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CHAPTER

ONE

OBJECTIVES AND CONTENTS

This document was written to facilitate the adoption of SPARK. It targets team leaders and technology experts, who
will find a description of the various levels of software assurance at which the technology can be used along with
the associated costs and benefits. It also targets software developers (these are assumed to have some knowledge of
the Ada language and AdaCore technology), who will find detailed guidance on how to adopt SPARK at the various
assurance levels.

Section Levels of Software Assurance presents the four assurance levels described in this document. It starts with
a brief introduction of the Ada programming language and its SPARK subset and then presents the levels (Stone,
Bronze, Silver and Gold) that can be achieved with the use of SPARK language and toolset, using techniques varying
from merely applying the language subset up to using the most powerful analyses. The lowest levels are the simplest
to adopt and can bring significant benefits. The highest levels require more effort to adopt and bring the strongest
guarantees. This section is particularly relevant to team leaders and technology experts who want to understand how
SPARK can be useful in their projects.

Sections Stone Level - Valid SPARK to Gold Level - Proof of Key Integrity Properties present the details of the four
levels of software assurance. Each section starts with a short description of three key aspects of adopting SPARK at
that level:

• Benefits - What is gained from adopting SPARK?

• Impact on Process - How should the process (i.e., the software life cycle development and verification activities)
be adapted to use SPARK?

• Costs and Limitations - What are the main costs and limitations for adopting SPARK?

Each section then goes on to describe how to progressively adopt SPARK at that level in an Ada project. Finally, the
Example section shows the concrete application of this adoption approach to an existing, production-ready bounded
stack abstraction. These sections are particularly relevant to software developers who need to use SPARK at a given
level.

Although this document focuses on adopting SPARK for use on existing Ada code, the same guidelines can be used
for adopting SPARK at the beginning of a project. The main difference in that case is that one would not want to start
at the lowest level but already take into account the final targeted level starting with the initial design phase.

This version of the document is based on the SPARK Pro 19 and GNAT Studio 19 versions. Further references are
given at the end of this document.
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CHAPTER

TWO

LEVELS OF SOFTWARE ASSURANCE

2.1 Ada

Ada is a language for long-lived critical systems. Programming in Ada makes it easier to prevent the introduction of
errors, thanks to the stronger language rules than in many comparative languages (C and C++ in particular, including
their safer variants like MISRA C and MISRA C++) which make it possible to detect many kinds of errors (such
as type mismatches) at compile time. In addition to the language’s compile-time checks, Ada also requires run-time
checking for a variety of error conditions, such as out-of-bounds array indexing. Violating such a check leads to an
exception rather than undefined behavior.

Another advantage of programming in Ada is its facility for capturing program specifications in the source code, from
simple properties of data like ranges of values to rich data invariants expressed with arbitrary boolean expressions. An
important element is the ability to provide contracts on subprograms, consisting of preconditions and postconditions.
Contracts are a central part Ada, introduced in the Ada 2012 standard.

A precondition is a property that is supposed to be true when a subprogram is called. In typical software development
in Ada or other languages, preconditions are either given in the program as comments accompanying subprogram
declarations or as defensive code inside subprograms to detect improper calling conditions. When using Ada 2012, a
developer can express preconditions as boolean properties, and the compiler can insert run-time checks to ensure that
preconditions are true when the subprogram is called.

A postcondition is a property that is supposed to be true when a subprogram returns. In typical software develop-
ment, postconditions are also either given in the program as comments accompanying subprogram declarations or as
assertions inside subprograms to detect implementation errors, but can also be provided as defensive code to detect
improper values returned at the call site. When using Ada 2012, a developer can express postconditions as boolean
properties which should be true when a subprogram returns and the compiler can insert run-time checks to ensure that
postconditions are true when the subprogram returns.

The main use of preconditions and postconditions, like other language features in Ada for embedding program spec-
ifications inside the program, is to allow detecting violations of these program specifications during testing. Another
increasingly important use of these language features is to facilitate the detection of errors by static analyzers, which
analyze the source code of programs without actually executing them. Without such specifications in the program,
static analyzers can only detect violations of language dynamic constraints (e.g., division by zero or buffer overflow).
However, the presence of pre- and postconditions in the program allows static analyzers to target the verification of
these higher level properties. Specifications also constrain the state space that the static analyzer has to consider during
analysis, which leads to faster running time and higher precision.

9
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2.2 SPARK

Static analyzers fall into two broad categories: bug finders and verifiers. Bug finders detect violations of properties.
Verifiers guarantee the absence of violations of properties. Because they target opposite goals, bug finders and verifiers
usually have different architectures, are based on different technologies, and require different methodologies. Typi-
cally, bug finders require little upfront work, but may generate many false alarms which need to be manually triaged
and addressed, while verifiers require some upfront work, but generate fewer false alarms thanks to the use of more
powerful techniques. AdaCore develops and distributes both a bug finder (CodePeer) and a verifier (SPARK).

SPARK is a verifier co-developed by AdaCore and Altran and distributed by AdaCore. The main web page for the
SPARK Pro product is http://www.adacore.com/sparkpro/. SPARK analysis can give strong guarantees that a program:

• does not read uninitialized data,

• accesses global data only as intended,

• does not contain concurrency errors (deadlocks and data races),

• does not contain run-time errors (e.g., division by zero or buffer overflow),

• respects key integrity properties (e.g., interaction between components or global invariants),

• is a correct implementation of software requirements expressed as contracts.

SPARK can analyze either a complete program or those parts that are marked as being subject to analysis, but it can
only be applied to code that follows some restrictions designed to facilitate formal verification. In particular, handling
of exceptions is not allowed and use of pointers should follow a strict ownership policy aiming at preventing aliasing
of data allocated in the heap (pointers to the stack are not allowed). Pointers and exceptions are both features that, if
supported completely, make formal verification, as done by SPARK, infeasible, either because of limitations of state-
of-the-art technology or because of the disproportionate effort required from users to apply formal verification in such
situations. The large subset of Ada that is analyzed by SPARK is also called the SPARK language subset.

SPARK builds on the strengths of Ada to provide even more guarantees statically rather than dynamically. As sum-
marized in the following table, Ada provides strict syntax and strong typing at compile time plus dynamic checking
of run-time errors and program contracts. SPARK allows such checking to be performed statically. In addition, it
enforces the use of a safer language subset and detects data flow errors statically.

Ada SPARK
Contract programming dynamic dynamic / static
Run-time errors dynamic dynamic / static
Data flow errors – static
Strong typing static static
Safer language subset – static
Strict clear syntax static static

The main benefit of formal program verification, as performed by SPARK (or by Frama-C or the TrustInSoft Analyzer
for C code) is that it allows verifying properties that are difficult or very costly to verify by other methods, such as
testing or reviews. That difficulty may stem from the complexity of the software, the complexity of the requirements,
and/or the unknown capabilities of attackers. Formal verification allows giving guarantees that some properties are
always verified, however complex the context. The latest versions of international certification standards for avionics
(DO-178C / ED-12C) and railway systems (CENELEC EN 50128:2011) have recognized these benefits by increasing
the role that formal methods can play in the development and verification of critical software.

10 Chapter 2. Levels of Software Assurance
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2.3 Levels of SPARK Use

The scope and level of SPARK analysis depend on the objectives being pursued by the adoption of SPARK. The scope
of analysis may be the totality of a project, only some units, or only parts of units. The level of analysis may range
from simple guarantees provided by flow analysis to complex properties being proved. These can be divided into five
easily remembered levels:

1. Stone level - valid SPARK

2. Bronze level - initialization and correct data flow

3. Silver level - absence of run-time errors (AoRTE)

4. Gold level - proof of key integrity properties

5. Platinum level - full functional proof of requirements

Platinum level is defined here for completeness, but is not further discussed in this document since it is not recom-
mended during initial adoption of SPARK. Each level builds on the previous one, so that the code subject to the Gold
level should be a subset of the code subject to Silver level, which itself is a subset of the code subject to Bronze level,
which is in general the same as the code subject to Stone level. We advise using:

• Stone level only as an intermediate level during adoption,

• Bronze level for as large a part of the code as possible,

• Silver level as the default target for critical software (subject to costs and limitations),

• Gold level only for a subset of the code subject to specific key integrity (safety/security) properties.

Our starting point is a program in Ada, which could be thought of as the Brick level: thanks to the use of Ada
programming language, this level already provides some confidence: it is the highest level in The Three Little Pigs
fable! And indeed languages with weaker semantics could be thought of as Straw and Sticks levels. However, the
adoption of SPARK allows us to get stronger guarantees, should the wolf in the fable adopt more aggressive means of
attack than simply blowing.

A pitfall when using tools for automating human tasks is to end up “pleasing the tools” rather than working around
the tool limitations. Both flow analysis and proof, the two technologies used in SPARK, have known limitations.
Users should refrain from changing the program for the benefit of only getting fewer messages from the tools. When
relevant, users should justify tool messages through appropriate pragmas. See the sections on Justifying Unproved
Check Messages and Flow Analysis Warnings for more details.

In the following, we use “SPARK” to denote the SPARK language, and “GNATprove” to denote the formal verification
tool in SPARK product.

GNATprove can be run at the different levels mentioned in this document, either through the Integrated Development
Environments (IDE) Eclipse (GNATbench plugin) or GNAT Studio, or on the command line. In the following, we
describe the use of GNAT Studio, but the use of Eclipse is based on similar menus. Use of the command-line interface
at a given level is facilitated by convenient synonyms:

• use switch --mode=stone for Stone level (synonym of --mode=check_all)

• use switch --mode=bronze for Bronze level (synonym of --mode=flow)

• use switch --mode=silver for Silver level (synonym of --mode=all)

• use switch --mode=gold for Gold level (synonym of --mode=all)

Note that levels Silver and Gold are activated with the same switches. Indeed, the difference between these levels is
not on how GNATprove is run, but on the objectives of verification. This is explained in the section on Gold Level -
Proof of Key Integrity Properties.

2.3. Levels of SPARK Use 11
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CHAPTER

THREE

STONE LEVEL - VALID SPARK

The goal of reaching this level is to identify as much code as possible as belonging to the SPARK subset. The user
is responsible for identifying candidate SPARK code by applying the marker SPARK_Mode to flag SPARK code
to GNATprove, which is responsible for checking that the code marked with SPARK_Mode is indeed valid SPARK
code. Note that valid SPARK code may still be incorrect in many ways, such as raising run-time exceptions. Being
valid merely means that the code respects the legality rules that define the SPARK subset in the SPARK Reference
Manual (see http://docs.adacore.com/spark2014-docs/html/lrm/). The number of lines of SPARK code in a program
can be computed (along with other metrics such as the total number of lines of code) by the metrics computation tool
GNATmetric.

Benefits

The stricter SPARK rules are enforced on a (hopefully) large part of the program, which leads to higher quality and
maintainability, as error-prone features such as side-effects in functions are avoided, and others, such as use of pointers
to the stack, are isolated to non-SPARK parts of the program. Individual and peer review processes can be reduced
on the SPARK parts of the program, since analysis automatically eliminates some categories of defects. The parts of
the program that don’t respect the SPARK rules are carefully isolated so they can be more thoroughly reviewed and
tested.

Impact on Process

After the initial pass of applying the SPARK rules to the program, ongoing maintenance of SPARK code is similar
to ongoing maintenance of Ada code, with a few additional rules, such as the need to avoid side effects in functions.
These additional rules are checked automatically by running GNATprove on the modified program, which can be done
either by the developer before committing changes or by an automatic system (continuous builder, regression testsuite,
etc.)

Costs and Limitations

Pointer-heavy code needs to be rewritten to follow the ownership policy or to hide pointers from SPARK analysis,
which may be difficult. The initial pass may require large, but shallow, rewrites in order to transform the code, for
example to rewrite functions with side effects into procedures.

13
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3.1 Initial Setup

GNATprove can only be run on the sources of a GNAT project (a file with extension ‘gpr’ describing source files and
switches to the GNAT compiler and other tools in the GNAT tool suite). As an installation check, start by applying
GNATprove to the project without any SPARK_Mode markers:

> gnatprove -P my_project.gpr --mode=check -j0

The -j0 switch analyzes files from the project in parallel, using as many cores as available, and the --mode=check
switch runs GNATprove in fast checking mode. GNATprove should output the following messages:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: fast partial checking of SPARK legality rules ...

If you installed SPARK in a different repository from GNAT, you may get errors about project files not found if
your project depends on XML/Ada, GNATCOLL, or any other project distributed with GNAT. In that case, you should
update the environment variable GPR_PROJECT_PATH as indicated in the SPARK User’s Guide: http://docs.adacore.
com/spark2014-docs/html/ug/en/install.html

After you successfully run GNATprove without errors, choose a simple unit in the project, preferably a leaf unit that
doesn’t depend on other units, and apply the SPARK_Mode marker to it by adding the following pragma at the start
of both the spec file (typically a file with extension ‘ads’) and the body file (typically a file with extension ‘adb’ for
this unit:

pragma SPARK_Mode;

Then apply GNATprove to the project again:

> gnatprove -P my_project.gpr --mode=check -j0

GNATprove should output the following messages, stating that SPARK legality rules were checked on the unit marked,
possibly followed by a number of error messages pointing to locations in the code where SPARK rules were violated:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: checking of SPARK legality rules ...

If you applied SPARK_Mode to a spec file without body (e.g., a unit defining only constants), GNATprove will notify
you that no body was actually analyzed:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
warning: no bodies have been analyzed by GNATprove
enable analysis of a body using SPARK_Mode

At this point, you should switch to using GNAT Studio, the integrated development environment provided with GNAT,
in order to more easily interact with GNATprove. For example, GNAT Studio provides basic facilities for code
navigation and location of errors that facilitate the adoption of SPARK. Open GNAT Studio on your project:

> gnatstudio -P my_project.gpr

There should be a SPARK menu available. Repeat the previous action within GNAT Studio by selecting the SPARK
→ Examine All menu, select the check fast mode in the popup window, and click Execute. The following snapshot
shows the popup window from GNAT Studio with these settings:

14 Chapter 3. Stone Level - Valid SPARK
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GNATprove should output the same messages as before. If error messages are generated, they should now be located
on the code that violates SPARK rules.

At this point, you have managed to run GNATprove successfully on your project. The next step is to evaluate how much
code can be identified as SPARK code. The easiest way to do that is to start by applying the marker SPARK_Mode to
all files, using a script like the following shell script:

# mark.sh
for file in $@; do

echo 'pragma SPARK_Mode;' > temp
cat $file >> temp
mv temp $file

done

or the following Python script:

# mark.py
import sys
for filename in sys.argv[1:]:

with open(filename, 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write('pragma SPARK_Mode;\n' + content)

These scripts, when called on a list of files as command-line arguments, insert a line with the pragma SPARK_Mode
at the beginning of each file. The list of files from a project can be obtained by calling GPRls when the project has
main files (that is, it generates executables instead of libraries):

> gprls -P my_project.gpr --closure

or by calling GPRbuild with suitable arguments as follows:

> gprbuild -q -f -c -P my_project.gpr -gnatd.n | grep -v adainclude | sort | uniq

One you’ve obtained the list of Ada source files in the project by one of the two methods mentioned previously, you
can systematically apply the SPARK_Mode marker to all the files with the small shell or Python script shown above:

> cat list_of_sources.txt | mark.sh

or:

3.1. Initial Setup 15
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> cat list_of_sources.txt | python mark.py

Then, open GNAT Studio on your project again and rerun the SPARK validity checker by again selecting menu SPARK
→ Examine All, select the check fast mode in the popup window that opens, and click Execute. This mode doesn’t issue
all possible violations of SPARK rules, but it runs much faster, so you should run in this mode initially. GNATprove
should output error messages located on code that violates SPARK rules. The section Dealing with SPARK Violations
explains how to address these violations by either modifying the code or excluding it from analysis.

After all the messages have been addressed, you should again rerun the SPARK validity checker, this time in a mode
where all possible violations are issued. Do this by again selecting menu SPARK → Examine All, but now select the
check all mode in the popup window that opens, and again click Execute. Again, GNATprove should output error
messages located on code that violates SPARK rules, which should also be addressed as detailed in section Dealing
with SPARK Violations.

A warning frequently issued by GNATprove at this stage looks like the following:

warning: no Global contract available for "F"
warning: assuming "F" has no effect on global items

This warning simply informs you that GNATprove could not compute a summary of the global variables read and
written by subprogram F, either because it comes from an externally built library (such as the GNAT standard library,
or XML/Ada) or because the implementation for F is not available to the analysis (for example if the code was not
yet developed, the subprogram is imported, or the file with the implementation of F was excluded from analysis). You
can provide this information to GNATprove by adding a Global contract to the declaration of F (see the section Global
Contract). Alternatively, you can suppress this specific warning by adding the following pragma either in the files that
trigger this warning or in a global configuration pragma file:

pragma Warnings (Off, "no Global Contract available",
Reason => "External subprograms have no effect on globals");

Note that, if required, you can suppress all warnings from GNATprove with the --warnings=off switch.

3.2 Dealing with SPARK Violations

For each violation reported by GNATprove, you must decide whether to modify the code to make it respect the
constraints of the SPARK subset or to exclude the code from analysis. If you make the first choice, GNATprove will
be able to analyze the modified code; for the second choice, the code will be ignored during the analysis. It is thus
preferable for you to modify the code whenever possible and to exclude code from analysis only as a last resort.

3.2.1 Excluding Code From Analysis

There are several ways to exclude code from analysis. Depending on the location of the violation, it may be more
appropriate to exclude the enclosing subprogram or package or the complete enclosing unit.

16 Chapter 3. Stone Level - Valid SPARK
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Excluding a Subprogram from Analysis

When a violation occurs in a subprogram body, you can exclude that specific subprogram body from analysis by
annotating it with a SPARK_Mode aspect with value Off as follows:

procedure Proc_To_Exclude (..) with SPARK_Mode => Off is ...
function Func_To_Exclude (..) return T with SPARK_Mode => Off is ...

When the violation occurs in the subprogram spec, you must exclude both the spec and body from analysis by anno-
tating both with a SPARK_Mode aspect with value Off. The annotation on the subprogram body is given above and
the annotation on the subprogram spec is similar:

procedure Proc_To_Exclude (..) with SPARK_Mode => Off;
function Func_To_Exclude (..) return T with SPARK_Mode => Off;

Both top-level subprograms and nested subprograms declared inside other subprograms can be excluded from analy-
sis. When only the subprogram body is excluded from analysis, the subprogram can still be called in SPARK code.
When you exclude both the subprogram spec and body from analysis, you must also exclude all code that calls the
subprogram.

Excluding a Package from Analysis

Just as with subprograms, both top-level packages and nested packages declared inside subprograms can be excluded
from analysis. The case of local packages declared inside packages is similar to the case of subprograms, so in the
following we only consider package units.

When a violation occurs in a package body, either in a subprogram or package in this package body, you can exclude
just that subprogram or package from analysis. Alternatively, or if the violation occurs in an object declaration that is
immediately contained by the package body, you can exclude the complete package body from analysis by removing
the pragma SPARK_Mode that was inserted at the start of the file. In that mode, you can still analyze subprograms and
packages declared inside the package body by annotating them with a SPARK_Mode aspect with value On as follows:

-- no pragma SPARK_Mode here
package body Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

When the violation occurs in the package spec, there are three possibilities: First, the violation can occur inside the
declaration of a subprogram or package in the package spec. In that case, you can exclude just that subprogram or
package from analysis by excluding both its spec and the corresponding body from analysis by annotating them with
a SPARK_Mode aspect with value Off as follows:

pragma SPARK_Mode;
package Pack_To_Analyze is

procedure Proc_To_Exclude (..) with SPARK_Mode => Off;
package Pack_To_Exclude with SPARK_Mode => Off is ...

end Pack_To_Analyze;

pragma SPARK_Mode;
package body Pack_To_Analyze is ...

procedure Proc_To_Exclude (..) with SPARK_Mode => Off is ...
package body Pack_To_Exclude with SPARK_Mode => Off is ...

end Pack_To_Analyze;
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Second, the violation can occur directly inside the private part of the package spec. In that case, you can exclude the
private part of the package from analysis by inserting a pragma SPARK_Modewith value Off at the start of the private
part and removing the pragma SPARK_Mode that was inserted at the start of the file containing the package body.
In that mode, entities declared in the visible part of the package spec, such as types, variables, and subprograms, can
still be used in SPARK code in other units, provided these declarations do not violate SPARK rules. In addition, it’s
possible to analyze subprograms or packages declared inside the package by annotating them with a SPARK_Mode
aspect with value On as follows:

pragma SPARK_Mode;
package Pack_To_Use is ...

-- declarations that can be used in SPARK code
private

pragma SPARK_Mode (Off);
-- declarations that cannot be used in SPARK code

end Pack_To_Use;

-- no pragma SPARK_Mode here
package body Pack_To_Use is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Use;

Finally, the violation can occur directly inside the package spec. In that case, you can exclude the complete package
from analysis by removing the pragma SPARK_Mode that was inserted at the start of the files for both the package
spec and the package body. In that mode, entities declared in the package spec, such as types, variables, and subpro-
grams, can still be used in SPARK code in other units, provided these declarations do not violate SPARK rules. In
addition, it’s also possible to analyze subprograms or packages declared inside the package, by annotating them with
a SPARK_Mode aspect with value On as follows:

-- no pragma SPARK_Mode here
package Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On;
package Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

-- no pragma SPARK_Mode here
package body Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

Note that the second and last cases above are not exclusive: the violations of the second case are in fact included in
those of the last case. In the second case, all declarations in the visible part of the package are analyzed as well as
their bodies when explicitly marked with a SPARK_Mode aspect. In the last case, only those declarations and bodies
explicitly marked with a SPARK_Mode aspect are analyzed.
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3.2.2 Modifying Code to Remove SPARK Violations

In many cases, code can be modified so that SPARK violations are either removed completely or are moved to some
part of the code that does not prevent most of the code from being analyzed. In general, this is good because SPARK
violations identify features that may be more difficult to maintain (such as side effects in functions) or to understand
(such as aliasing through pointers). Below, we consider typical SPARK violations found in Ada code and show how
to address each by modifying the code. When code modification is not possible or is too complex/costly, the code
with the violation should be excluded from analysis by following the recommendations of the previous section. The
following table lists the main restrictions of SPARK that lead to violations in Ada code and how they are typically
addressed, as detailed in the rest of this section.

How to remove the violation How to hide the violation
Refactor use of access
type

Use references, addresses, or indexes in
an array or a collection, refactor to follow
ownership policy

Use a private type, defined as ac-
cess type in a private section marked
SPARK_Mode Off

Side effect in function Transform function to a procedure with
additional parameter for result

Mark function body with SPARK_Mode
Off and function spec with Global
=> null to hide side-effect

Exception handler Use result value to notify caller of error
when recovery is required

Split subprogram into functionality with-
out exception handler, and wrapper
with exception handler marked with
SPARK_Mode Off

In the following, we consider the error messages that are issued in each case.

attribute “Access” is not allowed in SPARK

See ‘general access type is not allowed in SPARK’

access to subprogram type is not allowed in SPARK

Calls to subprograms through an access-to-subprogram variable can be isolated inside a wrapper subprogram as fol-
lows:

Callback : Sub_T;

procedure Wrap (Arg1, Arg2 : T);

procedure Wrap (Arg1, Arg2 : T)
with SPARK_Mode => Off

is
begin

Callback.all (Arg1, Arg2);
end Wrap;

Similarly for passing a subprogram as an an access-to-subprogram parameter; this can be isolated inside a wrapper
subprogram as follows:

procedure Proc (Arg1, Arg2 : T);
procedure Call_Sub (Sub : Sub_T);
procedure Wrap;

procedure Wrap

(continues on next page)
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(continued from previous page)

with SPARK_Mode => Off
is
begin

Call_Sub (Proc'Access);
end Wrap;

The wrapper can even be made generic if some common processing needs to be performed before and/or after the
call. In that case, Ada rules prevent directly taking the address of the subprogram (procedure or function) inside the
generic, so a local wrapper should be used and its address taken:

procedure Proc (Arg1, Arg2 : T);
procedure Call_Sub (Sub : Sub_T);
procedure Wrap;

generic
with procedure P (Arg1, Arg2 : T);

procedure Wrap;

procedure Wrap
with SPARK_Mode => Off

is
procedure Local_Wrap (Arg1, Arg2 : T) is
begin

P (Arg1, Arg2);
end Local_Wrap;

begin
-- pre-treatments here
Call_Sub (Local_Wrap'Access);
-- post-treatments here

end Wrap;

procedure Wrap_Proc is new Wrap (Proc);

Depending on how type Sub_T is defined, the attribute Unchecked_Access may need to be used instead of the
attribute Access in the code above.

function with “in out” parameter is not allowed in SPARK

This error is issued for a function with an ‘in out’ parameter. For example:

function Increment_And_Add (X, Y : in out Integer) return Integer is
--<<-- VIOLATION

begin
X := X + 1;
Y := Y + 1;
return X + Y;

end Increment_And_Add;

The function can be transformed into a procedure by adding an ‘out’ parameter for the returned value, as follows:

procedure Increment_And_Add (X, Y : in out Integer; Result : out Integer) is
begin

X := X + 1;
Y := Y + 1;
Result := X + Y;

end Increment_And_Add;
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function with output global “X” is not allowed in SPARK

This error is issued for a function with a side effect on a non-local variable. For example:

Count : Integer := 0;

function Increment return Integer is
begin

Count := Count + 1; --<<-- VIOLATION
return Count;

end Increment;

The function can be transformed into a procedure by adding an ‘out’ parameter for the returned value, as follows:

procedure Increment (Result : out Integer) is
begin

Count := Count + 1;
Result := Count;

end Increment;

Alternatively, when a side effect has no influence on the properties to be verified, it can be masked to the analysis. For
example, consider a procedure Log that writes global data, causing all of its callers to have side effects:

Last : Integer := 0;

procedure Log (X : Integer) is
begin

Last := X;
end Log;

function Increment_And_Log (X : Integer) return Integer is
begin

Log (X); --<<-- VIOLATION
return X + 1;

end Increment_And_Log;

A legitimate solution here is to mask the side effects in procedure Log for the analysis, by annotating the spec of Log
with an aspect Global with value null and by excluding the body of Log from analysis:

procedure Log (X : Integer)
with Global => null;

Last : Integer := 0;

procedure Log (X : Integer)
with SPARK_Mode => Off

is
begin

Last := X;
end Log;

function Increment_And_Log (X : Integer) return Integer is
begin

Log (X);
return X + 1;

end Increment_And_Log;
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general access type is not allowed in SPARK

These errors are issued on uses of general access types, that is, pointers which are allowed to designate objects allocated
on the stack. These access types are identified by the keywords all or constant. For example:

type Int_Acc is access all Integer; --<<-- VIOLATION
type Int_Cst is access constant Integer; --<<-- VIOLATION

Data1 : Integer;
Data2 : Boolean;
Data3 : Int_Acc;

procedure Operate is
begin

Data1 := 42;
Data2 := False;
Data3.all := 42;

end Operate;

Uses of access types that are not allowed by SPARK can sometimes be rewritten, either to remove the access com-
pletely (using in out parameters for example) or to fit the ownership policy of SPARK (allocate data on the heap
and ensure that each allocated block has a single owner at every program point). It may not be possible if the program
needs to reference values declared on the stack through pointers or when dealing with data-structures involving cyclic
references for example.

In some cases, the use of access types can be moved from the subprogram into a helper subprogram, which is
then excluded from analysis. For example, we can modify the code above as follows, where both the declaration
of global variable Data3 (an access value) and the assignment to Data3.all are grouped in a package body
Memory_Accesses that is excluded from analysis, while the package spec for Memory_Accesses can be used
in SPARK code:

Data1 : Integer;
Data2 : Boolean;

package Memory_Accesses is
procedure Write_Data3 (V : Integer);

end Memory_Accesses;

package body Memory_Accesses
with SPARK_Mode => Off

is
type Int_Acc is access all Integer;
Data3 : Int_Acc;

procedure Write_Data3 (V : Integer) is
begin

Data3.all := V;
end Write_Data3;

end Memory_Accesses;

procedure Operate is
begin

Data1 := 42;
Data2 := False;
Memory_Accesses.Write_Data3 (42);

end Operate;

In other cases, the access type needs to be visible from client code, but the fact that it’s implemented as a general
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access type need not be visible to client code. Here’s an example:

type Ptr is access all Integer; --<<-- VIOLATION

procedure Operate (Data1, Data2, Data3 : Ptr) is
begin

Data1.all := Data2.all;
Data2.all := Data2.all + Data3.all;
Data3.all := 42;

end Operate;

Here the general access type can be declared as a private type in either a local package or a package defined in a
different unit, whose private part (and possibly also its package body) is excluded from analysis. For example, we can
modify the code above as follows, where the type Ptr together with accessors to query and update objects of type
Ptr are grouped in package Ptr_Accesses:

package Ptr_Accesses is
type Ptr is limited private;
function Get (X : Ptr) return Integer;
procedure Set (X : Ptr; V : Integer);

private
pragma SPARK_Mode (Off);
type Ptr is access all Integer;

end Ptr_Accesses;

package body Ptr_Accesses
with SPARK_Mode => Off

is
function Get (X : Ptr) return Integer is (X.all);
procedure Set (X : Ptr; V : Integer) is
begin

X.all := V;
end Set;

end Ptr_Accesses;

procedure Operate (Data1, Data2, Data3 : Ptr_Accesses.Ptr) is
use Ptr_Accesses;

begin
Set (Data1, Get (Data2));
Set (Data2, Get (Data2) + Get (Data3));
Set (Data3, 42);

end Operate;

Note that we have chosen to make Ptr a limited type. It will help to prevent harmful aliasing by disallowing copies
of objects of type Ptr.

handler is not allowed in SPARK

This error is issued for exception handlers. For example:

Not_Found : exception;

procedure Find_Before_Delim
(S : String;
C, Delim : Character;
Found : out Boolean;

(continues on next page)
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Position : out Positive)
is
begin

for J in S'Range loop
if S(J) = Delim then

raise Not_Found;
elsif S(J) = C then

Position := J;
Found := True;
return;

end if;
end loop;
raise Not_Found;

exception --<<-- VIOLATION
when Not_Found =>

Position := 1;
Found := False;

end Find_Before_Delim;

A subprogram with an exception handler can usually be split between core functionality, which may raise exceptions
but does not contain any exception handlers and thus can be analyzed, and a wrapper calling the core functionality,
which contains the exception handler and is excluded from analysis. For example, we can modify the code above
to perform the search for a character in function Find_Before_Delim, which raises an exception if the desired
character is not found before either the delimiter or the end of the string, and a procedure Find_Before_Delim,
which wraps the call to function Find_Before_Delim, as follows:

Not_Found : exception;

function Find_Before_Delim (S : String; C, Delim : Character) return Positive is
begin

for J in S'Range loop
if S(J) = Delim then

raise Not_Found;
elsif S(J) = C then

return J;
end if;

end loop;
raise Not_Found;

end Find_Before_Delim;

procedure Find_Before_Delim
(S : String;
C, Delim : Character;
Found : out Boolean;
Position : out Positive)
with SPARK_Mode => Off

is
begin

Position := Find_Before_Delim (S, C, Delim);
Found := True;

exception
when Not_Found =>

Position := 1;
Found := False;

end Find_Before_Delim;
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insufficient permission for “X”

This error is issued on code dealing with pointers. The use of access types is restricted in SPARK by an ownership
policy aiming at preventing aliases between allocated memory reachable through different objects. This is enforced by
GNATprove using a notion of permission. At each program point, objects of a type containing pointers are associated
to a permission. The permission associated to an object, or a part of an object, can be modified during the execution of
the program. The rules of SPARK ensure that at any given program point, either there is only one view of the object
with permission Read-Write or there are several views, but with permission Read-Only.

When an operation is attempted on an object X which does not have the adequate permission, GNATprove will raise
an error insufficient permission for "X". In general, this error is followed by a continuation message
explaining why the permission is insufficient. For example, in the following code, GNATprove complains about the
permission of X in the last assertion:

procedure Ownership_Transfer is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(1);
Y : Int_Ptr;

begin
pragma Assert (X.all = 1);
Y := X;
Y.all := 2;
pragma Assert (X.all = 2); --<<-- VIOLATION

end Ownership_Transfer;

GNATprove outputs the following messages:

ownership_transfer.adb:9:21: insufficient permission on dereference from "X"
ownership_transfer.adb:9:21: object was moved at line 7

The continuation line explains that X was moved by the assignment into Y. Indeed, when X is assigned into Y, the
permission associated to X is changed, so that it is no longer possible to read the allocated memory now reachable
through Y from X.

When such errors occur in a piece of code, there are two possibilities. The first one is to hide the pointers from SPARK
using SPARK_Mode, see the explanations for general access types for more details. The second is to transform the
code to comply with the ownership policy of SPARK. In our example, we should no longer try to access the allocated
memory through X and rather use Y. It may also be necessary to assign null to moved objects so that they are back
to a readable state:

procedure Ownership_Transfer is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(1);
Y : Int_Ptr;

begin
pragma Assert (X.all = 1);
Y := X;
Y.all := 2;
pragma Assert (Y.all = 2);
X := null;
pragma Assert (X = null);

end Ownership_Transfer;
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side effects of function “F” are not modeled in SPARK

This error is issued for a call to a function with side effects on non-local variables. Note that a corresponding er-
ror ‘function with output global “X” is not allowed in SPARK’ will also be issued for function F if it’s marked
SPARK_Mode with value On (either directly or in a region of code marked as such). For example, on the following
code, calling the function Increment_And_Log seen previously:

procedure Call_Increment_And_Log is
X : Integer;

begin
X := Increment_And_Log (10); --<<-- VIOLATION

end Call_Increment_And_Log;

The called function can be transformed into a procedure as seen previously. If it’s not marked SPARK_Mode with
value On, a legitimate solution might be to mask its side effects for the analysis, by annotating its spec with a Global
aspect with value null.
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CHAPTER

FOUR

BRONZE LEVEL - INITIALIZATION AND CORRECT DATA FLOW

The goal of reaching this level is to make sure that no uninitialized data can ever be read and, optionally, to prevent
unintended access to global variables. This also ensures no possible interference between parameters and global
variables; i.e., the same variable isn’t passed multiple times to a subprogram, either as a parameter or global variable.

Benefits

The SPARK code is guaranteed to be free from a number of defects: no reads of uninitialized variables, no possible
interference between parameters and global variables, no unintended access to global variables.

When Global contracts are used to specify which global variables are read and/or written by subprograms, main-
tenance is facilitated by a clear documentation of intent. This is checked automatically by GNATprove, so that any
mismatch between the implementation and the specification is reported.

Impact on Process

An initial pass is required where flow analysis is enabled and the resulting messages are resolved either by rewriting
code or justifying any false alarms. Once this is complete, ongoing maintenance can preserve the same guarantees at
a low cost. A few simple idioms can be used to avoid most false alarms, and the remaining false alarms can be easily
justified.

Costs and Limitations

The initial pass may require a substantial effort to deal with the false alarms, depending on the coding style adopted
up to that point. The analysis may take a long time, up to an hour on large programs, but it is guaranteed to terminate.
Flow analysis is, by construction, limited to local understanding of the code, with no knowledge of values (only code
paths) and handling of composite variables is only through calls, rather than component by component, which may
lead to false alarms.

4.1 Running GNATprove in Flow Analysis Mode

Two distinct static analyses are performed by GNATprove. Flow analysis is the faster and requires no user-supplied
annotations. It tracks the flow of information between variables on a per subprogram basis. In particular, it allows
finding every potential use of uninitialized data. The second analysis technique, proof, will be described in the sections
on Silver and Gold levels.

To run GNATprove in flow analysis mode on your project, select the SPARK → Examine All menu. In the GNAT
Studio panel, select the flow analysis mode, check the Do not report warnings box, uncheck the Report checks proved
box, and click Execute. The following snapshot shows the popup window from GNAT Studio with these settings:
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GNATprove should output the following messages, possibly followed by a number of messages pointing to potential
problems in your program:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

The following messages output by GNATprove are check messages and should have the form:

medium: "V" might not be initialized

Listed first is the severity of the check, which is one of low, medium, or high. It reflects both the likelihood that the
reported problem is indeed a bug and the criticality if it is a bug. Following the colon is the type of check message,
here a potential read of an uninitialized variable. They’ll be located at the point in your code where the error can occur.
The corresponding line in GNAT Studio will be highlighted in red.

Flow analysis can issue several types of check messages. In this document, we concentrate on the two most com-
mon ones. Initialization checks relate to uses of uninitialized data and are described in section Initialization Checks.
Section Aliasing discusses check messages related to aliasing of subprogram parameters and global variables. Other
check messages can also be issued when volatile variables or tasking constructs are used. You can find more in-
formation about these additional checks in http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_
gnatprove_output.html#description-of-messages.

Once you have addressed each check message, you can rerun flow analysis with the Report checks proved box checked
to see the verification successfully performed by GNATprove. This time, it should only issue ‘info’ messages, high-
lighted in green in GNAT Studio, like the following:

info: initialization of "V" proved

Flow analysis can also generate warnings about dead code, unused variables or incorrect parameter modes. To achieve
this level, it may be useful to look at these warnings. We explain how this can be done in section Flow Analysis
Warnings.

As further optional steps at this level, critical parts of the program can be annotated to make sure they don’t make
unintended accesses to global data. This activity is explained in section Global Annotations.
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4.2 Initialization Checks

Initialization checks are the most common check messages issued by GNATprove in flow analysis mode. Indeed, each
time a variable is read or returned by a subprogram, GNATprove performs a check to make sure it has been initialized.
A failed initialization check message can have one of the two forms:

high: "V" is not initialized

or:

medium: "V" might not be initialized

Choose a unit in which GNATprove reports an unproved initialization check and open it in GNAT Studio. You can
launch flow analysis on only this unit by opening the SPARK → Examine File menu, selecting the flow analysis mode
in the GNAT Studio panel, checking the Do not report warnings box, unchecking the Report checks proved box, and
clicking Execute. To investigate an unproved initialization check, click on the corresponding check message in the
GNAT Studio Locations tab. The editor should move to the corresponding location in your program.

Not all unproved initialization checks denote actual reads of uninitialized variables: SPARK features a stronger ini-
tialization policy than Ada and the verification of initialization of variables in GNATprove has some limitations.
Determining whether an initialization check issued by GNATprove is a real error involves code review and is usually
straightforward. While actual reads of uninitialized data must be corrected, check messages that don’t correspond to
actual errors (called ‘false alarms’ or ‘false positives’) can be either ‘justified’, that is, annotated with a proper justifi-
cation (see section Justifying Unproved Check Messages), or worked around. The rest of this section reviews the most
common cases where GNATprove may produce unproved initialization checks, and then describes how the code can
be changed to avoid false alarms or, alternately, explains how they can be justified.

4.2.1 SPARK Strong Data Initialization Policy

GNATprove verifies data initialization modularly on a per-subprogram basis. To allow this verification, the SPARK
language requires a stronger data initialization policy than standard Ada: you should initialize every global variable
that is read by a subprogram and every variable passed to the subprogram as an ‘in’ or ‘in out’ parameter .

procedure P (X : in out Integer) is
begin

X := X + 1; --<<-- ok
end P;
X : Integer;
P (X); --<<-- high: "X" is not initialized

Parameters of mode ‘out’ are considered to always be uninitialized on subprogram entry so their value should not be
read prior to initialization:

procedure P (X : out Integer) is
begin

X := X + 1; --<<-- high: "X" is not initialized
end P;
X : Integer;
P (X); --<<-- ok

The expression returned from a function and the parameters of mode ‘out’ of a procedure should be initialized on the
subprogram’s return:
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procedure P (X : out Integer) is --<<-- high: "X" is not initialized in P
begin

null;
end P;

If a global variable is completely initialized by a subprogram, it’s considered as an output of the subprogram and
SPARK does not require it to be initialized at subprogram entry:

G : Integer;
procedure P is --<<-- info: initialization of "G" proved
begin

G := 0;
end P;

You can find more information about SPARK’s data initialization policy in the SPARK User’s Guide: http://docs.
adacore.com/spark2014-docs/html/ug/en/source/language_restrictions.html#data-initialization-policy.

In some cases, this initialization policy may be too constraining. For example, consider the following Search proce-
dure:

procedure Search (A : Nat_Array;
E : Natural;
Found : out Boolean;
Result : out Positive)

is
begin

for I in A'Range loop
if A (I) = E then

Found := True;
Result := I;
return;

end if;
end loop;
Found := False;

end Search;

This code is perfectly safe as long as the value of Result is only read when Found is True. Nevertheless, flow
analysis issues an unproved check on Result’s declaration:

medium: "Result" might not be initialized in "Search"

You can consider this check message as a false alarm and can easily either justify it (see section on Justifying Unproved
Check Messages) or work around it, depending on what is more appropriate. A safer alternative, however, is to always
initialize Result on all paths through Search.

4.2.2 Handling of Composite Objects as a Whole

It follows from the SPARK initialization policy that ‘out’ parameters of a composite type must be completely defined
by the subprogram. One consequence is that it is not possible to fully initialize a record object by successively
initializing each component through procedure calls:

type R is record
F1 : Integer;
F2 : Integer;

end record;
(continues on next page)
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procedure Init_F1 (X : out R) is
--<<-- high: "X.F2" is not initialized in "Init_F1"

begin
X.F1 := 0;

end Init_F1;

procedure Init_F2 (X : in out R) is
begin

X.F2 := 0;
end Init_F2;

X : R;
Init_F1 (X);
Init_F2 (X);

4.2.3 Imprecise Handling of Arrays

Though record objects are treated as composites for interprocedural data initialization, the initialization status of each
record component is tracked independently inside a single subprogram. For example, a record can be initialized by
successive assignments into each of its components:

X : R;
X.F1 := 0;
X.F2 := 0;
P (X); --<<-- info: initialization of "Y.F1" proved

--<<-- info: initialization of "Y.F2" proved

The same isn’t true for arrays because checking that each index of an array has been initialized in general requires
dynamic evaluation of expressions (to compute which indexes have been assigned to). As a consequence, GNATprove
considers an update of an array variable as a read of this variable and issues an unproved initialization check every time
an assignment is done into a potentially uninitialized array. It then assumes that the whole array has been initialized for
the rest of the analysis. Specifically, initializing an array element-by-element will result in an unproved initialization
check:

A : Nat_Array (1 .. 3);
A (1) := 1; --<<-- medium: "A" might not be initialized
A (2) := 2; --<<-- info: initialization of "A" proved

However, GNATprove detects the common pattern of initializing an array in a loop that iterates over the entire range
of the array index values, for example:

type Index_T is range 1 .. 10;
type Array_T is array (Index_T) of Integer;

procedure Example (A : out Array_T) is
begin

for I in Index_T loop
if I < 5 then

A (I) := 0;
else

A (I) := 1;
end if;

end loop;
end Example;
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Here flow analysis will detect that the entire array A is initialized and not issue spurious checks for the assignment
statements.

4.2.4 Value Dependency

Flow analysis is not value dependent, meaning that it is not influenced by the actual value of expressions. As a
consequence, it’s not able to determine that some paths of a program are impossible, so it may issue unproved checks on
such a path. For example, in the following program, GNATprove cannot verify that X1 is initialized in the assignment
to X2 even though the two ‘if’ statements share the same condition:

X1 : Integer;
X2 : Integer;
if X < C then

X1 := 0;
end if;
if X < C then

X2 := X1; --<<-- medium: "X1" might not be initialized
end if;

4.2.5 Rewriting the Code to Avoid False Alarms

In cases where the code can be modified, it may be a good idea to rewrite it so that GNATprove can successfully
verify data initialization. In the following, we list these modifications, starting from the least intrusive and ending
with the most intrusive. It’s best to initialize variables at their declaration, and this is the recommended work-around
whenever possible since it only requires modifying the variable declaration and is not very error-prone. However, it is
not applicable to variables of a private type and may be difficult for complex data and inefficient for large structures.

A : Nat_Array (1 .. 3) := (others => 0);
A (1) := 1; --<<-- info: initialization of "A" proved
A (2) := 2; --<<-- info: initialization of "A" proved

Another option is to add a default to the variable’s type, though this is more intrusive as it impacts every variable
of that type with default initialization. For example, if the initializing expression is complex and there are thou-
sands of variables of this type which are initialized by default, this may impact the overall running time of the
application. On the other hand, it’s especially useful for private types, for which the previous work-around is not
applicable. A default initial value can be defined for scalar types using Default_Value, for array types using
Default_Component_Value, and for record types by introducing a default for each record component:

type My_Int is new Integer with Default_Value => 0;
type Nat_Array is array (Positive range <>) of Natural with

Default_Component_Value => 0;
type R is record

F1 : Integer := 0;
F2 : My_Int;

end record;

You can also annotate a private type with the Default_Initial_Condition aspect, which defines a property
that should hold whenever a variable of this type is initialized by default. When no property is provided, it defaults
to True and implies that the type can be safely initialized by default. This provides a way to specify that objects of
that type should be considered as fully initialized by default, even if not all components of that type are initialized by
default. For example, in the case of type Stack below, the object S of type Stack is seen as initialized even though
the component Content of Stack is not initialized by default. If the full view of the type is in SPARK, a single
initialization check will be issued for such a type at the type’s declaration. For example, GNATprove issues a message
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to point out that type Stack is not fully initialized by default, even if its Default_Initial_Condition aspect
makes this promise:

type Stack is private with Default_Initial_Condition;
type Stack is record

Size : Natural := 0;
Content : Nat_Array (1 .. Max);

end record; --<<-- medium: type "Stack" is not fully initialized

S : Stack;
P (S); --<<-- info: initialization of "S.Size" proved

--<<-- info: initialization of "S.Content" proved

Yet another option is to refactor code to respect the SPARK data initialization policy. Specifically, initialize every
component of a record object in a single procedure and always initialize subprogram outputs. Alternatively, partial
initialization (only on some program paths) can be implemented through a variant record:

type Optional_Result (Found : Boolean) is record
case Found is

when False => null;
when True => Content : Positive;

end case;
end record;

procedure Search (A : Nat_Array;
E : Natural;
Result : out Optional_Result)

is
begin

for I in A'Range loop
if A (I) = E then

Result := (Found => True, Content => I);
return;

end if;
end loop;
Result := (Found => False);

end Search;

4.2.6 Justifying Unproved Check Messages

You can selectively accept check messages, like those emitted for data initialization, by supplying an appropriate
justification. When you do that, the tool silently assumes the data affected by the justified check has been initialized
and won’t warn again about its uses. To annotate a check, add a pragma Annotate in the source code on the line
following the failed initialization check:

pragma Annotate (GNATprove, Category, Pattern, Reason);

A pragma Annotate expects exactly four arguments. The first is fixed and should always be GNATprove. The
second argument, named Category, can be either False_Positive or Intentional. False_Positive
should be used when the data is initialized by the program but GNATprove is unable to verify it, while Intentional
should be used when the variable is not initialized, but for some reason this is not a problem; some examples will be
given later. The third argument, named Pattern, should be a part of the check message. For initialization checks,
‘“X” might not be initialized’ or ‘“X” is not initialized’, depending on the message, is appropriate. Finally, the last
argument is the most important. It captures why the check was accepted. It should allow reviewing the justification
easily, and it’s good practice to identify the author of the justification, using the format ‘<initials> <reason>’; for
example, ‘YM variable cannot be zero here’.
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A complete description of how checks can be justified is given in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#justifying-check-messages.

On the code below, GNATprove is unable to verify that the array A is initialized by successive initialization of its
elements:

A : Nat_Array (1 .. 3);
A (1) := 1;
pragma Annotate
(GNATprove,
False_Positive,
"""A"" might not be initialized",
String'("A is properly initialized by these " &

"three successive assignments"));
A (2) := 2;
A (3) := 3;

Since the array A is correctly initialized by the code above, the annotation falls in the category False_Positive.
Note that the pragma Annotate must be located just after the line for which the check message is issued. The
String'(...) qualification for the justification argument is required for technical reasons.

Because SPARK enforces a stronger initialization policy than Ada, you may want to justify a check message for a
variable that may not be completely initialized. In this case, you should be especially careful to precisely state the
reasons why the check message is acceptable since the code may change later and SPARK would not spot any invalid
usage of the annotated variable. For example, when we accept the check message stating that Result may not be
initialized by Search, we must explain precisely what is required both from the implementation and from the callers
to make the review valid:

procedure Search (A : Nat_Array;
E : Natural;
Found : out Boolean;
Result : out Positive);

pragma Annotate
(GNATprove,
Intentional,
"""Result"" might not be initialized",
String'("Result is always initialized when Found is True and never"

& " read otherwise");

As another example, we can assume every instance of a stack is initialized by default only under some assumptions
that should be recorded in the justification message:

type Stack is private with Default_Initial_Condition;
type Stack is record

Size : Natural := 0;
Content : Nat_Array (1 .. Max);

end record;
pragma Annotate
(GNATprove,
Intentional,
"""Stack"" is not fully initialized",
String'("The only indexes that can be accessed in a stack are"

& " those no greater than Size. The elements at these indexes will always"
& " have been initialized."));

On existing, thoroughly tested code, unconditional reads of uninitialized data are rather unlikely. Nevertheless, there
may be a path through the program where an uninitialized variable can be read. Before justifying an unproved initial-
ization check, it’s important to understand why it’s not proved and what are the assumptions conveyed to the tool when
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justifying it. The result of this analysis should then be specified in the Reason argument of pragma Annotate to
simplify later reviews.

4.3 Aliasing

4.3.1 Detecting Possible Aliasing

In SPARK, an assignment to one variable cannot change the value of another variable. This is enforced by forbidding
the use of access types (‘pointers’) and by restricting aliasing between parameters and global variables so that only
benign aliasing is accepted (i.e. aliasing that does not cause interference).

A check message concerning a possible aliasing has the form:

high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

This message is warning that, for the call at the given location, the variable Y supplied for the formal parameter X of
the subprogram was already visible in the subprogram. As a result, assignments to Y in the subprogram will affect the
value of X and vice versa. This is detected as an error by GNATprove, which always assumes variables to be distinct.

As stated in the check message, the precise rules for aliasing are detailed in SPARK Reference Manual section 6.4.2.
They can be summarized as follows:

Two out parameters should never be aliased. Notice that trivial cases of parameter aliasing are already forbidden by
Ada and reported as errors by the compiler, such as the call of the following subprogram:

procedure Swap (X, Y : in out Integer);

Swap (Z, Z); --<<-- writable actual for "X" overlaps with actual for "Y"

An ‘in’ and an ‘out’ parameter should not be aliased:

procedure Move_X_To_Y (X : in T; Y : out T);

Move_X_To_Y (Z, Z);
--<<-- high: formal parameters "X" and "Y" are aliased (SPARK RM 6.4.2)

As an exception, SPARK allows aliasing between an ‘in’ and an ‘out’ parameter if the ‘in’ parameter is always passed
by copy. For example, if we change T to Integer in the previous example (so that the arguments are always passed
by copy), GNATprove no longer outputs any unproved check message:

procedure Move_X_To_Y (X : in Integer; Y : out Integer);

Move_X_To_Y (Z, Z); --<<-- ok

However, an ‘out’ parameter should never be aliased with a global variable referenced by the subprogram. This is
really the same as aliasing between output parameters, but the compiler doesn’t track uses of global variables and thus
does not report the error:

procedure Swap_With_Y (X : in out Integer);

Swap_With_Y (Y);
--<<-- high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

Note that aliasing between an ‘out’ parameter and a global variable is also forbidden even if the global variable is
never written:
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procedure Move_X_To_Y (Y : out Integer);

Move_X_To_Y (X);
--<<-- high: formal parameter "Y" and global "X" are aliased (SPARK RM 6.4.2)

An ‘in’ parameter should not be aliased with a global variable written by the subprogram:

procedure Move_X_To_Y (X : in T);

Move_X_To_Y (Y);
--<<-- high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

Just like aliasing between parameters, aliasing is allowed if the ‘in’ parameter is always passed by copy:

procedure Move_X_To_Y (X : in Integer);

Move_X_To_Y (Y); --<<-- ok

Note that aliasing can also occur between parts of composite variables such as components of records or elements
of arrays. You can find more information about aliasing in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/language_restrictions.html#absence-of-interferences.

4.3.2 Dealing with Unproved Aliasing Checks

Complying with SPARK rules concerning aliasing usually requires refactoring the code. This is, in general, a good idea
because aliasing can be the source of errors that are difficult to find since they only occur in some cases. When calling
a subprogram with aliased parameters, there’s a good chance of failing in a case the implementer of the subprogram
has not considered and thus producing an inappropriate result. Furthermore, the behavior of a subprogram call when
its parameters are aliased depends on how parameters are passed (by copy or by reference) and on the order in which
the by-copy parameters, if any, are copied back. Since these are not specified by the Ada language, it may introduce
either compiler or platform dependencies in the behavior of the program.

In some situations GNATprove’s analysis is not precise enough and the tool issues an unproved check message even
when there is no possible aliasing. This can occur, for example, for aliasing between a subprogram input parameter
and an output global variable referenced by the subprogram if the parameter is not of a by-copy type (a type mandated
to be passed by value by the Ada standard) but for which the developer knows that, in their environment, the compiler
indeed passes it by copy. In this case, the check message can be justified similarly to initialization checks:

type T is record
F : Integer;

end record with
Convention => C_Pass_By_Copy;

procedure Move_X_To_Y (X : in T);

Move_X_To_Y (Y);
pragma Annotate
(GNATprove,
False_Positive,
"formal parameter ""X"" and global ""Y"" are aliased",
String'("My compiler follows Ada RM-B-3 68 implementation advice"

& " and passes variables of type T by copy as it uses the"
& " C_Pass_By_Copy convention"));

GNATprove restrictions explained in the section about initialization checks can also lead to false alarms, in particular
for aliasing between parts of composite objects. In the following example, Only_Read_F2_Of_X only references
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the component F2 in X. But, since GNATprove handles composite global variables as a whole, it still emits an unproved
aliasing check in this case, which can be justified as follows:

procedure Only_Read_F2_Of_X (Y : out Integer);

Only_Read_F2_Of_X (X.F1);
pragma Annotate
(GNATprove,
False_Positive,
"formal parameter ""Y"" and global ""X"" are aliased",
String'("Only_Read_F2_Of_X only references the component F2 in X"

& " so no aliasing can be introduced with X.F1"));

In the same way, because it is not value dependent, flow analysis emits an unproved aliasing check when two (distinct)
indices of an array are given as output parameters to a subprogram. This can be justified as follows:

pragma Assert (I = 2);
Swap (A (1), A (I));
pragma Annotate
(GNATprove,
False_Positive,
"formal parameters ""X"" and ""Y"" might be aliased",
String'("As I is equal to 2 prior to the call, A (1) and A (I) are"

& " never aliased."));

4.4 Flow Analysis Warnings

Other than check messages, flow analysis can also issue warnings, which usually flag suspicious code that may be
the sign of an error in the program. They should be inspected, but can be suppressed when they’re deemed spurious,
without risk of missing a critical issue for the soundness of the analysis. To see these warnings, run the tool in flow
analysis mode with warnings enabled. Select SPARK → Examine All menu, in the GNAT Studio panel, select the flow
mode, uncheck the Do not report warnings and Report checks proved boxes, and click Execute.

GNATprove warnings, like the compiler warnings, are associated with a source location and prefixed with the word
‘warning’:

warning: subprogram "Test" has no effect

You can suppress GNATprove warnings globally by using the switch --warnings=off, which is equivalent to
checking the Do not report warnings box in GNAT Studio, or locally by using pragma Warnings. For example,
the above warning can be suppressed by switching off local warnings with the above message around the declaration
of the procedure Test as follows:

pragma Warnings
(Off,
"subprogram ""Test"" has no effect",
Reason => "Written to demonstrate GNATprove's capabilities");

procedure Test;

pragma Warnings (On, "subprogram ""Test"" has no effect");

As noted earlier, a common practice is to identify the author of the pragma, using the format ‘<initials> <reason>’; for
example CD subprogram is only a test.
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How warnings can be suppressed in GNATprove is described in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#suppressing-warnings.

The rest of this section lists warnings that may be issued by GNATprove and explains the meaning of each.

initialization of X has no effect

Flow analysis tracks the flow of information between variables. While doing so, it can detect cases where the initial
value of a variable is never used to compute the value of any object. It reports this situation with a warning:

function Init_Result_Twice return Integer is
Result : Integer := 0;

--<<-- warning initialization of Result has no effect
begin

Result := 1;
return Result;

end Init_Result_Twice;

unused assignment

Flow analysis also detects assignments which store into a variable a value that is never subsequently read:

procedure Write_X_Twice (X : out Integer) is
begin

X := 1; --<<-- warning: unused assignment
X := 2;

end Write_X_Twice;

Note that flow analysis is not value dependent. As a consequence, it cannot detect cases when an assignment is useless
because it stores the same value that that the target variable currently holds:

procedure Write_X_To_Same (X : in out Integer) is
Y : Integer;

begin
Y := X;
X := Y; --<<-- no warning

end Write_X_To_Same;

“X” is not modified, could be IN

Flow analysis also checks the modes of subprogram parameters. It warns on ‘in out’ parameters whose value is never
modified:

procedure Do_Not_Modify_X (X, Y : in out Integer) is
--<<-- warning: "X" is not modified, could be IN

begin
Y := Y + X;

end Do_Not_Modify_X;
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unused initial value of “X”

Flow analysis also detects an ‘in’ or ‘in out’ parameter whose initial value is never read by the program:

procedure Initialize_X (X : in out Integer) is
--<<-- warning: unused initial value of "X"

begin
X := 1;

end Initialize_X;

statement has no effect

Flow analysis can detect a statement which has no effect on any output of the subprogram:

procedure Initialize_X (X : out Integer) is
Y : Integer;

begin
Set_To_One (Y); --<<-- statement has no effect
X := 1;

end Initialize_X;

subprogram “S” has no effect

When a subprogram as a whole has no output or effect, it’s also reported by GNATprove:

procedure Do_Nothing is
--<<-- warning: subprogram "Do_Nothing" has no effect

begin
null;

end Do_Nothing;

4.5 Global Annotations

4.5.1 Global Contract

In addition to what’s been presented so far, you may want to use flow analysis to verify specific data-dependency
relations. This can be done by providing the tool with additional Global contracts stating the set of global variables
accessed by a subprogram. You only need to supply contracts that you want to verify. Other contracts will be auto-
matically inferred by the tool. The simplest form of data dependency contract states that a subprogram is not allowed
to either read or modify global variables:

procedure Increment (X : in out Integer) with
Global => null;

This construct uses the Ada 2012 aspect syntax. You must place it on the subprogram declaration if any, otherwise on
the subprogram body. You can use an alternative notation based on pragmas if compatibility with earlier versions of
Ada is required:

procedure Increment (X : in out Integer);
pragma Global (null);
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This annotation is the most common one as most subprograms don’t use global state. In its more complete form,
the Global contract allows specifying precisely the set of variables that are read, updated, and initialized by the
subprogram:

procedure P with
Global =>

(Input => (X1, X2, X3),
-- variables read but not written by P (same as 'in' parameters)
In_Out => (Y1, Y2, Y3),

-- variables read and written by P (same as 'in out' parameters)
Output => (Z1, Z2, Z3));

-- variables initialized by P (same as 'out' parameters)

The use of Global contracts is not mandatory. However, whenever a contract is provided, it must be correct and
complete: that is, it must mention every global variable accessed by the subprogram with the correct mode. Similar
to subprogram parameter modes, data-dependency contracts are checked by the tool in flow analysis mode and checks
and warnings are issued in case of nonconformance. To verify manually supplied data-dependency contracts, run
GNATprove in flow analysis mode by selecting the SPARK → Examine File menu, selecting the flow mode in the
GNAT Studio panel, checking the Do not report warnings box, unchecking the Report checks proved box, and clicking
Execute.

Global contracts are described more completely in the SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/
html/ug/en/source/subprogram_contracts.html#data-dependencies.

4.5.2 Constants with Variable Inputs

When a subprogram accesses a constant whose value depends on variable inputs (that is, on the value of variables or
of other constants with variable inputs), it must be listed in the Global contract of the subprogram, if any. This may
come as a surprise to users. However, this is required to properly verify every flow of information between variables
of the program. As an example, in the following program the dependency of Set_X_To_C on the value of Y is
expressed by the constant with the variable input C appearing in its Global contract:

Y : Integer := 0;
procedure Set_X_To_Y (X : out Integer) with

Global => (Input => Y) --<<-- Y is an input of Set_X_To_Y
is

C : constant Integer := Y;
procedure Set_X_To_C with

Global => (Input => C, Output => X)
--<<-- the dependency on Y is visible through the dependency on C

is
begin

X := C;
end Set_X_To_C;

begin
Set_X_To_C;

end Set_X_To_Y;

You can find more information about constants with variable inputs in the SPARK User’s Guide: http://docs.adacore.
com/spark2014-docs/html/ug/en/source/package_contracts.html#special-cases-of-state-abstraction.
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4.5.3 Abstract State

Sometimes, you may want to annotate a subprogram that accesses a variable that isn’t visible from the subprogram
declaration because it’s declared inside some package private part or body. In such a case, you must give a name to the
variable through an abstract state declaration. This name can then be used to refer to the variable from within Global
contracts (but not from within regular code or assertions). More precisely, an abstract state can be declared for the
hidden state of a package using an Abstract_State aspect (or the equivalent pragma):

package P with
Abstract_State => State

is
V : Integer; -- V is visible in P so cannot be part of State

procedure Update_All with
Global => (Output => (V, State));

-- The Global contract mentions V explicitly but uses State to
-- refer to H and B.

private
H : Integer with -- H is hidden in P, it must be part of State
Part_Of => State;

end P;

package body P with
Refined_State => (State => (H, B))

is
B : Integer; -- B is hidden in P, it must be part of State

procedure Update_All is
begin

V := 0;
H := 0;
B := 0;

end Update_All;
end P;

An Abstract_State annotation is not required, though it may be necessary to annotate some subprograms with
Global contracts. However, when it’s provided, it must be correct and complete: it must list precisely all the hidden
variables declared in the package. Several abstract states can be defined for the same package to allow more precise
Global contracts on subprograms accessing only subsets of the package’s hidden variables:

package P with
Abstract_State => (State1, State2)

is
procedure Update_Only_H with
Global => (Output => (State1));

-- If only one abstract state was defined for B and H, the Global
-- contract would be less precise.

private
H : Integer with
Part_Of => State1;

end P;

package body P with
Refined_State => (State1 => H, State2 => B)

is
(continues on next page)
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(continued from previous page)

B : Integer := 0;

procedure Update_Only_H is
begin

H := 0;
end Update_Only_H;

end P;

When you provide an abstract state, you must refine it into its constituents in the package body using the
Refined_State aspect or pragma. Furthermore, to be able to analyze the package specification independently,
every private variable must be linked to an abstract state using the Part_Of aspect. You can find information about
state abstraction in the SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/html/ug/en/source/package_
contracts.html#state-abstraction.

4.6 Depends Annotations

Another functionality for flow analysis is to verify specific flow-dependency relations. This can be done by providing
the tool with additional Depends contracts stating how outputs of a subprogram depend on its inputs. You need to
only supply those contracts that you want to verify. The simplest form of flow-dependency contract states that all the
outputs of a subprogram depend on all its inputs:

procedure Increment (X : in out Integer) with
Depends => (X => X);

This is the default contract that will be automatically inferred by the tool, if no explicit contract is specified. This
construct uses the Ada 2012 aspect syntax. You must place it on the subprogram declaration if any, otherwise on the
subprogram body. You can use an alternative notation based on pragmas if compatibility with earlier versions of Ada
is required:

procedure Increment (X : in out Integer);
pragma Depends ((X => X));

Note the double parentheses that are needed here, as the argument of the pragma has the syntax of an aggregate. This
annotation is usually not useful on functions, as SPARK functions have only one output (its result), which in general
depends on all its inputs. In its more complete form, the Depends contract allows specifying precisely the inputs for
which each output depends:

procedure P with
Depends =>

(X1 => +(X2, X3),
-- X1 output value depends on the input values of itself, X2 and X3
(Y1, Y2) => null,

-- Y1 and Y2 are outputs whose value does not depend on any input
null => (Z1, Z2, Z3));

-- the input values of Z1, Z2 and Z3 are ignored

The use of Depends contracts is not mandatory. However, if such a contract is provided then it must be correct and
complete; that is, it must specify each flow dependency between inputs (both global variables and parameters) and
outputs (both global variables and parameters). Similar to subprogram parameter modes, flow-dependency contracts
are checked by the tool in flow analysis mode, and checks and warnings are issued in case of nonconformance. To
verify manually supplied flow-dependency contracts, run GNATprove in flow analysis mode by selecting the SPARK
→ Examine File menu, selecting the flow mode in the GNAT Studio panel, checking the Do not report warnings box,
unchecking the Report checks proved box, and clicking Execute.
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Depends contracts are described more completely in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/subprogram_contracts.html#flow-dependencies

4.6.1 The Difference Between Outputs and Input-Outputs

Modes on parameters and data-dependency contracts in SPARK have a stricter meaning than in Ada. In SPARK, a
parameter out or a global variable Output should be completely initialized before returning from the subprogram.
Thus, a parameter that is only partially initialized, or initialized only on some paths through the subprogram, should be
marked in out (for a parameter) or In_Out (for a global variable) to be compatible with SPARK data initialization
policy. For more details, see the SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/html/ug/en/source/
language_restrictions.html#data-initialization-policy

4.6.2 Implicit Inputs

Outputs (both parameters and global variables) may have an implicit input part depending on their type:

• an unconstrained array A has implicit input bounds A'First and A'Last

• a discriminated record R has implicit input discriminants, for example R.Discr

Thus, an output array A and an output discriminated record R may appear in input position inside a flow-dependency
contract, to denote the input value of the bounds (for the array) or the discriminants (for the record). As a result, in
most cases the flow-dependency contract should state that such an output depends on its value as input, even when all
the (non-discriminant) components of the array or the record are written to inside the subprogram:

procedure Erase (S : out String) with
Depends => (S => S)

is
begin

S := (others => ' ');
end Erase;

Note that such implicit inputs can also be referred to in Preconditions.
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CHAPTER

FIVE

SILVER LEVEL - ABSENCE OF RUN-TIME ERRORS (AORTE)

The goal of this level is to ensure that the program does not raise an exception at run time. Among other things, this
guarantees that the control flow of the program cannot be circumvented by exploiting a buffer overflow, or integer
overflow. This also ensures that the program cannot crash or behave erratically when compiled without support for
run-time checking (compiler switch -gnatp) because of operations that would have triggered a run-time exception.

GNATprove can be used to prove the complete absence of possible run-time errors corresponding to the explicit raising
of exceptions in the program, raising the exception Constraint_Error at run time, and failures of assertions
(corresponding to raising exception Assertion_Error at run time).

A special kind of run-time error that can be proved at this level is the absence of exceptions from defensive code. This
requires users to add subprogram preconditions (see section Preconditions for details) that correspond to the conditions
checked in defensive code. For example, defensive code that checks the range of inputs is modeled by a precondition
of the form Input_X in Low_Bound .. High_Bound. These conditions are then checked by GNATprove at
each call.

Benefits

The SPARK code is guaranteed to be free from run-time errors (Absence of Run Time Errors - AoRTE) plus all
the defects already detected at Bronze level: no reads of uninitialized variables, no possible interference between
parameters and/or global variables, and no unintended access to global variables. Thus, the quality of the program can
be guaranteed to achieve higher levels of integrity than would be possible in other programming languages.

All the messages about possible run-time errors can be carefully reviewed and justified (for example by relying on
external system constraints such as the maximum time between resets) and these justifications can be later reviewed
as part of quality inspections.

The proof of AoRTE can be used to compile the final executable without run-time exceptions (compiler switch
-gnatp), which results in very efficient code comparable to what can be achieved in C or assembly.

The proof of AoRTE can be used to comply with the objectives of certification standards in various domains (DO-
178B/C in avionics, EN 50128 in railway, IEC 61508 in many safety-related industries, ECSS-Q-ST-80C in space,
IEC 60880 in nuclear, IEC 62304 in medical, ISO 26262 in automotive). To date, the use of SPARK has been qualified
in an EN 50128 context. Qualification plans for DO-178 have been developed by AdaCore. Qualification material in
any context can be developed by AdaCore as part of a contract.
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Impact on Process

An initial pass is required where proof of AoRTE is applied to the program, and the resulting messages are resolved by
either rewriting code or justifying any false alarms. Once this is complete, as for the Bronze level, ongoing maintenance
can retain the same guarantees at reasonable cost. Using precise types and simple subprogram contracts (preconditions
and postconditions) is sufficient to avoid most false alarms, and any remaining false alarms can be easily justified.

Special treatment is required for loops, which may need the addition of loop invariants to prove AoRTE inside and
after the loop. The detailed process for adding loop contracts is described in the SPARK User’s Guide, as well as
examples of common patterns of loops and their corresponding loop invariants.

Costs and Limitations

The initial pass may require a substantial effort to resolve all false alarms, depending on the coding style adopted
previously. The analysis may take a long time, up to a few hours, on large programs but is guaranteed to terminate.
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables, and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may nevertheless not be able to prove it, due to limitations of the
heuristic techniques used in automatic provers. In practice, these limitations mostly show up on non-linear integer
arithmetic (such as division and modulo) and floating-point arithmetic.

5.1 Running GNATprove in Proof Mode

Proof is the second static analysis performed by GNATprove, after the flow analysis seen at Bronze level. Unlike flow
analysis, proof may take more or less time to run, depending on the selected proof level. The higher the proof level,
the more precise the results and the longer the analysis.

Launch GNATprove in proof mode on your project by selecting the SPARK → Prove All menu. In the GNAT Studio
panel, select 0 as the value of Proof level, check the Multiprocessing box, uncheck the Report checks proved box, and
click Execute. The following snapshot shows the popup window from GNAT Studio with these settings:

GNATprove should output the following messages, possibly followed by a number of messages pointing to potential
problems in your program:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

The following messages output by GNATprove are check messages and should have the form:

46 Chapter 5. Silver Level - Absence of Run-time Errors (AoRTE)



Implementation Guidance for the Adoption of SPARK, Release 1.2

medium: overflow check might fail

Similar to the messages previously described, the severity of the check is shown first. It is one of low, medium, or
high and reflects both the likelihood of the reported problem being a bug and the criticality of the bug, if it exists.
Following the colon is the type of the check message, here a potential arithmetic overflow. Each message is located in
your code at the point where the error can occur and the corresponding line in GNAT Studio editor is highlighted in
red.

GNATprove can issue several kinds of check messages. In this document, we concentrate on the five most common
errors: division by zero, array index out of bounds, arithmetic overflow, value out of range, and incorrect discrim-
inant. They are described in section Run-time Checks. Other specific check messages can also be issued when
tagged types or tasking constructs are used. You can find more information about these additional checks in the
SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.
html#description-of-messages.

Proving AoRTE requires interacting with GNATprove inside GNAT Studio to either fix the code, add annotations,
succeed in proving the check, or to justify that the message is not a real problem. This process is explained in section
Investigating Unproved Run-time Checks.

Once each unproved check message has been addressed in some way, you can run proof mode again with the box
Report checks proved checked to see the verifications successfully performed by GNATprove. It should only issue
‘info’ messages, highlighted in green in GNAT Studio, like the following:

info: overflow check proved

5.2 Run-time Checks

divide by zero

This checks that the second operand of a division, mod or rem operation is not equal to zero. It’s applicable to all
integer and real types for division and to all integer types for mod and rem. Here’s an example of such checks:

type Oper is (D, M, R);
type Unsigned is mod 2**32;
Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small
with Size => 8;

procedure Oper_Integer (Op : Oper; X, Y : Integer; U : out Integer) is
begin

case Op is
when D => U := X / Y; --<<-- medium: divide by zero might fail
when M => U := X mod Y; --<<-- medium: divide by zero might fail
when R => U := X rem Y; --<<-- medium: divide by zero might fail

end case;
end Oper_Integer;

procedure Oper_Unsigned (Op : Oper; X, Y : Unsigned; U : out Unsigned) is
begin

case Op is
when D => U := X / Y; --<<-- medium: divide by zero might fail
when M => U := X mod Y; --<<-- medium: divide by zero might fail
when R => U := X rem Y; --<<-- medium: divide by zero might fail

end case;

(continues on next page)
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(continued from previous page)

end Oper_Unsigned;

procedure Div_Float (X, Y : Float; U : out Float) is
begin

U := X / Y; --<<-- medium: divide by zero might fail
end Div_Float;

procedure Div_Fixed (X, Y : Fixed; U : out Fixed) is
begin

U := X / Y; --<<-- medium: divide by zero might fail
end Div_Fixed;

A special case of possible division by zero is the exponentiation of a float value of 0.0 by a negative exponent since
the result of this operation is defined as the inverse of the exponentiation of its argument (hence 0.0) by the absolute
value of the exponent. Here’s an example of such checks:

procedure Exp_Float (X : Float; Y : Integer; U : out Float) is
begin

U := X ** Y; --<<-- medium: divide by zero might fail
end Exp_Float;

index check

This checks that a given index used to access an array is within the bounds of the array. This applies to both reads and
writes to an array. Here’s an example of such checks:

function Get (S : String; J : Positive) return Character is
begin

return S(J); --<<-- medium: array index check might fail
end Get;

procedure Set (S : in out String; J : Positive; C : Character) is
begin

S(J) := C; --<<-- medium: array index check might fail
end Set;

overflow check

This checks that the result of a given arithmetic operation is within the bounds of its base type, which corresponds to
the bounds of the underlying machine type. It’s applicable to all signed integer types (but not modular integer types)
and real types, for most arithmetic operations (unary negation, absolute value, addition, subtraction, multiplication,
division, exponentiation). Here’s an example of such checks:

type Oper is (Minus, AbsVal, Add, Sub, Mult, Div, Exp);
type Unsigned is mod 2**32;
Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small
with Size => 8;

procedure Oper_Integer (Op : Oper; X, Y : Integer; E : Natural; U : out Integer) is
begin

case Op is
when Minus => U := -X; --<<-- medium: overflow check might fail

(continues on next page)
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(continued from previous page)

when AbsVal => U := abs X; --<<-- medium: overflow check might fail
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => U := X ** E; --<<-- medium: overflow check might fail

end case;
end Oper_Integer;

procedure Oper_Float (Op : Oper; X, Y : Float; E : Natural; U : out Float) is
begin

case Op is
when Minus => U := -X;
when AbsVal => U := abs X;
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => U := X ** E; --<<-- medium: overflow check might fail

end case;
end Oper_Float;

procedure Oper_Fixed (Op : Oper; X, Y : Fixed; E : Natural; U : out Fixed) is
begin

case Op is
when Minus => U := -X; --<<-- medium: overflow check might fail
when AbsVal => U := abs X; --<<-- medium: overflow check might fail
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => null;

end case;
end Oper_Fixed;

Note that there is no overflow check when negating a floating-point value or taking its absolute value since floating-
point base types (32 bits or 64 bits) have symmetric ranges. On the other hand, negating a signed integer or taking its
absolute value may result in an overflow if the argument value is the minimal machine integer for this type because
signed machine integers are don’t have symmetric ranges (they have one less positive value than negative values).
Fixed-point types are based on a machine integer representation, so they can also overflow on negation and absolute
value.

range check

This checks that a given value is within the bounds of its expected scalar subtype. It’s applicable to all scalar types,
including signed and modulo integers, enumerations and real types. Here’s an example of such checks:

type Enum is (A, B, C, D, E);
subtype BCD is Enum range B .. D;

type Unsigned is mod 2**32;
subtype Small_Unsigned is Unsigned range 0 .. 10;

Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small

(continues on next page)
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(continued from previous page)

with Size => 8;
subtype Natural_Fixed is Fixed range 0.0 .. Fixed'Last;

subtype Natural_Float is Float range 0.0 .. Float'Last;

procedure Convert_Enum (X : Enum; U : out BCD) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Enum;

procedure Convert_Integer (X : Integer; U : out Natural) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Integer;

procedure Convert_Unsigned (X : Unsigned; U : out Small_Unsigned) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Unsigned;

procedure Convert_Float (X : Float; U : out Natural_Float) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Float;

procedure Convert_Fixed (X : Fixed; U : out Natural_Fixed) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Fixed;

discriminant check

This checks that the discriminant of the given discriminated record has the expected value. For variant records, this
check is performed for a simple access, either read or write, to a record component. Here’s an example of such checks:

type Rec (B : Boolean) is record
case B is

when True =>
X : Integer;

when False =>
Y : Float;

end case;
end record;

function Get_X (R : Rec) return Integer is
begin

return R.X; --<<-- medium: discriminant check might fail
end Get_X;

procedure Set_X (R : in out Rec; V : Integer) is
begin

R.X := V; --<<-- medium: discriminant check might fail
end Set_X;
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length check

This checks that an array is of the expected length when performing an assignment of the whole array, a type conversion
to a constrained array type, or when using binary logical operators and, or, xor over arrays of Boolean elements. In
the assignment case, the source and target arrays should be of the same length:

procedure Assign (S : String; T : out String) is
begin

T := S; --<<-- medium: length check might fail
end Assign;

In the type conversion case, the source array should be of the same length as the target array type:

type Small_String is new String (1 .. 5);

function Get_Small (S : String) return Small_String is
begin

return Small_String(S); --<<-- medium: length check might fail
end Get_Small;

In the logical operation case, both operands should be of the same length:

type Oper is (Logical_And, Logical_Or, Logical_Xor);
type Mask is array (Natural range <>) of Boolean;

procedure Oper_Mask (Op : Oper; X : in out Mask; Y : Mask) is
begin

case Op is
when Logical_And => X := X and Y; --<<-- medium: length check might fail
when Logical_Or => X := X or Y; --<<-- medium: length check might fail
when Logical_Xor => X := X xor Y; --<<-- medium: length check might fail

end case;
end Oper_Mask;

pointer dereference check

This checks that a pointer is not null when trying to dereference it, whether to read or to write the underlying memory:

type Int_Ptr is access Integer;

procedure Dereference (X : in out Int_Ptr) is
Tmp : Integer;

begin
Tmp := X.all; --<<-- medium: pointer dereference check might fail
X.all := 0; --<<-- medium: pointer dereference check might fail

end Dereference;
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null exclusion check

This checks that a pointer is not null in an assignment or type conversion or type qualification where the target type is
specified as not null:

type Nullable_Int_Ptr is access Integer;
subtype Int_Ptr is not null Nullable_Int_Ptr;
type Oper is (Assign, Convert, Qualify);

procedure Not_Null (Op : Oper; X : in out Int_Ptr; Y : in out Nullable_Int_Ptr) is
Tmp : Integer;

begin
case Op is

when Assign => X := Y; --<<-- medium: null exclusion check might
→˓fail

when Convert => X := Int_Ptr(Y); --<<-- medium: null exclusion check might
→˓fail

when Qualify => X := Int_Ptr'(Y); --<<-- medium: null exclusion check might
→˓fail

end case;
Y := null;

end Not_Null;

5.3 Investigating Unproved Run-time Checks

You should expect many messages about possible run-time errors to be issued the first time you analyze a program, for
two main reasons: First, the analysis done by GNATprove relies on the information provided in the program to compute
all possible values of variables. This information lies chiefly in the types and contracts added by programmers. If
types are not precise enough and/or necessary contracts are not inserted, GNATprove cannot prove AoRTE. Second,
the initial analysis performed at proof level 0 is the fastest but also the least powerful, so it is expected that by moving
to higher levels of proof one gets more run-time checks proved automatically. Nevertheless, you should start at this
level because many checks are not initially provable due to imprecise types and missing contracts. As you add precise
types and contracts to the program, you can perform analyses at higher proof levels 1 and 2 to get more run-time
checks proved automatically.

Proving AoRTE requires interacting with GNATprove inside GNAT Studio. Thus, we suggest that you select a unit
(preferably one with few dependencies over other unproved units, ideally a leaf unit not depending on other unproved
units) with some unproved checks. Open GNAT Studio on your project, display this unit inside GNAT Studio, and
place the focus on this unit. Inside this unit, select a subprogram (preferably one with few calls to other unproved
subprograms, ideally a leaf subprogram not calling other unproved subprograms) with some unproved checks. This is
the first subprogram you will analyze at Silver level.

For each unproved run-time check in this subprogram, you should follow the following steps:

1. Find out the reasons why the run-time check can’t fail. If you don’t understand why a run-time check can never
fail, GNATprove can’t either. You may discover at this stage that the run-time check can indeed fail, in which
case you must first correct the program so that this isn’t possible anymore.

2. Determine if the reason(s) that the check always succeeds are known locally. GNATprove analysis is modular,
meaning it only looks at locally available information to determine whether a check succeeds or not. This
information consists mostly of the types of parameters and global variables, the precondition of the subprogram,
and the postconditions of the subprogram it calls. If the information is not locally available, you should change
types and/or add contracts to make it locally available to the analysis. See the paragraphs below on ‘More
Precise Types’ and ‘Useful Contracts’.
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3. If the run-time check depends on the value of a variable being modified in a loop, you may need to add a
loop invariant, i.e. a specific annotation in the form of a pragma Loop_Invariant inside the loop, which
summarizes the effect of the loop on the variable value. See the specific section of the SPARK User’s Guide on
that topic: http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html.

4. Once you’re confident this check should be provable, run SPARK in proof mode on the specific line with the
check by right-clicking on the line in the editor panel inside GNAT Studio, selecting SPARK → Prove Line from
the contextual menu, selecting 2 as value for Proof level and checking the Report checks proved box, both in
the GNAT Studio panel, and clicking Execute. GNATprove should either output a message confirming that the
check is proved or the same message as before. In the latter case, you will need to interact with GNATprove to
investigate why the check still isn’t proved.

5. It may sometimes be difficult to distinguish cases where information is missing (for the provers to prove the
check) from cases where the provers are incapable of proving the check even with the necessary information.
There are multiple actions you can take that may help distinguishing those cases, as documented in a specific
section of the SPARK User’s Guide on that topic (see subsections on ‘Investigating Unprovable Properties’
and ‘Investigating Prover Shortcomings’): http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_
investigate_unproved_checks.html. Usually, the best action to narrow down the issue is to insert assertions in
the code that test whether the check can be proved at some specific point in the program. For example, if a
check message is issued about a possible division by zero on expression X/Y, and the implementation contains
many branches and paths before this point, try adding assertions that Y /= 0 in the various branches. This may
point to a specific path in the program which causes the issue or it may help provers to manage to prove both
the assertion and the check. In such a case, it’s good practice to retain in the code only those essential assertions
that help produce the automatic proof and to remove other intermediate assertions that you inserted during your
interaction with the prover.

6. If the check turns out to be unprovable due to limitations in the proving technology, you will have to justify
its presence by inserting a pragma Annotate after the line where the check message is reported so that
future runs of GNATprove will not report it again . See SPARK User’s Guide at http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#justifying-check-messages.

Below we describe how you can change types to be more precise for analysis and how you can add contracts that will
make it possible to prove AoRTE.

More Precise Types

GNATprove’s analysis crucially depends on the ranges of scalar types. If the program uses standard scalar types such
as Integer and Float, nothing is known about the range of the data manipulated; as a result, most arithmetic
operations will lead to an overflow check message. In particular, data that is used to index arrays or as the right-hand-
side of division operations (which includes mod and rem operators) should be known to be respectively in range of the
array and not zero, generally just by looking at their type.

When standard types such as Integer and Float are used, you will need to introduce more specific types or
subtypes like Temperature or Length, with suitable ranges. These may be either new types like:

type Temperature is digits 6 range -100.0 .. 300.0;
type Length is range 0 .. 65_535;

derived types like:

type Temperature is new Float range -100.0 .. 300.0;
type Length is new Integer range 0 .. 65_535;

or subtypes like:
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subtype Temperature is Float range -100.0 .. 300.0;
subtype Length is Integer range 0 .. 65_535;

When new types are introduced, you may either add a suitable range to these types or introduce derived types or
subtypes with suitable range as above.

Useful Contracts

Aside from types, it might be important to specify in which context a subprogram may be called. This is known
as the precondition of the subprogram. All the examples of check messages seen in section Run-time Checks
could be proved if suitable preconditions are added to the enclosing subprogram. For example, consider procedure
Convert_Integer, which assigns an integer X to a natural U:

procedure Convert_Integer (X : Integer; U : out Natural) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Integer;

In order for GNATprove to prove that the conversion cannot lead to a range check failure, it needs to know that X is
non-negative when calling Convert_Integer, which can be expressed as a precondition as follows:

procedure Convert_Integer (X : Integer; U : out Natural)
with Pre => X >= 0

is
begin

U := X;
end Convert_Integer;

With such a precondition, the range check inside Convert_Integer is proved by GNATprove. As a result of
inserting preconditions for subprograms, GNATprove checks that the corresponding conditions hold when calling
these subprograms. When these conditions cannot be proved, GNATprove issues check messages that need to be
handled like run-time check messages. As a result, the same precondition may be pushed up multiple levels of callers
to a point where the condition is known to hold.

When a subprogram calls another subprogram, it may also be important to specify what can be guaranteed about the
result of that call. For example, consider procedure Call_Convert_Integer, which calls the previously seen
procedure Convert_Integer:

procedure Call_Convert_Integer (Y : in out Natural) is
Z : Natural;

begin
Convert_Integer (Y, Z);
Y := Y - Z; --<<-- medium: range check might fail

end Call_Convert_Integer;

When GNATprove analyzes Call_Convert_Integer, the only locally available information about the value of Z
after the call to Convert_Integer is its type. This isn’t sufficient to guarantee that the subtraction on the following
line results in a non-negative result, so GNATprove issues a message about a possible range check failure on this code.
In order for GNATprove to prove that the subtraction cannot lead to a range check failure, it needs to know that Z is
equal to Y after calling Convert_Integer, which can be expressed as a postcondition as follows:

procedure Convert_Integer (X : Integer; U : out Natural)
with Pre => X >= 0,

Post => X = U
is

(continues on next page)
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(continued from previous page)

begin
U := X;

end Convert_Integer;

With such a postcondition, the range check inside Call_Convert_Integer is proved by GNATprove. Because of
the postconditions added to subprograms, GNATprove checks that the corresponding conditions hold when returning
from these subprograms. When these conditions cannot be proved, GNATprove issues check messages that need to be
handled similarly to run-time check messages.
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CHAPTER

SIX

GOLD LEVEL - PROOF OF KEY INTEGRITY PROPERTIES

The goal of the Gold level is to ensure key integrity properties such as maintaining critical data invariants throughout
execution and guaranteeing that transitions between states follow a specified safety automaton. Typically these prop-
erties derive from software requirements. Together with the Silver level, these goals ensure program integrity, that is,
the program executes within safe boundaries: the control flow of the program is correctly programmed and cannot be
circumvented through run-time errors and data cannot be corrupted.

SPARK has a number of useful features for specifying both data invariants and control flow constraints:

• Type predicates reflect properties that should always be true of any object of the type.

• Preconditions reflect properties that should always hold on subprogram entry.

• Postconditions reflect properties that should always hold on subprogram exit.

These features can be verified statically by running GNATprove in proof mode, similarly to what was done at the
Silver level. At every point where a violation of the property may occur, GNATprove issues either an ‘info’ message,
verifying that the property always holds, or a ‘check’ message about a possible violation. Of course, a benefit of
proving properties is that they don’t need to be tested, which can be used to reduce or completely eliminate unit
testing.

These features can also be used to augment integration testing with dynamic verification of key integrity properties.
To enable this additional verification during execution, you can use either the compilation switch -gnata (which
enables verification of all invariants and contracts at run time) or pragma Assertion_Policy (which enables a
subset of the verification) either inside the code (so that it applies to the code that follows in the current unit) or in a
pragma configuration file (so that it applies to the entire program).

Benefits

The SPARK code is guaranteed to respect key integrity properties as well as being free from all the defects already
detected at the Bronze and Silver levels: no reads of uninitialized variables, no possible interference between parame-
ters and global variables, no unintended access to global variables, and no run-time errors. This is a unique feature of
SPARK that is not found in other programming languages. In particular, such guarantees may be used in a safety case
to make reliability claims.

The effort in achieving this level of confidence based on proof is relatively low compared to the effort required to
achieve the same level based on testing. Indeed, confidence based on testing has to rely on an extensive testing
strategy. Certification standards define criteria for approaching comprehensive testing, such as Modified Condition /
Decision Coverage (MC/DC), which are expensive to achieve. Some certification standards allow the use of proof as
a replacement for certain forms of testing, in particular DO-178C in avionics, EN 50128 in railway and IEC 61508 for
functional safety. Obtaining proofs, as done in SPARK, can thus be used as a cost-effective alternative to unit testing.
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Impact on Process

In a high-DAL certification context where proof replaces testing and independence is required between certain de-
velopment/verification activities, one person can define the architecture and low-level requirements (package specs)
and another person can develop the corresponding bodies and use GNATprove for verification. Using a common syn-
tax/semantics – Ada 2012 contracts – for both the specs/requirements and the code facilitates communication between
the two activities and makes it easier for the same person(s) to play different roles at different times.

Depending on the complexity of the property being proven, it may be more or less costly to add the necessary contracts
on types and subprograms and to achieve complete automatic proof by interacting with the tool. This typically requires
some experience with the tool, which can be gained by training and practice. Thus not all developers should be tasked
with developing such contracts and proofs, but instead a few developers should be designated for this task.

As with the proof of AoRTE at Silver level, special treatment is required for loops, such as the addition of loop
invariants to prove properties inside and after the loop. Details are presented in the SPARK User’s Guide, together
with examples of loops and their corresponding loop invariants.

Costs and Limitations

The analysis may take a long time, up to a few hours, on large programs, but it is guaranteed to terminate. It may also
take more or less time depending on the proof strategy adopted (as indicated by the switches passed to GNATprove).
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may fail to prove it due to limitations of the heuristic techniques they
employ. In practice, these limitations are mostly visible on non-linear integer arithmetic (such as division and modulo)
and on floating-point arithmetic.

Some properties might not be easily expressible in the form of data invariants and subprogram contracts, for example
properties of execution traces or temporal properties. Other properties may require the use of non-intrusive instrumen-
tation in the form of ghost code.

6.1 Type predicates

Type predicates are boolean expressions that constrain the value of objects of a given type. You can attach a type
predicate to a scalar type or subtype:

type Even is new Integer
with Predicate => Even mod 2 = 0;

The use of the type name Even in the predicate expression denotes the current object of the type, which we’re saying
must be even for the expression to evaluate to True. Similarly, a type predicate can be attached to an array type or
subtype:

subtype Simple_String is String
with Predicate =>

Simple_String'First = 1 and Simple_String'Last in Natural;

type Sorted is array (1 .. 10) of Integer
with Predicate => (for all J in 1 .. 9 => Sorted(J) <= Sorted(J+1));

Simple_String is the same as standard String except that objects of this type always start at index 1 and have a
unique representation for the null string, which normally ends at index 0. Type Sorted uses a more complex quantified
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expression to express that contiguous elements in the array are sorted in increasing order. Finally, a type predicate can
also be attached to a record type or subtype:

type Name (Size : Positive) is record
Data : String(1 .. Size);
Last : Positive;

end record
with Predicate => Last <= Size;

Discriminated record Name is a typical example of a variable-sized record, where the internal array Data is indexed
up to the value of component Last. The predicate expresses an essential invariant of objects of type Name, namely
that Last will always be no greater than Size. This assures that Data(Last) will be in bounds.

6.2 Preconditions

Preconditions are boolean expressions that should be true each time a subprogram is called and are typically used
to express API constraints that ensure correct execution of the subprogram. They can thus replace or complement
comments and/or defensive code that expresses and/or checks such constraints. Compare the following three styles of
expressing that string Dest should be at least as long as string Src when copying Src into Dest. The first way is to
express the constraint in a comment attached to the subprogram declaration:

procedure Copy (Dest : out String; Src : in String);
-- Copy Src into Dest. Require Dest length to be no less than Src length,
-- otherwise an exception is raised.

Though readable by humans, this constraint cannot be verified automatically. The second way is to express the con-
straint using defensive code inside the subprogram body:

procedure Copy (Dest : out String; Src : in String) is
begin

if Dest'Length < Src'Length then
raise Constraint_Error;

end if;
-- copies Src into Dest here

end Copy;

While this constraint can be verified at run time, it’s hidden inside the implementation of the subprogram and can’t be
verified statically with GNATprove. The third way is to express the constraint is as a precondition:

procedure Copy (Dest : out String; Src : in String)
with Pre => Dest'Length >= Src'Length;

-- Copy Src into Dest.

This constraint is readable by humans and it can be verified at run time by testing or statically by GNATprove.
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6.3 Postconditions

Postconditions are boolean expressions that should be true each time a subprogram returns. Postconditions are similar
to the normal assertions used by programmers to check properties at run time (with pragma Assert), but are more
powerful:

1. When a subprogram has multiple returns, it is easy to forget to add a pragma Assert before one of the exit
points. Postconditions avoid that pitfall.

2. Postconditions can express relations between values of variables at subprogram entry and at subprogram exit,
using the attribute X'Old to denote the value of variable X at subprogram entry.

Postconditions can be used to express major transformations in the program that are performed by some subprograms.
For example, data collected from a network may need to be sanitized and then normalized before being fed to the main
part of the program. This can be expressed with postconditions:

type Status is (Raw, Sanitized, Normalized);
type Chunk is record

Data : String (1 .. 256);
Stat : Status;

end record;

procedure Sanitize (C : in out Chunk)
with Pre => C.Stat = Raw,

Post => C.Stat = Sanitized;

procedure Normalize (C : in out Chunk)
with Pre => C.Stat = Sanitized,

Post => C.Stat = Normalized;

procedure Main_Treatment (C : in Chunk)
with Pre => C.Stat = Normalized;

In the code segment above, preconditions and postconditions are used to track the status of the data chunk C so that
we can guarantee that transformations are performed in the specified order.

6.4 Contract Cases

Contract cases allow specifying contracts easily with a set of disjoint and complete cases. Consider the postcondition
of a majority voting procedure, which returns the value voted by a majority of voters, if any, and the special value
None otherwise:

type Vote is (None, Blue, White, Red);

function Majority_Voting (A, B, C : Vote) return Vote
with Post => (if A = B then

Majority_Voting'Result = A
elsif A = C then
Majority_Voting'Result = A

elsif B = C then
Majority_Voting'Result = B

else
Majority_Voting'Result = None);

This postcondition can be expressed as a set of distinct cases, which correspond to the conditions on the left of the
arrow symbols inside the Contract_Cases contract below:
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function Majority_Voting (A, B, C : Vote) return Vote
with Contract_Cases =>
(A = B => Majority_Voting'Result = A,
A /= B and A = C => Majority_Voting'Result = A,
A /= B and B = C => Majority_Voting'Result = B,
A /= B and A /= C and B /= C => Majority_Voting'Result = None);

The benefit of expressing the postcondition with contract cases is that GNATprove additionally checks that cases really
partition the input state, that is, they are disjoint and complete. Here the verification will succeed and GNATprove will
issue ‘info’ messages:

info: disjoint contract cases proved
info: complete contract cases proved

The cases can be more or less precise. For example, the contract above can be expressed with more cases as follows:

function Majority_Voting (A, B, C : Vote) return Vote
with Contract_Cases =>
(A = B and A = C and B = C => Majority_Voting'Result = A,
A = B and A /= C and B /= C => Majority_Voting'Result = A,
A /= B and A = C and B /= C => Majority_Voting'Result = A,
A /= B and A /= C and B = C => Majority_Voting'Result = B,
A /= B and A /= C and B /= C => Majority_Voting'Result = None);

See the SPARK User’s Guide for more information on contract cases: http://docs.adacore.com/spark2014-docs/html/
ug/en/source/subprogram_contracts.html#contract-cases

6.5 Expression Functions

It is usually convenient to give names to properties used in contracts. This can be done with expression functions,
which are functions whose implementation is given by a simple expression. In the common case where types and state
are defined privately, expression functions provide a convenient way to name properties that could not be expressed
publicly otherwise. By defining such queries as expression functions in the private part of the package specification,
instead of defining them as regular functions in the package body, GNATprove can take them into account for proof as
if their implementation was inlined.

For example, the function Increment can be defined as an expression function as follows:

function Increment (X : Integer) return Integer is (X + 1);

For compilation and execution, this definition is equivalent to:

function Increment (X : Integer) return Integer is
begin

return X + 1;
end Increment;

For GNATprove, this definition as expression function is equivalent to the same function body as above, plus a post-
condition:

function Increment (X : Integer) return Integer with
Post => Increment'Result = X + 1

is
begin

(continues on next page)
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(continued from previous page)

return X + 1;
end Increment;

Thus, a user does not need in general to add a postcondition to an expression function, as the implicit postcondition
generated by GNATprove is the most precise one.

As a more realistic example, consider a version of the program presented for Postconditions, where the implementation
of type Chunk is hidden from client code. The same contracts as before can be expressed by defining a function
Get_Status to retrieve the value of the Stat component:

type Status is (Raw, Sanitized, Normalized);
type Chunk is private;

function Get_Status (C : Chunk) return Status;

procedure Sanitize (C : in out Chunk)
with Pre => Get_Status (C) = Raw,

Post => Get_Status (C) = Sanitized;

procedure Normalize (C : in out Chunk)
with Pre => Get_Status (C) = Sanitized,

Post => Get_Status (C) = Normalized;

procedure Main_Treatment (C : in Chunk)
with Pre => Get_Status (C) = Normalized;

Get_Status is defined as an expression function in the private part of the package specification, after type Chunk
has been defined:

private

type Chunk is record
Data : String (1 .. 256);
Stat : Status;

end record;

function Get_Status (C : Chunk) return Status is (C.Stat);

See the SPARK User’s Guide for more information on expression functions: http://docs.adacore.com/spark2014-docs/
html/ug/en/source/specification_features.html#expression-functions

6.6 Ghost Code

Sometimes the variables and functions present in a program are insufficient to specify intended properties and to verify
these properties with GNATprove. This can occur if the property that should be verified is never used explicitly in the
code. For example, the property that a collection is sorted can be maintained for efficient modifications and queries on
the collection without the need to have an explicit function Is_Sorted. However, this function is essential to state
the property that the collection remains sorted.

In such a case, SPARK allows you to insert additional code in the program that’s useful for specification and verifica-
tion, specially identified with the aspect Ghost so that it can be discarded during compilation. So-called ghost code
in SPARK comprises those parts of the code that are only meant for specification and verification and have no effect
on the functional behavior of the program at run time.

Various kinds of ghost code are useful in different situations:
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• Ghost functions are typically used to express properties used in contracts.

• Global ghost variables are typically used to keep track of the current state of a program or to maintain a log of
past events of some type. This information can then be referred to in contracts.

Typically, the current state of the program may be stored in a global ghost variable, whose value may be suitably
constrained in preconditions and postconditions. For example, the program may need to proceed through a number of
steps, from sanitization through normalization to main treatment. A ghost variable Current_State may then be
used to record the current status of the program and its value may be used in contracts as follows:

type Status is (Raw, Sanitized, Normalized) with Ghost;
Current_State : Status with Ghost;

procedure Sanitize
with Pre => Current_State = Raw,

Post => Current_State = Sanitized;

procedure Normalize
with Pre => Current_State = Sanitized,

Post => Current_State = Normalized;

procedure Main_Treatment
with Pre => Current_State = Normalized;

See the SPARK User’s Guide for more examples of ghost code: http://docs.adacore.com/spark2014-docs/html/ug/en/
source/specification_features.html#ghost-code

6.7 Investigating Unproved Properties

Similar to the situation at Silver level as described in Investigating Unproved Run-time Checks, we can expect many
messages about possible violations of properties (assertions, contracts) to be issued the first time a program is analyzed:

1. The analysis done by GNATprove relies on the information provided in the program to compute possible rela-
tions between variables. For proving properties, this information lies mostly in the contracts added by program-
mers. If the contracts are not precise enough, GNATprove cannot prove the desired properties.

2. The initial analysis performed at proof level 0 is the fastest but the least precise. At the Gold level, we
advise starting at level 2, so all provers are requested to use reasonable effort (steps). During the inter-
action with GNATprove, while contracts and assertions are added in the program, it is in general a good
idea to perform analysis with only CVC4 enabled (--prover=cvc4), no step limit (--steps=0) and
a higher timeout for individual proof attempts (--timeout=30) to get both faster and more precise re-
sults. Note that using timeouts instead of steps is not portable between machines, so it’s better to reserve
it for interactive use. Other settings may be appropriate, and can be set through the various options in the
popup window from GNAT Studio or on the command line (see the specific section of the SPARK User’s
Guide on that topic: http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_run_gnatprove.html#
running-gnatprove-from-the-command-line). The following snapshot shows the popup window from GNAT
Studio (using the Advanced User profile set through the Preference → SPARK menu) with these settings:
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Proving properties requires interacting with GNATprove inside GNAT Studio. Thus, we suggest you select a unit
(preferably one with few dependencies over other unproved units, ideally a leaf unit not depending on other unproved
units) with some unproved checks. Open GNAT Studio on your project, display this unit inside GNAT Studio, and
place the focus on this unit. Inside this unit, select a subprogram (preferably one with few calls to other unproved
subprograms, ideally a leaf subprogram not calling other unproved subprograms) with some unproved checks. This is
the first subprogram you will analyze at Gold level.

For each unproved property in this subprogram, you should follow the following steps:

1. Determine why you think the property can’t be false at run time. If you don’t understand why a property holds,
GNATprove can’t either. You may discover at this stage that indeed the property may fail at run time, in which
case you first need to correct the program accordingly.

2. Determine if the reasons for the property to hold are known locally. GNATprove analysis is modular, which
means it only looks at locally available information to determine whether a check succeeds or not. This infor-
mation consists mostly of the types of parameters and global variables, the precondition of the subprogram, and
the postconditions of the subprograms it calls. If the information is not locally available, you should change
types and/or add contracts to make it locally available to the analysis.

3. If the property depends on the value of a variable being modified in a loop, you may need to add a loop invariant,
i.e. a specific annotation in the form of a pragma Loop_Invariant inside the loop, that summarizes the
effect of the loop on the variable value. See the specific section of the SPARK User’s Guide on that topic:
http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html.

4. Once you’re confident this property should be provable, run SPARK in proof mode on the specific line with the
check by right-clicking on this line in the editor panel inside GNAT Studio, selecting SPARK → Prove Line from
the contextual menu, selecting 2 as value for Proof level (and possibly setting the switches --prover=cvc4
--steps=0 --timeout=30 in the textual box, as described above) and checking the Report checks proved
box, all in the GNAT Studio panel, and clicking Execute. GNATprove should either output a message that
confirms that the check is proved or the same message as before. In the latter case, you will need to interact with
GNATprove to investigate why the check is still not proved, which is our next point below.

5. It may sometimes be difficult to distinguish cases where some information is missing for the provers to prove
the property from cases where the provers are incapable of proving the property even with the necessary infor-
mation. The are multiple actions you can take that may help distinguishing those cases, as documented in a
specific section of the SPARK User’s Guide on that topic (see subsections on ‘Investigating Unprovable Prop-
erties’ and ‘Investigating Prover Shortcomings’): http://docs.adacore.com/spark2014-docs/html/ug/en/source/
how_to_investigate_unproved_checks.html. Usually, the most useful action to narrow down the issue is to in-
sert assertions in the code that test whether the property (or part of it) can be proved at some specific point in the
program. For example, if a postcondition states a property (P or Q) and the implementation contains many
branches and paths, try adding assertions that P holds or Q holds where they’re expected to hold. This may point
to a specific path in the program and/or a specific part of the property which causes the issue. This may also
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help provers to manage to prove both the assertion and the property. In such a case, it’s good practice to retain
in the code only those essential assertions that help getting automatic proof and to remove other intermediate
assertions that you inserted during the interaction.

6. If the check turns out to be unprovable due to limitations in the proving technology, you will have to justify
its presence by inserting a pragma Annotate after the line where the check message is reported so that
future runs of GNATprove will not report it again . See SPARK User’s Guide at http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#justifying-check-messages.
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CHAPTER

SEVEN

EXAMPLE

This section describes the transformation of a bounded stack abstract data type (ADT), implemented in Ada, into a
SPARK implementation at the highest adoption level. The result will be a production-ready stack ADT for which
we can prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric
overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies
implement their functional requirements, and so on.

Familiarity with the previous sections is required, especially those describing the different adoption levels and specific
tool invocations at those levels. In this section we focus on the messages generated by those invocations, as well as
the resulting changes required.

7.1 Initial Ada Version

As for any good abstract data type, the implementation and any implementation-dependent operations must be hidden
from client code. In Ada and SPARK this compile-time visibility control is first achieved by declaring the type’s
representation to be “private” like so:

type Stack (Capacity : Positive) is private;

Clients have visibility to the name Stack so they can use the type much like any other. Client code can also reference
the Capacity component but the rest of the representation is not visible. In addition, basic operations such as
assignment and predefined equality are available to clients, but none based on the actual representation of the type are
visible. This compiler-enforced control of compile-time visibility is a core part of applying abstraction and information
hiding in Ada and SPARK.

The initial implementation provides the bounded form of stack, i.e., the representation is backed by an array. Array
objects are always constrained in Ada and SPARK so the Capacity component allows (requires) clients to set the
upper bound of the backing array. For example, client code could declare a variable of type Stack with the ability to
contain at most 100 values of some type:

S1 : Stack (Capacity => 100);

A different context might require another Stack object with a different physical capacity:

S2 : Stack (Capacity => 1024);

In effect, the discriminant allows the type to be “parameterized” so that clients can specify a context-specific capacity
per object, rather than the implementation hard-coding a size that would then be imposed on all objects of the type.
(This is somewhat like a parameter to a user-defined constructor in C++.)

Stacks and similar “container” data structures are known as such because objects of those types contain values of other
given types. One might need to have stacks containing integers, or enumerals, or access values, or values of some other
abstract data type, and so on. In all cases, the definition of the container type is largely independent of the contained
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type so we would like to “factor out” the contained type. In Ada, “generic” units allow this factoring. Specifically,
generic units allow us to parameterize compilation units, especially packages.

Therefore, the package declaring and implementing the Stack type is a generic package, with one generic formal
parameter that specifies the type for the values contained by Stack objects. The generic formal parameter is declared
at the beginning of the generic package declaration, like so:

1 generic
2 type Element is private;
3 package Sequential_Bounded_Stacks is

Within the generic package, Element will be used to represent the type contained by Stack objects. By saying
that the type Element is private, we allow considerable flexibility for clients in terms of the types of values to be
contained. The details need not be considered here.

The name of the generic package reflects the characteristics and nature of the ADT declared within. Thus, the name
“Sequential_Bounded_Stacks” indicates a package that defines a Stack ADT in which:

• objects of the type are not thread-safe

• objects of the type are able to contain at most a certain number of elements

Generic units are not concrete usable units until the parameters are supplied. That happens in an explicit “instantiation”
step. Instantiation creates a unit that can be used like any other non-generic package or subprogram. In our case,
each instantiation must specify a single type for Element, and as a result, the corresponding concrete Stack type
provided by the instantiation can contain values of that specified type.

In our example, for type Element we specify type Character in the instantiation (line six below), so the package
provides a Stack type that can contain Character values:

1 pragma Spark_Mode (On);
2

3 with Sequential_Bounded_Stacks;
4

5 package Character_Stacks is new Sequential_Bounded_Stacks
6 (Element => Character);

Our example’s instantiation is named “Character_Stacks” to reflect the contained type. Other instantiations could
specify other types for Element, resulting in Stack types able to contain values of those other types. (The Ada
compiler will ensure we only use the right contained type with any given Stack object.)

Given that instantiation, client code can now use the package Character_Stacks like any other package. We use
it in the main procedure.

There are in fact two main procedures used for the transformations to the various adoption levels. One main procedure
is for the lower levels, and one for the upper levels. They exist only to act as clients so that we can prove certain
properties about the Stack type. Therefore, they declare objects of type Character_Stacks.Stack and make
a series of assertions and calls to Stack operations. They have no functional purpose whatsoever. Here is the first
main, used for all adoption levels up to and including Silver:

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Character_Stacks; use Character_Stacks;
3

4 procedure Demo_AoRTE with SPARK_Mode is
5

6 S1, S2 : Stack (Capacity => 10); -- arbitrary
7

8 X, Y : Character;
9

(continues on next page)
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(continued from previous page)

10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);
13 Push (S1, 'a');
14 Push (S1, 'b');
15 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
16

17 Pop (S1, X);
18 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
19 Pop (S1, Y);
20 pragma Assert (Empty (S1) and Empty (S2));
21 Put_Line (X & Y);
22

23 Reset (S1);
24 Put_Line ("Extent of S1 is" & Extent (S1)'Image);
25

26 Put_Line ("Done");
27 end Demo_AoRTE;

We when arrive at the higher levels we will add more assertions to highlight more issues, as will be seen in the other
main procedure.

The full generic package declaration for the initial Ada version is as follows:

1 generic
2 type Element is private;
3 package Sequential_Bounded_Stacks is
4

5 type Stack (Capacity : Positive) is private;
6

7 procedure Push (This : in out Stack; Item : in Element) with
8 Pre => not Full (This) or else raise Overflow;
9

10 procedure Pop (This : in out Stack; Item : out Element) with
11 Pre => not Empty (This) or else raise Underflow;
12

13 function Top_Element (This : Stack) return Element with
14 Pre => not Empty (This) or else raise Underflow;
15 -- Returns the value of the Element at the "top" of This
16 -- stack, i.e., the most recent Element pushed. Does not
17 -- remove that Element or alter the state of This stack
18 -- in any way.
19

20 overriding function "=" (Left, Right : Stack) return Boolean;
21

22 procedure Copy (Destination : out Stack; Source : Stack) with
23 Pre => Destination.Capacity >= Extent (Source)
24 or else raise Overflow;
25 -- An alternative to predefined assignment that does not
26 -- copy all the values unless necessary. It only copies
27 -- the part "logically" contained, so is more efficient
28 -- when Source is not full.
29

30 function Extent (This : Stack) return Natural;
31 -- Returns the number of Element values currently
32 -- contained within This stack.
33

(continues on next page)
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34 function Empty (This : Stack) return Boolean;
35

36 function Full (This : Stack) return Boolean;
37

38 procedure Reset (This : out Stack);
39

40 Overflow : exception;
41 Underflow : exception;
42

43 private
44

45 type Content is array (Positive range <>) of Element;
46

47 type Stack (Capacity : Positive) is record
48 Values : Content (1 .. Capacity);
49 Top : Natural := 0;
50 end record;
51

52 end Sequential_Bounded_Stacks;

Some routines have “defensive” preconditions to ensure correct functionality. They raise exceptions, declared within
the package, when the preconditions do not hold (lines 8, 11, 14, and 24).

The private part of the generic package declaration (line 43 onward) contains the full representation for type Stack
but clients have no compile-time visibility to this part of the package. Note how the Capacity discriminant is used
as the upper bound for the backing array (line 48).

The generic package body is shown below.

1 package body Sequential_Bounded_Stacks is
2

3 procedure Reset (This : out Stack) is
4 begin
5 This.Top := 0;
6 end Reset;
7

8 function Extent (This : Stack) return Natural is
9 (This.Top);

10

11 function Empty (This : Stack) return Boolean is
12 (This.Top = 0);
13

14 function Full (This : Stack) return Boolean is
15 (This.Top = This.Capacity);
16

17 procedure Push (This : in out Stack; Item : in Element) is
18 begin
19 This.Top := This.Top + 1;
20 This.Values (This.Top) := Item;
21 end Push;
22

23 procedure Pop (This : in out Stack; Item : out Element) is
24 begin
25 Item := This.Values (This.Top);
26 This.Top := This.Top - 1;
27 end Pop;
28

(continues on next page)
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29 function Top_Element (This : Stack) return Element is
30 (This.Values (This.Top));
31

32 function "=" (Left, Right : Stack) return Boolean is
33 (Left.Top = Right.Top and then
34 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));
35

36 procedure Copy (Destination : out Stack; Source : Stack) is
37 subtype Contained is Integer range 1 .. Source.Top;
38 begin
39 Destination.Top := Source.Top;
40 Destination.Values (Contained) := Source.Values (Contained);
41 end Copy;
42

43 end Sequential_Bounded_Stacks;

Note that both procedure Copy and function "=" are defined for the sake of increased efficiency when the objects in
question are not full. The procedure only copies the slice of Source.Values that represents the Element values
logically contained at the time of the call. The language-defined assignment operation, in contrast, would copy the
entire contents. Similarly, the overridden equality operator only compares the array slices, rather than the entire arrays,
after first ensuring the stacks are the same logical size.

However, in addition to efficiency, overriding the "=" function is required for proper semantics. Comparison of stack
objects must not compare array elements that are not currently contained in the two stacks. The predefined equality
would do so and must, therefore, be replaced.

The changes to the body made for the sake of SPARK will amount to moving certain bodies to the package declaration
so we will not show the package body again. The full Platinum implementation is provided at the end of this section.

7.2 Stone Level

The Ada version of the package has “raise expressions” in the defensive preconditions for some routines. They have
the benefit of raising a more meaningful exception than Assertion_Error when the associated precondition does not
hold at run-time.

Those expressions are legal in SPARK as well. If they cannot be proven never to raise their exception, that is not an
illegality. Rather, it is a failure to successfully prove the associated precondition. (Note that not all adoption levels
involve proof.) As such, the Ada version is also a valid Stone version.

However, our goal is to get to the highest adoption levels, requiring GNATprove to verify statically that the precondi-
tions will hold at each client call site. Either that verification will succeed or we will know that we must change the
client calling code accordingly. Therefore, the “raise expressions” are not needed for our example, although it would
be acceptable to retain them in case assertions are enabled at run-time.

Here, then, are the updated declarations for Push and Pop, for example:

1 procedure Push (This : in out Stack; Item : in Element) with
2 Pre => not Full (This);
3

4 procedure Pop (This : in out Stack; Item : out Element) with
5 Pre => not Empty (This);

The exception declarations themselves, although also within the subset, are also removed because they are no longer
referenced.

The remaining code is also within the SPARK subset. We have reached the Stone level.
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7.3 Bronze Level

The Bronze level is about initialization and data flow. When we apply GNATprove to the Stone version in flow anal-
ysis mode, GNATprove issues messages on the declarations of procedures Copy and Reset in the generic package
declaration:

medium: "Destination.Values" might not be initialized in "Copy"

high: "This.Values" is not initialized in "Reset"

The procedure declarations are repeated below for reference:

1 procedure Copy (Destination : out Stack; Source : Stack) with
2 Pre => Destination.Capacity >= Extent (Source);
3

4 procedure Reset (This : out Stack);

Both messages result from the fact that the updated formal stack parameters have mode out specified. That mode, in
SPARK, means more than it does in Ada. It indicates that the actual parameters are fully assigned by the procedures,
but these two procedure bodies do not do so. Procedure Reset simply sets the Top to zero because that is all that
a stack requires, at run-time, to be fully reset. It does nothing at all to the Values array component. Likewise,
procedure Copy may only assign part of the array, i.e., just those array components that are logically part of the
Source object. (Of course, if Source is full, the entire array is copied.) In both subprograms our notion of
being fully assigned is less than SPARK requires. Therefore, we have two choices. Either we assign values to all
components of the record, or we change the modes to “in out.” These two procedures exist for the sake of efficiency,
i.e., not writing any more data than logically necessary. Having Reset assign anything to the array component would
defeat the purpose. For the same reason, having Copy assign more than the partial slice (when the stack is not full) is
clearly inappropriate. Therefore, we change the mode to in out for these two subprograms. In other cases we might
change the implementations to fully assign the objects.

The other change required for initialization concerns the type Stack itself. In the main subprogram, GNATprove
complains that the two objects of type Stack have not been initialized:

warning: "S1" may be referenced before it has a value

high: private part of "S1" is not initialized

warning: "S2" may be referenced before it has a value

high: private part of "S2" is not initialized

high: private part of "S1" is not initialized

Our full definition of the Stack type in the private part is such that default initialization (i.e., elaboration of object
declarations without an explicit initial value) will assign the record components so that a stack will behave as if initially
empty. Specifically, default initialization assigns zero to Top (line 5 below), and since function Empty examines only
the Top component, such objects are initially empty.

1 type Content is array (Positive range <>) of Element;
2

3 type Stack (Capacity : Positive) is record
4 Values : Content (1 .. Capacity);
5 Top : Natural := 0;
6 end record;

Proper run-time functionality of the Stack ADT does not require the Values array component to be assigned by
default initialization. But just as with Reset and Copy, although this approach is sufficient at run-time, the resulting
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objects will not be fully initialized in SPARK, which analyzes the code prior to run-time. As a result, we need to
assign an array aggregate to the Values component as well. Expressing the array aggregate is problematic because
the array component type is the generic formal private type Element, with a private view within the package. Inside
the generic package we don’t know how to construct a value of type Element so we cannot construct an aggregate
containing such values. Therefore, we add the Default_Value generic formal object parameter and use it to
initialize the array components.

This new generic formal parameter, shown below on line 5, is added from the Bronze version onward:

1 generic
2 type Element is private;
3 -- The type of values contained by objects of type Stack
4

5 Default_Value : Element;
6 -- The default value used for stack contents. Never
7 -- acquired as a value from the API, but required for
8 -- initialization in SPARK.
9 package Sequential_Bounded_Stacks is

The full definition for type Stack then uses that parameter to initialize Values (line 2):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others => Default_Value);
3 Top : Natural := 0;
4 end record;

With those changes in place flow analysis completes without further complaint. The implementation has reached the
Bronze level.

The need for that additional generic formal parameter is unfortunate because it becomes part of the user’s interface
without any functional use. None of the API routines ever return it as a value as such, and the actual value chosen is
immaterial.

Note that SPARK will not allow the aggregate to contain default components (line 2):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others => <>);
3 Top : Natural := 0;
4 end record;

Alternatively, we could omit this generic formal object parameter if we use an aspect to promise that the objects are
initially empty, and then manually justify any resulting messages. We will in fact add that aspect for other reasons, but
we prefer to have proof as automated as possible, both for convenience and to avoid human error. (Note that a more
general approach to this issue will be available in the future.)

Finally, although the data dependency contracts, i.e., the “Global” aspects, would be generated automatically, we add
them explicitly, indicating that there are no intended accesses to any global objects. For example, on line 3 in the
following:

1 procedure Push (This : in out Stack; Item : Element) with
2 Pre => not Full (This),
3 Global => null;

We do so because mismatches between reality and the generated contracts are not reported by GNATprove, but we
prefer positive confirmation for our understanding of the dependencies.

The flow dependency contracts (the “Depends” aspects) also can be generated automatically. Unlike the data depen-
dency contracts, however, usually these can be omitted from the code even though mismatches with the corresponding
bodies are not reported. That lack of notification is not a problem because the generated contracts are safe: they express
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at least the dependencies that the code actually exhibits. Therefore, all actual dependencies are covered. For example,
a generated flow dependency will state that all outputs depend on all inputs, which is possible but not necessarily the
case.

However, overly conservative contracts can lead to otherwise-avoidable issues with proof, leading the developer to
add precise contracts explicitly when necessary. The other reason to express them explicitly is when we want to prove
data flow dependencies as part of the abstract properties, for example data flowing only between units at appropriate
security levels. We are not doing so in this case.

7.4 Silver Level

If we try to prove the Bronze level version of the generic package, GNATprove will complain about various run-time
checks that cannot be proved in the generic package body. The Silver level requires these checks to be proven not to
fail, i.e., not to raise exceptions.

The check messages are as follows, preceded by the code fragments they reference, with some message content elided
in order to emphasize parts that lead us to the solution:

37 procedure Push (This : in out Stack; Item : in Element) is
38 begin
39 This.Top := This.Top + 1;
40 This.Values (This.Top) := Item;
41 end Push;

bounded_stacks_silver.adb:39:28: medium: overflow check might fail, ...
(e.g. when This = (..., Top => Natural'Last) ...

bounded_stacks_silver.adb:40:24: medium: array index check might fail, ...
(e.g. when This = (..., Top => 2) and This.Values'First = 1 and This.Values'Last = 1)

47 procedure Pop (This : in out Stack; Item : out Element) is
48 begin
49 Item := This.Values (This.Top);
50 This.Top := This.Top - 1;
51 end Pop;

bounded_stacks_silver.adb:49:32: medium: array index check might fail, ...
(e.g. when This = (..., Top => 2) and This.Values'First = 1 and This.Values'Last = 1)

57 function Top_Element (This : Stack) return Element is
58 (This.Values (This.Top));

bounded_stacks_silver.adb:58:24: medium: array index check might fail, ...
(e.g. when This = (..., Top => 2) and This.Values'First = 1 and This.Values'Last = 1)

64 function "=" (Left, Right : Stack) return Boolean is
65 (Left.Top = Right.Top and then
66 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));

bounded_stacks_silver.adb:66:12: medium: range check might fail, ...
(e.g. when Left = (Capacity => 1, ..., Top => 2) ...

bounded_stacks_silver.adb:66:43: medium: range check might fail, ...
(e.g. when Right = (Capacity => 1, ..., Top => 2) ...
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72 procedure Copy (Destination : in out Stack; Source : Stack) is
73 subtype Contained is Integer range 1 .. Source.Top;
74 begin
75 Destination.Top := Source.Top;
76 Destination.Values (Contained) := Source.Values (Contained);
77 end Copy;

bounded_stacks_silver.adb:76:47: medium: range check might fail, ...
(e.g. when Destination = (Capacity => 1, ...) and Source = (Capacity => 1, ...), Top
→˓=> 2)

All of these messages indicate that the provers do not know that the Top component is always in the range 0 ..
Capacity. The code has not said so, and indeed, there is no way to use a discriminant in a scalar record component
declaration to constrain the component’s range. This is what we would write for the record type implementing type
Stack in the full view, if we could (line 3):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others => Default_Value);
3 Top : Natural range 0 .. Capacity := 0;
4 end record;

but that range constraint on Top is not legal. The reason it is illegal is that the application can change the value of a
discriminant at run-time, under controlled circumstances, but there is no way at run-time to change the range checks
in the object code generated by the compiler. With Ada and SPARK there is now a way to express the constraint on
Top, and the provers will recognize the meaning during analysis. Specifically, we apply a “predicate” to the record
type declaration (line 5):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others => Default_Value);
3 Top : Natural := 0;
4 end record with
5 Predicate => Top in 0 .. Capacity;

This aspect informs the provers that the Top component for any object of type Stack is always in the range 0 ..
Capacity. That addition successfully addresses all the messages about the generic package body. Note that the
provers will verify the predicate too.

However, GNATprove also complains about the main program. Consider that the first two assertions in the main
procedure are not verified:

10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);

GNATprove emits:

11:19: medium: assertion might fail, cannot prove Empty (S1)

12:19: medium: assertion might fail, cannot prove S1 = S2

We can address the issue for function Empty, partly, by adding another aspect to the declaration of type Stack, this
time to the visible declaration:

1 type Stack (Capacity : Positive) is private
2 with Default_Initial_Condition => Empty (Stack);
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The new aspect indicates that default initialization results in stack objects that are empty, making explicit, and espe-
cially, verifiable, the intended initial object state. We will be notified if GNATprove determines that the aspect does
not hold.

That new aspect will handle the first assertion in the main program on line 11 but GNATprove complains throughout
the main procedure that the preconditions involving Empty and Full cannot be proven. For example:

13 Push (S1, 'a');
14 Push (S1, 'b');
15 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");

GNATprove emits:

13:06: medium: precondition might fail, cannot prove not Full (This)

14:06: medium: precondition might fail, cannot prove not Full (This)
[possible fix: call at line 13 should mention This (for argument S1) in a
→˓postcondition]

15:35: medium: precondition might fail, cannot prove not Empty (This)
[possible fix: call at line 14 should mention This (for argument S1) in a
→˓postcondition]

Note the “possible fixes” that GNATprove gives us. These are clear indications that we are not specifying sufficient
postconditions. Remember that when analyzing code that includes a call to some procedure, the provers’ knowledge
of the call’s effect is provided entirely by the procedure’s postcondition. That postcondition might be insufficient,
especially if it is absent.

Therefore, we must tell the provers about the effects of calling Push and Pop, as well as the other routines that change
state. We add a new postcondition on Push (line 3):

1 procedure Push (This : in out Stack; Item : Element) with
2 Pre => not Full (This),
3 Post => Extent (This) = Extent (This)'Old + 1,
4 Global => null;

The new postcondition expresses the fact that the Stack object passed to This contains one more Element value
after the call. That is sufficient because the provers know that function Extent is simply the value of Top:

1 function Extent (This : Stack) return Natural is
2 (This.Top);

Hence the provers know that Top is incremented by Push. The same approach addresses the messages for Pop (line
3):

1 procedure Pop (This : in out Stack; Item : out Element) with
2 Pre => not Empty (This),
3 Post => Extent (This) = Extent (This)'Old - 1,
4 Global => null;

In the above we say that the provers know what the function Extent means. For that to be the case when verifying
client calls, we must move the function completion from the generic package body to the generic package declaration.
In addition, the function must be implemented as an “expression function,” which Extent already is (see above).
As expression functions in the package spec, the provers will know the semantics of those functions automatically,
as if each is given a postcondition restating the corresponding expression explicitly. We also need functions Full
and Empty to be known in this manner. Therefore, we move the Extent, Empty, and Full function completions,
already expression functions, from the generic package body to the package declaration. We put them in the private
part because these implementation details should not be exported to clients.
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However, we have a potential overflow in the postcondition for Push, i.e., the increment of the number of elements
contained after Push returns (line 3 below). The postcondition for procedure Pop, of course, does not have that
problem.

1 procedure Push (This : in out Stack; Item : Element) with
2 Pre => not Full (This),
3 Post => Extent (This) = Extent (This)'Old + 1,
4 Global => null;

The increment might overflow because Extent returns a value of subtype Natural, which could be the value Inte-
ger’Last. Hence the increment could raise Constraint_Error and the check cannot be verified. We must either apply the
“-gnato13” switch so that assertions can never overflow, or alternatively, change our code. One possible change would
be to use the Ada.Numerics.Big_Numbers.Big_Integers package and its facilities explicitly. Those facil-
ities incur some run-time overhead but that is immaterial if assertions are not enabled at run-time. Another possible
change is to declare a safe subrange so that the result of the addition cannot be greater than Integer’Last.

Our choice is to change the code because the effects are explicit, as opposed to an external switch that invokes hidden
code. Of the possible changes, we choose to create the safe subrange because:

1) the functional impact is minimal (only Integer’Last need be excluded),

2) it has little run-time cost in case assertions are enabled at run-time,

3) it doesn’t require changes to the preconditions or postconditions, and

4) the expressions using Big_Numbers would be more complex.

Therefore, here are the added subtype declarations:

1 subtype Element_Count is
2 Integer range 0 .. Integer'Last - 1;
3 -- The number of Element values currently contained
4 -- within any given stack. The lower bound is zero
5 -- because a stack can be empty. We limit the upper
6 -- bound (minimally) to preclude overflow issues.
7

8 subtype Physical_Capacity is
9 Element_Count range 1 .. Element_Count'Last;

10 -- The range of values that any given stack object can
11 -- specify (via the discriminant) for the number of
12 -- Element values the object can physically contain.
13 -- Must be at least one.

We use the second subtype for the discriminant in the partial view for Stack (line 1):

1 type Stack (Capacity : Physical_Capacity) is private
2 with Default_Initial_Condition => Empty (Stack);

and both subtypes in the full declaration in the private part (lines 1, 3, and 5):

1 type Content is array (Physical_Capacity range <>) of Element;
2

3 type Stack (Capacity : Physical_Capacity) is record
4 Values : Content (1 .. Capacity) := (others => Default_Value);
5 Top : Element_Count := 0;
6 end record with
7 Predicate => Top in 0 .. Capacity;

The function Extent is changed to return a value of the subtype Element_Count so adding one in the postcondi-
tion cannot go past Integer’Last. Overflow is precluded but note that there will now be range checks for GNATprove
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to verify.

1 function Extent (This : Stack) return Element_Count with
2 Global => null;

With these changes in place we have achieved the Silver level. There are no run-time check verification failures and
the defensive preconditions are proven at their call sites.

7.5 Gold Level

We will now address the remaining changes needed to reach the Gold level. The process involves iteratively attempting
to prove the main program that calls the stack routines and makes assertions about the conditions that follow. This
process will result in changes to the generic package, especially postconditions, so it will require verification along
with the main procedure. Those additional postconditions may require additional preconditions as well.

In general, a good way to identify postcondition candidates is to ask ourselves what conditions we, as the developers,
know to be true after a call to the routine in question. Then we can add assertions after the calls to see if the provers
can verify those conditions. If not, we extend the postcondition on the routine.

For example, we can say that after a call to Push the corresponding stack cannot be empty. Likewise, after a call
to Pop, the stack cannot be full. These additions are not required for the sake of assertions or other preconditions
because the Extent function already tells the provers what they need to know in this regard. However, they are good
documentation and may be required to prove additional conditions added later. (That is the case, in fact, as will be
shown.)

To see what other postconditions are required, we now switch to the other main procedure, in the “demo_gold.adb”
file. This version of the demo program includes a number of additional assertions:

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Character_Stacks; use Character_Stacks;
3

4 procedure Demo_Gold with SPARK_Mode is
5

6 S1, S2 : Stack (Capacity => 10); -- arbitrary
7

8 X, Y : Character;
9

10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);
13 Push (S1, 'a');
14 pragma Assert (not Empty (S1));
15 pragma Assert (Top_Element (S1) = 'a');
16 Push (S1, 'b');
17 pragma Assert (S1 /= S2);
18

19 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
20

21 Pop (S1, X);
22 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
23 Pop (S1, Y);
24 pragma Assert (X = 'b');
25 pragma Assert (Y = 'a');
26 pragma Assert (S1 = S2);
27 Put_Line (X & Y);
28

(continues on next page)
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(continued from previous page)

29 Push (S1, 'a');
30 Copy (Source => S1, Destination => S2);
31 pragma Assert (S1 = S2);
32 pragma Assert (Top_Element (S1) = Top_Element (S2));
33 pragma Assert (Extent (S1) = Extent (S2));
34

35 Reset (S1);
36 pragma Assert (Empty (S1));
37 pragma Assert (S1 /= S2);
38

39 Put_Line ("Done");
40 end Demo_Gold;

For example, we have added assertions after the calls to Reset and Copy, on lines 31 through 33 and 36 through 37,
respectively. GNATprove now emits the following (elided) messages for those assertions:

demo_gold.adb:31:19: medium: assertion might fail, cannot prove S1 = S2
(e.g. when S1 = (..., Top => 0) and S2 = (..., Top => 0))
[possible fix: call at line 30 should mention Destination (for argument S2)
in a postcondition]

demo_gold.adb:36:19: medium: assertion might fail, cannot prove Empty (S1) ...
[possible fix: call at line 35 should mention This (for argument S1)
in a postcondition]

Note again the “possible fix” hints. For the first message we need to add a postcondition on Copy specifying that the
value of the argument passed to Destination will be equal to that of the Source parameter (line 3):

1 procedure Copy (Destination : in out Stack; Source : Stack) with
2 Pre => Destination.Capacity >= Extent (Source),
3 Post => Destination = Source,
4 Global => null;

We must move the "=" function implementation to the package spec so that the provers will know the meaning. The
function was already completed as an expression function so moving it to the spec is all that is required.

For the second message, regarding the failure to prove that a stack is Empty after Reset, we add a postcondition to
that effect (line 2):

1 procedure Reset (This : in out Stack) with
2 Post => Empty (This),
3 Global => null;

The completion for function Empty was already moved to the package spec, earlier.

The implementations of procedure Copy and function "=" might have required explicit loops, likely requiring loop
invariants, but using array slicing we can express the loop implicitly. Here is function "=" again, for example:

1 function "=" (Left, Right : Stack) return Boolean is
2 (Left.Top = Right.Top and then
3 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));

The slice comparison on line 3 expresses an implicit loop for us, as does the slice assignment in procedure Copy.

The function could have been implemented as follows, with an explicit loop:
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1 function "=" (Left, Right : Stack) return Boolean is
2 begin
3 if Left.Top /= Right.Top then
4 -- They hold a different number of element values so
5 -- cannot be equal.
6 return False;
7 end if;
8 -- The two Top values are the same, and the arrays
9 -- are 1-based, so the bounds are the same. Hence the

10 -- choice of Left.Top or Right.Top is arbitrary and
11 -- there is no need for index offsets.
12 for K in 1 .. Left.Top loop
13 if Left.Values (K) /= Right.Values (K) then
14 return False;
15 end if;
16 pragma Loop_Invariant
17 (Left.Values (1 .. K) = Right.Values (1 .. K));
18 end loop;
19 -- We didn't find a difference
20 return True;
21 end "=";

Note the loop invariant on lines 16 and 17. In some circumstances GNATprove will handle the invariants for us but
often it cannot. In practice, writing sufficient loop invariants is one of the more difficult facets of SPARK development
so the chance to avoid them is welcome.

Continuing, we know that after the body of Push executes, the top element contained in the stack will be the value
passed to Push as an argument. But the provers cannot verify an assertion to that effect (line 15 below):

13 Push (S1, 'a');
14 pragma Assert (not Empty (S1));
15 pragma Assert (Top_Element (S1) = 'a');

GNATprove emits this message:

demo_gold.adb:15:19: medium: assertion might fail,
cannot prove Top_Element (S1) = 'a'

We must extend the postcondition for Push to state that Top_Element would return the value just pushed, as shown
on line 4 below:

1 procedure Push (This : in out Stack; Item : Element) with
2 Pre => not Full (This),
3 Post => not Empty (This)
4 and then Top_Element (This) = Item
5 and then Extent (This) = Extent (This)'Old + 1,
6 Global => null;

Now the assertion on line 15 of the main procedure will be verified successfully.

Recall that the precondition for function Top_Element is that the stack is not empty. We already have that assertion
in the postcondition (line 3) so the precondition for Top_Element is satisfied. We must use the short circuit form
for the conjunction, though, to control the order of evaluation so that not Empty is verified before Top_Element.

The short-circuit form on line 4 necessitates the same form on line 5, per Ada rules. That triggers a subtle issue flagged
by GNATprove. The short-circuit form, by definition, means that the evaluation of line 5 might not occur. If it is not
evaluated, we’ve told the compiler to call Extent and make a copy of the result (via ‘Old, on the right-hand side
of “=”) that will not be needed. Moreover, the execution of Extent could raise an exception, generally speaking.
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Therefore, the language disallows applying ‘Old in any potentially unevaluated expression that might raise exceptions.
As a consequence, in line 5 we cannot apply ‘Old to the result of calling Extent. GNATprove issues this error
message:

prefix of attribute "Old" that is potentially unevaluated must denote an entity

We could address the error by changing line 5 to use Extent(This'Old) instead, but there is a potential perfor-
mance difference between Extent(This)'Old and Extent(This'Old). With the former, only the result of
the function call is copied, whereas with the latter, the value of the parameter is copied. Copying the parameter could
take significant time and space if This is a large object. Of course, if the function returns a large value the copy will
be large too, but in this case Extent only returns an integer.

In SPARK, unlike Ada, preconditions, postconditions, and assertions in general are verified statically, prior to execu-
tion, so there is no performance issue. Ultimately, though, the application will be executed. Having statically proven
the preconditions and postconditions successfully, we can safely deploy the final executable without them enabled, but
not all projects follow that approach (at least, not on that basis). Therefore, for the sake of emphasizing the idiom with
typically better performance, we prefer applying ‘Old to the function in our implementation.

We can tell GNATprove that this is a benign case, using a pragma in the package spec:

pragma Unevaluated_Use_of_Old (Allow);

GNATprove will then allow use of ‘Old on the call to function Extent and will ensure that no exceptions will be
raised by the function.

As with procedure Push, we can also use Top_Element to strengthen the postcondition for procedure Pop (line 4
below):

1 procedure Pop (This : in out Stack; Item : out Element) with
2 Pre => not Empty (This),
3 Post => not Full (This)
4 and Item = Top_Element (This)'Old
5 and Extent (This) = Extent (This)'Old - 1,
6 Global => null;

Line 4 states that the Item returned in the parameter to Pop is the value that would have been returned by
Top_Element prior to the call to Pop.

One last significant enhancement now remains to be made. Consider the assertions in the main procedure about the
effects of Pop on lines 24 and 25, repeated below:

21 Pop (S1, X);
22 ...
23 Pop (S1, Y);
24 pragma Assert (X = 'b');
25 pragma Assert (Y = 'a');

Previous lines had pushed ‘a’ and then ‘b’ in that order onto S1. GNATprove emits this one message:

25:19: medium: assertion might fail, cannot prove Y = 'a' (e.g. when Y = 'b')

The message is about the assertion on line 25, alone. The assertion on line 24 was verified. Also, the message indicates
that Y could be some arbitrary character. We can conclude that the provers do not know enough about the state of the
stack after a call to Pop. The postcondition requires strengthening.

The necessary postcondition extension reflects an issue for both Push and Pop. If one considers that postconditions
correspond to the low-level unit functional requirements (if not more), one can see why the postconditions must be
complete. Identifying and expressing complete functional requirements is difficult in itself, and indeed the need for
this additional postcondition content is not obvious at first.
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The unit-level requirement for both operations is that the prior array components within the stack are not altered, other
than the one added or removed. We need to state that Push and Pop have not reordered them, for example, nor
changed their values. Specifically, for Push we need to say that the new stack state has exactly the same prior array
slice contents, ignoring the newly pushed value. For Pop, we need to say that the new state has exactly the prior array
slice contents without the old value at the top.

A new function can be used to express these requirements for both Push and Pop:

function Unchanged (Invariant_Part, Within : Stack) return Boolean;

The Within parameter is a stack whose internal state will be compared against that of the Invariant_Part parameter.
The name “Invariant_Part” is chosen to indicate the stack state that has not changed. The name “Within” is chosen for
readability in named parameter associations on the calls. For example:

Unchanged (X, Within => Y)

means that the Element values of X should be equal to precisely the corresponding values within Y.

However, this function is not one that users would call directly. We only need it for proof. Therefore, we mark
the Unchanged function as a “ghost” function so that the compiler will neither generate code for it nor allow the
application code to call it. The function is declared with that aspect (on line 2) as follows:

1 function Unchanged (Invariant_Part, Within : Stack) return Boolean
2 with Ghost;

Key to the usage is the fact that by passing This’Old and This to the two parameters we can compare the be-
fore/after states of a single object. Viewing the function’s implementation will help understand its use in the postcon-
ditions:

1 function Unchanged (Invariant_Part, Within : Stack) return Boolean is
2 (Invariant_Part.Top <= Within.Top and then
3 (for all K in 1 .. Invariant_Part.Top =>
4 Within.Values (K) = Invariant_Part.Values (K)));

This approach is based directly on a very clever one by Rod Chapman, as seen in some similar code.

The function states that the array components logically contained in Invariant_Part must have the same values as those
corresponding array components in Within (lines 3 and 4 above). Note how we allow Invariant_Part to contain fewer
values than the other stack (line 2). That is necessary because we use this function in the postconditions for both the
Push and Pop operations, in which one more or one less Element value will be present, respectively.

For Push, we add a call to the function in the postcondition as line 6, below:

1 procedure Push (This : in out Stack; Item : Element) with
2 Pre => not Full (This),
3 Post => not Empty (This)
4 and then Top_Element (This) = Item
5 and then Extent (This) = Extent (This)'Old + 1
6 and then Unchanged (This'Old, Within => This),
7 Global => null;

This'Old provides the value of the stack prior to the call of Push, without the new value included, whereas This
represents the stack state after Push returns, with the new value in place. Thus, the prior values are compared to the
corresponding values in the new state, with the newly included value ignored.

Likewise, we add the function call to the postcondition for Pop, also line 6, below:
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1 procedure Pop (This : in out Stack; Item : out Element) with
2 Pre => not Empty (This),
3 Post => not Full (This)
4 and Item = Top_Element (This)'Old
5 and Extent (This) = Extent (This)'Old - 1
6 and Unchanged (This, Within => This'Old),
7 Global => null;

In contrast with procedure Push, on line 6 This and This'Old are passed to the opposite parameters. In this case
the new state of the stack, with one less array component logically present, is used as the invariant to compare against.
Line 6 expresses the requirement that the new state’s content is the same as the old state’s content except for the one
array component no longer present. Because the function only compares the number of array components within the
Invariant_Part, the additional top element value within This'Old is ignored.

Note that we must apply 'Old to This in the calls to Unchanged in both procedures, rather than to some function
result. That is unavoidable because we must refer to the prior state of the one stack object being compared.

With those additions to the postconditions we get no further messages from GNATprove from the main procedure,
including assertions about the states resulting from a series of calls. We have achieved the Gold level.

Some additional postconditions are possible, however, for completeness. We can also use function Unchanged in a
new postcondition for the "=" function:

1 function "=" (Left, Right : Stack) return Boolean with
2 Post => "="'Result = (Extent (Left) = Extent (Right)
3 and then Unchanged (Left, Right));

This postcondition expresses an implication: whenever the "=" function comparing the two stacks returns True, the
Extent (i.e., Top) values will be the same and Unchanged will hold. In other words, they will have the same
logical size and content. Whenever "=" returns False, the conjunction will not hold. Note that on line 3, neither
argument to function Unchanged has ‘Old applied because we are comparing two distinct stack objects, rather than
different states for one object. The sizes will be the same (from line 2) so Unchanged will compare the entire slices
logically contained by Left and Right.

We can use the same implication approach in a new postcondition for function Empty:

1 function Empty (This : Stack) return Boolean with
2 Post => Empty'Result = (Extent (This) = 0);

Whenever Empty returns True, Top (i.e., Extent) will be zero, otherwise Top will not be zero.

7.6 Platinum Level

Our Gold level implementation also achieved the Platinum level because our postconditions fully covered the func-
tional requirements and there were no abstract properties to be proven. Achieving the Platinum level is rare in itself,
all the more so using the Gold level implementation. Doing so is possible in no small part because stacks are simple
abstractions.

The source code and full GNAT project for this example are available here: https://github.com/AdaCore/Platinum_
Reusable_Stack

This is the complete, final version of the generic package:

1 generic
2 type Element is private;
3 -- The type of values contained by objects of type Stack

(continues on next page)
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4

5 Default_Value : Element;
6 -- The default value used for stack contents. Never
7 -- acquired as a value from the API, but required for
8 -- initialization in SPARK.
9 package Sequential_Bounded_Stacks is

10

11 pragma Unevaluated_Use_of_Old (Allow);
12

13 subtype Element_Count is Integer range 0 .. Integer'Last - 1;
14 -- The number of Element values currently contained
15 -- within any given stack. The lower bound is zero
16 -- because a stack can be empty. We limit the upper
17 -- bound (minimally) to preclude overflow issues.
18

19 subtype Physical_Capacity is Element_Count range 1 .. Element_Count'Last;
20 -- The range of values that any given stack object can
21 -- specify (via the discriminant) for the number of
22 -- Element values the object can physically contain.
23 -- Must be at least one.
24

25 type Stack (Capacity : Physical_Capacity) is private
26 with Default_Initial_Condition => Empty (Stack);
27

28 procedure Push (This : in out Stack; Item : Element) with
29 Pre => not Full (This),
30 Post => not Empty (This)
31 and then Top_Element (This) = Item
32 and then Extent (This) = Extent (This)'Old + 1
33 and then Unchanged (This'Old, Within => This),
34 Global => null;
35

36 procedure Pop (This : in out Stack; Item : out Element) with
37 Pre => not Empty (This),
38 Post => not Full (This)
39 and Item = Top_Element (This)'Old
40 and Extent (This) = Extent (This)'Old - 1
41 and Unchanged (This, Within => This'Old),
42 Global => null;
43

44 function Top_Element (This : Stack) return Element with
45 Pre => not Empty (This),
46 Global => null;
47 -- Returns the value of the Element at the "top" of This
48 -- stack, i.e., the most recent Element pushed. Does not
49 -- remove that Element or alter the state of This stack
50 -- in any way.
51

52 overriding function "=" (Left, Right : Stack) return Boolean with
53 Post => "="'Result = (Extent (Left) = Extent (Right)
54 and then Unchanged (Left, Right)),
55 Global => null;
56

57 procedure Copy (Destination : in out Stack; Source : Stack) with
58 Pre => Destination.Capacity >= Extent (Source),
59 Post => Destination = Source,
60 Global => null;

(continues on next page)
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61 -- An alternative to predefined assignment that does not
62 -- copy all the values unless necessary. It only copies
63 -- the part "logically" contained, so is more efficient
64 -- when Source is not full.
65

66 function Extent (This : Stack) return Element_Count with
67 Global => null;
68 -- Returns the number of Element values currently
69 -- contained within This stack.
70

71 function Empty (This : Stack) return Boolean with
72 Post => Empty'Result = (Extent (This) = 0),
73 Global => null;
74

75 function Full (This : Stack) return Boolean with
76 Post => Full'Result = (Extent (This) = This.Capacity),
77 Global => null;
78

79 procedure Reset (This : in out Stack) with
80 Post => Empty (This),
81 Global => null;
82

83 function Unchanged (Invariant_Part, Within : Stack) return Boolean
84 with Ghost;
85 -- Returns whether the Element values of Invariant_Part
86 -- are unchanged in the stack Within, e.g., that inserting
87 -- or removing an Element value does not change the other
88 -- Element values held.
89

90 private
91

92 type Content is array (Physical_Capacity range <>) of Element;
93

94 type Stack (Capacity : Physical_Capacity) is record
95 Values : Content (1 .. Capacity) := (others => Default_Value);
96 Top : Element_Count := 0;
97 end record with
98 Predicate => Top in 0 .. Capacity;
99

100 function Extent (This : Stack) return Element_Count is
101 (This.Top);
102

103 function Empty (This : Stack) return Boolean is
104 (This.Top = 0);
105

106 function Full (This : Stack) return Boolean is
107 (This.Top = This.Capacity);
108

109 function Top_Element (This : Stack) return Element is
110 (This.Values (This.Top));
111

112 function "=" (Left, Right : Stack) return Boolean is
113 (Left.Top = Right.Top and then
114 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));
115

116 function Unchanged (Invariant_Part, Within : Stack) return Boolean is
117 (Invariant_Part.Top <= Within.Top and then

(continues on next page)
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118 (for all K in 1 .. Invariant_Part.Top =>
119 Within.Values (K) = Invariant_Part.Values (K)));
120

121 end Sequential_Bounded_Stacks;

And the package body:

1 package body Sequential_Bounded_Stacks is
2

3 procedure Reset (This : in out Stack) is
4 begin
5 This.Top := 0;
6 end Reset;
7

8 procedure Push (This : in out Stack; Item : in Element) is
9 begin

10 This.Top := This.Top + 1;
11 This.Values (This.Top) := Item;
12 end Push;
13

14 procedure Pop (This : in out Stack; Item : out Element) is
15 begin
16 Item := This.Values (This.Top);
17 This.Top := This.Top - 1;
18 end Pop;
19

20 procedure Copy (Destination : in out Stack; Source : Stack) is
21 subtype Contained is Element_Count range 1 .. Source.Top;
22 begin
23 Destination.Top := Source.Top;
24 Destination.Values (Contained) := Source.Values (Contained);
25 end Copy;
26

27 end Sequential_Bounded_Stacks;
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The e-learning website https://learn.adacore.com/ contains a freely available interactive course on SPARK.

The SPARK User’s Guide is available at http://docs.adacore.com/spark2014-docs/html/ug/

The SPARK Reference Manual is available at http://docs.adacore.com/spark2014-docs/html/lrm/

A student-oriented textbook on SPARK is “Building High Integrity Applications with SPARK” by McCormick and
Chapin, published by Cambridge University Press. It is sold online by Amazon and many others.

For a historical account of the evolution of SPARK technology and its use in industry, see the article “Are We There
Yet? 20 Years of Industrial Theorem Proving with SPARK” by Chapman and Schanda, at http://proteancode.com/
keynote.pdf

The website https://www.adacore.com/sparkpro is a portal for up-to-date information and resources on SPARK. Ada-
Core blog at https://blog.adacore.com/ frequently hosts posts on the latest evolutions of SPARK.

The document “AdaCore Technologies for Cyber Security” presents the usage of AdaCore’s technology to pre-
vent or mitigate the most common security vulnerabilities in software. See: https://www.adacore.com/books/
adacore-tech-for-cyber-security

The document “AdaCore Technologies for CENELEC EN 50128:2011” presents the usage of AdaCore’s technology
in conjunction with the CENELEC EN 50128:2011 standard. It describes in particular where the SPARK technology
fits best and how it can best be used to meet various requirements of the standard. See: https://www.adacore.com/
books/cenelec-en-50128-2011

The document “AdaCore Technologies for DO-178C/ED-12C” similarly presents the usage of AdaCore’s technology
in conjunction with the DO-178C/ED-12C standard, and describes in particular the use of SPARK in relation with the
Formal Methods supplement DO-333/ED-216. See: https://www.adacore.com/books/do-178c-tech

The article “Climbing the Software Assurance Ladder - Practical Formal Verification for Reliable Software” presents
both the well-established processes surrounding the use of SPARK at Altran UK, as well as the deployment experi-
ments performed at Thales to fine-tune the gradual insertion of formal verification techniques in existing processes.
See: https://www.adacore.com/papers/climbing-the-software-assurance-ladder
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