or, in the case of tasks, via Cre-
ate_Task and Complete_Task subprograms).

9.3 Task Abortion

The abort statement is intended for use in response to those error conditions
where recovery by the errant task is deemed to be impossible. Tasks which are
aborted are said to become abnormal, and are thus prevented from interacting
with any other task. Ideally, an abnormal task will stop executing immediately.
However, certain actions must be protected in order that the integrity of the run-
time be assured. For example, the following operations are defined to be abort-
deferred [BW98, Section 10.2.1]: (1) a protected action, (2) waiting for an entry
call to complete, (3) waiting for termination of dependent tasks, and (4) the ex-
ecution of the controlled-types initialize, finalize, and adjust subprograms. This
means that execution of abnormal tasks that are performing one of these opera-
tions must continue until the operation is complete.

For this purpose the GNAT run-time has a pair of subprograms (Abort_Defer,
Abort_Undefer) which are used by the code expanded by the front-end for the
task body (cf. Section 9.5), the rendezvous statements (cf. Chapter 10), and

104 CHAPTER 9. EXPANSION OF TASKS

protected objects (cf. Chapter 11). Intuitively, Abort_Defer masks all interrupts
until Abort_Undefer is invoked.

9.4 Expansion of Task Type Declarations

A task type declaration is expanded by the front-end into a limited record type
declaration. For example, let us consider the following task specification:

task type T_Task (Discriminant : DType) is

end T_Task;

It is expanded by the front-end into the following code:

T_TaskE : aliased Boolean := False;
T_TaskZ : Size_Type := GNARL. Unspecified_Size ; |
Size _Type (Size_Expression);

type T_TaskV [(Discriminant : DType)] is limited record
_Task_Id : System.Tasking.Task_Id;
[Entry_Family_Name : array (Bounds) of Void;]
[_Priority : Integer := Priority_Expression ;]

[_Size : Size_Type := Size_Expression;]
[_-Task_Info : Task_Info_Type := Task_Info_Expression;]
[_-Task_Name : Task_Image_Type : mnew String’(Task_Name);]
d record;

The code between brackets is optional; its expansion depends on the Ada fea-
tures appearing in the source code. The rest is needed at run-time for all tasks:
let us examine this expansion in detail. First we find two variable declarations:
(1) a boolean flag E, which will indicate if the body of the task has been elabo-
rated, and (2) a variable which holds the task stack size (either the default value,
unspecified_size, or the value set by means of a pragma Storage Size).

Each task type is expanded by the front-end into a separate limited record V.
If the task type has discriminants, this record type must include the same discrim-
inants. The first field of the record contains the Task_ID' value (an access to the
corresponding ATCB, cf. Section 14.1). If the task type has entry families, one

' System. Tasking. Task_ID

9.5. TASK BODY EXPANSION 105

Entry_Family_Name component is present for each entry family in the task type
definition; their bounds correspond to the bounds of the entry family (which may
depend on discriminants). Since the run-time only needs such information for de-
termining the entry index, their element type is void. Finally, the next three fields
are present only if the corresponding Ada pragma is present in the task definition:
pragmas Storage _Size, Task_Info, and Task_Name.

9.5 Task Body Expansion

The task body is expanded into a procedure. For example, let us consider the
following task body:

task body T_Task is
<Declarations>
begin
<Statements>
end T_Task;

It is expanded by the front-end into the following code:

: procedure T_TaskB (_Task : access T_TaskV) is
Discriminant : Dtype renames _Task.Discriminant;

1

2

3

4. procedure _Clean is

5: begin

6: GNARL. Abort_Defer;

7 GNARL. Complete_Task;
8: GNARL. Abort_Undefer;
9: end _Clean;

10:
11: begin
12: GNARL. Abort_Undefer;
13: <Declarations>
14: GNARL. Complete_Activation;
15: <Statements>
16: at end
17: _Clean;
18: end T_TaskB;
\. y

The procedure receives a single parameter _Task, which is an access to the
corresponding high-level record (also generated by the expander, cf. section 9.4).

106 CHAPTER 9. EXPANSION OF TASKS

This parameter gives access to the discriminants of the task object, which can be
used in the code of the body. The renaming (line 2) simplifies the access to the
discriminants in the expanded code. The local subprogram _Clean is a common
point of finalization; by means of the special at end statement, it is called at the
end of the subprogram execution whether the operation completes successfully or
abnormally.

Once the task is activated, it first executes code that elaborates its local objects
(line 13), and then calls a run-time subprogram (Complete_Activation) to notify
the activator that the elaboration was successfully completed. At this point the
task becomes blocked until all tasks created by the activator complete their elab-
orations; if any of them fails, the task is aborted and Tasking _Error is raised in
the activator. If the task is not aborted, it is allowed to proceed and execute its
statements (line 15) under control of the run-time scheduler. When the task ter-
minates (successfully or abnormally), the local subprogram _Clean is executed,
which calls the run-time to perform its finalization. Even though a completed task
cannot execute any longer, it is not yet safe to deallocate its working storage at this
point because some reference to the task may exist in other tasks. In particular, it
is possible for other tasks to still attempt entry calls to a terminated task, to abort
it, and to interrogate its status via the 'Terminated and ’Callable attributes. For
this reason, the resources are not deallocated until the master associated with the
task completes. In general this is the earliest point at which it is completely safe to
discard all storage associated with dependent tasks, because it is at this point that
execution leaves the scope of the task’s type declaration, and there is no longer
any way to refer to the task. Any references to the task that may have been passed
far from its point of creation, as via access variables or functions returning task
values [BR85, Section 4] are themselves dead at this point.

9.6 Example of Task Expansion

To help the reader to understand the sequence of run-time actions involved in
the life-time of Ada tasks, let us summarize the code expansion presented in Sec-
tions 9.1, 9.4, and 9.5 by means of a simple example. Let us consider the following
Ada code:

9.6. EXAMPLE OF TASK EXPANSION

107

procedure Activator is
task My _Task;
task body My _Task is
< Local Declarations >
begin
< Task body statements >
end My _Task;
begin
< Additional Statements >
end Activator ;

This code is expanded by the GNAT front-end as follows:

procedure Activator is

My_TaskE : aliased Boolean := False;
My_TaskZ : Size_Type := GNARL. Unspecified_Size;
type My_TaskV is limited record
_Task_Id : System.Tasking.Task_Id;
end record;

procedure My_TaskB (_Task : access T_TaskV) is
procedure _Clean is
begin
GNARL. Complete_Task ; ——
end _Clean;
begin
<< Expanded code to elaborate local declarations >>
GNARL. Complete_Activation ; ——
< Task body statements > -
at end
_Clean;
end My _TaskB;

My_Task : My_TaskV;
_Chain : GNARL. Activation_Chain ;
begin
GNARL. Enter_Master ; —_—
GNARL. Create_Task —_—
(My_Task, My_TaskZ, My_TaskB’ Access, _Chain,...);
GNARL. Activate_Task (_Chain); —_—
< Additional Statements > -
at end
GNARL. Complete _Master ; ——
end Activator ;

(6)

(4)
(57)

(1)
(2)

(3)
(57)

(7)

108 CHAPTER 9. EXPANSION OF TASKS

The numbers in the comments to the right of the code present the execution
sequence. First, because the main procedure has a task object declaration, it no-
tifies the run-time that it is executing a master scope (step 1). It then creates the
task ATCB (step 2), and activates the corresponding thread (step 3). After the
task completes the elaboration of its local objects, it calls the run-time to report
that it has completed its activation (step 4). From here on the execution of the
task body and the main subprogram proceed in parallel (steps 5’). When the task
terminates it notifies the run-time of its termination (step 6). When the body of
the activator completes, it calls the run-time to wait for dependent tasks that may
not have completed (step 7). Once it is established that the dependent task has
terminated, the run-time recovers the task resources, and leaves the activator to
terminate. If the activator calls Complete_Master before the dependent task com-
pletes its execution, the activator is blocked by the run-time until the dependent
task body notifies its termination.

9.7 Summary

In this chapter we have seen the basic data structures used to support Ada tasks,
and the corresponding task expansion. The run-time associates to each task an
Ada Task Control Block (ATCB). Although the run-time registers the ATCBs in
a linked list, one auxiliary list is required to implement the Ada semantics for
tasks activation. Therefore, the front-end generates a temporal variable used to
reference the elements in this list, and the run-time calls to create and activate the
tasks. The front-end also generates calls to the run-time at the points at which the
user code enters or leaves a master scope.

The Ada task specification is expanded into a limited record. The Ada task
body is expanded into a procedure with calls to the run-time to notify: the suc-
cessfully task activation, and the task termination.

Chapter 10

Expansion of Rendezvous and
related Constructs

The Rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. Task communication is based on a client/server model of interaction.
One task, the server, declares a set of services that it is prepared to offer to other
tasks (the clients). It does this by declaring one or more public entries in its task
specification. A rendezvous is requested by one task by means an entry call on an
entry of another task. For the rendezvous to take place the called task must accept
this entry call. During the rendezvous the calling task waits while the accepting
task executes. When the accepting task completes the request, the rendezvous
ends and both tasks are freed to continue their execution asynchronously.

The parameter profile of entries is the same as that of Ada procedures (in, out
and in out, with default parameters allowed for in parameters). Access parameters
are not permitted, though parameters of any access type are, of course, allowed.
Entries are overloadable entities. In addition, a task can have entry families (ba-
sically an array of entries). At run-time, each entry is associated with a queue
of entry calls. Each entry queue has an attribute associated with it, the *Count
attribute. The task that declares an entry can use this attribute to determine the
number of callers awaiting service on this entry.

Ada defines four entry-call modes: simple, conditional, timed, and asynchro-
nous [AAR9S, Section 9.5.3]. A simple mode entry-call is much like a procedure
call; it may have parameters, which permit values to be passed in both directions
between the calling and accepting tasks. Semantically the calling task is blocked
until completion of the requested rendezvous. If the call is completed normally,
the caller resumes execution with the statement following the call, just as it would

109

110CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS

after return from a procedure call. Recovery from any exception raised by the call
is also treated as it would be for a procedure call. One minor difference detectable
by the calling task is that an entry call may result in Tasking Error being raised in
the calling task, whereas an ordinary procedure call would not. The conditional
and timed entry-calls allow the client task to withdraw the offer to communicate if
the server task is not prepared to accept the call immediately or if does not accept
the call within the stated delay, respectively. The asynchronous entry-call provides
asynchronous transfer of control upon completion of an entry call. Similarly, on
the acceptor task side there are also simple, conditional and timed modes.

10.1 Entry Identification

The run-time needs to uniquely identify each entry. For this purpose, the front-end
associates each entry an numeric id, which a positive number which corresponds
with the position of the entry in the task type specification. The following example
shows this mapping.

task T is

——a simple entry
entry Init (x : integer);

—— An entry family with 3 entries has three different queues|.
entry Lock (1 .. 3) (Reason : in ...);

—— Do_Work (1): Id =2
—— Do_Work (2): Id =3
—— Do_Work (3): Id = 4

—— A simple entry declaration
entry Unlock; ——1Id =5

end T;
\S

10.2 Entry-Call Expansion

The entry call must communicate parameters between the caller and the server.
Given that each task has its own stack, and in general the client cannot write on
the stack of the server, this communication involves copying steps and indirec-
tion. The caller creates a parameter block that holds the actuals, and passes to the

10.2. ENTRY-CALL EXPANSION 111

server a pointer to this block. An entry call also generates pre and post-actions,
similar to those that are generated for procedure calls, to handle initialization of
in-parameters, and creation of temporaries and copy-back for out and in-out pa-
rameters. The run-time structure associated with the call is the entry-call record
(cf. described in Section 15.1). On the server side, the run-time places the pointer
to the parameters block into the Uninterpreted _Data component of the entry-call
record (See Expand _Identifier in Sem_Ch2). Figure 10.1 displays the data struc-
tures involved in a call to the following entry:

task T is
entry E (Number : in Integer; Text : in String);
end T;

entry-parameters

| » Integer Variable

Expanded-Code

L | Number
e€ve —
Text —))
String Variable
ATCB
Run-Time entry-call
Level

. Uninterpreted_Data
Entry Call— |...

Figure 10.1: Data structures associated to an entry-call.

The following sections describe the expansion of each kind of entry-call : sim-
ple, conditional, timed, and asynchronous.

112CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS
10.2.1 Expansion of Simple Entry-Calls

The front-end expands a simple mode entry call as follows:

declare
type Params_Block is
record
Parml : Access_Paraml_Type;

ParmN : Access_ParamN_Type;
end record;

P : Params_Block := (Parml’Access,... , ParmN’Access);
begin

GNARL. Call_Simple (Task_-ID, Entry_.ID, P’ Address);

[Parml := P.Parml;]

[Parm2 := P.Parm2;]

[...]
end ;
\S J

The address of the parameters record P is passed to the GNAT run-time along
with the identifiers of the called task and entry. The assignments after the run-time
call are present only in the case of in-out or out parameters for scalar types, and
are used to copy back the resulting values of such parameters.

10.2.2 Expansion of Conditional and Timed Entry-Calls

A conditional entry call differs from a simple entry call in that the calling task will
not wait unless the call can be accepted immediately. If the called task is ready to
accept, execution proceeds as for a simple mode call. Otherwise, the calling task
resumes execution without completion of a rendezvous. Recall the syntax for a
conditional entry-call:

select
entry—call
<statements—1>
else
<statements—2>
end select;

N

As the reader can see, other statements can appear after the entry-call, which
are only executed if the call was accepted. The alternative branch can also in-

10.3. ASYNCHRONOUS TRANSFER OF CONTROL 113

clude statements that are executed only if the caller is not ready to accept. The
conditional entry-call is expanded as follows:

Vs

declare
type Params_Block is record

Parml
ParmN
end record;

P : Parms_Block

Access_Paraml_Type;

Access_ParamN_Type;

Successful Boolean;
begin
GNARL. Task_Entry_Call (Task_ID,
Entry_1D,
P’ Address,

Successful)

if Successful then

:= (Parml’ Access, ...

s

)

ParmN’ Access);

[Parml := P.Parml; |

[Parm2 := P.Parm2; |

[]

<statements —1>; —— Statements after the entry call
else

<statements —2>; —— Statements in the “else” part
end if;

end ;

\

In this case, the call to the run-time has an additional parameter (Successful)
which indicates to the caller whether the entry-call was immediately accepted or
not. If yes, the caller behaves as in the simple-mode case and assigns back the
resulting values of the out-mode parameters (if present). Otherwise the caller
executes the statements in the else part of the conditional entry-call.

The timed task entry call is handled by the GNAT compiler in a similar way.
The main difference is the called run-time subprogram, because in this case if the
entry-call can not be immediately accepted, the run-time must arm a timer and
block the caller until the entry-call is accepted or else the timeout expires.

10.3 Asynchronous Transfer of Control

The Asynchronous Transfer of Control (ATC) allows the caller to continue exe-
cuting some code while the entry call is waiting to be attended. Its Ada syntax is

114CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS

[AAR95, Section 9.7 .4]:

select
triggering_alternative
then abort
abortable_part
end select;

The triggering statement can be an entry-call or a delay-statement. If the trig-
gering statement is queued the abortable part starts its concurrent execution. When
one of the parts finishes its execution it aborts the execution of the other part. Thus
the ATC provides local abortion which is potentially cheaper than the abortion of
the entire task.

10.3.1 ATC Implementation Models

There are two implementation models for the ATC: the one-thread model, and the
two-threads model. In the following description we will assume that the triggering
statement is an entry-call statement (the case of the delay statement is similar).

e One-Thread model. In this model, the first action of the caller is to try
to execute the entry-call. If the called task was ready to accept the entry-
call then the abortable part is not executed; otherwise the run-time leaves
the entry-call queued and leaves the caller to execute the abortable part.
If the entry-call is accepted before the caller completes the abortable part,
the caller is forced to transfer control to the triggered statements. On the
contrary, the caller cancels the queued entry call.

o Two-Threads model. In the two-thread model, the task executing the ATC
creates an agent-thread to execute the abortable part. Each thread just tries
to execute its part and abort the other thread. The thread which completes
its part wins!.

Proponents of the two-thread model argue that simplifies the implementation
of several run-time aspects. One is that it preservers two useful invariants of the
original Ada tasking model namely: (1) a thread that is waiting for an event is
not executing, and (2) a thread never waits for more than a timeout and one other
event. Another simplification is that the two thread model eliminates the need for
one thread to asynchronously modify another thread’s flow of control, which is

10.3. ASYNCHRONOUS TRANSFER OF CONTROL 115

not possible in some execution environments [GB94, Section 3.1]. However, the
two-thread model seems to complicate the implementation at least as much as it
simplifies it, and also violates a key invariant of Ada tasking: there is no longer a
one-to-one correspondence between tasks and threads of control. This assumption
pervades the semantics, and is the foundation of existing Ada tasking implemen-
tations. Loss of this invariant has many ramifications. Among these, data that
previously could only be accessed by one thread of control becomes susceptible
to race conditions. Thus, there are new requirements for synchronization, and new
potential for deadlock within a single task. Also, just killing the agent thread is
not as simple a solution as it might seem. There remains the problem of how to ex-
ecute the agent’s finalization code (if required due to the use of controlled types).
If the operation that kills a thread does not support finalization, some other thread
must perform the finalization. To do so, it must wait for the killed thread to be ter-
minated to be able to obtain access to the run-time stack of the terminated thread.
The latter may not be possible in systems where killing a thread also releases its
stack space [GB94, Section 3.1].

By contrast, proponents of the one-thread model argue that it can be imple-
mented with a signal and longjmp(). The triggering entry-call is just left queued
while the abortable part is executed. If the abortable part completes first, the entry-
call is removed. If the entry-call completes, the run-time sends an abortion signal
to the caller. The signal handler for the abortion signal then transfers control out
of the abortable part into the point of the entry-call [GMB93, Section 4.3].

Due to the disadvantages of the two-threads model, as well as the simplicity
of the one-thread model, the GNAT compiler implements the one-thread model.

116CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS

10.3.2 Expansion of ATC

The Following describes the expansion of an ATC statement:

f 1: declare
2: P : aliased Parms := (Parml’ Access,..., ParmN’ Access);
3: Successful : Boolean;
4: begin
5: GNARL. Defer_Abortion;
6: GNARL. Task_Entry_Call (Task_ID, Entry_ID,
P’ Access, Successful);
7: begin —— Abortable Part Scope
8: begin
9: GNARL. Undefer_Abortion ;
10: << Abortable Part >>
11: at end
12: GNARL. Entry_Call_Cancellation (Successful);
13: end ;
14: exception
15: when Abort_Signal =>
16: GNARL. Undefer_Abortion ;
17: end ;
18: if not Successful then
19: [Parml := P.Parml;]
20: [Parm2 := P.Parm2;]
21: [...]
22: << Triggered Statements >>
23: end if;
24: end;
\L J

The first action issued in the scope associated with the ATC is to protect the
entry call from abortion (line 5). From here two scenarios must be analyzed:

1. If the entry call is immediately accepted, the run-time subprogram called
at line 6 completes the rendezvous, sets the Successful variable, and sends
the abort signal to the caller. Because the abortion is deferred from line 5
onwards, this has no immediate effect. After the entry-call is completed,
the caller now undefers the abortion (line 9), which raises the deferred abort
signal and forces the caller to skip the abortable part and try to cancel the
entry call (line 12). However, because the entry-call was completed this
call does nothing. Finally, the caller assigns back the resulting values of

the out-mode parameters, and executes the triggered statements (lines 18 to
24).

2. If the entry call is not immediately accepted, the caller undefers the abortion

10.4. EXPANSION OF ACCEPT STATEMENTS 117

(line 9) and executes the abortable part (line 10). Again here we have two
possible scenarios:

(a) If the execution of the abortable part completes, the entry call is can-
celled (line 12). The run-time sets Successful to false, to force the
caller to skip lines 18 to 24.

(b) If the entry-call is completed before the abortable part completes, then
the run-time sends the abort signal to the caller (which was execut-
ing the abortable part, line 10). This signal cancels the execution of
the abortable part. The caller now tries to cancel the entry call (line
12), but because the entry-call was completed the only effect of this
call is to set Successful to true, which forces the caller to execute the
statements that assign back the resulting values of the out-mode pa-
rameters, and then execute the triggered statements (lines 18 to 24).

10.4 Expansion of Accept Statements

This section describes the expansion of the the simple and selective accept state-
ments.

10.4.1 Simple Accept Expansion

Recall the syntax of simple accept statements:

accept E (...) do
<< Entry Body Statements >>
end E;

A simple accept is expanded as follows:

declare
Params_Block_Address : Address;
begin
GNARL. Accept_Call (Entry_ID, Params_Block_Address);
<< Entry Body Statements >>
GNARL. Complete _Rendezvous;
exception
when others =>

118CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS

l GNARL. Exceptional _Complete_Rendezvous;
end ;

The acceptor task calls the run-time, specifying the identifier of the accepted
entry, and receives the address of the parameters block to be used in the entry body
statements. There are two different run-time subprograms which are called de-
pending on whether the entry completes successfully or not: Complete _Rendezvous
and Exceptional_Complete_Rendezvous respectively.

10.4.2 Timed and Selective Accept

The scheme used for expansion of the Ada timed calls and selective accept state-
ments is similar. The only difference is the run-time subprogram that is invoked.
In both cases the run-time receives from the caller a vector that indicates which
entries are currently open: the open-accept vector. Each element of this vector has
two fields: the entry identifier, and a boolean which indicates if the accept state-
ment has a null body. Each element of the open-accept vector corresponds to the
accept alternatives of the select statement; If the entry guard of a given alternative
is closed, the corresponding entry identifier is set to 0. Consider the following
example:

task T is
entry P; —— Entry Id =1
entry Q; —— Entry Id = 2
end T;
task body T is
begin
select
accept Q do —— OAV (1).Entry_.Id :=2
<< User Code >> —— OAV (1).Null_Body := False;
end Q;
or

when <<User—Guard>>=>
—— If the guard is open OAV (2). Entry_Id :=
accept P; —— else OAV (2).Entry_Id := 0;
—— OAV (2).Null_Body := True;

—_—

else
<< else statements >>
end select;

end T;
\\ J

10.4. EXPANSION OF ACCEPT STATEMENTS

119

The GNAT front-end expands the selective accept into a block containing three
declarations: the open-accept vector (OAV), the index of the selected alternative,
and the address of the parameters block. A value of O in the index parameter is
used by the run-time to indicate that the else alternative has been selected. Let us
see a simplified version of the expansion of the previous example:

S

1 declare

2 function P_Guard return Natural is

3 begin

4 if <<User—Guard>> then

5: return 1; ——returns the Entry_Id
6: else

7: return 0; ——return O (it is closed)
8 end if;

9 end P_Guard;

10

11: procedure Q_Body is

12: begin

13: GNARL. Undefer_Abortion ;

14: ... << User Code >>

15: GNARL. Complete_Rendezvous ;

16: exception

17: when others =>

18: GNARL. Exceptional_Complete_Rendezvous;
19: end Q_Body;

20:

21: OAV : GNARL. Open_Accepts_Table

22: := ((2,True), (P_Guard, False), (0, False));
23: Index : Natural;

24: Params_Block_Address : System.Address;
25:

26: begin

27: GNARL. Selective _Wait

28: (OAV, Params_Block_Address, Index);
29: case Index is

30: when 0 =>

31: << else statements >>

32: when 1 =>

33: Q-Body;

34: when 2 =>

35: null ;

36: end case;

37: end ;

For each user-defined guard, the expander generates a function which evalu-
ates the guard (lines 2 to 9): if the guard is open, this function returns the iden-

120CHAPTER 10. EXPANSION OF RENDEZVOUS AND RELATED CONSTRUCTS

tifier of the entry; if the guard is close it returns 0. The entry-body statements
are expanded inside local procedures following a scheme similar to the scheme
described in Section 10.4.1 (lines 11 to 19). In addition, the front-end generates
the open-accept vector with the corresponding initialization (lines 21-22), an In-
dex variable used by the run-time to notify the selected alternative (line 23), and
another variable used by the run-time to notify the address of the parameters block
(line 24). After the call to the run-time (line 27), the expander generates a case-
statement (lines 29 to 36) which uses the index returned by the run-time to execute
the code associated to the alternative selected by the run-time.

10.4.3 Count Attribute Expansion

The *Count attribute is expanded into a call to a run-time function (Task_Count)
which receives as input parameter the identifier of the entry.

10.5 Summary

The rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. At the point of an entry-call, the front-end expands the actual pa-
rameters into a block with collects their addresses. After the call, the expander
generates statements to copy the value of the out-mode parameters into the cor-
responding variables. In case of conditional and timed entry calls, the run-time
returns one value which indicates the alternative to be executed; therefore it is
also responsibility of the front-end to generate an if-statement to execute the right
code. The expansion scheme followed in the implementation of ATC is similar to
the conditional entry-call, although additional scopes must be generated to handle
the abortion of the call.

For the implementation of the timed and selective accept statements the com-
piler expands: 1) each entry-guard into a function which evaluates the guard, and
2) each entry-body into a procedure which notifies the run-time if it was executed
successfully or not. The expander generates code which collects all this informa-
tion into an open-accept vector which passes to the run-time at the point of the
call. In addition, after the call the run-time returns a value which indicates the
identifier of the selected alternative, and the expander generates a case alternative
which uses this value to execute the corresponding statements.

Chapter 11

Expansion of Protected Objects

Protected objects are an embodiment of the venerable notion of Monitor: a con-
struct that allows shared data to be accessed by different threads under mutual
exclusion. Protected objects provide data-driven synchronization between cooper-
ating tasks: tasks communicate not only through rendez-vous or generally unsafe
shared memory, but by disciplined access to shared objects with locks.

A protected object (PO) encapsulates data items, and allows their exclusive
access and update by means of protected subprograms or protected entries. A
protected function accesses the data in read-only mode, while a protected pro-
cedure has access in read-write mode. A protected entry is akin to a protected
procedure, but it has a Barrier , that is to say a boolean expression that serves as
a guard to the entry. The barrier provides a conditional version of the entry call:
a calling thread has access to the data only if the barrier is True, otherwise the
caller queues on the object until the barrier value becomes true, and no other task
is currently active inside the protected object.

The declaration of a protected type comprises a visible interface and a private
part, The visible interface includes only its operations (subprograms and entries).
The private part describes the structure of the protected data.

The body of a protected type contains the bodies of the all the visible op-
erations. It may also contain private operations. It does not contain any other
declarations, to insure that the state of the object is fully described by the private
part of the type declaration itself.

At run-time, the protected object is represented by a record that holds the
protected data, a lock that insures mutual exclusion, and queues that hold blocked
tasks. Each entry has its own queue, to hold tasks that await an opening of the

121

122 CHAPTER 11. EXPANSION OF PROTECTED OBJECTS

corresponding barrier. The object itself has one queue that holds tasks competing
for access to the object.

A call to a protected operation is similar to a call to a task entry. As with
task entry-calls, the caller uses a selected component notation to specify the target
of the call (task or protected object) and the operation to invoke. The call can
be simple, conditional, or timed. Note however the critical distinction between
task entry calls and protected entry calls: in the first case, the callee will execute
the desired operation; in the second case, the caller task executes the operation,
because the protected object is a passive structure with no thread of control.

After a protected operation is executed, the state of the object may have been
affected, and the values of the barriers may have changed. It is therefore neces-
sary to re-evaluate the barriers to determine whether some queued task can now
have access to the object. This re-evaluation must be performed by the task that
currently holds the lock on the object, that is to say the task that just completed
executing a protected call. This means that if there are tasks queued on entries
and tasks queued “outside” of the object (on the outer queue for protected sub-
programs), those queued on entries will have priority. This is often explained in
terms of the eggshell model. The object has an external shell that allows only one
task at a time to proceed. The entry queues are all inside the shell, and they can
hold any number of blocked tasks. The clean-up that follows the completion of an
operation only concerns the tasks inside the shell.

As with tasks, protected objects may have private entries and families of en-
tries. Private entries are not directly visible to users of the protected object; how-
ever they have their own queues, and are typically used in requeue operations.
Entry families are arrays of entries, that is to say at run-time they correspond to
arrays of independent queues. In a task body, An accept statement for a member of
an entry family task specifies by means of an expression the member of the family
being accepted. This means that different accept statements can be provided for
different members of the family. By contrast, in a protected body there is a single
entry body for the family. The index plays the role of an additional parameter
of the entry body. The barrier of the entry body can use the index of the family
(see examples of usage in [BW98, Chapter 7.5] and [Bar99, Chapter 18.9]). The
attribute Count can be applied to protected entries, to provide the current number
of tasks queued on the specified entry.

Given that the lifetime of a protected object and that of the tasks that use is, are
not necessarily the same, it is possible for a protected object to disappear while
some tasks are still queued on it (for example, the object may have been created
dynamically, and explicitly deallocated). In that case the language semantics pre-

11.1. THE PROXY MODEL 123

scribes that the exception Program_Error must be raised on all queued tasks. This
clean-up operation is most simply realized by implementing protected objects as
controlled types. The Finalize procedure for protected types traverses all queues
of the corresponding object and raises Program _Error on all tasks therein.

In order to understand the expansion activities associated with protected types,
we will examine in some details the implementation model. After a discussion of
run-time issues, we present the expansion of protected-type specifications, pro-
tected subprograms, barriers, and entry bodies. The expansion of protected entry
calls is not discussed here because it is similar to that for task entry-calls (cf.
Chapter 10).

11.1 The Proxy Model

As mentioned above, conceptually each protected operation is executed by a call-
ing task. However, the functioning of a protected object includes house-keeping
activities that also require execution, in particular the evaluation of barriers, and
the language does not specify what thread is to compute them. The semantics
specify that upon completion of a protected operation that may affect the state of
the object, the barriers are evaluated at once to determine whether some queued
task can gain access to the object, so that in principle a context-switch might take
place at that point. However, if several tasks are now eligible to enter the object,
each one of them will have to wait its turn to obtain the object, and a number of
context-switches will be necessary to empty the queues. This suggests a different
implementation, in which the task that completes its operation retains the lock on
the object, and executes the entry bodies of the waiting tasks, on their behalf. In
this fashion no additional context switches are needed. As far as the eligible tasks
are concerned, their calls were executed and they can proceed. The first imple-
mentation model, in which each task executes the operation it invokes, is called
the Self-Service model. The second one is called and the Proxy model.

The main advantages of the self-service model are that it permits more paral-
lelism (on multiprocessor systems) and simplifies schedulability analysis. Paral-
lelism is increased because on a multiprocessor system the exiting task can pro-
ceed with its own execution, in parallel with the execution of the next queued call.
Schedulability analysis is simplified because a thread is allowed to continue with
its own execution immediately after the (presumably bounded) time it takes to
complete the body of the called protected operation and transfer the lock owner-
ship to the next queued caller.

124 CHAPTER 11. EXPANSION OF PROTECTED OBJECTS

By contrast, the principal advantage of the proxy model is simplicity. If an
entry body cannot be executed immediately, the calling task just suspends its exe-
cution; some other task will execute its entry-call. Complex features of protected
objects, including timed and asynchronous entry-calls, are simplified even more
by this model. As indicated above, on a uniprocessor the proxy model is more
efficient because the number of context-switches is smaller. However, the proxy
model compromises schedulability analysis, since the time to complete an opera-
tion is not bounded by the operation itself: it depends on the number of other tasks
that may be queued on the object, and there is no upper-bound on the number of
such calls that may be pending.

GNAT implements the proxy model because the implementation of the self-
service model with Pthreads currently introduces crippling inefficiencies. The
self-service model works best if the task attempting to leave the protected object
can transfer directly the lock to a specific task that is waiting on an Open entry.
However, there is no efficient way to achieve this under Pthreads. The existing
mechanism requires raising the priority of the chosen task above that of all other
contenders, and then rescanning the set of ready tasks to determine the one that is
to be given access. This turns out to be unacceptably cosly.

11.1.1 Implementation

There are two possible implementations of the proxy model itself: call-back and
in-line. In the call-back implementation the compiler transforms barriers and
entry-bodies into stand-alone subprograms, and generates code to pass their ad-
dresses to the run-time; a single routine in the run-time implements the algorithm
that calls these subprograms (cf. Figure 11.1). By constrast, in the in-line im-
plementation the compiler not only expands the barriers and entry-bodies (and
not necessarily inside subprograms), but also generates in-line the statements that
implement the egg-shell model; after the execution of a protected-procedure or
protected-entry, these statements reevaluate the barriers and execute the entry-
body of the open entries until no candidate is selectable (cf. Figure 11.2).

The GNAT compiler uses the call-back implementation. The reasons are: 1)
The call-back interface allows for much simpler translations, and eliminates some
of the overhead inherent in the in-line interface’s frequent alternation between the
GNU Ada Run-Time and the application code. 2) The call-back interface has a
big advantage in the simplicity and understandability of both the generated code
and the internal logic of the compiler [GB95].

11.2. EXPANSION OF PROTECTED TYPES 125

lock

protected body PO is
entry E1 when is L7 1 func
GNAT v 'Ilproc
entry E2 when is Compiler i
Bl
Bl roc
end PO; [

GNARL

Figure 11.1: Proxy Model: Call-Back Implementation.

Service_Entries ()
loop

protected body PO is

entry E1 whenm is B(l)“m
lIl GNAT B(Q2) <

. Compiler GNARL.Next (B, Index, Parms);
entry E2 when is case Index is
when 1 =>

when 2 =>
2
when 0 => exit;
end case;
end loop;

end PO;

Figure 11.2: Proxy Model: In-Line Implementation.

11.2 Expansion of Protected Types

11.2.1 Expansion of Protected-Type Specification
The expansion of a protected type must create the following structures:

1. A record type that holds the protected data and the entry queues.

2. subprograms that implements each protected operation. The parameter list
of each such subprogram includes a parameter that designates the object on

which the operation is performed at run-time.

Consider the following protected type declaration:

126

CHAPTER 11. EXPANSION OF PROTECTED OBJECTS

r

S

protected type PO (Disc
procedure P (C :

function F (X :

entry EIl;

entry E2 (1..10)(X :
private

Value Integer;
end PO;

Integer)

Character);
Integer) return Integer;

Integer);

is

The front-end expands it as follows:

1: type poV (Disc Integer) is new Limited_Controlled with
2: record

3: Value Integer;

4: _object aliased GNARL. Protection_Entries
5: (<Num_Entries>);
6: end record;

7:

8: procedure Finalize (_object : poV) is

9: begin

10: —— Raise Program_Error to the queued tasks.
11:

12: end Finalize;

The protected type specification is expanded into a record type declaration
(lines 1 to 6). If the protected type has discriminants, the record type has the
same discriminants. The record type is defined as limited-controlled. Limited
because, in analogy to task types, protected types are limited types [AAR9S,
Section 9.4(23)], and hence have neither an assignment operation nor predefined
equality operators. It is also controlled to implement the clean-up action described
above: when the object is finalized, each call remaining on any entry queue of the
object must be removed from its queue and Program_Error must be raised at the
place of the corresponding entry-call statement [AAR9S, Section 9.4(20)]. PO’s
private data is expanded into the components of the record-type declaration (line
3). The field _object (line 4) contains additional run-time data: the lock, entry
queues, the priority of the object, etc.

11.2. EXPANSION OF PROTECTED TYPES 127
11.2.2 Expansion of Protected Subprograms

For each protected operation Op, the GNAT compiler generates two subprograms:
OpP (the protected version) and OpN (the non-protected one). OpP simply takes
the object lock, and then invokes OpN. OpN contains the (suitably expanded) user
code. If a call is an internal call, i.e. a call from within an operation of the same
object, the call invokes OpN directly. If the call is external, it is implemented as a
call to OpP. In addition, one additional parameter is added by the compiler to the
parameters profile of the protected subprograms: the _object. Because protected
procedures can modify the object’s state, they receive the object as in out mode
parameter. Protected functions receive the object as an in mode parameter. For
example:

procedure procN (_object : in out poV; ...);

[procedure procP (_object : in out poV; ...);

A reference to a component of the object in the body of an operation, must be
transformed into a reference to the component of the run-time object on which the
operation is applied. This is implemented by introducing renaming declarations
in the expanded subprograms. For example, the component Value in the definition
above, leads to the following local declaration in all expanded subprograms:

L[Value : Integer renames _object.Value;

The local variables introduced in this fashion are called Privals in the GNAT
sources. References to private components are replaced by references to Privals
thoughtout the bodies of protected operations. Let us see the expansion of sub-
program procP in detail.

e

128 CHAPTER 11. EXPANSION OF PROTECTED OBJECTS
1: procedure procP (_object : in out poV; ...) is
2: procedure Clean is
3: begin
4: GNARL. Service_Entries (_-object._object’ access);
5: GNARL. Unlock (-object._object’ access);

6: GNARL. Abort_Undefer;

7: end Clean;

8: begin

9: GNARL. Abort_Defer;

10: GNARL. Lock_Write (_object._object’ access);
11: begin

12: procN (_object; ...);

13: exception

14: when others =>

15: declare

16: E : Exception_Occurrence;
17: begin

18: GNARL. Save_Occurrence

19: (E, GNARL. Get_Current_Exception);
20: Clean;

21: GNARL. Reraise (E);

22: end ;

23: at end

24: Clean;

25: end ;

26: end procP;

Protected operations are abort-deferred operations [AAR9S5, Section 9.8(5-6)].
Therefore, the P subprogram calls the run-time to defer the abortion (line 9) and to
obtain the read/write access of the PO (line 10), and finally calls the N subprogram
(line 12). On return from N we have two possible scenarios: No exception was
raised by the user code. In this case the at-end statement (line 24), an internal

statement of the GNAT compiler which is executed whether the code was executed
successfully or not, calls the local subprogram Clean to reevaluate the barriers

and service queued entry-calls (line 4), unlock the protected object (line 5), and
undefer the abortion (line 6). Otherwise, if the execution of the N subprogram
propagates an exception, the barrier must be reevaluated and the queued entry-
calls must be serviced before propagating back the exception to the calling-task.
Therefore, the exception handler saves the exception occurrence (line 18), calls
the local subprogram Clean, and finally re-raises the exception (line 21).

11.2. EXPANSION OF PROTECTED TYPES 129
11.2.3 Expansion of Entry Barriers

Entry barriers are expanded into functions that return a boolean type. As for
other operations, the expansion adds one parameter to designate the object itself.
Barriers can access all components of the object, and therefore the expansion
includes the same object renamings as other protected operations. The front-end
builds an array of pointers to the barrier functions, and the run-time invokes them
indirectly. The expansion of the barriers is as follows:

function EntryBarrier
(Object : Address;
Entry_Index : Protected_Entry_Index)
return Boolean

is
<Discriminant_Renamings>
<Private_Object_Renamings>

begin
return <Barrier_Expression>;

end EntryBarrier;

11.2.4 Expansion of Entry bodies

Similar to the barriers, the entry bodies are expanded into procedures with the
same profile. They are expanded as follows:

: procedure EntryName
(Object : Address;
Parameters : Address;
Entry_Index : Protected_Entry_Index)

<Discriminant_Renamings and Private_Object_Renamings>

1

2

3

4:

5: is
6.

7 type poVP is access poV;
8

9: _object : PoVP := To_PoVP (Object);

10: begin

11: << Entry body statements >>

12: GNARL. Complete_Entry_Body (_object. _object);

13: exception

14: when others =>

15: GNARL. Exceptional_Complete_Entry_Body

16: (-object._object, GNARL. Get_GNAT _Exception);

17: end EntryName;

function To_PoVP is new Unchecked_Conversion (Address, Po

VP);

130 CHAPTER 11. EXPANSION OF PROTECTED OBJECTS

Similar to the N subprograms (cf. Section 11.2.2), the compiler adds some
renamings to facilitate the access to the discriminants and private state (line 6).
Because the procedure receives as parameter the address of the object (not the ob-
ject itself), the front-end also generates the unchecked conversion of this address
to the corresponding access to the object (lines 7 to 9). In addition, the front-end
also generates calls to notify the run-time the successful execution of the entry-
body statements (line 12) or unsuccessful execution (line 15).

11.2.5 Table to Barriers and Entry-Bodies

In addition to the barrier and entry-body expansion described above, the front-end
also generates a table initialized with the access to the expanded subprograms.
Each element has the access to an entry-barrier expanded function and the access
to an entry-body expanded procedure. The front-end also generates a call to the
run-time to pass this table, which is used by the run-time to evaluate the entry-
barriers and to call the selected entry-body.

11.2.6 Expansion of Entry Families

For each entry-family the front-end adds one field to the PO type-declaration. This
field saves the bounds of the entry-family specification. The element-type of these
arrays is set to void because the contents of the array are not used. The protected
type is then expanded as follows:

(N\
type poV (Discriminants) is new Limited_Controlled with

record
<Private_Data>
_object : aliased GNARL. Protection_Entries (< Num_Entries>);
Entry _Family _Name : array (<Bounds>) of Void;

end record;

s
k

11.3 Optimizations

To realize simple and efficient synchronization regimes, a protected object with-
out entries is sometimes sufficient. Such an object can be implemented more
efficiently, and is recognized by the GNAT front-end. The resulting expansion is
simpler, as indicated in the following example:

11.4. SUMMARY 131

type poV (Discriminants) is limited record
<private—data—fields>
_object : aliased Protection;

end record;

Because now the protected object has no queues, the expanded type is sim-
plified as follows 1) It is not a controlled type, because there is no need to raise
Program_Error on queued entries, and 2) The _object component is smaller (Pro-
tection type only has the object lock and the PO ceiling).

In the absence of entries the run-time is also able to provide a faster imple-
mentation for protected objects. For this purpose, the GNAT run-time provides a
second set of subprograms which are called by the expanded code in case of pro-
tected objects without entries (see package System.Tasking.Protected _Objects). In
addition, the expander does not generate the call to re-evaluate the barriers after
the execution of the body of a protected procedure.

11.4 Summary

There are two models to implement the protected objects: the self-service and
the proxy model. GNAT follows the proxy model because the implementation of
the self-service model with Pthreads is not feasible at a low cost. There are also
two main implementations of the proxy model: the in-line and the call-back im-
plementation. The main difference between both implementation resides on the
service-entries routine. In the in-line model it is generated by the expander; in the
call-back model, it is inside the run-time. GNAT follows the call-back implemen-
tation because the call-back interface allows for much simpler translations, and
the expanded code is more understable.

Protected subprograms are translated to two subprograms: P and N. P obtains
the object lock calls N, which has the user code. The barriers are expanded into
functions that return a boolean data-type, and the entry-bodies are expanded into
procedures. The front-end also generates a table with access to these subprograms.
This table is used by the run-time to evaluate the barriers and call the selected
entry-body.

132 CHAPTER 11. EXPANSION OF PROTECTED OBJECTS

Chapter 12

Expansion of Controlled-Types

Controlled-types' are tagged types that support automatic initialization and recla-
mation. As such, they provide capabilities analogous to constructors and destruc-
tors in C++. Automatic reclamation of complex objects with dynamically allo-
cated components goes a long way to compensate for the absence of real garbage
collection in Ada95. During the design phase of the language, it was proposed
that all tagged types should provide this capability. For various technical rea-
sons, this ambitious proposal was abandoned, and controlled types where placed
in a special category: all controlled types derive from a predefined tagged type,
and as such all of them inherit three operations: [Initialize, Adjust, and Finalize
[AARO9S, Section 7.6]. The predefined library package Ada.Finalization declares
the root type Controlled and its three primitive operations. The package also in-
cludes Limited_Controlled, a type whose descendants are all limited, and which
only have the primitive operations Initialize and Finalize. The language semantics
specifies that Initialize is automatically invoked upon the declaration of an object
of a controlled type, if the declaration does not include an explicit initialization;
Finalize is automatically invoked when the object is about to go out of scope, i.e.
when the scope that declares it is about to be completed. Finalize performs what-
ever clean-ups are desired (for example, deallocation of indirect structures, release
of locks, closing of files, etc.). Finally, Adjust is called on the left-hand-side of
an assignment-statement Obj1 := Obj2, after Objl is finalized, and the new value
Obj2 has been copied into Objl. Adjustis not defined for limited controlled types.
The invocation of these operations is an important part of the expansion phase of
the compiler.

When a scope contains several controlled-type objects, each object is initial-

The contents of this chapter are based on the paper [CDG95].

133

134 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

ized in the order of its declaration within the scope. Upon scope exit the objects
are finalized in the reverse order. This reverse order is important, since later ob-
jects may contain references to earlier objects. If an exception occurs during ini-
tialization, then only those controlled objects that have been initialized so far will
be finalized.

The primitive operations of controlled types apply not only to stand-alone de-
clared objects, but also to dynamically-allocated objects and controlled compo-
nents of composite objects. A dynamically allocated object is finalized either
when the scope of its associated access-type is exited, or when the programmer
explicitly deallocates it. In the case of controlled components of a composite ob-
ject, the controlled components are finalized in the reverse order of their initializa-
tion within the containing object. In addition, Adjust is called when the controlled
components are either assigned individually, or upon assignment to their enclosing
object. If a controlled object includes controlled components, Initialize or Adjust
is first invoked on the components and then on the enclosing object; Finalize is
called in the reverse order. Finalization actions also occur for anonymous objects
such as aggregates and function results. For these special objects, the finalization
will occur upon completion of execution of the smallest enclosing construct, once
the value of the aggregate or function result is no longer needed.

12.1 Implementation Overview

The rules described above immediately suggest that the run-time must include
some data structure that groups all controlled objects in a given scope. This struc-
ture must be dynamic (i.e. a list) because the front-end cannot ascertain statically
how many controlled objects will be created in a given scope. Therefore, for
each scope that contains declarations of controlled objects (or objects with con-
trolled components) the front-end creates a local variable that holds the head of
the list. The front-end then generates code that attaches each controlled object to
this list. Finally the front-end generates clean-up code for each such scope. The
clean-up code traverses the list in order to perform the appropriate finalization
operations on each object. This mechanism requires that controlled objects have
some compiler-generated component that holds a pointer to next object in the list
(this is in addition to the tag component that is generated for all objects of a tagged
type). In fact, finalization lists are doubly-linked, because deletions must at times
be performed on them. The two link components are inherited from the root type
of all controlled types.

The finalization of objects with controlled components requires additional ma-

12.1. IMPLEMENTATION OVERVIEW 135

chinery within the object itself. Consider a variant record, some of whose com-
ponents may be controlled. It is necessary to locate those components from the
enclosing object itself to finalize them when the enclosing object is finalized. As
a result, such records include an additional component, called Controller, that an-
chors the local list of controlled components. The finalization code must traverse
this local list as well.

Not surprisingly, there are some complex interactions between finalization and
other languages features. In the following sections we discuss the most interesting
of these issues, and subsequently discuss their solution in GNAT.

12.1.1 Exceptional Block Exit

The initialization/finalization mechanism must be robust in the presence of excep-
tions: one of the purposes of finalization is to avoid any memory leaks from the
creation of local objects. This purpose must be realized as well in the presence of
an abnormal scope termination, such as when an exception is raised, or when the
task containing the block is aborted, there may exist objects which have not yet
been created and received proper initialization. For this objects, Finalize must not
be called. For instance in the folowing code:

r

declare
S1 : Some_Controlled_Type;
X : Pos := Random (0,1); —— Constraint_Error is

—— randomly raised.
S2 ; Some_Controlled_Type;
begin
null ;
end ;

\S

S1 is initialized, but S2 might not be. Consequently finalization should al-
ways occur for S1 whereas S2 should be finalized only if it has been initialized.
Thus an implementation which expands calls to Finalize at the end of the block
is inadequate. As a further complication, note that exceptions may be raised dur-
ing initialization of composite object containing controlled components, in which
case only the initialized components of the object needs finalization.

136 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

12.1.2 Finalization of Anonymous Objects

Finalization actions for anonymous objects must occur upon completion of ex-
ecution of the smallest enclosing construct, that is, as soon as their value is no
longer needed. Again, this mechanism has to work even if an exception is raised
in the middle of executing the construct. The following code present two exam-
ples. Empty is a function returning a controlled object, and Exists is a function
that takes such an object as a parameter. The call to Empty creates an anonymous
object that must be finalized when the enclosing call to Exists returns:

declare
X : Boolean := Exists (1, Empty);
—— The result of the call to Empty is kept in an
—— anonymous object during the execution of Exists,
—— and Finalize must be invoked no latter than
—— the semicolon.

begin
if Exists (2, Empty) then

else

end if;
—— Here the anonymous object has to be finalized before
—— the execution of either branch of the if statement.
end ;
\N

12.1.3 Finalization of Dynamically Allocated Objects

Recall that dynamically objects can be reclaimed when the corresponding access
type goes out of scope. This rule extends to controlled objects: if an object is
allocated dynamically, it must be finalized when the the scope of the access type
is completed. Of course, if a dynamic object is deallocated explicitly, it must
be finalized before the final storage reclamation. The implementation must then
attach dynamically allocated objects to the finalization list of the scope of the type
itself. The expanded code for any use of Unchecked_Deallocation must include
an invocation of Finalize when the designated object is controlled.

12.1. IMPLEMENTATION OVERVIEW 137
12.1.4 Problems Related to Mutable Objects

A variable of a discriminated type with defaulted distriminants may contain dif-
fering numbers of controlled components at different times. This possibility in-
troduces an asymmetry between elaboration and finalization. In the following
example no controlled components are present at the beginning of the execution,
but after the assignment, X will contain three such components:

declare
type T_Table is array (Natural range <>)
of Some_Controlled_Type;
subtype Index is Natural range 0 .. 10;
type Rec (N : Index := 0) is record
T : T_Table (1 .. N);
end record;

X : Rec;
begin

X := (3, (1 .. 3 => Empty)); —— 3 Controlled components.
end;

This example makes it clear that objects with controlled components must
include some additional data-structures to keep track of their changeable control-
lable contents. In addition, such objects are not necessarily controlled themselves,
s0, the chaining mechanism must include some level of indirection to denote these
objects, given that they do not have the link field of controlled objects. Arrays of
controlled objects are yet another complication, because there is nowhere to place
additional pointers to link the components.

12.1.5 Controlled Class-Wide Objects

Type extensions can introduce additional controlled components. Given that a
class-wide object can denote any descendant of a given type, we must assume that
in general it may include controlled components, even if the ancestor type does
not. This forces the compiler to make a worst-case assumption for class-wide
objects and parameters. Consider the following case:

138 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

r

(f

package Test is
type T is tagged null record;
function F returns T’ Class;
end Test;

with Test; use Test;
procedure Try is

V : T’ Class := F;

—— Does F yield a value containing controlled components?
begin

end Try;

The expanded code must assume that 7ry is a scope that needs finalization.
Therefore it must create a finalization list, and generate code to attach the anony-
mous object returned by the call to F to this list, in some indirect fashion because
the object might not be controlled after all.

12.2 Expansion Activities for Controlled-Types

For each block that contains objects, the expander generates a Finalization Chain.
When a controlled object is elaborated, it is first Initialized or Adjusted (depending
on whether an initial value was present or not), then attached at the beginning of
this chain. For example, let us assume the following declarations:

(f

declare

X : Some_Controlled_-Type;

Y : Some_Controlled_Type := X;
begin

<< Additional user code >>
end ;

This fragment is expanded as follows:

declare
F : GNARL. Finalizable_Ptr;
begin
X : Some_Controlled_-Type;
Initialize (X);
GNARL. Attach_To_Final_List (F, Finalizable (X));
Y : Some_Controlled_Type := X;

\&

12.2. EXPANSION ACTIVITIES FOR CONTROLLED-TYPES 139

Adjust (Y);
GNARL. Attach_To_Final_List (F, Finalizable (Y));

<< Additional user code >>
at end

GNARL. Finalize_List (F);
end ;

Finalizable_Ptr is an access to the class representing all controlled objects.
Since objects are inserted at the beginning of the list, the ordering of the chain
is exactly correct for the required sequence of finalization actions. The fact that
the chain is built dynamically ensures that only successfully elaborated objects
are dealt with in case of exceptional exit. Upon scope exit, the at-end statement
ensures that Finalize_List is called whether the scope was successfully executed or
not. Finalize_List is a run-time subprogram that finalizes all objects on the list, by
dispatching to the Finalize procedure of each. The list is of course heterogeneous
because Finalize Ptr is an access-to-class-wide type, and any object whose type is
derived from Controlled can be attached to this list.

12.2.1 Expansion of Assignment

At a first sight, the expansion of the the assignment statement Objl := Obj2 might
be:

Finalize (Objl); —— discard old value
Objl := Obj2;
Adjust (Objl); —— remove accidental sharing on new value

However, various problems make such an implementation unworkable. First,
Obj1 may refer to objects present in Obj2 and thus cannot be finalized before
Obj2 is evaluated. Second, the assignment itself must be specialized since copying
the hidden pointers that attach objects to finalization lists is clearly nonsensical.
Third, the self-assignment (X := X), although not a particularly useful construct,
does not work, because it would finalize the target of the assignment as well. This
case must be addressed specially, either by introducing a temporary object or by
avoiding the execution of any finalization actions. Thus, the front-end expands
assignment as follows, which works in the general case and can be often be opti-
mized:

140 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

Anonl : Some_Controlled_Type renames Objl;
Anon2 : Address := Obj2’ Address;

if Anonl’ Address /= Anon2 them —— Protect against X := X
Finalize (Anonl);
GNARL. Copy_Explicit_Part (Anon2.all, to => Anonl);
Adjust (Anonl);

end if;

\S J

Note that the target object, even though it has been finalized, remains in the
finalization list because it still need to be finalized upon scope exit. In general
finalization is idempotent, i.e. finalizing an object twice is a no-op.

12.2.2 Expansion of Anonymous Controlled Objects

Some constructs such as aggregates and functions generate anonymous objects
that are part of some enclosing expression or construct. When such objects are
controlled, they must be finalized as soon as they are no longer needed, that is to
say before the beginning of the next statement. The GNAT expander generates
transient blocks to handle anonymous objects; these blocks are placed around
the construct that uses the intermediate objects. Such blocks will contain the
declaration of a finalization list, and will cause the generation of finalization code
as for user-declared constructs. Consider the previous example: function Empty
yields a controlled value that is only used during the execution of Exists:

[X := Exists (1, Inside => Empty); J

GNAT expands this code as follows:

declare

Anon : Some_Controlled_-Type := Empty;
begin

X := Exists (1, Inside => Anon);
end ;

An intermediate block can be introduced without changing the semantics of
the program in order to make the anonymous object and the corresponding final-
ization list explicit. This new block contains a controlled object and thus will
be expanded using the scheme discussed above (cf. Section 12.2). The same

12.2. EXPANSION ACTIVITIES FOR CONTROLLED-TYPES 141

mechanism can be extended to deal with anonymous objects that appear in flow-
of-control structures (such as if and while statements).

The problem is a bit more complex when controlled anonymous objects appear
in a declaration, since blocks are not allowed in such a context. To handle this
case, the anonymous object is attached to an intermediate finalization list which
is finalized right after the declaration. For example:

declare
B : Boolean := Exists (1, Empty);
begin

end ;

It is expanded into:

declare
Aux_L : GNARL. List_Controller;
Anon : Some_Controlled_Type;
B : Boolean;
begin
Anon := Empty;
Adjust (Anon);
GNARL. Attach_To_Final_List (Aux_L, Anon);
B := Exists (1, Anon);
GNARL. Finalize (Aux.L); ——<<——Finalize here, not at the
- end of the block

end ;

List_Controller is itself a controlled type. Thus, an object of that type is at-
tached to the enclosing scope’s finalization chain, ensuring that the anonymous
object will be finalized even if an exception is raised between its definition and
the finalize call. In the normal case, the List_Controller is finalized twice, once
right after the declaration, and once again upon scope exit. Therefore the run-time
Finalize routine makes sure that the second finalization has no effect.

12.2.3 Objects with Controlled Components

Composite type such as records and arrays can contain controlled components,
and the expander must take care of calling the proper Initialize, Adjust and Final-
ize routines on their components. For this purpose the expander generates implicit

142 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

procedures called _Deep _Initialize, Deep _Adjust and _Deep _Finalize that are used
in a manner similar to their counterparts for regular controlled types. These pro-
cedures are specialized according as to whether they handle records or arrays.
Here is the body of _Deep_Adjust for a type T that is a one-dimensional array of
controlled objects:

a

procedure _Deep_Adjust (V : in out T;
C : Final_List;
B : Boolean) is
begin
for J in V’range loop
_Deep_Adjust (V(J));
if B then
Attach_To_Final_List (C, V (J));
end if;
end loop;
end _Deep_Adjust;

\S J

Note that the deep procedures have a conditional mechanism to attach objects
to the finalization chain so that the same procedure can be used in a context where
attachment is required, such as explicit initialization, as well as when it is not
needed, such as in the assignment case. Note also the recursive nature of the
above definition: Deep_Adjust on an array is defined in term of Deep_Adjust of its
components. Ultimately, if the component type is a simple controlled type with no
controlled components Deep_Adjust ends up just begin a call to the user-defined
Adjust subprogram.

A similar approach could have been used for records. In that case, deep pro-
cedures would have been implicitly defined to perform the finalization actions on
the controlled components in the right order, depending of the structure of the
type itself. The controlled components would have been stored on the finalization
list of the enclosing scope. Unfortunately such a model makes the assignment of
mutable objects quite difficult: the number of objects on the finalization list may
be different before and after the assignment, so all the controlled components of
the target would need to be removed from it before the assignment and afterwards
put back at the same place on the list. To avoid such a problem as well as to sim-
plify the definition of deep procedures for records a different approach has been
used. Records are considered as scopes and they have their own internal final-
ization chain on which all controlled components are chained. This is achieved
by inserting a hidden Record_Controller component within the record itself. For
example:

12.3. SUMMARY 143

type Rec (N : Index := 0) is record
_Controller : GNARL.Record_Controller;
T : Sets (1 .. N);

end record;

Record_Controller plays a role equivalent to List_Controller: it introduces an
indirection in the enclosing finalization list. The finalization list of controlled
components is local to the object. So, upon assignment the number of controlled
components may vary without affecting the enclosing finalization list. This pro-
vides a simple solution to the mutable record problem.

Class-wide objects present a interesting challenge since the compiler doesn’t
know how many, if any, controlled components are present in such objects. To ad-
dress this problem, class-wide types are considered “potentially” controlled and
calls to the deep procedures are always generated for initializations and assign-
ments. Dispatching is used to ensure that the appropriate deep procedure is called.

12.3 Summary

Controlled-types introduce interesting implementation problems that impose a
close cooperation between compile-time and run-time activities. The expander
generates declarations for data structures at the scope level and at the type level,
that are used to create run-time lists that hold controlled objects. The expander
also generates calls to initialization and finalization routines. The run-time in-
cludes general purpose finalization routines that traverse these lists and dispatch
to type-specific finalization operations. The expander adds blocks around the use
of anonymous controlled objects, to ensure that they are finalized in a timely fash-
ion. The resulting mechanism handles dynamically allocated objects and objects
with controlled components as well.

144 CHAPTER 12. EXPANSION OF CONTROLLED-TYPES

Chapter 13

Expansion of Tagged-Types

Tagged-types give linguistic support to the two basic object-oriented concepts:
type-extension and inheritance. In Ada95, a tagged-type defines a class that des-
ignates a set of types derived from a common root, thus sharing properties and
enabling class-wide programming. Note that the word class has a slightly differ-
ent meaning in most other object-oriented languages, where it is used to designate
a single type and not a hierarchy of types.

It is important to distinguish clearly between primitive operations of a tagged
type, which have one or more parameters of their associated type (or an anony-
mous access to it), and subprograms operating on class-wide objects (or access
to class-wide objects). The former are inherited when the type is extended, and
may be redefined in an extension, each version applying to its specific type only.
By contrast, subprograms with class-wide formals have a single definition and
apply to all members of the class. Dynamic dispatching occurs whenever a prim-
itive operation is called and (at least) one of its formal parameters has a specific
tagged-type and its corresponding actual is class-wide; this parameter is called
a controlling argument. The tag of the actual determines which version of the
primitive operation is to be called.

Most of the implementation of tagged types in GNAT follow the ideas dis-
cussed in [Dis92] and [CP94]. This chapter presents the main aspects of this
model.

145

146 CHAPTER 13. EXPANSION OF TAGGED-TYPES

13.1 Tagged and Polymorphic Objects

The intuitive idea behind tagged-types is that values of such a type carry a rag
which is used, among other things, to relate the run-time value to its original type
and to the operations that apply to it. This tag allows the simple implementation
of run-time type-specific actions, such as dynamic dispatching and membership
testing. Let us consider the following declaration of a root tagged-type:

type My_Tagged is abstract tagged
record

end record;

It is transformed by the GNAT front-end by the addition of a new component,
whose predefined type appears in Ada.Tags:

type My_Tagged is abstract tagged
record
_Tag : Tags.Tag;

end record;

Each tagged-type has its own tag. A copy of the tag is inserted into every
object of the type. The value of the tag is a pointer to a type-specific data area,
that includes first and foremost a table of primitive operations of the tagged-type.
This table is built at the point the type is frozen. The tag of an object is constant,
and cannot be modified after the object is created. (Note that a conversion cannot
affect the tag of an object, its purpose is to allow the object to be viewed as another
member of the class - a view conversion - but does not actually change the value
of the tag stored in the object).

By definition a type extension inherits all the components of its parent. We
could describe the type extension by copying explicitly all the component decla-
rations of the parent and appending the components in the extension. It turns out
to be simpler to describe all the inherited components as being part of a single
inherited collective component, called _Parent. The following type extension:

type My_Ext_Tagged is new My_Tagged with
record

end record;

13.2. THE DISPATCH TABLE 147

It is expanded as follows:

-

type My_Ext_Tagged is
record
_Tag : Tags.Tag;
_Parent : My_Tagged;

end record;

The main advantage of this technique is that it transforms record extensions
into regular records.

For many reasons, it turns out to be mandatory that any field in a tagged type
keep the same location within the record in any descendant type. To start with,
dynamic dispatching depends on the value of the tag, and thus the tag must appear
at the same location in all tagged types. Additionally, for a class-wide object
whose actual type is not known until run-time, selecting any component would
be impossible (or prohibitively inefficient) if the position of the field depended on
the type. By having all the inherited components appear conceptually as part of
a single _Parent component type insures that the layout of the parent is respected.
This component is inserted at the beginning of the record. Components of the
extension follow.

13.2 The Dispatch Table

A dispatching call consists in selecting and calling the version of a primitive op-
eration that applies to the type of its controlling argument. Recall that in Ada95,
unlike C++, whether a call is dispatching or not depends on whether there is a
class-wide actual. If the actuals are statically tagged, the compiler can determine
the operation to be called. If an actual is dynamically tagged, the run-time call
must be indirect: the proper operation must be selected from the dispatch table
of the type of the actual. The dispatch table is a table of subprogram addresses,
and a dispatching call is an indirect call through an entry in the table. The position
of each primitive operation in the table is established by the compiler, so the call
uses a static offset to determine the address of the subprogram to be called. (cf.
Figure 13.1).

The left side of figure 13.1 shows the declaration of a tagged-type, some user-
defined primitive subprograms for it (My_Primitive_OpN), one non-primitive dis-
patching subprogram (My_Class_Opl), one object declaration of the type (Obj),

148 CHAPTER 13. EXPANSION OF TAGGED-TYPES

User Code Expanded Code

type My_Tagged (D : Integer) is tagged
record
_Tag

type My_Tagged (D : Integer) is tagged
record

end record;

procedure Primitive_Op1 (O: My_Object; ...) is end record;

e;1;1.Primitive70p1; procedure Primitive_Op1 (O: My_Object; ...) is
function Primitive_Op2 (O: My_Object; ...) is e;‘l.d‘Primitive,Op];
e;l;i.Primilive70p2; function Primitive_Op2 (O: My_Object; ...) is
e;l;i‘PrimitivefopZ;

procedure My_Class_Opl (O : My_Object’Class) is procedure My_Class_Opl (O : My_Object’Class) is

begin begin
Primitive_Opl (O); -- Dispatching call O.Tag.all.Prim_Op (1)(O, ...); -- Dispatching call
end My_Class_Opl; end Primitive_Op;
Obj : My_Tagged; Obj
begin _Tag
Primitive_Op]1 (Obj); -- Non-dispatching call =
end;
begin
Primitive_Op1 (Obj); -- Non-dispatching call
end;

Figure 13.1: Dispatch Table Example.

and a non-dispatching call to one primitive operations. On the right side we dis-
play the expanded code produced by the GNAT front-end. The tagged-type gener-
ates a data structure that is essentially an array of addresses, of which the dispatch
table is the central component (we discuss later the other components of the type-
specific data). The front-end also generates code to initialize the dispatch table,
by storing in it the addresses of the primitive subprograms of the type. In an
object, the tag component is a pointer to the dispatch table.

In addition to dispatching calls, a predefined operation that requires run-time
type information is the membership test: X in 7. When T is a specific tagged-type,
this test consists simply of verifying that X’s tag points to the dispatch table for
the type T (for convenience, the tag of T is also present in the type-specific data
for T). When the test is of the form X in T’Class, the problem is more complex,
because the tag of X can be a pointer to any descendant of T. Two implementations
are possible for this test. One can store in the type-specific data a pointer to the
dispatch table of the immediate ancestor. In this case the membership test consists
of traversing the list of ancestors’ dispatch tables, and return True if the dispatch
table for T is found during the traversal. The other implementation stores the tags

13.3. PRIMITIVE OPERATIONS 149

of all the ancestors in the type-specific data, along with the inheritance depth (the
total number of ancestors of the type, i.e. the distance to the root in the type
hierarchy). The difference in depths between the type of X and T gives the actual
location where T must be found in the table of ancestor tags for the membership
to succeed. GNAT implements this later approach because it ensures that the
evaluation of the membership test takes constant time (see details in 13.3).

13.3 Primitive Operations

The following subprograms are present for all tagged types, and provide the re-
sults of the corresponding attributes. The bodies of these subprograms are gener-
ated by the front-end, at the point at which the type is frozen. These subprograms
must in general be dispatching, since they can apply to class-wide objects, and the
value produced will vary with the actual object subtype: _Alignment, _Size, Read,
_Write, _Input, and _Output. In addition, the following subprograms are present
for non-limited tagged-types, and implement additional dispatching operations for
predefined operations: _equality, _assign, _deep_finalize, and _deep_adjust. The
latter two are empty procedures, unless the type contains some controlled compo-
nents that require finalization actions (the deep in the name refers to the fact that
the action applies recursively to controlled components, cf. Chapter 12).

For example, let us assume the following tagged-type declaration:

type My_Record is tagged
record
My_Data : Integer;
end record;

The GNAT front-end generates the equivalent of the following expanded code
from it:

-

—— Declaration of the type—specific data
type My_Record_Data is record

DT : array (1 .. 11) of Address; —— Dispatch table
TSD : array (1 .. 3) of address; —— Ancestor info
_Parent : Tags.Tag := DT’ Address; ——Tag of the type
_F : Boolean := True;

_E : constant String := "My_Object”; —— Debug info

end record;

150 CHAPTER 13. EXPANSION OF TAGGED-TYPES

7

function _Alignment

(X : My_.record) return Integer;
function _Size

(S : My_Record) return Integer;
procedure _Read

(S : Root_Stream_Type; V : out My_Record);
procedure _Write

(S : Root_Stream_Type; V : My_Record);
function _Input

(S : access Root_Stream_Type) return My_Record;
procedure _Output

(S : access Root_Stream_Type; V : My_Record);
function ="

(X : My_Record; Y : My_Record) return Boolean;
procedure _Assign

(X : out My_Record; Y : My_Record);
procedure _Deep_Adjust

(L : in out Finalizable_ptr;

V : in out My_Record;

B : Integer);
procedure _Deep_Finalize

(V : in out My_Record; B : Boolean);

—— The initialization code for the dispatch table includes
—— the following for all primitive operations

My_Record_Data .DT (1) := _Alignment’ Address;
My_Record_Data .DT (2) : _Size’ Address;

The format of GNAT’s dispatch table is customizable in order to match the
format used by other object-oriented languages. GNAT supports programs that
use two different dispatch table formats at the same time: the native format, that
supports Ada 95 tagged types and which is described in Ada.Tags, and a for-
eign format for types that are imported from some other language (typically C++)
which is described in interfaces.cpp. Several pragmas are provided to allow the
user to specify the position of the tag in the foreign layout. The boolean field (_F)
is used for elaboration purposes. Finally the name of the tagged-type is expanded
in a string-type field (_E). This field is used by the debugger.

After the record type, the expander creates the bodies of the default prim-
itive operations. By default, the bodies of _Read, Write, Deep_Adjust, and
_Deep_Finalize are empty. The other subprograms are expanded as follows:

13.3. PRIMITIVE OPERATIONS

151

begin
return X’ Alignment;
end _Alignment;

begin
return X’ Size;
end _Size;

V : My_Record;

_Write (S, V);
end _Output;

procedure _Assign (X : out My_Record; Y :
begin
if not (X’ Address = Y’ Address) then
declare
Aux : Tags.Tag := X.Tag;
begin
X :=Y;
X.Tag := Aux;
end ;
end if;
exception
when others =>
GNARL. Undefer. all ;
raise Program_Error;
end _Assign;

function _Size (X : My_Record) return Integer

function _Alignment (X : My_Record) return Integer is

is

function _Input (S : Root_Stream_Type) return My_Record is

begin
_Read (S, V);
return V;
end _Input;
procedure _Output (S : access Root_Stream_Type;
V : My_Record) is
begin

function =" (X : My_Record; Y : My_Record) return Boolean is
begin

return X.My_Data = X.My_Data;
end ’=";

My _Record) is

_Alignment and _Size return the value of the corresponding attribute applied
t to the object; _Input and _Ouput call the corresponding _Read and _Write prim-

itives (both being null by default, this does nothing);

“__9

is expanded into the

152 CHAPTER 13. EXPANSION OF TAGGED-TYPES

required code to compare all the user-defined components of the tagged-type. Fi-
nally, the body of the primitive operation _Assign would seem to be just X:=Y.
However, the expanded code protects the user from self assignment (X:=X), which
is incorrect if the object is controlled (the finalization of the old value of the left-
hand side would end up destroying the object itself). Finally, in order to handle
correctly an assignment whose right-hand side is a conversion, the assignment
must first preserve the tag of the target, perform the assignment, and finally reset
the tag. Let us examine the following example:

declare
type My_Record is tagged
record
Some_Data : Integer;
end record;

type My_Extension is My_Record with
record
More_Data : Character;
end record;

Objl : My_Record;

Obj2 : My_Extension;
begin

Objl := My_Record (Obj2); —— Explicit conversion
end ;

=

After the elaboration of the two objects, the tag of Objl points to the dis-
patching table of My_Record and the tag of Obj2 points to the dispatching table
of My_Extension. The conversion does not change the tag of Obj2, but simply
indicates that Obj2 is to be regarded as having the ancestor type in the context
of the assignment. If the compiler were to implement the assignment as a copy
of the whole contents, the tag of Objl would point to the dispatching table of
My _Extension which would be clearly incorrect.

13.4 Summary

Objects of a tagged-type include a tag which is used at run-time to implement
object-oriented notions of polymorphism and dynamic dispatching. The GNAT
expander translates tagged-types into record types with a dispatch table; the tag in
an object is a pointer to the dispatch table of the type. Objects of a type extension
include a collective component that corresponds to all the components inherited

13.4. SUMMARY 153

from the parent. The GNAT front-end generates a number of dispatching primitive
operations for several type attributes, and generates code to initialize the dispatch
table by placing in it the addresses of all primitive operations.

154 CHAPTER 13. EXPANSION OF TAGGED-TYPES

Part IV

Fourth Part: Run-Time

155

Chapter 14

Tasking

Ada tasks semantics requires run-time support for storage allocation, task schedul-
ing, and intertask communication. These functions are typically performed by the
kernel of the operating system. Ada is so specific in its semantic requirements,
however, that it is unlikely that a given existing operating system will make such
services available in a form that can be directly used by the generated code. As
a consequence, the compiler run-time must add routines that support Ada tasking
semantics on top of OS primitives, or else provide a tasking kernel for applications
that run on bare boards.

The GNAT run-time assumes that functionality equivalent to that of the POSIX
threads library (pthreads) is available in the target system. The additional run-time
information concerning each Ada task (task state, parent, activator, etc. [AAR9S,
Chapter 9]) is stored in a per-task record called the Ada Task Control Block (ATCB).

14.1 The Ada Task Control Block

The Ada Task Control Block (ATCB) is a discriminated record, whose discrimi-
nant is the number of task entries (a central component of the ATCB is the array
of queues whose size is fixed by the discriminant). In order to support Ada95
task discriminants and some Ada task attributes, the front-end generates an ad-
ditional record (described in detail in Section 9.4). When a task is created, the
run-time generates a new ATCB and links the new ATCB with its corresponding
high-level record and Threads Control Block (TCB) record in the POSIX level (cf.
Figure 14.1). In addition, the GNAT run-time inserts the new ATCB in a linked list
(All Tasks List). ATCBs are always inserted in LIFO order (as a stack). Therefore,

157

158

Compiler

T_TaskV

T_TaskV

CHAPTER 14. TASKING

the first ATCB in this list corresponds to the most recently created task.

Generated-Code Discriminants Discriminants
Level _Task_Id _Task_Id
Entry_Family Entry_Family
_Priority _Priority
_Size _Size
_Task_Info _Task_Info
_Task_Name _Task_Name
GNARL
Level ATCB ATCB
Task_Arg Task_Arg
State State
Parent Parent
Activator Activator
System.Tasking Master) Master .
All_Tasks_List All_Tasks_List All_Tasks_Listt—
LL LL
Thread — Thread —
Cond_Var Cond_Var
Lock Lock
POSIX TCB TCB
Level
Arg Arg

Figure 14.1: Run-Time Information Associated with Each Task.

14.2 Task States

GNAT considers four basic states over the lifetime of a task. The current state is
indicated by the State ATCB field):

e Unactivated. The ATCB has been created and inserted in the All Tasks List,
but no thread of control has been assigned to execute its body.
e Runnable. The task is executing (although it may be waiting for a mutex).

e Sleep. The task is blocked. The execution of a task may be blocked when
it is forced to wait for some event external to the task. Examples of such

14.3. TASK CREATION AND TERMINATION 159

events are self-imposed time delays, termination of a subordinate task, and
completion of the operations involved in intertask communication. A task
that is not blocked is said to be ready.

e Terminated: The task is terminated, in the sense of ARM 9.3 (5). Any de-
pendents that were waiting on Ada terminate alternatives have been awak-
ened and have terminated themselves.

The sleep state is composed of the following sub-states:

Activator_Sleep: Waiting for created tasks to complete activation.

Acceptor_Sleep: Waiting on an accept or selective wait statement.
o Entry_Caller_Sleep: Waiting on an entry call.

o Async_Select_Sleep: Waiting to start the abortable part of an asynchronous
select statement.

e Delay Sleep: Waiting on a select statement with only a delay alternative
open.

o Master_Completion_Sleep: Master completion has two phases. In the first
phase the task, having completed a master within itself, waits for the tasks
dependent on that master to become terminated or wait on a terminate phase.

e Master_Phase_2 _Sleep: In phase 2 the task sleeps in Complete_Master, wait-
ing for tasks on terminate alternatives to finish terminating.

14.3 Task Creation and Termination

According to Ada semantics, all tasks created by the elaboration of object declara-
tions of a single declarative region (including subcomponents of declared objects)
are activated together. Similarly, all tasks created by the evaluation of a single
allocator are activated together [AAR9S, Section 9.2(2)]. In addition, if an ex-
ception is raised in the elaboration of a declarative part, then any task T created
during that elaboration becomes terminated and is never activated. As T itself
cannot handle the exception, the language requires the parent (creator) task to
deal with the situation: the predefined exception Tasking Error is raised in the
activating context.

160 CHAPTER 14. TASKING

In order to achieve this semantics, the GNAT run-time uses an auxiliary list:
the Activation List. The front-end expands the object declaration by introducing a
local variable in the current scope, that holds the activation list (cf. Sections 9.1
and 9.6), and splits the OS call to create the new thread into two separate calls to
the GNAT run-time: (1) Create_Task, which creates and initializes the new ACTB,
and inserts it into both the all-tasks and activation lists, and (2) Activate_Task,
which traverses the activation list and activates the new threads.

With respect to task termination, the concept of a master [AAR9S, Section 9.3]
is fundamental to the semantics of the language. (cf. Section 9.2). Basically a
master defines a scope at the end of which the run-time must wait for termination
of dependent tasks, before finalization of other objects created on such a scope.
To implement this behavior, the front-end generates calls to the run-time subpro-
grams Enter_Master and Complete_Master at the beginning and termination of a
master scope (or, in the case of tasks, via Create_Task and Complete_Task sub-
programs). The GNAT run-time associates one identifier to each master, and two
master identifiers with each task: the master of its Parent (Master_Of_Task) and its
internal master nesting level (Master_Within). The identification method of mas-
ters provides an ordering on them, so that a master that depends on another will
always have associated an identifier higher than that of its own master.

Normally a task starts out with internal master nesting level one larger than
external master nesting level. This value is incremented by Enter Master, which
is called if the task itself has dependent tasks. It is set to 1 for the environment task.
The environment task is the operating system thread which initializes the run-time
and executes the main Ada subprogram. Before calling the main procedure of
the Ada program, the environment task elaborates all library units needed by the
Ada main program. This elaboration causes library-level tasks to be created and
activated before the main procedure starts execution. Master level 2 is reserved
for server tasks of the run-time system (the so called “independent tasks™), and
the level 3 is for the library level tasks.

o Master_Of_Task is set to 1 for the environment task. The level 2 is re-
served for server tasks of the run-time (the so called Independent Tasks),
and the level 3 is for the library level tasks. When a task is created it inherits
the internal master nesting level of its Parent (the initial value of its Mas-
ter_Of_Task is initialized with the current value of its Parent Master_Within).
This value remains unmodified during the new task life and is used to ensure
the Ada semantics for tasks finalization.

L[New_Task.Master_Of_Task := Activator.Master _Within

14.3. TASK CREATION AND TERMINATION 161

e Master_Within is set to the initial Master_Of_Task value plus one. When
the tasks enters a scope with dependent tasks, its internal nesting level is
incremented to one.

Tasks created by an allocator do not necessarily depend on their activator,
but rather on the master that created the access type; in such case the activa-
tor’s termination may precede the termination of the newly created task [AAR9S,
Section 9.2(5a)]. Therefore, the master of a task created by the evaluation of
an allocator is the declarative region which contains the access type definition.
Tasks declared in library-level packages have the main program as their master.
That is, the main program cannot terminate until all library-level tasks have ter-
minated [BW98, Chapter 4.3.2]. Figure 14.2 summarizes the basic concepts used
by the run-time for handling Ada task termination.

Parent The task executing the master on which T depends.
Activator The task that created T’s ATCB and activated it.
Master of Task | Parent’s scope on which T depends.

Master Within | Nesting level of T’s dependent tasks.

Figure 14.2: Definition of Parent, Activator, Master of Task and Master Within.

Example

In order to understand these concepts better, let’s apply them to the following
example:

-

procedure P is
—— P: Parent = Environment Task;
—_— Activator = Environment
—— Master_Of_Task = 1; Master_Within

I
NS}

task T1;

—— T1: Parent = P; Activator = P

- Master_Of_Task = 2; Master_Within = 3;
task body TI1 is

task type TT;
task body TT is
begin

null ;
end TT;

type TTA is access TT;

162 CHAPTER 14. TASKING

T2 : TT;
—— T2: Parent = T1; Activator = TI1

- Master_Of_Task = 3; Master_Within = 4,
task T3;

—— T3: Parent = T1; Activator = TI1

—_ Master_Of_Task = 3; Master_Within = 4;

task body T3 is
task T4;
—— T4: Parent = T3; Activator = T3

—— Master_Of_Task = 4; Master_Within = 5;
task body T4 is
begin
null ;
end T4;
T5 : TT;
—— T5: Parent = T3; Activator = T3
—— Master_Of_Task = 4; Master_Within = 5;

T6 : TTA := new TT;
—— T6: Parent = T1; Activator = T3
—— Master_Of_Task = 2; Master_Within = 3;

Parent and activator do not coincide for T6 because the task is created by
means of an allocator, and in this case the parent of the new task is the task where
the access type is declared, while the activator is the task that executes the alloca-
tor. In all other cases above, parent and activator coincide.

The abort statement is intended for use in response to those error conditions
where recovery by the errant task is deemed to be impossible. The language de-
fines some operations in which abortion must be deferred [BW98, Section 10.2.1].
In addition, the execution of some critical points of the run-time must be also de-
ferred to keep its state stable. For this purpose the GNAT run-time uses a pair of
subprograms (Abort_Defer, Abort_Undefer) that are called by the code expanded
by the front-end to bracket unabortable operations involving task termination, (cf.
Section 9.5), rendezvous statements (cf. Chapter 10), and protected objects (cf.

14.4. RUN-TIME SUBPROGRAMS FOR TASK CREATION AND TERMINATION163

Chapter 11). The implementation of these primitives will be discussed in detail in
Chapter 20.

14.4 Run-Time Subprograms for Task Creation and
Termination

Section 9.6 discussed the sequence of calls to the run-time issued by the expanded
code at the point of tasks creation and finalization. Figure 14.3 represents this
sequence. Each rectangle represents a subprogram; the rhombus represents the
new task.

Activator New Task
= — e m m m — — — — — — — — — = — - — - - = — 4
1) GNARL.Enter_Master Task Body Procedure
2) GNARL.Create_Task Task Wrapper v

_ Task Declarations

3) GNARL.Activate_Task 5 !
. Call the task body procedure : L
4) GNARL.Complete_Activation

User Code
. 5) GNARL.Complete_Task|

: Task User Cod:
6) GNARL.Complete_Master . ask Lsertode

Figure 14.3: GNARL Subprograms Called During the Task Life-Cycle

The whole sequence is as follows:

1. Enter_Master is called in the Ada scope where a task or an allocator desig-
nating objects containing tasks is declared.

2. Create_Task is called to create the ATCBs of the new tasks and to insert
them in the all tasks list and in the activation chain (see section 14.4.3).

3. Activate_Tasks is called to create new threads and to associate them with the
new ATCBs on the activation chain. When all the threads have been created
the activator becomes blocked until they complete the elaboration of their
declarative part.

The thread associated with the new task executes a task-wrapper procedure.
This procedure has some locally declared objects that serve as per-task run-time
local data. The task-wrapper calls the Task Body Procedure (the procedure gener-
ated by the compiler which has the task user code) which elaborates the declara-
tions within the task declarative part, to set up the local environment in which it

164 CHAPTER 14. TASKING

will later execute its sequence of statements. Note that if these declarations also
have task objects, then there is a chained activation: this task becomes the activa-
tor of dependent task objects and cannot start the execution of its user code until
all dependent tasks complete their own activation.

4. Complete_Activation is called when the new thread completes the elabora-
tion of all the task declarations, but before executing the first statetement
in the task body. This call is used to signal to the activator that it need no
longer wait for this task to finish activation. If this is the last task on the
activation list to complete its activation, the activator becomes unblocked.

From here on the activator and the new tasks proceed concurrently and their
execution is controlled by the POSIX scheduler. Afterward, any of them can
terminate its execution and therefore the following two steps can be interchanged.

5. Complete_Task is called when a task terminates its execution. This may
happen as a result of reaching the end of its sequence of statements, or by
other means, such as an exception or an abort statement (cf. Chapter 20).
Even though a completed task cannot execute any more, it is not yet safe to
deallocate its working storage at this point because some reference may still
be made to the task. In particular, it is possible for other tasks to still attempt
entry calls to a terminated task, to abort it, and to interrogate its status via
the "Terminated and ’Callable attributes. Nevertheless, completion of a task
does requires action by the run-time. The task must be removed from any
queues on which it may happen to be, and must be marked as completed. A
check must be made for pending calls on entries of the completed task, and
the exception Tasking _Error must be raised in any such calling tasks [BR8S5,
Section 4].

6. Complete_Master is called by the activator when it finishes the execution of
its statements. At this point the activator waits until all its dependent tasks
either complete their execution (and call Complete _Task) or are blocked in a
Terminate alternative. Alive dependent tasks in a terminate alternative are
then forced to terminate.

In general this is the earliest point at which it is completely safe to dis-
card all storage associated with dependent tasks (because it is at this point
that execution leaves the scope of the task’s declaration, and it is no longer
possible for any dependent task to be awakened again by a call).

14.4. RUN-TIME SUBPROGRAMS FOR TASK CREATION AND TERMINATION165

In the following sections we give more a detailed description of the work
done by the following run-time subprograms: Enter_Master, Create_Task, Acti-
vate_Tasks, Complete_Activation, Complete_Task, and Complete_Master, which
implement the most important aspects of tasking.

14.4.1 GNARL.Enter Master

Enter_Master increments the current value of Master_Within in the activator.

14.4.2 GNARL.Create_Task

Create_Task carries out the following actions:

1. If no priority was specified for the new task then assign to it the base priority
of the activator. When no priority is specified, the priority of a task is the
priority at which it is created, that is, the priority of the activator at the point
it calls Create_Task.

2. Traverse the parents list of the activator to locate the parent of the new task
via the master level (the Parent Master is lower than the master of the new
task).

3. Defer abortion.

4. Request dynamic memory for the new ATCB (New_ATCB).

5. Lock All_Tasks_List because this lock is used by Abort_Dependents
and Abort_Tasks and, up to this point, it is possible for the new task is
to be part of a family of tasks that is being aborted.

6. Lock the Activator’s ATCB.

7. If the Activator has been aborted then unlock the previous
locks (All_Tasks_Lists and its ATCB), undefer the abortion
and raise the Abort_Signal internal exception.

8. Initialize all the fields of the new ATCB: Callable set to True;
Wait_Count, Alive_Count and Awake_Count set to O (cf. Sys-
tem.Tasking.Initialize ATCB).

9. Unlock the Activator’s ATCB.
10. Unlock All_Tasks_List.

166 CHAPTER 14. TASKING

11. Add some data to the new ATCB to manage exceptions (cf. Sys-
tem.Soft_Links.Create _TSD).

12. Insert the new ATCB in the activation chain.

13. Initialize the structures associated with the task attributes.

14. Undefer the abortion.

From this point the new task becomes callable. When the call to this run-time
subprogram returns, the code generated by the compiler sets to True the variable
which indicates that the task has been elaborated.

14.4.3 GNARL.Activate_Tasks

With respect to task activation the Ada Reference Manual says that all tasks
created by the elaboration of object_declarations of a single declarative region
(including subcomponents of the declared objects) are activated together. Simi-
larly, all tasks created by the evaluation of a single allocator are activated together
[AAROS, Section 9.2(2)].

GNAT uses an auxiliary list (the Activation List) to achieve this semantics. In
a first stage all the ATCBs are created and inserted in the two lists (All Tasks and
Activation lists); in a second stage the Activation List is traversed and new threads
of control are created and associated with the new ATCBs. Although ATCBs are
inserted in both lists in LIFO order all activated tasks synchronize on the activators
lock before they start their activation in priority order. The activation chain is not
preserved once all its tasks have been activated.

Activate_Tasks performs the following actions:

1. Defer abortion.

2. Lock All_Tasks_List to prevent activated tasks from racing ahead before we
finish activating all tasks in the Activation Chain.

3. Check that all task bodies have been elaborated. Raise Program_Error oth-
erwise.

For the activation of a task, the activator checks that the task_body is already
elaborated. If two or more tasks are being activated together (see ARM 9.2),
as the result of the elaboration of a declarative_part or the initialization of

14.4. RUN-TIME SUBPROGRAMS FOR TASK CREATION AND TERMINATION167

the object created by an allocator, this check is done for all of them before
activating any.

Reason: As specified by AI-00149, the check is done by the activator, rather
than by the task itself. If it were done by the task itself, it would be turned
into a Tasking_Error in the activator, and the other tasks would still be acti-
vated [AAR9S5, Section 3.11(12)].

4. Reverse the activation chain so that tasks are activated in the order they were
declared. This is not needed if priority-based scheduling is supported, since
activated tasks synchronize on the activators lock before they start activating
and so they should start activating in priority order.

5. For all tasks in the activation chain do the following actions:

(a) Lock the task’s parent.
(b) Lock the task ATCB.

(c) If the base priority of the new task is lower than the activator priority,
raise its priority to the activator priority, because a task being activated
inherits the active priority of its activator [AAR9S5, Section D.1(21)].

(d) Create a new thread by means of GNARL call (cf. Create_Task) and
associates it to the task wrapper. If the creation of the new thread fails,
release the locks and set the caller ATCB field Activation Failed to
True.

(e) Set the state of the new task to Runnable.

(f) Initialize the counters of the new task (Await_Count and Alive_Count
setto 1)

(g) Increment the parent counters (Await_Count and Alive _Count).

(h) If the parent is completing the master associated with this new task, in-
crement the number of tasks that the master must wait for (Wait_Count).

(1) Unlock the task ATCB.
() Unlock the task’s parent.

6. Lock the caller ATCB.
7. Set the activator state to Activator Sleep

8. Close the entries of the tasks that failed thread creation, and count those that
have not finished activation.

168

9.

10.

11.

12.

13.

14.

CHAPTER 14. TASKING

Poll priority change and wait for the activated tasks to complete activation.
While the caller is blocked POSIX releases the caller lock.

Once all of these activations are complete, if the activation of any of the
tasks has failed (typically due to the propagation of an exception), Task-
ing_Error is raised in the activator, at the place at which it initiated the acti-
vations. Otherwise, the activator proceeds with its execution normally. Any
tasks aborted prior to completing their activation are ignored when deter-
mining whether to raise Tasking_Error [AAR95, Section 9.2(5)].

Set the activator state to Runnable.
Unlock the caller ATCB.

Remove the Activation Chain.
Undefer the abortion.

If some tasks activation failed then raise Program_Error. Tasking Error is
raised only once, even if two or more of the tasks being activated fail their
activation [AAR95, Section 9.2(5b)].

14.4.4 GNARL.Tasks Wrapper

The task-wrapper is a GNARL procedure that has some local objects that serve as
per-task local data.

14.4.5 GNARL.Complete Activation

Complete_Activation is called by each task when it completes the elaboration of
its declarative part. It carries out the following actions:

1.

2.

3.

Defer the abortion.
Lock the activator ATCB.
Lock self ATCB.

Remove dangling reference to the activator (since a task may outline its
activator).

14.4. RUN-TIME SUBPROGRAMS FOR TASK CREATION AND TERMINATION169

5. If the activator is in the Activator_Sleep State then decrement Wait_Count
in the activator. If this is the last task to complete the activation in the
Activation Chain, wake up the activator so it can check if all tasks have
been activated.

6. Set the priority to the base priority value.

7. Undefer the abortion.

14.4.6 GNARL.Complete Task

The Complete_Task subprogram performs the following single action:

1. Cancel queued entry calls.

From this point the task becomes not callable.

14.4.7 GNARL.Complete Master

The run-time subprogram Complete_Master carries out the following actions:

1. Traverse all ATCBs counting how many active dependent tasks does this
master currently have (and terminate all the still unactivated tasks). Store
this value in Wait_Count.

2. Set the current state of the activator to Master_Completion_Sleep.

3. Wait until dependent tasks are all terminated or ready to terminate.

4. Set the current state of the activator to Runnable.

5. Force those tasks on terminate alternatives to terminate (by aborting them).

6. Count how many active dependent tasks does this master currently have.
Store this value in Wait_Count.

7. Set the current state of the activator to Master_Phase 2 _Sleep_State.
8. Wait for all counted tasks to terminate themselves.

9. Set the current state of the activator to Runnable.

170

CHAPTER 14. TASKING

10. Remove terminated tasks from the list of dependents and free their ATCB.

11. Decrement Master_Within

14.5 Summary

In this chapter we have examined the basic data structures used by the GNAT run-
time to support Ada tasks, the task states used by GNARL, some of the compiler-
generated code that invokes run-time actions, and the subprograms called by this
generated code. To summarize again:

. Each task has an associated Ada Task Control Block (ATCB).
. THe (All Tasks List) holds the ATCBs of all tasks in the program

. One auxiliary list is used to activate task objects created in the same Ada

scope at the same time.

A construct that declares tasks is a Master for these tasks. A task can itself
be a Master. The presence of Masters determines all actions relating to task
finalization.

. A task declaration is translated by the compiler into a limited record which

is part of the ATCB; the Ada task body is translated into a procedure with
intermixed calls to the RTS to manage the task body creation, activation,
communication and finalization.

. The environment task is responsible for initialization of the RTS and the

execution the main subprogram. As a consequence, the environment task is
also the activator of all library-level tasks.

Chapter 15

The Rendezvous

The Rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. The model of Ada is based on a client/server model of interaction.
One task, the server, declares a set of services that it is prepared to offer to other
tasks (the clients). It does this by declaring one or more public entries in its task
specification. A rendezvous is requested by one task making an entry call on an
entry of another task. For the rendezvous to take place the called task must accept
this entry call. During the rendezvous the calling task waits while the accepting
task executes. When the accepting task ends the rendezvous both tasks are freed
to continue their execution. In the case that more than one task is waiting on
the same entry of a task, Ada requires the calls be accepted in first-in-first-out
order. The run-time must maintain data structures to keep track of which tasks are
waiting on entry calls, which entries they are calling, and in what order the calls
on each entry of a task arrived.

A conditional entry call differs from an unconditional entry call in that the call-
ing task need not wait unless the call can be accepted immediately. If the called
task is ready to accept, execution proceeds as for an unconditional call. Other-
wise, the calling task resumes execution without completion of a rendezvous. The
syntax provides for execution to resume at different places, depending on whether
any rendezvous took place. The efficient implementation of the conditional entry-
call requires a simple test for whether the called task is ready to accept. This can
be done in constant time if the run-time maintains an accept vector for each task,
telling on which entries, if any, the task is ready to accept a call (See the expansion
of this vector in Section 10.4.2). If the test fails, the run-time may return control
immediately to the calling task. Otherwise, the actions are similar to those for the
unconditional call.

171

172 CHAPTER 15. THE RENDEZVOUS

The contents of this chapter are structured as follows: Section 15.1 presents
the entry call record; Section 15.2 presents the implementation of the entry queues;
Section 15.3 presents the stack required to give support to nested accept state-
ments; Section 15.4 presents the run-time support for the selective accept state-
ment. Finally, Section 15.5 describes the sequence of actions carried out by
the GNARL subprograms that give support for entry-calls and for the accept-
statements.

15.1 The Entry-Call Record

The GNAT run-time associates a record to each entry call: the Entry Call Record.
It is used to group all the run-time information associated with the entry call. It in-
cludes the identifier of the called entry, the current state of the entry call, the links
to the previous and next queued entry calls, etc. If the entry has parameters, the
front-end groups all the parameters in a contiguous block (cf. Section 10.2.1, and
the run-time saves the base address of this block in the Uninterpreted _Data field
of the Entry Call Record. Figure 15.1 presents the GNAT run-time data structures
used to handle an entry call to the entry E of the following task specification:

task T is
entry E (Number : in Integer; Text : imn String);
end T;

An entry-call can be in one of the following states:

e Never Abortable. The call is not abortable, and never can be. It is used
for calls that are made in a abort deferred region [AAR95, Section 9.8(5-
11,20))).

e Not Yet Abortable. The call is not abortable, but may become abortable in
the future.

e Was Abortable. The call is not abortable, but once was. The Was_ versus
Not_Yet_ distinction is needed to decide whether it is OK to advance into the
abortable part of an async. select stmt. That is allowed iff the mode is Now _
or Was._.

e Now Abortable. The call is abortable.

15.2. ENTRIES AND QUEUES 173

entry-parameters

Expanded-Code |, Integer Variable
L 1 Number
eve Text —
I
String Variable
ATCB
Run-Time entry-call

Level

. Uninterpreted_Data
Entry Call— |...

Figure 15.1: Data structures associated to an entry-call.

e Done. The call has been completed without cancellation, or no call has been
made yet at this ATC nesting level (cf. Chapter 20, and so aborting the call
is no longer an issue. Completion of the call does not necessarily indicate
“success”; the call may be returning an exception if Exception_To Raise is
non-null.

e Cancelled. The call was asynchronous, and was cancelled.

15.2 Entries and Queues

Each entry has one queue which stores all the pending entry calls [AAR9S5, Sec-
tion 9.1(16)]. If the queue 1s nonempty, the next caller to be served is at the head
of the queue. The cost of checking whether there are any calls queued for a given
entry depends on the data structure chosen for the entry queues. The GNARL
run-time uses circular doubly linked lists so that checking, insertion and deletion
are all constant-time operations.

The ATCB field Entry_Queues is an array indexed by the entry identifier (the
front-end associates an unique identifier to each entry queue, cf. Section 10.1).
Each element of this array has two fields: the Head and the Tail of the queue (cf.
Figure 15.2).

174 CHAPTER 15. THE RENDEZVOUS

Acceptor Task

ATCB

Entry_Call_Record Entry_Call_Record Entry_Queues

Head
Tail

1

Prev — Prev
Next <«——1— Next

Head
Tail

Figure 15.2: Entry Queues.

15.3 Accepted-Calls Stack

Because Ada allows the use of nested accept-statements, when an entry-call is ac-
cepted the GNAT run-time extracts the entry-call record from the corresponding
entry-queue and pushes its address in an stack. The top of this stack is refer-
enced by the Call field of the acceptor’s ATCB (cf. Figure 15.3). The Accep-
tor_Prev_Call field links all the stack elements.

15.4 Selective Accept

The special implementation problem introduced by the selective wait is that a task
may at one instant be ready to accept a call on a set of several entries. From the
viewpoint of the Ada run-time, this is really two problems, since it comes up in
the processing of entry calls, as well as selective waits:

1. Since a task may be waiting on more than one open accept alternative, pro-
cessing an entry-call requires checking whether the called entry corresponds
to one of the open alternatives.

2. Since there may be several open accept alternatives, processing the selective
wait requires checking the set of pending entry calls against the set of open
accept alternatives.

15.4. SELECTIVE ACCEPT 175

Acceptor Task
Queued Entry Calls ATCB
e m m — & D m —————— - - — -
|
! Entry_Call_Record Entry_Call_Record | Entry_Queues
| _
|
1 1 Head 1
1 | Tail
! I
: I
| Prev —> Prev !
Next <+——1— Next !
: ! Head
L e D D D D D D - - — o R
Tail N

Entry_Call_Record Entry_Call_Record Entry_Call_Record

Call

Prev_Call <«—— Prev_Call <+— 1 Prev_Call

Figure 15.3: Simple Accept.

The need to be able to perform both of these operations efficiently strongly
influences an implementation’s choice of data structures. There are two obvious
ways to perform the first operation, checking whether a called entry has a currently
open accept alternative:

1.1. If the set of open accept alternatives is represented as a list, checking re-
quires comparing the called entry against each of the entries in this list. We
call this approach the use of an open entry list. It may be time consuming if
there are many open entries.

1.2. An alternative is to use a vector representation for the set of open entries:
the open accepts vector. This vector would have one component for each
entry of the task. Each component would minimally indicate whether the
corresponding entry is open.

Note that the accept vector or open entry list must be created at the time the
selective wait statement is executed, once it is known which alternatives are open.
The time needed to do this only depends on the number of alternatives in the selec-
tive wait statement. With separate queues for each entry, it is necessary to check
the queue corresponding to each open entry. This requires sequencing through the
open entries. Alternatively, if the open entries are represented by an open entry

176 CHAPTER 15. THE RENDEZVOUS

list, this check can be performed more quickly, without looking at the non-open
entries. This may be a good reason to keep both an open entry list and an accept
vector, though this redundancy may cost more in overhead than it saves through
faster execution of the check for pending calls.

GNAT uses the Open Accepts Vector. Each element of this vector has two
fields: the entry identifier and a boolean which indicates if the accept statement has
a null body (cf. Section 10.4.2). Each element of the accept vector corresponds to
the accept alternatives of the select statement (in the same order; first element of
the accept vector corresponds to the first alternative, second element corresponds
to the second alternative, etc.). The run-time returns O when the entry guard is
closed.

15.5 Run-Time Rendezvous Subprograms

Chapter 10 presents the expansion of the entry-call and accept statements. The
following sections describe the actions carried out by the GNAT run-time subpro-
grams called by the expanded code.

15.5.1 GNARL.Call _Simple

The run-time subprogram Call_Simple simply delegates the work to other run-time
subprogram called Call_Synchronous.

15.5.2 GNARL.Call Synchronous

The run-time subprogram Call_Synchronous carries out the following actions:

1. Defer the abortion.

2. Create and elaborate a new entry-call record, and save on it the address of
the parameters block.

3. Call the GNARL subprogram Task_Do_Or_Queue.
4. Wait for the completion of the rendezvous (Wait_For_Completion).

5. Undefer the abortion.

15.5. RUN-TIME RENDEZVOUS SUBPROGRAMS 177

6. Raise any pending exception from the entry call (Check_Exception).

15.5.3 GNARL.Task_Do_Or_Queue

The subprogram Task_Do_Or_Queue carries out the following actions:

1. Try to serve the call immediately. If the acceptor is accepting some entry
call and the current call can be accepted the following actions are carried
out:

(a) Commit the acceptor to rendezvous with the caller.

(b) If the acceptor is in a terminate alternative then cancel the terminate
alternative. If the acceptor has no dependent tasks notify its parent that
the acceptor is again awake.

(c) If the accept statement has a null body (an accept used for tasks syn-
chronization) then wake up the acceptor, wake up the caller and RE-
TURN.

(d) If the accept statement has some body then call a run-time procedure
(Setup For Rendezvous With Body) to insert the Entry Call Record in
the accepted entry-calls stack of the acceptor task (cf. Section 15.3),
and to raise the priority of the acceptor (if the caller priority is higher
than the priority of the acceptor). Then wake up the acceptor and
RETURN.

15.5.4 GNARL.Task Entry_Call

If the entry-call can be immediately accepted Task_Entry_Call carries out the same
actions of the simple-mode entry-call and sets one out-mode parameter to True
(Successful) to indicate this to the expanded code (cf. Section 10.2.2). Otherwise
it sets this parameter to False. The expanded code uses this parameter to select
the part of the user-code which must be executed after the call. Note that in the
call is never enqueued; a conditional entry-call is only enqueued if the acceptor
requeues it not-abortably (by means of a requeue-statement).

15.5.5 GNARL.Accept _Trivial

GNARL.Accept_Trivial performs the following actions:

178 CHAPTER 15. THE RENDEZVOUS

1. Defer the abortion.

2. If no entry call is still queued then block the acceptor task to wait for the
next entry call (Wait_For_Call).

3. Extract the entry-call record from the head of the queue (Dequeue Head)
and wake-up the entry caller (Wakeup_Entry_Caller).

4. Undefer the abortion.

15.5.6 GNARL.Accept_Call

The GNARL procedure Accept_Call carries out the following actions.

1. Defer the abortion.

2. If the entry has no queued entry calls then block the acceptor tasks to wait
for the next entry call (Wait_For_Call).

3. Extract the entry-call record from the head of the queue (Dequeue Head)
and push it in the accepted entry-calls stack.

4. Update the out-mode parameter Param_Access with the reference to the En-
try Parameters Record so that the compiler generated code can access the
entry parameters.

5. Undefer the abortion.

15.5.7 GNARL.Complete_Rendezvous

If no exception is raised during the execution of an accept body the subprogram
Complete_Rendezvous is called is called by the expanded code. This subprogram
just calls the subprogram Exceptional_Complete _Rendezvous notifying it that no
exception was raised.

15.5.8 GNARL.Exceptional Complete_ Rendezvous

If an exception was raised during the execution of the code associated with the
entry call, the exception must be also propagated on the caller and on the ac-

15.5. RUN-TIME RENDEZVOUS SUBPROGRAMS 179

ceptor task [AAR9S, Section 9.5.2]. For this purpose the subprogram Excep-
tional_Complete_Rendezvous carries out the following actions:

1. Defer the abortion.

2. Pop the reference to the entry-call record from the accepted entry-calls
stack.

3. If an exception was raised, get its identifier from the entry call field Excep-
tion_To_Raise and save its occurrence in the ATCB field Compiler_Data.
This exception will be propagated back to the caller when the rendezvous is
completed [AAR9S, Section 9.5.3].

4. Wake up the caller (Wakeup_Entry_Caller).

5. Undefer the abortion.

15.5.9 GNARL.Selective_Wait

The GNARL subprogram Selective_Wait performs the following actions:

1. Defer the abortion.

2. Try to serve the entry call immediately. GNARL subprogram Select_Task_Entry_Call
selects one entry call following the queuing policy being used.

(a) If there is some candidate and the accept has a null body then com-
plete the rendezvous, wake up the caller, undefer the abortion and RE-
TURN.

(b) If there is some candidate and the accept has some associated code
then insert the entry-call record in the accepted entry-calls stack
(Setup_For_Rendezvous _With_Body), update the reference to the parameters-
block, undefer the abortion and RETURN.

(c) If there is no candidate but there are alternatives opened, wait for a
caller. In the future some caller will put an entry call record in the
accepted entry-calls stack and it will wake up this acceptor. Then this
acceptor will update the reference to the entry parameters, it will un-
defer the abortion, and it will RETURN.

180 CHAPTER 15. THE RENDEZVOUS

(d) If there is a terminate alternative, notify its ancestors that this task is
on a terminate alternative (Make_Passive, and wait for normal entry
call or termination.

(e) If no alternative is open and no delay (or terminate) has been specified
then raise the predefined exception Program_Error.

15.5.10 GNARL.Task_Count

The function Task_Count gives support to the ’Count attribute. It returns the num-
ber of queued entry calls in the specified entry queue.

15.6 Summary

The Rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. In this chapter, the main aspects of the GNAT implementation have
been described. In summary:

e The run-time information associated with the entry call is grouped into an
Entry Call Record.

e The compiler generates one Entry Parameters Record with the address of
the real-parameters. GNARL registers the address of this record in a field
of the Entry Call Record.

e The entry queues are implemented by means of double linked lists of Entry
Call Records.

e Nested accepts are handled by means of one accepted entry-calls Stack; a
linked list of accepted Entry Call Records.

e An Accept Vector is used to evaluate the open guards of the selective accept.

Chapter 16

Protected Objects

The high burden of threads synchronization required by the Ada rendezvous was
inappropriate for the implementation of Systems with fast response-time require-
ments. For this reason, Ada 95 has a more efficient tasking synchronization mech-
anism based on shared memory: the Protected Objects. Protected procedures and
entries must be executed under read/write locks; however, because protected func-
tions are not permitted to affect the state of the protected object, they can be ex-
ecute under read-only locks, which permits an implementation to execute several
calls to protected functions in parallel.

To issue a call to a protected object, a task simply names the object and the
required subprogram or entry. As with task entry calls, the caller can use the select
statement to issue a timed or conditional entry call. Clearly, it is possible for more
than one task to be queued on a particular protected entry. As with task queues,
a protected entry is, by default, ordered in a first-in-first-out fashion; however, if
the Real-Time Systems Annex is being supported, other queuing disciplines are
allowed. When a call on a protected procedure or protected entry is executed, the
barrier is evaluated; if the barrier is closed (evaluates to False), the call is queued.
Any exception raised during the evaluation of a barrier results in Program_Error
being raised in all tasks currently waiting on the entry queues associated with the
protected object containing the barrier [BW98, Chapter 7.8]).

When the execution of a protected procedure or entry is completed, all the
barriers are re-evaluated and, potentially, entry bodies are executed. After execut-
ing the body of one protected procedure or entry all the PO barriers which have
queued tasks are reevaluated. If some entry is now open the entry call is accepted
and the corresponding entry body is executed. This process repeats until there is
no barrier with queued tasks open. If several barriers are open after the execu-

181

182 CHAPTER 16. PROTECTED OBJECTS

tion of a protected procedure or entry Ada does not specify which entry is then
serviced.

Chapter 11 not only discusses the expansion of protected-type, barriers, and
protected subprograms, but also presents the two main implementation models
for protected objects, self-service and proxy, as well as the proposed implemen-
tations (cf. Section 11.1). As it is discussed there, GNAT follows the call-back
implementation of the proxy model. One of the main reasons (from the view-
point of the run-time) is that using Pthreads to implement the self-service model
introduces one important problem: The task attempting to exit an eggshell must
be able to transfer ownership to a task waiting on an Open entry. However, there
is no good way to solve it with Pthreads because, though it is possible to force a
thread to be given a mutex by raising its priority over that of the other contenders,
this may lead to unnecessary context switches and degrades the implementation
of Ada priority over Pthreads.

16.1 The Lock

According to Ada semantics, a queued entry call has precedence over other op-
erations on the protected object. This is often explained in terms of the eggshell
model. The lock on a protected object is the eggshell. Figure 16.1 is a graphical
representation of the protected objects. Threads are represented by shadowed cir-
cles; the two levels of the protected objects are represented by means of a big circle
(associated with the object lock) and a big rectangle (associated with the object
state and operations); small rectangles represent the protected operations: black
rectangles represent closed entries and white rectangles represent open entries.
Accordingly, this example presents one thread executing a protected operation (it
is inside the PO), two threads queued in a closed entry, one thread queued in the
entry which is now being executed under mutual-exclusion, and some additional
threads which are not queued.

16.2 Run-Time Subprograms

16.2.1 GNARL.Protected Entry_Call

A simple call to a protected entry is expanded by the front-end into a call to the
GNARL subprogram Protected_Entry_Call. The entry-call is handled by the run-

16.2. RUN-TIME SUBPROGRAMS 183

lock

Figure 16.1: Graphical Representation of the Protected Object.

time similar to task entry-calls (cf. Section 15.5.4). This facilitates the implemen-
tation of the Ada requeue statement. Its whole sequence of actions is as follows:
1. Defer the abortion.
2. Write lock the object.
3. Elaborate a new Entry Call Record.

4. Call the GNARL procedure PO_Or_Queue to issue the call or to enqueue it
in the corresponding entry queue.

5. Call the GNARL procedure PO_Service_Entries to service the opened en-
tries.

6. Unlock the object.

7. Undefer the abortion.

8. Check if some exception must be re-raised.

In case of conditional and timed entry calls, the actions carried out by the
GNAT run-time are basically the sequence presented above. However, if the bar-
rier is closed the entry-call record is not enqueued, and the run-time sets to O the

index of the selected entry. This value is used by the expanded code to execute
the else part of the conditional entry call.

16.2.2 GNARL.PO_Do_Or_Queue

The sequence of actions carried out by PO_Do_Or_Queue is as follows:

184 CHAPTER 16. PROTECTED OBJECTS

1. Call the barrier function.
2. If the barrier is closed then enqueue the Entry Call Record, and RETURN.

3. If the barrier is open then execute the steps 2 to 9 of the GNARL procedure
Service_Entries.

16.2.3 GNARL.Service_Entries

The run-time must evaluate the entry-barriers after executing a protected proce-
dure or entry, essentially treating the barrier expression as though they depended
only on the state of the protected object. In the self-service model, only when the
barriers of all entries with queued calls are False the thread can leave the eggshell.
This assures that all entry calls made eligible by a state change are executed be-
fore any further operations are initiated. For this purpose, the front-end expands
the entry barriers and bodies into functions and procedures, and generates a ta-
ble initialized with their addresses. The run-time receives this table and uses the
pointers to call the functions which evaluate the entry barriers, and to call the
corresponding body when the barrier is open.

The basic algorithm of the GNARL Service_Entries procedure is as follows:

1 while <There_Is_.Some_Open_Barrier_With_Queued_Entry_Calls> 1
2 Update object reference to the Entry_Call_Record

3 begin

4 Call the Entry_Body

5 exception

6 when others => Broadcast Program_Error

7 end

8 Remove the Reference to the Entry_Call_Record

9 GNARL. Wake_Up_Entry_Caller

10 end loop;

pop

e

Line 1 is evaluated by the GNARL procedure Select_Protected Entry_Call
which traverses all the entry queues and reevaluates the barrier of those entries
with queued entry calls. As soon as some barrier is open (it evaluates to true),
GNARL selects it to be serviced. In line 2, the Call_In_Progress field of the _object
(see the Protection_Entries type definition) is set to the selected entry call record
to remember that this is the entry call being attended. Lines 3 to 7 open a new
scope to issue the call to the entry body and to handle the exceptions in the user
code. In this case the predefined exception Program_Error is broadcasted to all
tasks currently queued in any entry of the protected object. In line 8 the reference

16.3. SUMMARY 185

to the entry call is removed (this entry call has been attended) and the task entry
caller is woken up (line 9). After this work the loop is again executed and the
entry barriers are reevaluated. This process stops when no open barrier is found
in an entry with queued tasks.

16.3 Summary

In this chapter we have briefly presented the sequence of actions carried out by
the run-time subprograms which give support to protected subprograms.

186 CHAPTER 16. PROTECTED OBJECTS

Chapter 17

Time and Clocks

Tasks can delay their execution for a period of time, or until an absolute time is
reached. In both cases this enables the task to be queued on some future event
rather than busy-wait o calls to the clock function. Tasks can also issue timed
entry-calls. If the call is not accepted before the expiration of the specified delay,
the run-time must cancel the entry-call wake-up the calling task. In addition,
the timed selective accept allows a server task to time-out if an entry call is not
received within a certain period of time.

Ada gives access to the clock by providing two packages: Calendar and
Real Time. Calendar provides an abstraction for “wall clock™ time that recog-
nizes leap years, leap seconds and other adjustments; Real _Time gives a second
representation that defines a monotonic (that is, non-decreasing) regular clock.
Although these representations map down to the same hardware clock, they cater
for different application needs.

17.1 Delay and Delay Until Statements

The GNARL subprograms which implement these Ada statements are placed in
child packages of the corresponding standard Ada packages: Ada.Calendar.Delays
and Ada.Real _Time.Delays. The GNAT front-end expands a delay-statement into
a call to the corresponding GNARL subprogram.

GNARL provides two implementations of the delay statements: one for the
case of an Ada program without tasks and the other for an Ada program with
tasks. A link is used to access the proper subprogram (7imed_Delay).

187

188 CHAPTER 17. TIME AND CLOCKS

Ada GNAT Object
Source | —> Front-end | —» 90de\
7 <
/ \ GNARL
_______ 2 .
! / \ '
1 ¥ Y 1
! delay_for |
1 delay_until delay_until ,
. Ada.Calendar.Delays Ada.Real_Time.Delays :

Figure 17.1: GNARL Subprograms for the Delay Statement.

e In case of no tasking this link points to the GNARL procedure Time_Delay _NT,
which calls the GNULL procedure Timed_Delay (cf. Figure 17.2).

Ada GNAT Object
Source | T Front-end | —> Code
/ . GNARL
Ada.Calendar.Delayy .
4
delay_for ~ Time_Delay_NT
Y/
@ IRE)
. System.Soft_Links |i| | Ti‘med Delay | System.OS_Primitives
Timed_Delay —

| nanosleep() |

Figure 17.2: GNARL Subprograms for the Delay Statement in an Ada Program
without Tasks.

e In case of a program with tasks this link points to the GNARL proce-
dure Timed_Delay_T, which calls another version of the GNULL procedure
Timed _Delay (cf Figure 17.3).

17.2. TIMED ENTRY CALL 189

Ada GNAT Object
Source | —> Front-end | —> Code

) ., GNARL
Ada.Calendar.Delays System.Tasking.Initialization ,

4
delay_for | | Time_Delay_T

A

@))

\
<

: System.Soft_Links [— / | Timed Delay System.Task_Pr'imitives !

, Timed_Delay 17 .Operations '

' ' GNULL
! | pthread_cond_timedwait | System.OS_Interface

' l . POSIX

|pthreadfcondftimedwait() |

Figure 17.3: GNARL Subprograms for the Delay Statement in an Ada Program
with Tasks.

17.2 Timed Entry Call

The timed task entry call is handled by the GNAT compiler in a similar way to
the simple mode entry call (described in section 10.2.1). The compiler generates
a call to the GNARL subprogram Timed_Task_Entry_Call. Basically this proce-
dure carries out the same actions described in the simple mode entry call (sec-
tion 15.5.1). However, if the entry can not be immediately accepted, it does not
simply block the caller; it calls another GNARL subprogram to arm a timer and
block the caller until the timeout expires. Figure 17.4 shows the GNARL and
GNULL subprograms involved in this action. If the entry call is accepted before
this timer expires, the timer is un-armed; otherwise the entry call is removed from
the queue.

The GNAT implementation of the timed protected entry call follows the same
scheme described above. However, the only difference is that the compiler gener-
ates a call to the GNARL procedure Timed_Protected_Entry_Call.

190 CHAPTER 17. TIME AND CLOCKS

Ada GNAT Object
Source | —> Front-end | —» Code

' . ' GNARL
System.Tasking . '
' Timed_Entry_Call
, .Rendezvous '
, System.Tasking Wait For C letion With Ti !
. .Entry_Calls ait_For_Completion_With_Timeout ,
i System.Task_Primitives Timed S '
' .Operations tmed_sieep '
|-_ e
)) , GNULL
' System.OS_Interface pthread_cond_timedwait
' y ' POSIX
' pthread_cond_timedwait() '

Figure 17.4: GNARL Subprograms for Timed Entry Call.

17.3 Timed Selective Accept

The timed task entry call is handled by the GNAT compiler in a similar way to the
selective accept (described in section 15.4). The compiler generates a call to the
GNARL subprogram Timed_Selective_Wait. Basically this procedure carries out
the same actions described in case of the selective wait (section 15.5.9). However,
if there is no entry call that can be immediately accepted, it does not simply block
the caller; it calls another GNARL subprogram to program a timer and block
the caller until this timeout expires. Figure 17.5 shows the GNARL and GNULL
subprograms involved in this action. If some entry call is received before this timer
expires, the timer is un-armed; otherwise the statements after the delay sentence
are executed.

17.4. RUN-TIME SUBPROGRAMS 191

Source | —> Front-end | —» Colde

Ada GNAT Object

17.

. ' GNARL
1 System.Tasking Timed Selecti . '
. Rendezvous imed_Selective_Wait .
' System.Task_Primitives '
. ¥ Over v Timed_Sleep
.Operations !
________________ Y——— " gL
System.OS_Interface pthread_cond_timedwait '
e S |
. Y i POSIX
| pthread_cond_timedwait() !

Figure 17.5: GNARL Subprograms for Timed Selective Accept.

4 Run-Time Subprograms

17.4.1 GNARL.Timed Delay

When the program has tasks, the GNARL procedure Timed _Delay performs the
following actions.

1

2.

. Defer the abortion.
Lock the ATCB of the calling task.

. If the specified delay is a relative time span (that is, a delay statement), this
delay it is converted to absolute time span by adding the current value of the
clock.

If the specified time is a future time then

(a) Set the state of the calling task to Delay_Sleep.

(b) Call the POSIX function pthread_cond_timedwait to suspend the call-
ing tasks until the specified time.

(c) Set the state of the calling task to Runnable.

Unlock the ATCB of the calling task.

192 CHAPTER 17. TIME AND CLOCKS

6. Yield the processor (this ensures that “a delay statement always corre-
sponds to at least one task dispatching point” [AAR9S5, Section D.2.2(18)].

7. Undefer the abortion.

17.5 Summary

GNAT provides two implementations for the simple delay and delay until Ada
sentences: one for the Ada programs without tasks, and another for the Ada pro-
grams with tasks. An access to a procedure is used to avoid multiple checks in the
run-time to call the appropriate subprogram.

A timed entry call allows the task that executes it to make an entry call with
the provision that it be awakened and the call canceled, if the call is not accepted
before the expiration of a specified delay. As with the conditional entry call, pro-
vision is made for execution to resume in different places, depending on whether
arendezvous takes place. In addition to the processing required for a normal entry
call, the timed entry call requires scheduling of a wake-up event if the call cannot
be accepted immediately. If the call is accepted before this delay expires, the call-
ing task must be removed from the delay queue. If the delay expires first, the task
must be removed from the entry queue.

The GNAT implementation of the timed entry call sentences (to a protected
entry or to a task entry) and the timed selective accept follow the same steps of
the non-timed cases, though a timer is activated when the caller becomes blocked.

Chapter 18

Exceptions

An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run-time) is called an Exception Occurrence. When an exception oc-
currence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned and the corresponding exception-handler is executed.
If the construct had no exception-handler, then the exception ocurrence is propa-
gated. To propagate an exception occurrence is to raise it again in the innermost
dynamically enclosing execution context [AAR95, Section 11-4]. If an exception
occurrence is unhanded in a task body, the exception does not propagate further
(because there is no dynamically enclosing execution). If the exception occurred
during the activation of the task, then the activator would raise Tasking Error
[AAR9S, Section 11-4]. There is a predefined library which provides additional
facilities for exceptions (Ada.Exceptions).

18.1 Data Structures

18.1.1 Exception_Id

Each distinct exception is represented by a distinct value of type Exception_ Id.
The special value Null Id does not represent any exception, and is the default
initial value of the type Exception_Id. Each occurrence of an exception is repre-
sented by a value of the type Exception_Occurrence. Similarly, Null_Occurrence
does not represent any exception occurrence; it is the default initial value of type
Exception_Occurrence.

193

194 CHAPTER 18. EXCEPTIONS

The GNAT run-time implements the exception identifier as an access to a
record (Exception_Data_Ptr). Figure 18.1 presents the fields of this record. The
field Not_Handled _By_Others is used to differentiate the user-defined exception
from the run-time internal exceptions (i.e. task abortion) which can not be han-
dled by the user-defined exception handlers. The field Lang defines the language
where the exception is declared (by default “Ada”). The next two fields are used
to store the full name of the exception. This name is composed of a prefix (the
full path of the scope where the exception is declared) and the exception name.
The last field is used to create linked lists of exception identifiers (described in
section 18.1.2).

Exception_Data

Not_Handled_By_Others : Boolean

Lang : String (1 .. 3)
Name_Length : Natural

Full_Name : String_Ptr
HTable_Ptr : Exception_Data_Ptr

Figure 18.1: Exception Identifier Record

When an exception is raised, the corresponding exception occurrence is stored
by the GNAT run-time in the Compiler_Data field of the ATCB. The data type of
this field is a record; the Current_Excep field of this record saves the exception
occurrence.

The Exception_Raised field is set to True to indicate that this exception oc-
currence has actually been raised. When an exception occurrence is first cre-
ated, it is set to false; then, when it is later processed by the GNARL subprogram
Raise_Current_Exception, it is set to True. This allows the run-time to distinguish
if it is dealing with an exception re-raise.

18.1.2 The Exceptions Table

Because the visibility rules of Ada exceptions (an exception may not be visible,
though handled by the others handler, re-raised and then again visible to some
other calling scope) a global table must be used (Exceptions_Table). In order to
handle the exceptions in an efficient way, the Ada run-time uses a hash table (cf.
Figure 18.3).

18.2. RUN-TIME SUBPROGRAMS 195

ATCB

Compiler_Data

Pri_Stack_Info Exception_Data
Jmpbuf_Address

Sec_Stack_Addr Handled_By_Others : Boolean
Exc_Stack_Addr Lang : String (1 .. 3)

Current_Exce 1

Name_Length : Natural
Id
Msg Full_Name : String_Ptr
Msg_Length
Exception_Raised HTable_Ptr : Exception_Data_Ptr

Figure 18.2: Occurrence Identifier.

As the reader can see, an accesses table to the exception identifiers is used. A
simple linked list of exception identifiers is used to handle collisions. The field
HTable_Ptr is used to link the exception identifiers.

When an exception is raised in a task, the corresponding exception identifier
must be found. Therefore the hash function is evaluated, and the resulting linked
list is traversed to look for the exception identifier. Then its reference is stored in
the ATCB of the task. This reference is kept in the ATCB until the exception is
handled (though the exception may not be visible in some exception handlers).

18.2 Run-Time Subprograms

18.2.1 GNARL.Raise

Ada allows an exception to be raised in two different ways: (1) by means of the
raise statement and (2) by means of the procedure Ada. Exceptions.Raise _Exception
which allows the programmer to associate a message to the exception. In both
cases, the compiler generates a call to a GNARL function which carries out the
following actions:

1. To fill the ATCB exception occurrence.

196

ATCB

Compiler_Data

Pri_Stack_Info

Jmpbuf_Address
Sec_Stack_Addr
Exc_Stack_Addr
Current_Excep
1d

Program_Error

CHAPTER 18. EXCEPTIONS

Msg
Msg_Length
Exception_Raised

2. To defer the abortion.

3. If there is one exception handler installed, then jump to it.

Constraint_Error

Tasking_Error

Storage_Error

L]

Figure 18.3: Hash Table.

4. Otherwise (no exception handler can be called) terminate the execution of

the program.

18.3 Summary

In this chapter the basic concepts of the GNAT exception handling implementation
has been presented. The exception ID is an access to a record where the full name
of the exception is stored. The exception occurrence is stored in the ATCB. All
the exceptions are stored in a hash table.

Chapter 19

Interrupts

An interrupt represents a class of events that are detected by the hardware or sys-
tem software. The occurrence of an interrupt consists of its generation and its
delivery: the generation of an interrupt is the event in the underlying hardware
or system which makes the interrupt available to the program; delivery is the
action which invokes a part of the program (called the interrupt handler) in re-
sponse to the interrupt occurrence. In between the generation of the interrupt and
its delivery, the interrupt is said to be pending. The handler is invoked once for
each delivery of the interrupt. While an interrupt is being handled, further inter-
rupts from the same source are blocked; all future occurrences of the interrupt are
prevented from being generated. It is usually device dependent as to whether a
blocked interrupt remains pending or is lost.

Ada allows to associate an interrupt to a protected procedure or a task entry
declared at library level. However, the association of a task entry is considered
an obsolescent feature of the language [AAR9S, Section J.7]. For this reason,
in this chapter we will focus our attention on user-defined protected-procedure
interrupt-handlers.

Certain interrupts are reserved. The programmer is not allowed to provide a
handler for a reserved interrupt. Usually, a reserved interrupt is handled directly
by the Ada run-time (for example, a clock interrupt used to implement the delay
statement). Each non-reserved interrupt has a default handler that is assigned by
the run-time system.

There are two two styles of interrupt-handler installation and removal: nested
and non-nested. In the nested style, an interrupt handler in a given protected ob-
ject is implicitly installed when the protected object comes into existence, and

197

198 CHAPTER 19. INTERRUPTS

the treatment that had been in effect beforehand is implicitly restored when the
protected object ceases to exist. In the non-nested style, interrupt handlers are in-
stalled explicitly by procedure calls, and handlers that are replaced are not restored
except by explicit request [Coh96, Section 19.6.1].

The front-end identifies a handler to be installed in the nested style because it
must have the pragma Attach_Handler specifying the corresponding interrupt_id.
Dynamic allocation of protected objects gives greater flexibility. Allocating a
protected object with an interrupt handler installs the handler associated with that
object, and deallocating the protected object restores the handler previously in
effect. Similarly, a handler to be installed in the non-nested style is identified
by pragma Interrupt_Handler. This pragma imposes a restriction on the object:
it must be dynamically created [Coh96, Section 19.6.1]. Non-nested installa-
tion and removal of interrupt handlers relies on additional facilities of package
Ada.Interrupts [AAR9S, Section C.3(2)].

To foster a simple, efficient and multi-platform implementation, GNAT reuses
the POSIX support for signals and adds the minimum set of run-time subprograms
required to achieve the Ada semantics. This work is simplified because POSIX
signals are delivered to individual threads in a multi-threaded process using much
of the same semantics as for delivery to a single-threaded process [GB92, Sec-
tion 5.1].

19.1 POSIX Signals

A POSIX signal is a form of software interrupt which can be generated in several
ways. A signal may be generated [DIBM96, Section 2]:

e By a hardware trap including division by zero, a floating-point overflow, a
memory protection violation, a reference to a non-existent memory location
or an attempt to execute an illegal instruction.

e Because a clock reaches a specified time, or a specified span of time has
elapsed.

e By an asynchronous operation. Asynchronous input and output operations
generate a signal when an operation completes, or if an operation fails.

e Because the user hits certain keys on the terminal that is controlling the
process. Certain keys sequences allow the user to suspend, resume and
terminate the execution of a process via signals.

19.1. POSIX SIGNALS 199

e By a POSIX thread. POSIX threads may send a signal to another POSIX
thread in the same process to notify it of an event, by calling pthread kill.

Each POSIX thread has a signal mask: when a signal is generated for a
thread and the thread has the signal masked, the signal remains pending until
the thread unmasks it; the interface for manipulating the thread signal mask is
pthread_sigmask. Only one pending instance of a masked signal is required to be
retained; that is, if a signal is generated N times while it is masked the number of
signal instances that are delivered to the thread when it finally unmasks the signal
may be any number between 1 and N.

Each POSIX signal is associated with some action. The action may be to
ignore the signal, terminate the process, continue the process, or execute a call
to user-defined handler function (asynchronously and preemptively with respect
to normal execution of the process). POSIX.1 specifies a default action for each
signal. For most signals the application may override the default action by calling
the function sigaction. The use of asynchronous handler procedures for signals is
not recommended for POSIX threads, because the POSIX thread synchronization
operations are not safe to be called within an asynchronous signal handler; instead,
POSIX.1c recommends use of the pthread_sigwait function, which “accepts” one
of a specified set of masked signals.

19.1.1 Reserved Signals

The definitions of “reserved” differs slightly between the ARM and POSIX. ARM
specifies [AAR9S5, Section C.3(1)]:

The set of reserved interrupts is implementation defined. A reserved interrupt
is either an interrupt for which user-defined handlers are not supported, or
one which already has an attached handler by some other implementation-
defined means. Program unit can be connected to non-reserved interrupts.

POSIX.5b/.5¢ specifies further [s-intman.adb]:

Signals which the application cannot accept, and for which the application
cannot modify the signal action or masking, because the signals are re-
served for use by the Ada language implementation. The reserved signals
defined by this standard are:

200

Signal_ Abort
Signal_ Alarm

e Signal Bus_Error

Signal lllegal Instruction

CHAPTER 19. INTERRUPTS

Signal _Floating _Point_Error

Signal_Segmentation_Violation

If the implementation supports any signals besides those defined by this
standard, the implementation may also reserve some of those.

The signals defined by POSIX.5b/5c that are not specified as being reserved
are SIGHUP, SIGINT, SIGPIPE, SIGQUIT, SIGTERM, SIGUSR1, SIGUSR2,
SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGIO, SIG-

URG and all the real-time signals.

The GNAT FSU Linux implementation handles 32 signals. In this case the

reserved signals are:

Number Name

2 * SIGINT

4 * SIGILL

5 * SIGTRAP

6 * SIGABRT

7 * SIGBRUS

8 * SIGFPE

9 SIGKILL
11 * SIGSEGV
14 SIGALRM
19 SIGSTOP
20 * SIGTSTP
21 * SIGTTIN
22 * SIGTTOU
26 SIGVTALRM
27 * SIGPROF
31 SIGUNUSED

REASON

Description
Abort (used for CTRL-C)
Illegal Instruction
Trace trap
Tasks abortion
Bus error
Floating Point Exception
Abort (kill)
Segmentation Violation
Alarm Clock
Stop
User stop requested from tty
Background tty read attempted
Background tty write attempted
Virtual timer expired
Profiling timer expired
Unused signal

Signals marked with * are not allowed to be masked by the GNAT Run-Time.
SIGINT can not be masked because it is used to terminate the Ada program when
the CTRL-C sequence is pressed in the terminal that is controlling the process.
By keeping SIGINT reserved, the programmer allows the user to do Ctrl-C but,
in the same way, disable the ability of handling this signal in the Ada program.

19.2. DATA STRUCTURES 201

GNAT Pragma Unreserve_All_Interrupts [Cor04] gives the programmer the abil-
ity to change this behavior. SIGILL, SIGFPE and SIGSEV can not be masked
because they are used by the CPU to notify errors to the run-time. SIGTRAP is
used by GNAT to enable debugging on multi-threaded applications. SIGABRT
can not be masked because it is used by GNAT to implement the tasks abortion
(described in chapter 20). SIGTTIN, SIGTTOU and SIGTSTP are not allowed to
be masked so that background processes and IO behaves as normal C applications.
Finally, SIGPROF can not be masked to avoid confusing the profiler.

19.2 Data Structures

No matter the association style used, GNARL always uses the following tables
indexed by the Interrupt_ID to handle interrupts.

e Table of Reserved Signals: Booleans constant table! used to register re-
served interrupts.

System.Interrupt_Management.Reserve

GNARL
Level True | True | ==-=-- False

SIGHUP SIGINT SIGUSR1

Figure 19.1: Reserved Interrupts Table.

o User-defined Interrupt Handlers Table: Table used to register and unregister
the reference to User-Defined Interrupt-Procedures (UDIP) during the life
of the program. Each element of this table is a record with two fields: the
access to the UDIP and a flag which remembers the association style (nested
or non-nested).

Figure 19.2 represents one protected procedure attached to signal SIGUSR1
in nested style (static style). The GNAT compiler associates two subprograms P
and N to each protected subprogram (described in section 11.2.2). As the reader
can see, the run-time links the signal with the P subprogram: the reference to the
P subprogram is stored in the corresponding field of the table, and the Static field
is set to True to remember that it is a nested style association.

'In the GNARL sources it is declared as variable just to be able to initialize it in the package
body to aid portability.

202 CHAPTER 19. INTERRUPTS

Compiler
Generated-Code
Level
System.Interrupts.User_Handler
GNARL
Level ™~ H
Static = True SIGUSR1

Figure 19.2: Table of User-Defined Interrupt-Handlers.

19.2.1 Interrupts Manager: Basic Approach

The GNAT run-time uses one Interrupts Manager task to serialize the execution
of subprograms involved in the management of signals: attachment, detachment,
replacement, etc. Figure 19.3 presents a simplified version of the automaton im-
plemented by the Interrupt Manager. For simplicity we have considered only
two basic operations: Binding and Unbinding User-Defined Interrrupt Procedures
(UDIP) to interrupts.

First the automaton calls GNARL subprogram Make_Independent to do the
Interrupt Manager Task independent of its masters. GNARL Independent tasks
are associated with master 0, and their ATCBs are not registered in All Tasks List
(described in section 14.1); thus they last until the end of the program. After the
signal mask is set, the automaton goes to one state in which it waits for the next
signal management operation.

e In case of signal Binding, GNARL saves the reference to the UDIP in its
table, and blocks the POSIX signal (this allows GNARL to catch the signal
with the sigwait POSIX service).

e In case of signal Unbinding, the reference to the UDIP is removed from the

19.2. DATA STRUCTURES 203

Interrupts_Manager Task

Initialization

Make Block

the
signal

Update
(Int. Handlers
IV' Table
P RSN
| ’ . N
Set the y Wait for]
Mask |y request ’
L [S S
IM Update Restore
nt. Handlers > default | ——>
Table action

Unblock

Figure 19.3: Basic Automaton Implemented by the Interrupts Manager.

table, the POSIX default action is set, and the signal is unblocked.

19.2.2 Server Tasks: Basic Approach

The Ada run-time must provide a thread to execute the UDIP. There is a choice
between dedicating one server task for all signals and providing a server task for
each signal. The former approach looks attractive, since it saves run-time space,
but it blocks other signals during the protected procedure call. This may result in
delayed or lost signals. For this reason, GNARL provides a separate Server Task
for each signal [DIBM96].

Instead of create/abort Server Tasks when the user-defined interrupt handlers
are attached/detached, GNARL keeps them alive until the program terminates.
Thus they are reused by all UDIPs associated with the same interrupt during the
life of the program. The run-time has a Server_ID Table which saves Server Tasks
references (cf. Figure 19.4).

Figure 19.5 presents a simplified version of the Server Tasks Automaton.

19.2.3 Interrupt-Manager and Server-Tasks Integration

Previous sections have been concerned with the basic functionality of the Interrupt
Manager Task and the Server Tasks. However, the GNARL implementation is a
little more complex because:

204 CHAPTER 19. INTERRUPTS

procP
Compiler D roc_N
Generated-Code ™ D
Level func_P func N
(2
GNARL System.Interrupts.Server_ID
Level
Server_Task
| -
SIGUSR1 -1~
SIGUSR2
System.Interrupt_Management.Resefve
‘ True | True ‘ ‘ False ‘ ‘
SIGHUP SIGINT SIGUSR1
(1)
POSIX
Level
2
I SIGNAL 1!
' EVENT

Figure 19.4: Server Tasks Signal Handling.

1. Ada nested style of interrupts implies that UDIPs are dynamically attached
and detached to signals in the elaboration and finalization of protected ob-
jects. Therefore:

(a) If no UDIP is registered GNARL must take the default POSIX action,
and the simplified implementation of the Interrupt Manager did not
consider POSIX default actions (cf. Figure 19.5).

(b) When one UDIP is registered the signal is programmed to be handled
by the UDIP. Following UDIPs registered to the same signal replace
previous UDIPs.

(c) If all UDIPs are detached, GNARL must again take the default POSIX
action. The previous implementation can not achieve this effect so
long as the Server Task is sitting on the sigwait. Even if the POSIX

19.2. DATA STRUCTURES 205

Server Task

Initialization

PSRN
4 AN Call
L »1 sig wait | ——— (User-Defined
! ‘ ’ Int. handler,
| Sa

Figure 19.5: Basic Automaton Implemented by the Server Tasks.

sigaction command is used to set the asynchronous signal action to the
default, that action will not be taken unless the signal is unmasked, and
GNARL can not unmask the signal while the Server Task is blocked
on sigwait because in POSIX.1c the effect is undefined. Therefore,
GNARL must wake up the Server Task and cause it to wait on some
operation instead for which it is safe to leave the signal unmasked, so
that the default action can be taken [DIBM96].

2. GNARL must protect data structures shared by the Interrupts Manager Task
and the Server Tasks. Therefore, some locks must be added.

The second requirement (locks) is easy to solve by means of POSIX mutexes.
However, the first requirement is more complex. So let’s focus our attention on
the GNARL solution of the first requirement.

In order to better understand the GNARL implementation, we need to simplify
the Server Tasks Automaton to its main states:

e State 1: The Server Task provides the POSIX default behavior of the signal.

e State 2: The Server Task has been programmed to call one UDIP.

In order to notify the automaton that it must jump from State I to State 2

GNARL uses one POSIX Condition Variable; in order to force the automaton to
jump from State 2 (waiting in the POSIX sigwait operation) to State 1 the POSIX

206 CHAPTER 19. INTERRUPTS

signal SIGABORT is used (this signal is used to kill the POSIX thread, and thus
forces the Server Task to return from the POSIX sigwait operation). Figure 19.7
presents this automaton.

Server_Task

bind
STATE 1 m STATE 2
Default User

POSIX
Action

Defined
Action

unbind C :> bind

SIGABRT

Figure 19.6: Simplified Server Tasks Automaton.

If we add these new transitions to our basic Task Server Automaton (cf. Fig-
ure 19.5) we have the real automaton implemented in GNARL (cf. Figure 19.7).
In order to help the reading of the automaton all the states have been numbered.
Inside dotted rectangles we find the states associated with the simplified states of
the previous example (State_I and State 2).

Server_Task

Initialization @ 3 | 0|mmm———m—m e e ————

Make
Independent

User-Defined|
Int. handler,

Signal Default
Action

State_2

reply to
Int. Manager

|
!
|
!
|
!
|
!
Program |
!
|
!
|
|
|
| (SIGABORT

Set the
Mask

,,,,,,,,

POSIX
Default
Action

State_1

Figure 19.7: Server Tasks Automaton.

After the initializations (states numbered 1 to 3), the automaton verifies if any
UDIP has been registered by the Interrupt Manager (state 4). Initially, because no

19.3. RUN-TIME SUBPROGRAMS 207

UDIP has been registered, it takes the POSIX default action (state 9) and waits in
the Condition Variable (cond_wait, state 10) until some UDIP is registered by the
Interrupt_Manager.

When any UDIP is registered, the Interrupt_Manager signals the Condition
Variable and the Server Task Automaton jumps to state 4, checks if some UDIP
has been registered (now this evaluates to True) and jumps to state 5 to wait for the
next signal occurrence. When the signal is received, it again checks if the UDIP
is still registered (state 6), because it may have been removed by the Interrupt
Manager while the automaton was waiting for the signal. Then it calls the UDIP
(state 7) and again jumps to state 4.

While the Server Task is in state 5 waiting for the signal occurrence, it may
happen that all UDIPs have been removed the Interrupt Manager. In this case
the Interrupt Manager sends the SIGABRT signal to the Server Task to force it to
jump to state 9. This signal wakes up the Server Task Automaton, which jumps to
state 8 to reply to the Interrupt Manager with the same signal to inform it is not
in state 5 (waiting for the signal). After this notification the automaton jumps to
state 4 and, because no UDIP is found, it jumps to state 9.

19.3 Run-Time Subprograms

19.3.1 GNARL.Install Handlers

In the nested style the expander generates a call to Install Handlers in the ini-
tialization procedure of the protected object. This subprogram saves the previous
handlers in one additional field of the object (Previous_Handlers) and installs the
new handlers.

19.3.2 GNARL.Attach_Handlers

In the non-nested style, nothing special needs to be done since the default han-
dlers will be restored as part of task completion which is done just before global
finalization.

In order to verify at run-time that all the non-nested style interrupt procedures
have been annotated with pragma Interrupt_Handler ([AAR9S, Section C.3.2] re-
quirement) the compiler adds calls to the GNARL subprogram Register _Interrupt_Handler

208 CHAPTER 19. INTERRUPTS

to register these interrupt procedures in a GNARL single-linked list. The Head
and Tail of this list are stored in two GNARL variables (Registered_Handler_Head
and System.Interrupts.Registered_Handler Tail, cf. Figure 19.8). Every node
keeps the address of one protected procedure associated with an interrupt in non-
nested style. For simplicity, a single access to a protected procedure has been
represented; however, each node has the access to its corresponding P subpro-
gram. Before the attachment of one non-nested style interrupt handler to one sig-
nal, GNARL traverses this list to verify that the protected procedure is registered
in the list; otherwise it raises the exception Program_Error.

Compiler
Generated-Code
Level
System.Interrupts.
Registered_Handler_Head
GNARL | =
Level b H H H g
Next Next P Next

System.Interrupts. 1
Registered_Handler_Tail = = = — — — = — = = — = —

Figure 19.8: List of Interrupt Handlers in Non-Nested Style.

19.4 Summary

In this chapter we have dealt with the main aspects related to Interrupts Manage-
ment. Although Ada allows us to attach a task entry to an interrupt, nowadays
this is considered an obsolescent feature of the language. Thus, we have only
discussed the attachment of User-Defined Protected-Procedures to interrupts. The
main features of the GNAT implementation are:

e GNARL associates Ada interrupts to POSIX signals.

e Each signal has a Task Wrapper responsible for the execution of the User-
Defined Protected-Procedures.

19.4. SUMMARY 209

e The protected subprogram P associated with the protected subprogram is
attached by GNARL to the corresponding Task Wrapper.

e Ada provides two ways to attach a protected procedure to an Ada interrup-
tion: nested style (by means of the pragma Attach_Handler) and non-nested
style (by means of the pragma Interrupt_Handler).

— When the nested style is used, GNARL adds one field to the run-time
information of the protected object to save and restore the previous
handler.

— When the non-nested style is used, a dynamic link list is used to reg-
ister non-nested style UDIPs. This list allows GNARL to verify that
only non-nested UDIPs have been marked with the right pragma.

e An Interrupt Manager Task is used to serialize all the signal-management
operations.

210 CHAPTER 19. INTERRUPTS

Chapter 20

Abortion

The abort statement is intended for use in response to those error conditions where
recovery by the errant task is deemed to be impossible. Tasks which are aborted
are said to become abnormal, and are thus prevented from interacting with any
other task. Ideally, an abnormal task will stop executing immediately: the aborted
task becomes abnormal and any non-completed tasks that depend upon an aborted
task also become abnormal. Once all named tasks are marked as abnormal, then
the abort statement is complete, and the task executing the abort can continue. It
does not wait until named tasks have actually terminated [BW98, Section 10.2].

After a task has been marked as abnormal, execution of its body is aborted.
This means that the execution of every construct in the task body is aborted. How-
ever, certain actions must be protected in order that the integrity of the remaining
tasks and their data be assured. The following operations are defined to be abort-
deferred []: a protected action, waiting for an entry call to complete, waiting for
termination of dependent tasks, and the execution of an “initialize” procedure, a
“finalize” procedure, or an assignment operation of an object with a controlled
part. In addition, the run-time also needs to defer abortion during the execution
of some run-time subprograms to ensure the integrity of its data structures. The
language also defines the abort-completion points[]: 1) The end of activation of a
task, 2) The point where the execution initiates the activation of another task, 3)
The start or end of an entry call, accept statement, delay statement or abort state-
ment, and 4) The start of the execution of a select statement, or of the sequence or
statements of an exception handler.

In general, processing an abort requires unwinding the stack of the target task,
rather than immediately jumping out of the aborted part (or killing the task, in
the case of entire-task abortion). There may be local controlled objects, which

211

212 CHAPTER 20. ABORTION

require the execution of a finalization routine. There also may be dependent tasks,
which require the aborted processing block until they have been aborted, final-
ized, and terminated. The finalization must be done in LIFO order and the stack
contexts of the objects requiring finalization must be preserved until the objects
are finalized [GB94, Section 3.4]

Abort-deferral implementation can be divided into two parts [GB94, Sec-
tion 3.3]: 1) determine whether abort is deferred for a given task, at the point it
is targeted for abortion, and 2) ensure deferred aborts are processed immediately
when abort-deferral is lifted. In general, the determination of whether a given
task is abort-deferred must be carried out by the task itself. In a single-processor
system, it may be possible for the task initiating an abort to determine whether
the target task is abort-deferred. However, in a multi-processor system, or a single
processor system where the Ada run-time is not in direct control of task schedul-
ing, this is not possible. The abort-deferral state of the target task may change
between the point it is tested and the point the target task is interrupted.

There are two obvious techniques for recording whether a task is abort-deferred.
One technique is sometimes termed PCmapping. The compiler and link-editor
generate a map of abort-deferred regions. Whether the task is abort-deferred can
then be determined by comparing the current instruction-pointer value, and all the
saved return addresses of active subprogram calls, against the map. To ensure the
abort is processed on exit from the abort-deferred region, one overwrites the saved
return address of the outermost abort-deferred call frame with the address of the
abort-processing routine (saving the old return address elsewhere). The test for
abort deferral may take time proportional to the depth of subprogram call nesting,
but that occurs only if an ATC is attempted. Until that occurs, no runtime overhead
is incurred for abort deferral. A restriction of this method is that abort-deferred
regions must correspond to callable units of code. Another restriction is that the
subprogram calling convention is constrained to (1) ensure the return addresses
are always in a predictable and accessible location and (2) ensure this data is al-
ways valid, even if the calling sequence is interrupted. Unfortunately, that is not
true for some architectures [GB94, Section 3.3].

In the second technique the task increments and decrements a deferral nesting
level (e.g. in a dedicated register or the ATCB), whenever it enters and exits an
abort-deferred region. On exit from such a region, if the counter goes to zero,
the task must check whether there is a pending abort and, if so, process the abort.
This deferral-counter method imposes some distributed overhead on entry and
exit of abort-deferred regions, but allows quick checking [GB94, Section 3.3].
The GNAT run-time implements this second technique.

213
ATC implementation must address the following issues [GB94, Section 3]:

e Interruption of the target task and abortion initiation.
e Deferral of abort over certain regions.

e Execution of finalization procedures for any local objects in the aborted
part, each in its correct context.

e Finding the proper location and context to continue execution, after the
ATC.

e Handling nested scopes, including nested asynchronous select statements.

e Ensuring safety of compiler-generated code sequences, including subpro-
gram call and return when interrupted by ATC.

ATC is very much like exception propagation, so it is desirable that one mech-
anism serve for both purposes. Since ATC is not likely to be used in non real-time
Ada programs, a key objective of any implementation should be to impose little
or no distributed overhead for the existence of this language feature. In princi-
ple, some efficiency might be gained by avoiding detailed unwinding of the stack,
executing the finalization routines from the top of the stack or from a different
stack, then poping the entire stack down to the context where control is to be
transferred. However, this presumes there is some way to recover that context
without full unwinding. If the compiler uses a callee-save register spilling con-
vention, there may be values of live registers spilled at unpredictable locations
on the stack. In this case, it seems one must create a register save area for each
potential target of ATC (analogous to jump-buffer implementation of C’s setymp()
and longjmp() operations). While asynchronous select statements may not be very
common, exception handlers are common (some implicitly provided by the com-
piler), and controlled objects are also expected to be common. Thus, the overhead
of creating a jump-buffer for every potential asynchronous transfer point is objec-
tionable [GB94, Section 3.4].

Some means must be provided for locating finalization routines, and the point
at which execution is to resume after an ATC. This problem is very similar to
that of finding an exception handler, and the same solutions apply. The main
approaches are saving a pointer in the stack frame for each scope, PC-mapping,
and various hybrids of the two. The PC-mapping approach is generally preferable,
since it imposes no distributed overhead on execution. If PC-mapping is used for
the latter purpose, there is strong motivation to try to make the same technique
serve double duty, for abort-deferral [GB94, Section 3.4].

214 CHAPTER 20. ABORTION

20.1 Run-Time Subprograms

The GNAT implementation of abortion is made up of:

e One flag in the ATCB (Aborting). This flag prevents a race between multiple
aborters and the aborted task. This is essential since an aborter may be
preempted and would send the abortion signal when resuming execution.

e One internal exception (_Abort_Signal). This exception is not visible to
user code (cf. Section 18.1.1); it can only be caught by run-time code. Its
propagation performs finalization of all the scopes along the way.

e One POSIX signal (SIGABRT), which can not be masked.

Ada GNAT Object
Source | —> Front-end | — Code

' . . GNARL
! System.Tasking Abort Task ,
! States ort_Tasks ,
' System.Tasking :
' Utilities Ab"“—f“ks .
! Abort_One_Task :
: System.Taski : '
| ystem. as. l ng . Locked_Abort_To_Level (0) !
Initialization| |
! bloc‘kcd/ Ning .
. System.Task_Primiti !
ystem SS - r.lml 1ves Wakeup Abort_Task |
1 .Operations
' .) ' GNULL
. System.OS_Interface pthread_cond_signal pthread_kill (ABORT_SIGNAL) !
S ssusesspsssuiony S R !
A4 A 1
' . . POSIX
| pthread_cond_signal pthread_kill (SIG_ABRT) !

Figure 20.1: GNARL Subprograms for the Abort Statement.

Figure 20.1 presents the sequence of run-time subprograms involved in the
task abortion, which are described in the following sections.

20.1. RUN-TIME SUBPROGRAMS 215
20.1.1 GNARL.Task Entry_Call

The GNAT run-time subprogram Task_Entry_Call (cf. Section 15.5.4) not only
gives support to normal entry-calls but also the ATC entry-calls. In this latter
case, because ATCs can be nested, the run-time needs to store all these pending
entry-calls. For this purpose, the GNAT run-time associates an entry-call stack to
each Ada task (cf. Figure 20.2). The Pending ATC _Level ATCB field is used to
signal an ATC abortion. In order to distinguish the Abort statement from the ATC
abortion, the run-time defines the following rules:

e In the case of an abort statement, Pending ATC Level is set to 0.

e In the case of an ATC abortion, Pending ATC Level is set to the level in
which the caller was just before the entry call was made (ATC_Nesting_Level
minus one).

20.1.2 GNARL.Locked Abort_To Level

GNARL.Undefer_Abort subprogram is the universal polling point for deferred pro-
cessing. It gives support to base priority changes, exception handling, and asyn-
chronous transfer of control (ATC). In case of base-priority change, after the new
priority is set, it yields the processor so that the scheduler chooses the next tasks
to execute. In the other cases, it verifies if there is some pending exception to raise
(ATC abortion raises the internal exception Abort_Signal).

20.1.3 GNARL.Locked Abort_To Level

Locked_Abort_To_Level sets to true the ATCB flag Pending Action. and, depend-
ing on the current state of the target task (blocked or running) it calls GNARL. Wakeup
or GNARL.Abort_Task:

e If the task to be aborted is in a sleep state (cf. Section 14.2), it is in a deferred
abortion section. Therefore, when in the future, the aborted task is woken
up and continues its execution, it executes the Undefer_Abortion subpro-
gram. At this moment the Pending_Action ATCB flag will be checked and,
being true, it sets the ATCB flag Aborting and raises the internal exception
_Abort_Signal.

216 CHAPTER 20. ABORTION

Compiler
I(J}enelrated'COde Parameters Record
eve i
Integer Variable
Number—— 8
Text —
I String Variable
ATCB
Run-Time
Level Task_Arg
State Entry Call Record
Entry_Call "
1

2 Uninterpreted_Data

20
ATC_Nesting_Level
Pending_ATC_Level

All_Tasks_Link
LL

Thread
Cond_Var
Lock

Figure 20.2: Entry Calls Stack.

e If the task is in the running state then the aborter sends to it the signal
SIG_ABRT and then the corresponding run-time abort-handler asynchronously
raises the internal exception _Abort_Signal in the aborted task.

In both cases the internal exception Abort_Signal unwinds the stack of the
aborted task.

20.2 Summary

The GNARL implementation of the Ada abort statement is made up of one flag in
the ATCB: Aborting, one exception _Abort_Signal, and one POSIX signal (SIGA-
BRT). The flag prevents a race between multiple aborters and the aborted task.

20.2. SUMMARY 217

The exception is can only be handled by run-time system code. The POSIX sig-
nal can not be masked.

218 CHAPTER 20. ABORTION

Part V

Fifth Part: Appendix

219

Appendix A

How to add new Keywords,
Pragmas and Attributes

This appendix describes how to modify the GNAT front-end to experiment with
Ada extensions. As an example we use Drago, an experimental extension of
Ada 83 designed to support the implementation of fault-tolerant distributed ap-
plications. It was the result of an effort to impose discipline and give linguis-
tic support to the group communication paradigm. In the following sections we
briefly introduce Drago (Section A.1), and describe the modifications made to the

GNAT scanner, parser, and semantic analyzer. A previous version of this work
was publised in [MGMG99].

A.1 Drago

Drago [MAAG96, MAGAOO] is an experimental language developed as an ex-
tension of Ada for the construction of fault-tolerant distributed applications. The
hardware assumptions are: a distributed system with no memory shared among
the different nodes, a reliable communication network with no partitions, and fail-
silent nodes (that is, nodes which once failed are never heard from again by the
rest of the system.) The language is the result of an effort to impose discipline
and give linguistic support to the main concepts of Isis [BCJ*90], as well as to
experiment with the group communication paradigm. To help build fault-tolerant
distributed applications, Drago explicitly supports two process group paradigms,
replicated process groups and cooperative process groups. Replicated process
groups allow the programming of fault-tolerant applications according to the ac-

221

222APPENDIX A. HOW TO ADD NEW KEYWORDS, PRAGMAS AND ATTRIBUTES

tive replication model, while cooperative process groups permit programmers to
express parallelism and therefore increase throughput.

A process group in Drago is actually a collection of agents, which is the way
processes are identified in the language. Agents are rather similar in appearance
to Ada tasks (they have an internal state not directly accessible from outside the
agent, an independent flow of control, and public operations called entries). Fur-
thermore, they are the unit of distribution in Drago and in this sense they perform
a role similar to Ada 95 active partitions and Ada 83 programs. Each agent re-
sides in a single node of the network, although several agents can reside in the
same node. A Drago program is composed of a number of agents residing at a
number of nodes.

A.2 First Step: Addition of new Keywords

Drago adds four reserved keywords (agent, group, intragroup, and replicated).
In the following sections we describe the main steps required to introduce them
into the GNAT environment. GNAT list of predefined identifiers contains all the
supported pragmas, attributes and keywords. This list is declared in the spec-
ification of package Snames. For each predefined identifier there is a constant
declaration which records its position in the Names Table. This hash table stores
all the names, predefined or not. Keywords are classified in two main groups:
keywords shared by Ada 83 and Ada 95, and exclusive Ada 95 keywords. Each
group is delimited by means of a subtype declaration. Depending on the GNAT
compilation mode, Ada 83 or Ada 95, this subtype allows the scanner to properly
distinguish user identifiers from Ada keywords.

In order to introduce Drago keywords we added a third GNAT mode, Drago
mode, and one new group with Drago exclusive keywords. The result was as
follows:

(f

First_Drago_Reserved _Word : constant Name_Id := N + 475;
Name_Agent : constant Name_Id := N + 475;
Name_Group : constant Name_Ild := N + 476;
Name_Intragroup : constant Name_Id := N + 477;
Name_Replicated : constant Name_Ild := N + 478;
Last_Drago_Reserved_Word : constant Name_Id := N + 478;

subtype Drago_Reserved_Words is
Name_Id range First_Drago_Reserved_Word
. Last_Drago_Reserved_Word;

223

We also updated the value of the constant Preset_Names, declared in the body
of Snames, keeping the order specified in the previous declarations. This constant
contains the literals of all the predefined identifiers.

A.3 Second step: Addition of new tokens

The list of tokens is declared in the package Scans. It is an enumerated type whose
elements are grouped into classes used for source tests by the parser. For example,
Eterm class contains all the expression terminators; Sterm class contains the sim-
ple expressions terminators'; After_SM is the class of tokens that can appear after
a semicolon; Declk is the class of keywords which start a declaration; Deckn is the
class of keywords which start a declaration but can not start a compilation unit;
and Cunit 1s the class of tokens which can begin a compilation unit. Members of
each class are alphabetically ordered. We have introduced the new tokens in the
following way:

r

type Token_Type is (

—— Token name Class(es)
'.l“.olk_Intragroup R —— Eterm, Sterm, After_SM
".F.o.k_Agent , —— Eterm, Sterm, Cunit, Declk, After.SM
"i".o.k_Group , —— Eterm, Sterm, Cunit, Declk, After.SM
*.f.o.k_Replicated s —— Eterm, Sterm, Cunit, After_SM

\ 1'\1.0._Token)

Classes associated with tokens are specified in the third column. Our choices
were based on the following guidelines:

e Intragroup must always appear after a semicolon (see th specification of a
Drago group on section A.6).

e Agent and Group start a compilation unit and a new declaration.

L A1l the reserved keywords, except mod, rem, new, abs, others, null, delta, digits, range, and,
or xor, in and not, are always members of these two classes (Eterm, Sterm).

224APPENDIX A. HOW TO ADD NEW KEYWORDS, PRAGMAS AND ATTRIBUTES

e Replicated qualifies a group (similar to Ada 95 private packages, where the
word private preceding a package declaration qualifies the package; they
are otherwise public). Therefore they were placed in the same section.

According to the alphabetic ordering, Tok_Agent is new first token of Cunit
class. Therefore we updated the declaration of the corresponding subtype Tok -
Class_Unit to start the class with Tok_Agent. Finally we modified the declaration
of the table Is_Reserved_Keyword, which records which tokens are reserved key-
words of the language.

A.4 Third Step: Update the Scanner Initialization

The scanner initialization (subprogram Scn.Initialization) is responsible for stamp-
ing all the keywords stored in the Names Table with the byte code of their corre-
sponding token (0O otherwise). This allows the scanner to determine if a word is
an identifier of a reserved keyword. This work is done by means of repeated calls
to the procedure Set_Name_Table_Byte passing the keyword and its correspond-
ing token byte as parameters. Therefore we added the following sentences to the
scanner initialization:

&

Set_Name_Table_Byte (Name_Agent,

Token_Type’ Pos (Tok_Agent));
Set_Name_Table_Byte (Name_Group,

Token_Type’ Pos (Tok_Group));
Set_Name_Table_Byte (Name_Intragroup,

Token_Type’Pos (Tok_Intragroup));
Set_Name_Table_Byte (Name_Replicated,

Token_Type’Pos (Tok_Replicated));

We also modified the scanner (subprogram Scn.Scan) in order to recognize the
new keywords only when compiling a Drago program. This allows us to preserve
its original behaviour when analyzing Ada source code. This was the last modifi-
cation required to integrate the new keywords into GNAT. In the following section
we describe the modifications made to add one new pragma and one attribute into
the GNAT scanner.

225

A.5 Addition of Pragmas an Attributes

Drago provides one new attribute Member _Identifier and one new pragma (Drago).
When Member_Identifier is applied to a group identifier it returns the identifier
of the current agent in the specified group. When pragma Drago is applied the
compiler is notified about the existence of Drago code (similar to GNAT prag-
mas Ada83 and Ada95). For integrating them into GNAT we had to modify the
package Snames in the following way:

1. Add their declaration to the list of predefined identifiers keeping the al-
phabetic order. GNAT classifies all pragmas in two groups: configuration
pragmas, those used to select a partition-wide or system-wide option, and
non-configuration pragmas. The pragma Drago was placed in the group of
non-configuration pragmas.

GNAT classifies all attributes in four groups: attributes that designate pro-
cedures (output, read and write), attributes that return entities (elab_body
and elab_spec), attributes that return types (base and class), and the rest of
the attributes. Member_Identifier was placed in this fourth group.

2. Insert their declarations in the enumerated Pragma_Id and Attribute Id keep-
ing the order specified in the previous step. Similar to tokens associated
with keywords, these types facilitate the handling of pragmas and attributes
in later stages of the frontend.

3. Add their literals in Preset_Names. Similar to the introduction of the key-
words, we must keep the order specified in the list of predefined identifiers.

4. Update the C file a-snames.h. This file associates a C macro to each element
of the types Attribute_Id and Pragma_ld. This work can be automatically
done by means of the GNAT utility xsnames.

A.6 Addition of New Syntax Rules

In this section we describe, by means of an example, the modifications made in
the parser in order to support Drago syntax. The example is the specification of a
Drago group, whose syntax is similar to the one of an Ada package specification:

226 APPENDIX A. HOW TO ADD NEW KEYWORDS, PRAGMAS AND ATTRIBUTES

GROUP_DECLARATION ::= GROUP_SPECIFICATION

GROUP_SPECIFICATION ::=

[replicated] group defining_identifier is
{basic_declarative_item}

[intragroup
{basic_declarative_item }]

[private
{basic_declarative_item]

end [group_identifier];

(f
.

Replicated groups are denoted by the reserved keyword replicated at the head-
ing of the group specification. Cooperative groups do not require any reserved
word because they are considered the default group specification. The first list of
declarative items of a group specification (the intergroup section) contains all the
information that clients are able to know about this group. The optional list of
declarative items after the keyword intragroup is called the intragroup section.
It contains information that only members of the group are able to know, and it
can be declared only in a cooperative group specification?. The optional list of
declarative items after the reserved word private is called the private section and
provides groups with the same functionality as the private part of Ada packages.
The following sections describe the steps made in order to add this syntax to the
GNAT parser.

A.6.1 First step: Addition of New Node Kinds

GNAT node kinds are declared in the enumerated Sinfo.Node Kind. Similar to
Token_Type elements, all its elements are grouped into classes (i.e. nodes that
correspond to sentences, nodes which correspond to operators, . ..), and elements
of each class are alphabetically ordered.

The addition of the rules of a Drago group required two additional kinds of
nodes: N_Group_Declaration and N_Group _Specification. Due to the similarity
of a Drago group specification and an Ada package specification we placed the
N_Group_Declaration node in the class associated with N_Package Declaration
node, and N_Group Specification in the class associated with N_Package Specifi-
cation.

ZReplicated groups do not have this facility because their members are assumed to be replicas
of a deterministic automaton and thus they do not need to exchange their state —all the replicas
have the same state.

227
A.6.2 Second Step: High-level specification of the new nodes

The specification of package Sinfo contains the high level specification of the AST
nodes (cf. Section 2.2.1). When we define a new node we have two possibilities:
to reuse the AST field-names used in the current high-level specification of Ada, or
to define new names. In the first case we must keep all its features: field-number
and associated data. In the second case we must carefully analyze the field to
which we associate the new names because once it is stated it must be kept fixed
for all nodes; in addition, for each new name we must declare two subprograms
in Sinfo: one procedure (used to set the value of the field), and one function (to
get the stored value). Following with out example, the templates associated with
N_Group_Declaration and N_Group Specification are:

—— N_Group_Declaration
—— Sloc points to GROUP
—— Specification (Nodel)

—— N_Group_Specification

—— Sloc points to GROUP

—— Defining_Identifier (Nodel)

—— Visible_Declarations (List2)

—— Intragroup_Declarations (List3) (set to No_List if
—— no intragroup part present)

—— Private_Declarations (List4) (set to No_List if
—— no private part present)

This means that the value of Sloc in a N_Group_Declaration node points to the
source code word group, and the first field of the node (Field) points to a specifi-
cation node. On the other hand, the value of Sloc in a N_Group Specification node
also points to the same word group (because the reason for the creation of both
nodes was the same word), its first field (Fieldl) points to a defining identifier
node, and its second, third and fourth fields (Field2..Field4) point to lists which
contain respectively its visible, intragroup and private declarations.

Similar to GNAT handling of private packages, the handling of replicated
groups only requires the addition of one new flag in the AST root node (Flagl5
for a private package, and we chose Flagl6 for a replicated group).

228APPENDIX A. HOW TO ADD NEW KEYWORDS, PRAGMAS AND ATTRIBUTES

A.6.3 Third Step: Automatic modification of the frontend

The templates specified in the previous step are used by three GNAT utility pro-
grams (xsinfo, xtreeprs and xnmake) to automatically generate four frontend source
files involved in the handling of nodes: a-sinfo.h, treeprs.ads, nmake.ads and
nmake.adb (cf. Figure A.1).

Xsinfo — a-sinfo.h
> Xtreeprs F— treeprs.ads
sinfo.ads T
treeprs.adt
Xnmake ——— nmake.ads, nmake.adb

|

nmake.adt

Figure A.1: GNAT utility programs.

A.6.4 Fourth Step: Update of the Parser

The GNAT parser is implemented by means of the well known recursive descent
technique. All its code is inside the function Par which is composed of several
subunits (one subunit for each Ada Reference Manual Chapter [AAR95]). Ac-
cording to this philosophy we decided to add the subunit Par.Drag to group all
the parser code that syntactically analyzes Drago rules (figure A.2). We gave the
name P_Group to the function associated with the parsing of a group specifica-
tion. We used the fragment of the parser that analyzes a package specification as
a reference for its development. Finally we modified the parsing of a compilation
unit to include a call to this function when analyzing Drago source code and it
detects a group token.

229

Function Par

N

Par.Ch2 Par.Ch3 Par.Ch12 Par.Ch13 Par.Drag

(Chapter 2) (Chapter 3) (Chapter 12) (Chapter 13) (Drago)

Figure A.2: New parser structure.
A.7 Verification of the Semantics

When the parser finishes its work, the semantic analizer makes a top-down traver-
sal of the AST and, according to the kind of each visited node, it calls one sub-
program that semantically verifies it. These subprograms are structured as a set
of packages. Each package contains all the subprograms required to verify the
semantic rules of each ARM chapter (packages Sem_Ch2..Sem_Chl3). There is
one subprogram for each node type created by the parser and the main package
that derivates the calls is called Sem.

For the semantic verification of a Drago group specification we made the fol-
lowing modifications to the GNAT sources:

1. Add one new package: Sem_Drag. This package contains all the Drago
subprograms that make the semantic verifications.

2. Add one new semantic entity. A GNAT entity is an internal representation
of the identifiers, operators and character literals found in the source pro-
gram declarations. Therefore, the identifier of a group specification must
have its corresponding entity. We added the element E_Group to the enu-
merated Entity_Info (inside the Einfo package) to represent the new group
name entity.

3. Update the C file a-einfo.h. This work is automatically done by means of
the GNAT utility program names xeinfo (figure A.3).

einfo.ads

. a-einfo.h
einfo.adb

Xeinfo

Figure A.3: GNAT semantic utility program

230APPENDIX A. HOW TO ADD NEW KEYWORDS, PRAGMAS AND ATTRIBUTES

4. Write one subprogram for each new kind of node declared in the parser.
We wrote the subprogram associated with the group specification node, and
the subprogram for the group declaration node, and placed them inside the
new package Sem_Drag. We used the subprograms performing semantic
analysis of a package specification as a model for our new subprograms.

Finally we modified the Sem package to include calls to these subprograms
when analyzing a group specification (or declaration) node.

A.8 Tree expansion

In the general case, to generate code there is no need to access the GIGI level,
and our work finishes at the expansion phase. Following with our example, we
expanded the Drago nodes into Ada 95 nodes which called several added Run-
Time subprograms. Again, we recommend to use the expansion subprograms
available in the GNAT sources as a reference.

A.9 Summary

This appendix has described the integration of Drago into the GNAT frontend.
Drago is a language designed as an Ada extension to experiment with the active
replication model of fault-tolerant distributed programming. We have focused our
attention on the lexical, syntactic and semantic aspects of the integration. The
abstract syntax tree expansion and code generation have not been discussed here.

Appendix B

Glossary

Access type. An access type has values that designate aliased objects. Access
types correspond to “pointer types” or “reference types” in some other lan-
guages.

Aliased. An aliased view of an object is one that can be designated by an ac-
cess value. Objects allocated by allocators are aliased. Objects can also be
explicitly declared as aliased with the reserved word aliased. The Access
attribute can be used to create an access value designating an aliased object.

Class. A class is a set of types that is closed under derivation, which means that
if a given type is in the class, then all types derived from that type are also
in the class. The set of types of a class share common properties, such as
their primitive operations.

Compilation unit. The text of a program can be submitted to the compiler in
one or more compilations. Each compilation is a succession of compila-
tion_units. A compilation_unit contains either the declaration, the body, or
a renaming of a program unit.

Compile-time rules. Rules that are enforced at compile type.

Complete context. Language construct over which overload resolution must
be performed without examining a larger portion of the program. Each of
the following constructs is a complete context: a context item, a declara-
tive_item or declaration, a statement, a pragma_argument_association, and
the expresion of a case_statement [AAR9S, Section 8.6(4-9)].

Composite type. A composite type has components.

231

232 APPENDIX B. GLOSSARY

Construct. A construct is a piece of text (explicit or implicit) that is an instance
of a syntactic category defined under “Syntax.”

Controlled type. A controlled type supports user-defined assignment and final-
ization. Objects are always finalized before being destroyed.

Declaration. A declaration is a language construct that associates a name with (a
view of) an entity. A declaration may appear explicitly in the program text
(an explicit declaration), or may be supposed to occur at a given place in
the text as a consequence of the semantics of another construct (an implicit
declaration).

Definition (view) All declarations contain a definition for a view of an entity.
A view consists of an identification of the entity (the entity of the view),
plus view-specific characteristics that affect the use of the entity through
that view (such as mode of access to an object, formal parameter names
and defaults for a subprogram, or visibility to components of a type). In
most cases, a declaration also contains the definition for the entity itself (a
renaming_declaration is an example of a declaration that does not define a
new entity, but instead defines a view of an existing entity (see ARM 8.5)).

Derived type. A derived type is a type defined in terms of another type, which
is the parent type of the derived type. Each class containing the parent type
also contains the derived type. The derived type inherits properties such as
components and primitive operations from the parent. A type together with
the types derived from it (directly or indirectly) form a derivation class.

Discrete type. A discrete type is either an integer type or an enumeration type.
Discrete types may be used, for example, in case_statements and as array
indices.

Discriminant. A discriminant is a parameter of a composite type. It can control,
for example, the bounds of a component of the type if that type is an array
type. A discriminant of a task type can be used to pass data to a task of the
type upon creation.

Dynamic semantics (see run-time semantics).
Elementary type. An elementary type does not have components.

Enumeration type. An enumeration type is defined by an enumeration of its
values, which may be named by identifiers or character literals.

233

Exception. An exception represents a kind of exceptional situation; an occur-
rence of such a situation (at run time) is called an exception occurrence. To
raise an exception is to abandon normal program execution so as to draw
attention to the fact that the corresponding situation has arisen. Performing
some actions in response to the arising of an exception is called handling
the exception.

Execution. The process by which a construct achieves its run-time effect is
called execution. Execution of a declaration is also called elaboration. Ex-
ecution of an expression is also called evaluation.

Expanded Name. A selected_component is called an expanded name if accord-
ing to the visibility rules, at least one possible interpretation of its prefix
denotes a package or an enclosing named construct (directly, not through a
subprogram_renaming_declaration or generic_renaming_declaration) [AAR95,
Section 4.1.3(4)].

Generic unit. A generic unit is a template for a (nongeneric) program unit; the
template can be parameterized by objects, types, subprograms, and pack-
ages. An instance of a generic unit is created by a generic_instantiation.
The rules of the language are enforced when a generic unit is compiled,
using a generic contract model; additional checks are performed upon in-
stantiation to verify the contract is met. That is, the declaration of a generic
unit represents a contract between the body of the generic and instances
of the generic. Generic units can be used to perform the role that macros
sometimes play in other languages.

Integer type. Integer types comprise the signed integer types and the modu-
lar types. A signed integer type has a base range that includes both posi-
tive and negative numbers, and has operations that may raise an exception
when the result is outside the base range. A modular type has a base range
whose lower bound is zero, and has operations with “wraparound” seman-
tics. Modular types subsume what are called “unsigned types” in some other
languages.

Legality rules (see Compile-time rules).

Library unit. A library unit is a separately compiled program unit, and is always
a package, subprogram, or generic unit. Library units may have other (log-
ically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children
and grandchildren and so on, form a subsystem.

234 APPENDIX B. GLOSSARY

Limited type. A limited type is (a view of) a type for which the assignment
operation is not allowed. A nonlimited type is a (view of a) type for which
the assignment operation is allowed.

Name resolution. Process that establishes a mapping between names and the
defining entity referred to by the names at each point in the program. In
the context of the GNAT semantic analyzer, name resolution involves to
link each node that denotes an entity with its corresponding defining-entity
node.

Name resolution rules. Compile-time rules used in name resolution, including
overload resolution.

Object. An object is either a constant or a variable. An object contains a value.
An object is created by an object_declaration or by an allocator. A formal
parameter is (a view of) an object. A subcomponent of an object is an object.

Package. Packages are program units that allow the specification of groups of
logically related entities. Typically, a package contains the declaration of a
type (often a private type or private extension) along with the declarations
of primitive subprograms of the type, which can be called from outside the
package, while their inner workings remain hidden from outside users.

Pragma. A pragma is a compiler directive. There are language-defined pragmas
that give instructions for optimization, listing control, etc. An implementa-
tion may support additional (implementation-defined) pragmas.

Primitive operations. The primitive operations of a type are the operations
(such as subprograms) declared together with the type declaration. They
are inherited by other types in the same class of types. For a tagged type,
the primitive subprograms are dispatching subprograms, providing run-time
polymorphism. A dispatching subprogram may be called with statically
tagged operands, in which case the subprogram body invoked is determined
at compile time. Alternatively, a dispatching subprogram may be called
using a dispatching call, in which case the subprogram body invoked is
determined at run time.

Private extension. A private extension is like a record extension, except that the
components of the extension part are hidden from its clients.

Private type. A private type is a partial view of a type whose full view is hidden
from its clients.

235

Program unit. A program unit is either a package, a task unit, a protected unit,
a protected entry, a generic unit, or an explicitly declared subprogram other
than an enumeration literal. Certain kinds of program units can be sep-
arately compiled. Alternatively, they can appear physically nested within
other program units.

Protected type. A protected type is a composite type whose components are
protected from concurrent access by multiple tasks.

Record extension. A record extension is a type that extends another type by
adding additional components.

Record type. A record type is a composite type consisting of zero or more
named components, possibly of different types.

Run-time semantics (dynamic semantics). Definition of the run-time effect of
each construct.

Scalar type. A scalar type is either a discrete type or a real type.

Subtype. A subtype is a type together with a constraint, which constrains the
values of the subtype to satisfy a certain condition. The values of a subtype
are a subset of the values of its type.

Tagged type. The objects of a tagged type have a run-time type tag, which
indicates the specific type with which the object was originally created. An
operand of a class-wide tagged type can be used in a dispatching call; the
tag indicates which subprogram body to invoke. Nondispatching calls, in
which the subprogram body to invoke is determined at compile time, are
also allowed. Tagged types may be extended with additional components.

Task type. A task type is a composite type whose values are tasks, which are
active entities that may execute concurrently with other tasks. The top-level
task of a partition is called the environment task.

Type. Each object has a type. A type has an associated set of values, and a
set of primitive operations which implement the fundamental aspects of its
semantics. Types are grouped into classes. The types of a given class share
a set of primitive operations. Classes are closed under derivation; that is, if
a type is in a class, then all of its derivatives are in that class.

View. (See Definition.)

236 APPENDIX B. GLOSSARY

Appendix C

GNU Free Documentation License

Version 1.2, November 2002
Copyright (©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “’free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of ’copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of

237

238 APPENDIX C. GNU FREE DOCUMENTATION LICENSE

subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
”Document”, below, refers to any such manual or work. Any member of the pub-
lic is a licensee, and is addressed as ’you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A ”Modified Version’ of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”’Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and con-
tains nothing that could fall directly within that overall subject. (Thus, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ”’Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some

239

widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup, or
absence of markup, has been arranged to thwart or discourage subsequent mod-
ification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent” is called
”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for out-
put purposes only.

The “’Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ”Acknowledgements”, ’Dedications’, ’En-
dorsements”, or ”History”.) To ”’Preserve the Title’’ of such a section when
you modify the Document means that it remains a section “Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and

240 APPENDIX C. GNU FREE DOCUMENTATION LICENSE

the license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

241

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A.

Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

. List on the Title Page, as authors, one or more persons or entities respon-

sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled "History”, Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Mod-
ified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item de-
scribing the Modified Version as stated in the previous sentence.

242 APPENDIX C. GNU FREE DOCUMENTATION LICENSE

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location
for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements” or to con-
flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties—for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity. If
the Document already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

243

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are mul-
tiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled "Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection, pro-
vided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

244 APPENDIX C. GNU FREE DOCUMENTATION LICENSE

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate, this Li-
cense does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, "Dedications”,
or "History”, the requirement (section 4) to Preserve its Title (section 1) will typ-
ically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,

245

sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled "GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the "with...Texts.” line with this:

246 APPENDIX C. GNU FREE DOCUMENTATION LICENSE

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.

Bibliography

[AAR9S]

[Bar95]

[Bar99]

[BCJ*90]

[BR85]

[BWOg]

[CDGY5]

[CGS94]

[Coh96]

[Cor04]

AARM. Annoted Ada Reference Manual (Technical Corrigendum
1). ISO/IEC 8652:1995(E), 1995.

Barnes, J. (ed.). Ada 95 Rationale: The language. The Standard
libraries. Springer, 1995.

J. Barnes. Programming in Ada 95 (2nd edition). Addison-Wesley,
1999.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou,
K. Kane, F. Schmuck, and M. Wood. The Isis System Manual. Ver-
sion 2.1. Cornell University, Cornell, September 1990.

T.P. Baker and G.A. Riccardi. Ada Tasking: from Semantics to Ef-
ficient Implementation. Florida-State University, 1985.

A. Burns and A. Wellings. Concurrency in Ada (2nd edition). Cam-
bridge University Press, 1998.

C. Comar, G. Dismukes, and F. Gasperoni. The GNAT Implemen-
tation of Controlled Types. Proceedings of Tri-Ada’95, pages 467—
473, 1995.

C. Comar, F. Gasperoni, and E. Schonberg. The GNAT Project:
A GNU-Ada9X Compiler. Technical report, New York University,
1994.

N.H. Cohen. Ada as a Second Language (2nd edition). McGraw-
Hill, 1996.

Ada Core. GNAT Reference Manual. Ada Core Technologies, Inc.,
2004.

247

248

[CPY4]

[Dew94]

[DIBMY96]

[Dis92]

[GB92]

[GB9Y4]

[GB93]

[GMB93]

[GWEB&3]

[MAAGY6]

[MAGAO0]

[MGMG99]

BIBLIOGRAPHY

C. Comar and B. Porter. Ada 9x Tagged Types and their Implemen-
tation in GNAT. Proceedings of Tri-Ada’94, pages 71-81, 1994.

R. Dewar. The GNAT Compilation Model. Proceedings of Tri-
Ada’94, pages 58-70, 1994.

O. Dong-Ik, T.P. Baker, and S.J. Moon. The GNARL Implementa-
tion of POSIX/Ada Signal Services. Reliable Software Technologies.
AdaEurope’96, LNCS 1088:275-286, June 1996.

G.J. Dismukes. Implementing Tagged Types and Type Extensions
for Ada 9x. TRI-Ada’92 Proceedings, ACM, November 1992.

E.W. Giering and T.P. Baker. Using POSIX Threads to Implement
Ada Tasking: Description of Work in Progress. TRI-Ada’92 Pro-
ceedings, pages 518-529, ACM, November 1992.

E.W. Giering and T.P. Baker. Ada 9X Asynchronous Transfer of
Control: Applications and Implementation. Proceedings of the SIG-
PLAN Workshop on Language, Compiler, and Tool support for Real-
Time Systems, 1994,

E.W. Giering and T.P. Baker. Implementing Ada Protected Objects.
Interface Issues and Optimization. TRI-Ada’95 Proceedings, pages
134-143, ACM, Anaheim, California, 1995.

E.W. Giering, F. Mueller, and T.P. Baker. Implementing Ada 9X
features using POSIX Threads: Design Issues. TRI-Ada’93 Proceed-
ings, pages 214-228, ACM, Seatle, Washinton, September 1993.

G. Goos, W.A. Wulf, A. (Jr.) Evans, and K.J. Butlet. An Intermediate
Language for Ada. Lecture Notes in Computer Science, (161), 1983.

J. Miranda, A. Alvarez, S. Arevalo, and F. Guerra. Drago: An Ada
Extension to Program Fault-Tolerant Distributed Applications. Re-
liable Software Technologies. Ada-Europe’96, pages 235-246, June
1996.

J. Miranda, A. Alvarez, F. Guerra, and S. Arevalo. Programming
Replicated Systems in Drago. International Journal of Computer
Systems: Science and Engineering, 15(1):49-59, June 2000.

J. Miranda, F. Guerra, J. Martin, and A. Gonzalez. How to Modify
the GNAT Front-end to Experiment with Ada Extensions. Reliable
Software Technologies. Ada-Europe’99, pages 226-237, June 1999.

BIBLIOGRAPHY 249

[SB94] E. Schonberg and B. Banner. The GNAT Project: A GNU-Ada%9X
Compiler. Studies in Computer and Communications Systems. Ada
YearBook., pages 147-158, 1994.

[Sta04] R.M. Stallman. GCC Manual. Free Software Foundation, 2004.

[VK87] J. van Katwijk. The Ada-Compiler: On the Design and Implementa-
tion of an Ada Compiler. Technische Universiteit Delft, Amsterdam,
September 1987.

Index

Ada Private types, 47
Abortion Private types in generics, 80
Abort Statement, 103 Protected types, 45
Exceptions, 193 Records, 45
Interrupts, 197 Subunits, 52
Rendezvous, 171 Tasks, 45
Time, 187
Analysis Compiler
Discriminals, 68 Abstract Syntax Tree, 11, 22
Freezing expressions, 95 Binder, 16
Freezing generic units, 97 Compilation Model, 12
Freezing objects, 96 Source Dependencies, 15
Freezing packages, 97 GCC, 10
Freezing subprograms, 96 Phases, 11
Freezing types and subtypes, 94 Expansion, 27
Name resolution, 52 Parser, 20
Overload resolution, 55 Scanner, 19
Algorithm, 56 Semantic Analysis, 24
Data Structures, 59
Visibility Error Recovery, 31
Homonyms, 43 Parser, 32
Immediately visible, 41 Parser Scope-Stack, 33
Potentially use visible, 41 Scanner, 31
Analysis of Expansion of
Child units, 51 Anonymous Controlled Objects,
Deferred constants, 51 140
Discriminants, 63 Assignment to a controlled type,
Discriminants in derived types, 67 139
Generic child units, 84 Conditional Entry Call, 112
Generic units, 72 Controlled Types, 133
Limited types, 51 Entry Barriers, 129
Nested generics, 80 Entry Bodies, 129
Packages, 46 Entry Families, 130

250

INDEX

Objects with Controlled Compo-
nents, 141

Protected Object, 121

Protected Subprograms, 127

Tagged Types, 145

Task Bodies, 105

Task Type Declarations, 104

The Count Attribute, 120

Timed Entry Call, 113

GNARL, 163
Abortion
Abort, 214
Abort_Handler, 215
Abort_Task, 214
Locked_Abort_To_Level, 214
Activate_Tasks, 166
Ada Task Control Block (ATCB)
Compiler_Data, 179
Ada Task Control Block (ATCB),
157
Aborting, 214
Alive_Count, 165
ATC_Nesting_Level, 215
Call, 174
Callable, 165
Compiler_Data, 194
Entry_Calls Stack, 215
Entry_Queues, 173
Master_Completion_Sleep, 169
Master_Of_Task, 160
Master_Within, 161, 165
Pending_Action, 214
Pending_ATC Level, 215
State, 158
Wait_Count, 165, 169
ATC
Task_Entry_Call, 215
Complete_Activation, 168
Complete_Master, 169
Complete_Task, 169

251

Create_Tasks, 165

Enter_Master, 165

Entry Call Record, 172, 176, 183

Exceptions
_Abort_Signal, 214
Current_Exception, 194
Exception_Data, 193
Exception_Raised, 194
Exceptions Table, 194
Raise_Current_Exception, 194
Raise_Exception, 195

Interrupts
Attach_Handlers, 207
Install_Handlers, 207
Interrupt_Manager, 202, 203
Previous_Handlers, 207
Register_Interrupt_Handler, 207
Reserved Signals Table, 201
Server_ID Table, 203
Server_Task, 203
User-Defined Interrupt-Handlers

Table, 201

POSIX
sigabrt, 214

Protected Objects
PO_Do_Or_Queue, 183
Protected_Entry_Call, 182
Select_Protected _Entry_Call, 184
Service_Entries, 184

Rendezvous
Accept_Call, 178
Accept_Trivial, 177
Call_Simple, 176
Call_Syncrhonous, 176
Exceptional_Complete_Rendezvous,

178

Selective_Wait, 179
Task_Count, 180
Task_Do_Or_Queue, 177
Task_Entry_Call, 177

Task States

252 INDEX

Activate_Tasks, 158
Task_Wrapper, 168
Time
Delay, 187
Timed Delay, 187, 190
Timed _Protected_Entry_Call, 189
Timed_Selective_Wait, 190
Timed_Task_Entry_Call, 189

POSIX
pthread _kill, 199
pthread_sigmask, 199
pthread_sigwait, 199
Signals, 198
Thread Control Block (TCB), 157

