

SPARK for the MISRA-C Developer
Release 2021-02

Yannick Moy

Feb 26, 2021

CONTENTS:

1 Preface 3

2 Enforcing Basic Program Consistency 5
2.1 Taming Text-Based Inclusion . 5
2.2 Hardening Link-Time Checking . 8
2.3 Going Towards Encapsulation . 10

3 Enforcing Basic Syntactic Guarantees 13
3.1 Distinguishing Code and Comments . 13
3.2 Specially Handling Function Parameters and Result . 14

3.2.1 Handling the Result of Function Calls . 14
3.2.2 Handling Function Parameters . 15

3.3 Ensuring Control Structures Are Not Abused . 16
3.3.1 Preventing the Semicolon Mistake . 16
3.3.2 Avoiding Complex Switch Statements . 17
3.3.3 Avoiding Complex Loops . 19
3.3.4 Avoiding the Dangling Else Issue . 20

4 Enforcing Strong Typing 23
4.1 Enforcing Strong Typing for Pointers . 23

4.1.1 Pointers Are Not Addresses . 23
4.1.2 Pointers Are Not References . 24
4.1.3 Pointers Are Not Arrays . 25
4.1.4 Pointers Should Be Typed . 28

4.2 Enforcing Strong Typing for Scalars . 30
4.2.1 Restricting Operations on Types . 31

4.2.1.1 Arithmetic Operations on Arithmetic Types 31
4.2.1.2 Boolean Operations on Boolean . 33
4.2.1.3 Bitwise Operations on Unsigned Integers 34

4.2.2 Restricting Explicit Conversions . 35
4.2.3 Restricting Implicit Conversions . 35

5 Initializing Data Before Use 39
5.1 Detecting Reads of Uninitialized Data . 39
5.2 Detecting Partial or Redundant Initialization of Arrays and Structures 43

6 Controlling Side Effects 47
6.1 Preventing Undefined Behavior . 47
6.2 Reducing Programmer Confusion . 47
6.3 Side Effects and SPARK . 48

7 Detecting Undefined Behavior 53
7.1 Preventing Undefined Behavior in SPARK . 53
7.2 Proof of Absence of Run-Time Errors in SPARK . 54

i

8 Detecting Unreachable Code and Dead Code 57

9 Conclusion 59

10 References 61
10.1 About MISRA C . 61
10.2 About SPARK . 61
10.3 About MISRA C and SPARK . 62

ii

SPARK for the MISRA-C Developer, Release 2021-02

Copyright © 2018 – 2020, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redistribute,
remix, transform, and build upon the content for any purpose, even commercially, as long as you
give appropriate credit, provide a link to the license, and indicate if changes were made. If you
remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original. You can find license details on this page1

This book presents the SPARK technology — the SPARK subset of Ada and its supporting static
analysis tools — through an example-driven comparison with the rules in the widely known MISRA
C subset of the C language.

This document was prepared by Yannick Moy, with contributions and review from Ben Brosgol.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0

SPARK for the MISRA-C Developer, Release 2021-02

2 CONTENTS:

CHAPTER

ONE

PREFACE

MISRA C appeared in 1998 as a coding standard for C; it focused on avoiding error-prone program-
ming features of the C programming language rather than on enforcing a particular programming
style. A study of coding standards for C by Les Hatton2 found that, compared to ten typical coding
standards for C, MISRA C was the only one to focus exclusively on error avoidance rather than style
enforcement, and by a very large margin.

The popularity of the C programming language, as well as its many traps and pitfalls, have led to
the huge success of MISRA C in domains where C is used for high-integrity sofware. This success
has driven tool vendors to proposemany competing implementations of MISRA C checkers3. Tools
compete in particular on the coverage of MISRA C guidelines that they help enforce, as it is im-
possible to enforce the 16 directives and 143 rules (collectively referred to as guidelines) of MISRA
C.

The 16 directives are broad guidelines, and it is not possible to define compliance in a unique and
automated way. For example, ”all code should be traceable to documented requirements” (Directive
3.1). Thus no tool is expected to enforce directives, as the MISRA C:2012 states in introduction to
the guidelines: ”different tools may place widely different interpretations on what constitutes a non-
compliance.”

The 143 rules on the contrary are completely and precisely defined, and ”static analysis tools should
be capable of checking compliance with rules”. But the same sentence continues with ”subject to the
limitations described in Section 6.5”, which addresses ”decidability of rules”. It turns out that 27 rules
out of 143 are not decidable, so no tool can always detect all violations of these rules without at
the same time reporting ”false alarms” on code that does not constitute a violation.

An example of an undecidable rule is rule 1.3: ”There shall be no occurrence of undefined or critical un-
specified behaviour.” Appendix H of MISRA:C 2012 lists hundreds of cases of undefined and critical
unspecified behavior in the C programming language standard, a majority of which are not indi-
vidually decidable. For the most part, MISRA C checkers ignore undecidable rules such as rule 1.3
and instead focus on the 116 rules for which detection of violations can be automated. It is telling
in that respect that the MISRA C:2012 document and its accompanying set of examples (which can
be downloaded from the MISRA website4) does not provide any example for rule 1.3.

However, violations of undecidable rules such as rule 1.3 are known to have dramatic impact on
software quality. Violations of rule 1.3 in particular are commonly amplified by compilers using
the permission in the C standard to optimize aggressively without looking at the consequences
for programs with undefined or critical unspecified behavior. It would be valid to ignore these
rules if violations did not occur in practice, but on the contrary even experienced programmers
write C code with undefined or critical unspecified behavior. An example comes from the MISRA
C Committee itself in its ”Appendix I: Example deviation record” of the MISRA C:2012 document,
repeated in ”Appendix A: Example deviation record” of the MISRA C: Compliance 2016 document5,
where the following code is proposed as a deviation of rule 10.6 ”The value of a composite expression
shall not be assigned to an object with wider essential type” :

2 https://www.leshatton.org/Documents/MISRAC.pdf
3 https://en.wikipedia.org/wiki/MISRA_C
4 https://www.misra.org.uk
5 https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57

3

https://www.leshatton.org/Documents/MISRAC.pdf
https://en.wikipedia.org/wiki/MISRA_C
https://www.misra.org.uk
https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57

SPARK for the MISRA-C Developer, Release 2021-02

uint32_t prod = qty * time_step;

Here, the multiplication of two unsigned 16-bit values and assignment of the result to an unsigned
32-bit variable constitutes a violation of the aforementioned rule, which gets justified for efficiency
reasons. What the authors seem to have missed is that the multiplication is then performed with
the signed integer type int instead of the target unsigned type uint32_t. Thus the multiplication
of two unsigned 16-bit values may lead to an overflow of the 32-bit intermediate signed result,
which is an occurrence of an undefined behavior. In such a case, a compiler is free to assume
that the value of prod cannot exceed 231 − 1 (the maximal value of a signed 32-bit integer) as
otherwise an undefined behavior would have been triggered. For example, the undefined behavior
with values 65535 for qty and time_step is reported when running the code compiled by either
the GCC or LLVM compiler with option -fsanitize=undefined.

The MISRA C checkers that detect violations of undecidable rules are either unsound tools that can
detect only some of the violations, or sound tools that guarantee to detect all such violations at
the cost of possibly many false reports of violations. This is a direct consequence of undecidability.
However, static analysis technology is available that can achieve soundness without inundating
users with false alarms. One example is the SPARK toolset developed by AdaCore, Altran and Inria,
which is based on four principles:

• The base language Ada provides a solid foundation for static analysis through a well-defined
language standard, strong typing and rich specification features.

• The SPARK subset of Ada restricts the base language in essential ways to support static anal-
ysis, by controlling sources of ambiguity such as side-effects and aliasing.

• The static analysis tools work mostly at the granularity of an individual function, making the
analysis more precise and minimizing the possibility of false alarms.

• The static analysis tools are interactive, allowing users to guide the analysis if necessary or
desired.

In this document, we show how SPARK can be used to achieve high code quality with guarantees
that go beyond what would be feasible with MISRA C.

An on-line and interactive version of this document is available at AdaCore’s learn.adacore.com
site6.

6 https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer

4 Chapter 1. Preface

https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer
https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer

CHAPTER

TWO

ENFORCING BASIC PROGRAM CONSISTENCY

Many consistency properties that are taken for granted in other languages are not enforced in C.
The basic property that all uses of a variable or function are consistent with its type is not enforced
by the language and is also very difficult to enforce by a tool. Three features of C contribute to that
situation:

• the textual-based inclusion of files means that every included declaration is subject to a pos-
sibly different reinterpretation depending on context.

• the lack of consistency requirements across translation units means that type inconsistencies
can only be detected at link time, something linkers are ill-equipped to do.

• the default of making a declaration externally visible means that declarations that should be
local will be visible to the rest of the program, increasing the chances for inconsistencies.

MISRA C contains guidelines on all three fronts to enforce basic program consistency.

2.1 Taming Text-Based Inclusion

The text-based inclusion of files is one of the dated idiosyncracies of the C programming language
that was inherited by C++ and that is known to cause quality problems, especially during mainte-
nance. Although multiple inclusion of a file in the same translation unit can be used to emulate
template programming, it is generally undesirable. Indeed, MISRA C defines Directive 4.10 pre-
cisely to forbid it for header files: ”Precautions shall be taken in order to prevent the contents of a
header file being included more than once”.

The subsequent section on ”Preprocessing Directives” contains 14 rules restricting the use of text-
based inclusion through preprocessing. Among other things these rules forbid the use of the
#undef directive (which works around conflicts in macro definitions introduced by text-based in-
clusion) and enforces the well-known practice of enclosing macro arguments in parentheses (to
avoid syntactic reinterpretations in the context of the macro use).

SPARK (and more generally Ada) does not suffer from these problems, as it relies on semantic
inclusion of context instead of textual inclusion of content, using with clauses:

Listing 1: hello_world.adb

1 with Ada.Text_IO;
2

3 procedure Hello_World is
4 begin
5 Ada.Text_IO.Put_Line ("hello, world!");
6 end Hello_World;

Build output

5

SPARK for the MISRA-C Developer, Release 2021-02

Compile
[Ada] hello_world.adb

Bind
[gprbind] hello_world.bexch
[Ada] hello_world.ali

Link
[link] hello_world.adb

Runtime output

hello, world!

Note that with clauses are only allowed at the beginning of files; the compiler issues an error if
they are used elsewhere:

Listing 2: hello_world.adb

1 procedure Hello_World is
2 with Ada.Text_IO; -- Illegal
3 begin
4 Ada.Text_IO.Put_Line ("hello, world!");
5 end Hello_World;

Importing a unit (i.e., specifying it in a with clause) multiple times is harmless, as it is equivalent to
importing it once, but a compiler warning lets us know about the redundancy:

Listing 3: hello_world.adb

1 with Ada.Text_IO;
2 with Ada.Text_IO; -- Legal but useless
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 end Hello_World;

Build output

Compile
[Ada] hello_world.adb

Bind
[gprbind] hello_world.bexch
[Ada] hello_world.ali

Link
[link] hello_world.adb

Runtime output

hello, world!

The order in which units are imported is irrelevant. All orders are valid and have the same seman-
tics.

No conflict arises from importing multiple units, even if the same name is defined in several, since
each unit serves as namespace for the entities which it defines. So we can define our own version
of Put_Line in some Helper unit and import it together with the standard version defined in
Ada.Text_IO:

6 Chapter 2. Enforcing Basic Program Consistency

SPARK for the MISRA-C Developer, Release 2021-02

Listing 4: helper.ads

1 package Helper is
2 procedure Put_Line (S : String);
3 end Helper;

Listing 5: helper.adb

1 with Ada.Text_IO;
2

3 package body Helper is
4 procedure Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line ("Start helper version");
7 Ada.Text_IO.Put_Line (S);
8 Ada.Text_IO.Put_Line ("End helper version");
9 end Put_Line;

10 end Helper;

Listing 6: hello_world.adb

1 with Ada.Text_IO;
2 with Helper;
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8 end Hello_World;

Build output

Compile
[Ada] hello_world.adb
[Ada] helper.adb

Bind
[gprbind] hello_world.bexch
[Ada] hello_world.ali

Link
[link] hello_world.adb

Runtime output

hello, world!
Start helper version
hello, world!
End helper version

The only way a conflict can arise is if we want to be able to reference Put_Line directly, without
using the qualified name Ada.Text_IO.Put_Line or Helper.Put_Line. The use clause makes
public declarations from a unit available directly:

Listing 7: helper.ads

1 package Helper is
2 procedure Put_Line (S : String);
3 end Helper;

Listing 8: helper.adb

1 with Ada.Text_IO;
(continues on next page)

2.1. Taming Text-Based Inclusion 7

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

2

3 package body Helper is
4 procedure Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line ("Start helper version");
7 Ada.Text_IO.Put_Line (S);
8 Ada.Text_IO.Put_Line ("End helper version");
9 end Put_Line;

10 end Helper;

Listing 9: hello_world.adb

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Helper; use Helper;
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8 Put_Line ("hello, world!"); -- ERROR
9 end Hello_World;

Build output

Compile
[Ada] hello_world.adb

hello_world.adb:8:04: ambiguous expression (cannot resolve "Put_Line")
hello_world.adb:8:04: possible interpretation at helper.ads:2
hello_world.adb:8:04: possible interpretation at a-textio.ads:508
gprbuild: *** compilation phase failed

Here, both units Ada.Text_IO and Helper define a procedure Put_Line taking a String as
argument, so the compiler cannot disambiguate the direct call to Put_Line and issues an error.

Note that it helpfully points to candidate declarations, so that the user can decide which qualified
name to use as in the previous two calls.

Issues arising in C as a result of text-based inclusion of files are thus completely prevented in SPARK
(and Ada) thanks to semantic import of units. Note that the C++ committee identified this weakness
some time ago and has approved7 the addition of modules to C++20, which provide a mechanism
for semantic import of units.

2.2 Hardening Link-Time Checking

An issue related to text-based inclusion of files is that there is no single source for declaring the
type of a variable or function. If a file origin.c defines a variable var and functions fun and
print:

Listing 10: origin.c

1 #include <stdio.h>
2

3 int var = 0;
4 int fun() {
5 return 1;
6 }

(continues on next page)

7 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

8 Chapter 2. Enforcing Basic Program Consistency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

7 void print() {
8 printf("var = %d\n", var);
9 }

and the corresponding header file origin.h declares var, fun and print as having external link-
age:

Listing 11: origin.h

1 extern int var;
2 extern int fun();
3 extern void print();

then client code can include origin.h with declarations for var and fun:

Listing 12: main.c

1 #include "origin.h"
2

3 int main() {
4 var = fun();
5 print();
6 return 0;
7 }

Runtime output

var = 1

or, equivalently, repeat these declarations directly:

Listing 13: main.c

1 extern int var;
2 extern int fun();
3 extern void print();
4

5 int main() {
6 var = fun();
7 print();
8 return 0;
9 }

Runtime output

var = 1

Then, if an inconsistency is introduced in the type of var of fun between these alternative declara-
tions and their actual type, the compiler cannot detect it. Only the linker, which has access to the set
of object files for a program, can detect such inconsistencies. However, a linker’smain task is to link,
not to detect inconsistencies, and so inconsistencies in the type of variables and functions in most
cases cannot be detected. For example, most linkers cannot detect if the type of var or the return
type of fun is changed to float in the declarations above. With the declaration of var changed
to float, the above program compiles and runs without errors, producing the erroneous output
var = 1065353216 instead of var =1. With the return type of fun changed to float instead,
the program still compiles and runs without errors, producing this time the erroneous output var
= 0.

The inconsistency just discussed is prevented by MISRA C Rule 8.3 ”All declarations of an object
or function shall use the same names and type qualifiers”. This is a decidable rule, but it must be
enforced at system level, looking at all translation units of the complete program. MISRA C Rule

2.2. Hardening Link-Time Checking 9

SPARK for the MISRA-C Developer, Release 2021-02

8.6 also requires a unique definition for a given identifier across translation units, and Rule 8.5
requires that an external declaration shared between translation units comes from the same file.
There is even a specific section on ”Identifiers” containing 9 rules requiring uniqueness of various
categories of identifiers.

SPARK (and more generally Ada) does not suffer from these problems, as it relies on semantic
inclusion of context using with clauses to provide a unique declaration for each entity.

2.3 Going Towards Encapsulation

Many problems in C stem from the lack of encapsulation. There is no notion of namespace that
would allow a file to make its declarations available without risking a conflict with other files. Thus
MISRA C has a number of guidelines that discourage the use of external declarations:

• Directive 4.8 encourages hiding the definition of structures and unions in implementation
files (.c files) when possible: ”If a pointer to a structure or union is never dereferenced within a
translation unit, then the implementation of the object should be hidden.”

• Rule 8.7 forbids the use of external declarations when not needed: ”Functions and objects
should not be defined with external linkage if they are referenced in only one translation unit.”

• Rule 8.8 forces the explicit use of keyword static when appropriate: ”The static storage class
specifier shall be used in all declarations of objects and functions that have internal linkage.”

The basic unit of modularization in SPARK, as in Ada, is the package. A package always has a spec
(in an .ads file), which defines the interface to other units. It generally also has a body (in an .adb
file), which completes the spec with an implementation. Only declarations from the package spec
are visible from other units when they import (with) the package. In fact, only declarations from
what is called the ”visible part” of the spec (before the keyword private) are visible from units that
with the package.

Listing 14: helper.ads

1 package Helper is
2 procedure Public_Put_Line (S : String);
3 private
4 procedure Private_Put_Line (S : String);
5 end Helper;

Listing 15: helper.adb

1 with Ada.Text_IO;
2

3 package body Helper is
4 procedure Public_Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line (S);
7 end Public_Put_Line;
8

9 procedure Private_Put_Line (S : String) is
10 begin
11 Ada.Text_IO.Put_Line (S);
12 end Private_Put_Line;
13

14 procedure Body_Put_Line (S : String) is
15 begin
16 Ada.Text_IO.Put_Line (S);
17 end Body_Put_Line;
18 end Helper;

10 Chapter 2. Enforcing Basic Program Consistency

SPARK for the MISRA-C Developer, Release 2021-02

Listing 16: hello_world.adb

1 with Helper; use Helper;
2

3 procedure Hello_World is
4 begin
5 Public_Put_Line ("hello, world!");
6 Private_Put_Line ("hello, world!"); -- ERROR
7 Body_Put_Line ("hello, world!"); -- ERROR
8 end Hello_World;

Build output

Compile
[Ada] hello_world.adb

hello_world.adb:6:04: "Private_Put_Line" is not visible
hello_world.adb:6:04: non-visible (private) declaration at helper.ads:4
hello_world.adb:7:04: "Body_Put_Line" is undefined
gprbuild: *** compilation phase failed

Note the different errors on the calls to the private and body versions of Put_Line. In the first
case the compiler can locate the candidate procedure but it is illegal to call it from Hello_World,
in the second case the compiler does not even know about any Body_Put_Line when compiling
Hello_World since it only looks at the spec and not the body.

SPARK (and Ada) also allow defining a type in the private part of a package spec while simply declar-
ing the type name in the public (”visible”) part of the spec. This way, client code — i.e., code that
with’s the package — can use the type, typically through a public API, but have no access to how
the type is implemented:

Listing 17: vault.ads

1 package Vault is
2 type Data is private;
3 function Get (X : Data) return Integer;
4 procedure Set (X : out Data; Value : Integer);
5 private
6 type Data is record
7 Val : Integer;
8 end record;
9 end Vault;

Listing 18: vault.adb

1 package body Vault is
2 function Get (X : Data) return Integer is (X.Val);
3 procedure Set (X : out Data; Value : Integer) is
4 begin
5 X.Val := Value;
6 end Set;
7 end Vault;

Listing 19: information_system.ads

1 with Vault;
2

3 package Information_System is
4 Archive : Vault.Data;
5 end Information_System;

2.3. Going Towards Encapsulation 11

SPARK for the MISRA-C Developer, Release 2021-02

Listing 20: hacker.adb

1 with Information_System;
2 with Vault;
3

4 procedure Hacker is
5 V : Integer := Vault.Get (Information_System.Archive);
6 begin
7 Vault.Set (Information_System.Archive, V + 1);
8 Information_System.Archive.Val := 0; -- ERROR
9 end Hacker;

Build output

Compile
[Ada] hacker.adb

hacker.adb:8:22: invalid prefix in selected component "Information_System.Archive"
gprbuild: *** compilation phase failed

Note that it is possible to declare a variable of type Vault.Data in package Information_System
and to get/set it through its API in procedure Hacker, but not to directly access its Val field.

12 Chapter 2. Enforcing Basic Program Consistency

CHAPTER

THREE

ENFORCING BASIC SYNTACTIC GUARANTEES

C’s syntax is concise but also very permissive, which makes it easy to write programs whose effect
is not what was intended. MISRA C contains guidelines to:

• clearly distinguish code from comments

• specially handle function parameters and result

• ensure that control structures are not abused

3.1 Distinguishing Code and Comments

The problem arises from block comments in C, starting with /* and ending with */. These com-
ments do not nest with other block comments or with line comments. For example, consider a
block comment surrounding three lines that each increase variable a by one:

/*
++a;
++a;
++a; */

Now consider what happens if the first line is commented out using a block comment and the third
line is commented out using a line comment (also known as a C++ style comment, allowed in C
since C99):

/*
/* ++a; */
++a;
// ++a; */

The result of commenting out code that was already commented out is that the second line of code
becomes live! Of course, the above example is simplified, but similar situations do arise in practice,
which is the reason for MISRA C Directive 4.1 ”Sections of code should not be ’commented out’”. This
is reinforced with Rules 3.1 and 3.2 from the section on ”Comments” that forbid in particular the
use of /* inside a comment like we did above.

These situations cannot arise in SPARK (or in Ada), as only line comments are permitted, using --:

-- A := A + 1;
-- A := A + 1;
-- A := A + 1;

So commenting again the first and third lines does not change the effect:

-- -- A := A + 1;
-- A := A + 1;
-- -- A := A + 1;

13

SPARK for the MISRA-C Developer, Release 2021-02

3.2 Specially Handling Function Parameters and Result

3.2.1 Handling the Result of Function Calls

It is possible in C to ignore the result of a function call, either implicitly or else explicitly by converting
the result to void:

f();
(void)f();

This is particularly dangerous when the function returns an error status, as the caller is then ignor-
ing the possibility of errors in the callee. Thus the MISRA C Directive 4.7: ”If a function returns error
information, then that error information shall be tested”. In the general case of a function returning
a result which is not an error status, MISRA C Rule 17.7 states that ”The value returned by a function
having non-void return type shall be used”, where an explicit conversion to void counts as a use.

In SPARK, as in Ada, the result of a function call must be used, for example by assigning it to a
variable or by passing it as a parameter, in contrast with procedures (which are equivalent to void-
returning functions in C). SPARK analysis also checks that the result of the function is actually used
to influence an output of the calling subprogram. For example, the first two calls to F in the fol-
lowing are detected as unused, even though the result of the function call is assigned to a variable,
which is itself used in the second case:

Listing 1: fun.ads

1 package Fun is
2 function F return Integer is (1);
3 end Fun;

Listing 2: use_f.adb

1 with Fun; use Fun;
2

3 procedure Use_F (Z : out Integer) is
4 X, Y : Integer;
5 begin
6 X := F;
7

8 Y := F;
9 X := Y;

10

11 Z := F;
12 end Use_F;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
use_f.adb:4:04: warning: variable "X" is assigned but never read
use_f.adb:6:04: warning: useless assignment to "X", value overwritten at line 9
use_f.adb:6:06: warning: unused assignment
use_f.adb:8:06: warning: unused assignment
use_f.adb:9:04: warning: possibly useless assignment to "X", value might not be␣

↪referenced
use_f.adb:9:06: warning: unused assignment

Only the result of the third call is used to influence the value of an output of Use_F, here the output
parameter Z of the procedure.

14 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer, Release 2021-02

3.2.2 Handling Function Parameters

In C, function parameters are treated as local variables of the function. They can be modified, but
these modifications won’t be visible outside the function. This is an opportunity for mistakes. For
example, the following code, which appears to swap the values of its parameters, has in reality no
effect:

void swap (int x, int y) {
int tmp = x;
x = y;
y = tmp;

}

MISRA C Rule 17.8 prevents such mistakes by stating that ”A function parameter should not be mod-
ified”.

No such rule is needed in SPARK, since function parameters are only inputs so cannot be modified,
and procedure parameters have a mode defining whether they can be modified or not. Only pa-
rameters of mode out or ada:in out can be modified — and these are prohibited from functions in
SPARK— and their modification is visible at the calling site. For example, assigning to a parameter
of mode in (the default parameter mode if omitted) results in compilation errors:

Listing 3: swap.ads

1 procedure Swap (X, Y : Integer);

Listing 4: swap.adb

1 procedure Swap (X, Y : Integer) is
2 Tmp : Integer := X;
3 begin
4 X := Y; -- ERROR
5 Y := Tmp; -- ERROR
6 end Swap;

Compilation output

swap.adb:4:04: assignment to "in" mode parameter not allowed
swap.adb:5:04: assignment to "in" mode parameter not allowed

The correct version of Swap in SPARK takes parameters of mode in out:

Listing 5: swap.ads

1 procedure Swap (X, Y : in out Integer);

Listing 6: swap.adb

1 procedure Swap (X, Y : in out Integer) is
2 Tmp : constant Integer := X;
3 begin
4 X := Y;
5 Y := Tmp;
6 end Swap;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

3.2. Specially Handling Function Parameters and Result 15

SPARK for the MISRA-C Developer, Release 2021-02

3.3 Ensuring Control Structures Are Not Abused

The previous issue (ignoring the result of a function call) is an example of a control structure being
abused, due to the permissive syntax of C. There are many such examples, and MISRA C contains
a number of guidelines to prevent such abuse.

3.3.1 Preventing the Semicolon Mistake

Because a semicolon can act as a statement, and because an if-statement and a loop accept a
simple statement (possibly only a semicolon) as body, inserting a single semicolon can completely
change the behavior of the code:

int func() {
if (0)

return 1;
while (1)

return 0;
return 0;

}

As written, the code above returns with status 0. If a semicolon is added after the first line (if
(0);), then the code returns with status 1. If a semicolon is added instead after the third line
(while (1);), then the code does not return. To prevent such surprises, MISRA C Rule 15.6 states
that ”The body of an iteration-statement or a selection-statement shall be a compound statement” so
that the code above must be written:

int func() {
if (0) {

return 1;
}
while (1) {

return 0;
}
return 0;

}

Note that adding a semicolon after the test of the if or while statement has the same effect as
before! But doing so would violate MISRA C Rule 15.6.

In SPARK, the semicolon is not a statement by itself, but rather a marker that terminates a state-
ment. The null statement is an explicit null;, and all blocks of statements have explicit begin and
end markers, which prevents mistakes that are possible in C. The SPARK (also Ada) version of the
above C code is as follows:

Listing 7: func.ads

1 function Func return Integer;

Listing 8: func.adb

1 function Func return Integer is
2 begin
3 if False then
4 return 1;
5 end if;
6 while True loop
7 return 0;
8 end loop;

(continues on next page)

16 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

9 return 0;
10 end Func;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

3.3.2 Avoiding Complex Switch Statements

Switch statements are well-known for being easilymisused. Control can jump to any case section in
the body of the switch, which in C can be before any statement contained in the body of the switch.
At the end of the sequence of statements associatedwith a case, execution continues with the code
that follows unless a break is encountered. This is a recipe for mistakes, and MISRA C enforces a
simpler well-formed syntax for switch statements defined in Rule 16.1: ”All switch statements shall
be well-formed”.

The other rules in the section on ”Switch statements” go on detailing individual consequences of
Rule 16.1. For example Rule 16.3 forbids the fall-through from one case to the next: ”An uncondi-
tional break statement shall terminate every switch-clause”. As another example, Rule 16.4 mandates
the presence of a default case to handle cases not taken into account explicitly: ”Every switch state-
ment shall have a default label”.

The analog of the C switch statements in SPARK (and in Ada) is the case statement. This statement
has a simpler and more robust structure than the C switch, with control automatically exiting after
one of the case alternatives is executed, and the compiler checking that the alternatives are disjoint
(like in C) and complete (unlike in C). So the following code is rejected by the compiler:

Listing 9: sign_domain.ads

1 package Sign_Domain is
2

3 type Sign is (Negative, Zero, Positive);
4

5 function Opposite (A : Sign) return Sign is
6 (case A is -- ERROR
7 when Negative => Positive,
8 when Positive => Negative);
9

10 function Multiply (A, B : Sign) return Sign is
11 (case A is
12 when Negative => Opposite (B),
13 when Zero | Positive => Zero,
14 when Positive => B); -- ERROR
15

16 procedure Get_Sign (X : Integer; S : out Sign);
17

18 end Sign_Domain;

Listing 10: sign_domain.adb

1 package body Sign_Domain is
2

3 procedure Get_Sign (X : Integer; S : out Sign) is
4 begin
5 case X is
6 when 0 => S := Zero;
7 when others => S := Negative; -- ERROR

(continues on next page)

3.3. Ensuring Control Structures Are Not Abused 17

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

8 when 1 .. Integer'Last => S := Positive;
9 end case;

10 end Get_Sign;
11

12 end Sign_Domain;

Build output

Compile
[Ada] sign_domain.adb

sign_domain.adb:7:15: the choice "others" must appear alone and last
sign_domain.ads:6:07: missing case value: "Zero"
sign_domain.ads:14:15: duplication of choice value: "Positive" at line 13
gprbuild: *** compilation phase failed

The error in function Opposite is that the when choices do not cover all values of the target ex-
pression. Here, A is of the enumeration type Sign, so all three values of the enumeration must be
covered.

The error in function Multiply is that Positive is covered twice, in the second and the third
alternatives. This is not allowed.

The error in procedure Get_Sign is that the others choice (the equivalent of C default case)
must come last. Note that an others choice would be useless in Opposite and Multiply, as all
Sign values are covered.

Here is a correct version of the same code:

Listing 11: sign_domain.ads

1 package Sign_Domain is
2

3 type Sign is (Negative, Zero, Positive);
4

5 function Opposite (A : Sign) return Sign is
6 (case A is
7 when Negative => Positive,
8 when Zero => Zero,
9 when Positive => Negative);

10

11 function Multiply (A, B : Sign) return Sign is
12 (case A is
13 when Negative => Opposite (B),
14 when Zero => Zero,
15 when Positive => B);
16

17 procedure Get_Sign (X : Integer; S : out Sign);
18

19 end Sign_Domain;

Listing 12: sign_domain.adb

1 package body Sign_Domain is
2

3 procedure Get_Sign (X : Integer; S : out Sign) is
4 begin
5 case X is
6 when 0 => S := Zero;
7 when 1 .. Integer'Last => S := Positive;
8 when others => S := Negative;
9 end case;

(continues on next page)

18 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

10 end Get_Sign;
11

12 end Sign_Domain;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
sign_domain.ads:17:37: info: initialization of "S" proved

3.3.3 Avoiding Complex Loops

Similarly to C switches, for-loops in C can become unreadable. MISRA C thus enforces a simpler
well-formed syntax for for-loops, defined in Rule 14.2: ”A for loop shall be well-formed”. The main
effect of this simplification is that for-loops in C look like for-loops in SPARK (and in Ada), with a
loop counter that is incremented or decremented at each iteration. Section 8.14 defines precisely
what a loop counter is:

1. It has a scalar type;

2. Its value varies monotonically on each loop iteration; and

3. It is used in a decision to exit the loop.

In particular, Rule 14.2 forbids any modification of the loop counter inside the loop body. Here’s
the example used in MISRA C:2012 to illustrate this rule:

bool_t flag = false;

for (int16_t i = 0; (i < 5) && !flag; i++)
{
if (C)
{

flag = true; /* Compliant - allows early termination of loop */
}

i = i + 3; /* Non-compliant - altering the loop counter */
}

The equivalent SPARK (and Ada) code does not compile, because of the attempt tomodify the value
of the loop counter:

Listing 13: well_formed_loop.adb

1 procedure Well_Formed_Loop (C : Boolean) is
2 Flag : Boolean := False;
3 begin
4 for I in 0 .. 4 loop
5 exit when not Flag;
6

7 if C then
8 Flag := True;
9 end if;

10

11 I := I + 3; -- ERROR
12 end loop;
13 end Well_Formed_Loop;

Build output

3.3. Ensuring Control Structures Are Not Abused 19

SPARK for the MISRA-C Developer, Release 2021-02

Compile
[Ada] well_formed_loop.adb

well_formed_loop.adb:11:07: assignment to loop parameter not allowed
gprbuild: *** compilation phase failed

Removing the problematic line leads to a valid program. Note that the additional condition being
tested in the C for-loop has been moved to a separate exit statement at the start of the loop body.

SPARK (and Ada) loops can increase (or, with explicit syntax, decrease) the loop counter by 1 at
each iteration.

for I in reverse 0 .. 4 loop
... -- Successive values of I are 4, 3, 2, 1, 0

end loop;

SPARK loops can iterate over any discrete type; i.e., integers as above or enumerations:

type Sign is (Negative, Zero, Positive);

for S in Sign loop
...

end loop;

3.3.4 Avoiding the Dangling Else Issue

Cdoes not provide a closing symbol for an if-statement. Thismakes it possible towrite the following
code, which appears to try to return the absolute value of its argument, while it actually does the
opposite:

Listing 14: main.c

1 #include <stdio.h>
2

3 int absval (int x) {
4 int result = x;
5 if (x >= 0)
6 if (x == 0)
7 result = 0;
8 else
9 result = -x;

10 return result;
11 }
12

13 int main() {
14 printf("absval(5) = %d\n", absval(5));
15 printf("absval(0) = %d\n", absval(0));
16 printf("absval(-10) = %d\n", absval(-10));
17 }

Runtime output

absval(5) = -5
absval(0) = 0
absval(-10) = -10

The warning issued by GCC or LLVM with option -Wdangling-else (implied by -Wall) gives a
clue about the problem: although the else branch is written as though it completes the outer
if-statement, in fact it completes the inner if-statement.

MISRA C Rule 15.6 avoids the problem: ”The body of an iteration-statement or a selection-statement

20 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer, Release 2021-02

shall be a compound statement”. That’s the same rule as the one shown earlier for Preventing the
Semicolon Mistake (page 16). So the code for absvalmust be written:

Listing 15: main.c

1 #include <stdio.h>
2

3 int absval (int x) {
4 int result = x;
5 if (x >= 0) {
6 if (x == 0) {
7 result = 0;
8 }
9 } else {

10 result = -x;
11 }
12 return result;
13 }
14

15 int main() {
16 printf("absval(5) = %d\n", absval(5));
17 printf("absval(0) = %d\n", absval(0));
18 printf("absval(-10) = %d\n", absval(-10));
19 }

Runtime output

absval(5) = 5
absval(0) = 0
absval(-10) = 10

which has the expected behavior.

In SPARK (as in Ada), each if-statement has a matching end marker end if; so the dangling-else
problem cannot arise. The above C code is written as follows:

Listing 16: absval.ads

1 function Absval (X : Integer) return Integer;

Listing 17: absval.adb

1 function Absval (X : Integer) return Integer is
2 Result : Integer := X;
3 begin
4 if X >= 0 then
5 if X = 0 then
6 Result := 0;
7 end if;
8 else
9 Result := -X;

10 end if;
11 return Result;
12 end Absval;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
absval.adb:9:17: medium: overflow check might fail (e.g. when X = Integer'First)␣

↪[possible explanation: subprogram at absval.ads:1 should mention X in a␣
↪precondition]

gnatprove: unproved check messages considered as errors

3.3. Ensuring Control Structures Are Not Abused 21

SPARK for the MISRA-C Developer, Release 2021-02

Interestingly, SPARK analysis detects here that the negation operation on line 9 might overflow.
That’s an example of runtime error detection which will be covered in the chapter on Detecting
Undefined Behavior (page 53).

22 Chapter 3. Enforcing Basic Syntactic Guarantees

CHAPTER

FOUR

ENFORCING STRONG TYPING

Annex C of MISRA C:2012 summarizes the problem succinctly:

”ISO C may be considered to exhibit poor type safety as it permits a wide range of implicit
type conversions to take place. These type conversions can compromise safety as their
implementation-defined aspects can cause developer confusion.”

The most severe consequences come from inappropriate conversions involving pointer types, as
they can cause memory safety violations. Two sections of MISRA C are dedicated to these issues:
”Pointer type conversions” (9 rules) and ”Pointers and arrays” (8 rules).

Inappropriate conversions between scalar types are only slightly less severe, as theymay introduce
arbitrary violations of the intended functionality. MISRA C has gone to great lengths to improve the
situation, by defining a stricter type system on top of the C language. This is described in Appendix
D of MISRA C:2012 and in the dedicated section on ”The essential type model” (8 rules).

4.1 Enforcing Strong Typing for Pointers

Pointers in C provide a low-level view of the addressable memory as a set of integer addresses. To
write at address 42, just go through a pointer:

Listing 1: main.c

1 int main() {
2 int *p = 42;
3 *p = 0;
4 return 0;
5 }

Running this program is likely to hit a segmentation fault on an operating system, or to cause
havoc in an embedded system, both because address 42 will not be correctly aligned on a 32-bit
or 64-bit machine and because this address is unlikely to correspond to valid addressable data
for the application. The compiler might issue a helpful warning on the above code (with option
-Wint-conversion implied by -Wall in GCCor LLVM), but note that thewarning disappearswhen
explicitly converting value 42 to the target pointer type, although the problem is still present.

Beyond their ability to denotememory addresses, pointers are also used in C to pass references as
inputs or outputs to function calls, to construct complex data structures with indirection or sharing,
and to denote arrays of elements. Pointers are thus at once pervasive, powerful and fragile.

4.1.1 Pointers Are Not Addresses

In an attempt to rule out issues that come from direct addressing of memory with pointers, MISRA
C states in Rule 11.4 that ”A conversion should not be performed between a pointer to object and an
integer type”. As this rule is classified as only Advisory, MISRA C completes it with two Required
rules:

23

SPARK for the MISRA-C Developer, Release 2021-02

• Rule 11.6: ”A cast shall not be performed between pointer to void and an arithmetic type”

• Rule 11.7: ”A cast shall not be performed between pointer to object and a non-integer arithmetic
type”

In Ada, pointers are not addresses, and addresses are not integers. An opaque standard type
System.Address is used for addresses, and conversions to/from integers are provided in a stan-
dard package System.Storage_Elements. The previous C code can be written as follows in Ada:

Listing 2: pointer.adb

1 with System;
2 with System.Storage_Elements;
3

4 procedure Pointer is
5 A : constant System.Address := System.Storage_Elements.To_Address (42);
6 M : aliased Integer with Address => A;
7 P : constant access Integer := M'Access;
8 begin
9 P.all := 0;

10 end Pointer;

The integer value 42 is converted to a memory address A by calling System.Storage_Elements.
To_Address, which is then used as the address of integer variable M. The pointer variable P is set
to point to M (which is allowed because M is declared as aliased).

Ada requires more verbiage than C:

• The integer value 42must be explicitly converted to type Address

• To get a pointer to a declared variable such as M, the declarationmust bemarked as aliased

The added syntax helps first in making clear what is happening and, second, in ensuring that a
potentially dangerous feature (assigning to a value at a specific machine address) is not used inad-
vertently.

The above example is legal Ada but not SPARK, since SPARK does not support pointers (they signif-
icantly complicate formal analysis). SPARK does allow addresses, however.

4.1.2 Pointers Are Not References

Passing parameters by reference is critical for efficient programs, but the absence of references
distinct from pointers in C incurs a serious risk. Any parameter of a pointer type can be copied
freely to a variable whose lifetime is longer than the object pointed to, a problem known as ”dan-
gling pointers”. MISRA C forbids such uses in Rule 18.6: ”The address of an object with automatic
storage shall not be copied to another object that persists after the first object has ceased to exist”.
Unfortunately, enforcing this rule is difficult, as it is undecidable.

In SPARK, parameters can be passed by reference, but no pointer to the parameter can be stored,
which completely solves this issue. In fact, the decision to pass a parameter by copy or by refer-
ence rests in many cases with the compiler, but such compiler dependency has no effect on the
functional behavior of a SPARK program. In the example below, the compiler may decide to pass
parameter P of procedure Rotate_X either by copy or by reference, but regardless of the choice
the postcondition of Rotate_X will hold: the final value of P will be modified by rotation around
the X axis.

Listing 3: geometry.ads

1 package Geometry is
2

3 type Point_3D is record
4 X, Y, Z : Float;

(continues on next page)

24 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

5 end record;
6

7 procedure Rotate_X (P : in out Point_3D) with
8 Post => P = P'Old'Update (Y => P.Z'Old, Z => -P.Y'Old);
9

10 end Geometry;

Listing 4: geometry.adb

1 package body Geometry is
2

3 procedure Rotate_X (P : in out Point_3D) is
4 Tmp : constant Float := P.Y;
5 begin
6 P.Y := P.Z;
7 P.Z := -Tmp;
8 end Rotate_X;
9

10 end Geometry;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
geometry.ads:8:14: info: postcondition proved
geometry.ads:8:51: info: range check proved

SPARK’s analysis tool can mathematically prove that the postcondition is true.

4.1.3 Pointers Are Not Arrays

The greatest source of vulnerabilities regarding pointers is their use as substitutes for arrays. Al-
though the C language has a syntax for declaring and accessing arrays, this is just a thin syntactic
layer on top of pointers. Thus:

• Array access is just pointer arithmetic;

• If a function is to manipulate an array then the array’s length must be separately passed as a
parameter; and

• The program is susceptible to the various vulnerabilities originating from the confusion of
pointers and arrays, such as buffer overflow.

Consider a function that counts the number of times a value is present in an array. In C, this could
be written:

Listing 5: main.c

1 #include <stdio.h>
2

3 int count(int *p, int len, int v) {
4 int count = 0;
5 while (len--) {
6 if (*p++ == v) {
7 count++;
8 }
9 }

10 return count;
11 }
12

(continues on next page)

4.1. Enforcing Strong Typing for Pointers 25

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

13 int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18 }

Runtime output

value 3 is seen 3 times in p

Function count has no control over the range of addresses accessed from pointer p. The critical
property that the len parameter is a valid length for an array of integers pointed to by parameter
p rests completely with the caller of count, and count has no way to check that this is true.

To mitigate the risks associated with pointers being used for arrays, MISRA C contains eight rules
in a section on ”Pointers and arrays”. These rules forbid pointer arithmetic (Rule 18.4) or, if this
Advisory rule is not followed, require pointer arithmetic to stay within bounds (Rule 18.1). But, even
if we rewrite the loop in count to respect all decidable MISRA C rules, the program’s correctness
still depends on the caller of count passing a correct value of len:

Listing 6: main.c

1 #include <stdio.h>
2

3 int count(int *p, int len, int v) {
4 int count = 0;
5 for (int i = 0; i < len; i++) {
6 if (p[i] == v) {
7 count++;
8 }
9 }

10 return count;
11 }
12

13 int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18 }

Runtime output

value 3 is seen 3 times in p

The resulting code is more readable, but still vulnerable to incorrect values of parameter len
passed by the caller of count, which violates undecidable MISRA C Rules 18.1 (pointer arithmetic
should stay within bounds) and 1.3 (no undefined behavior). Contrast this with the same function
in SPARK (and Ada):

Listing 7: types.ads

1 package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3 end Types;

26 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer, Release 2021-02

Listing 8: count.ads

1 with Types; use Types;
2

3 function Count (P : Int_Array; V : Integer) return Natural;

Listing 9: count.adb

1 function Count (P : Int_Array; V : Integer) return Natural is
2 Count : Natural := 0;
3 begin
4 for I in P'Range loop
5 if P (I) = V then
6 Count := Count + 1;
7 end if;
8 end loop;
9 return Count;

10 end Count;

Listing 10: test_count.adb

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Types; use Types;
3 with Count;
4

5 procedure Test_Count is
6 P : constant Int_Array := (0, 3, 9, 3, 3);
7 C : constant Integer := Count (P, 3);
8 begin
9 Put_Line ("value 3 is seen" & C'Img & " times in p");

10 end Test_Count;

Build output

Compile
[Ada] test_count.adb
[Ada] count.adb
[Ada] types.ads

Bind
[gprbind] test_count.bexch
[Ada] test_count.ali

Link
[link] test_count.adb

Runtime output

value 3 is seen 3 times in p

The array parameter P is not simply a homogeneous sequence of Integer values. The compiler
must represent P so that its lower and upper bounds (P'First and P'Last) and thus also its
length (P'Length) can be retrieved. Function Count can simply loop over the range of valid array
indexes P'First .. P'Last (or P'Range for short). As a result, function Count can be verified
in isolation to be free of vulnerabilities such as buffer overflow, as it does not depend on the values
of parameters passed by its callers. In fact, we can go further in SPARK and show that the value
returned by Count is no greater than the length of parameter P by stating this property in the
postcondition of Count and asking the SPARK analysis tool to prove it:

4.1. Enforcing Strong Typing for Pointers 27

SPARK for the MISRA-C Developer, Release 2021-02

Listing 11: types.ads

1 package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3 end Types;

Listing 12: count.ads

1 with Types; use Types;
2

3 function Count (P : Int_Array; V : Integer) return Natural with
4 Post => Count'Result <= P'Length;

Listing 13: count.adb

1 function Count (P : Int_Array; V : Integer) return Natural
2 is
3 Count : Natural := 0;
4 begin
5 for I in P'Range loop
6 pragma Loop_Invariant (Count <= I - P'First);
7 if P (I) = V then
8 Count := Count + 1;
9 end if;

10 end loop;
11 return Count;
12 end Count;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
count.adb:6:30: info: loop invariant preservation proved
count.adb:6:30: info: loop invariant initialization proved
count.adb:6:41: info: overflow check proved
count.adb:8:25: info: overflow check proved
count.ads:4:11: info: postcondition proved
count.ads:4:28: info: range check proved

The only help that SPARK analysis required from the programmer, in order to prove the postcondi-
tion, is a loop invariant (a special kind of assertion) that reflects the value of Count at each iteration.

4.1.4 Pointers Should Be Typed

The C language defines a special pointer type void* that corresponds to an untyped pointer. It is
legal to convert any pointer type to and from void*, which makes it a convenient way to simulate
C++ style templates. Consider the following code which indirectly applies assign_int to integer
i and assign_float to floating-point f by calling assign on both:

Listing 14: main.c

1 #include <stdio.h>
2

3 void assign_int (int *p) {
4 *p = 42;
5 }
6

7 void assign_float (float *p) {
8 *p = 42.0;

(continues on next page)

28 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

9 }
10

11 typedef void (*assign_fun)(void *p);
12

13 void assign(assign_fun fun, void *p) {
14 fun(p);
15 }
16

17 int main() {
18 int i;
19 float f;
20 assign((assign_fun)&assign_int, &i);
21 assign((assign_fun)&assign_float, &f);
22 printf("i = %d; f = %f\n", i, f);
23 }

Runtime output

i = 42; f = 42.000000

The references to the variables i and f are implicitly converted to the void* type as a way to apply
assign to any second parameter p whose type matches the argument type of its first argument
fun. The use of an untyped argument means that the responsibility for the correct typing rests
completely with the programmer. Swap i and f in the calls to assign and you still get a compilable
program without warnings, that runs and produces completely bogus output:

i = 1109917696; f = 0.000000

instead of the expected:

i = 42; f = 42.000000

Generics in SPARK (and Ada) can implement the desired functionality in a fully typed way, with
any errors caught at compile time, where procedure Assign applies its parameter procedure
Initialize to its parameter V:

Listing 15: assign.ads

1 generic
2 type T is private;
3 with procedure Initialize (V : out T);
4 procedure Assign (V : out T);

Listing 16: assign.adb

1 procedure Assign (V : out T) is
2 begin
3 Initialize (V);
4 end Assign;

Listing 17: apply_assign.adb

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Assign;
3

4 procedure Apply_Assign is
5 procedure Assign_Int (V : out Integer) is
6 begin
7 V := 42;
8 end Assign_Int;

(continues on next page)

4.1. Enforcing Strong Typing for Pointers 29

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

9

10 procedure Assign_Float (V : out Float) is
11 begin
12 V := 42.0;
13 end Assign_Float;
14

15 procedure Assign_I is new Assign (Integer, Assign_Int);
16 procedure Assign_F is new Assign (Float, Assign_Float);
17

18 I : Integer;
19 F : Float;
20 begin
21 Assign_I (I);
22 Assign_F (F);
23 Put_Line ("I =" & I'Img & "; F =" & F'Img);
24 end Apply_Assign;

Build output

Compile
[Ada] apply_assign.adb
[Ada] assign.adb

Bind
[gprbind] apply_assign.bexch
[Ada] apply_assign.ali

Link
[link] apply_assign.adb

Runtime output

I = 42; F = 4.20000E+01

The generic procedure Assignmust be instantiated with a specific type for T and a specific proce-
dure (taking a single out parameter of this type) for Initialize. The procedure resulting from
the instantiation applies to a variable of this type. So switching I and F above would result in an
error detected by the compiler. Likewise, an instantiation such as the following would also be a
compile-time error:

procedure Assign_I is new Assign (Integer, Assign_Float);

4.2 Enforcing Strong Typing for Scalars

In C, all scalar types can be converted both implicitly and explicitly to any other scalar type. The
semantics is defined by rules of promotion and conversion, which can confuse even experts. One
example was noted earlier, in the Preface (page 3). Another example appears in an article intro-
ducing a safe library for manipulating scalars8 by Microsoft expert David LeBlanc. In its conclusion,
the author acknowledges the inherent difficulty in understanding scalar type conversions in C, by
showing an early buggy version of the code to produce the minimum signed integer:

return (T)(1 << (BitCount()-1));

The issue here is that the literal 1 on the left-hand side of the shift is an int, so on a 64-bit machine
with 32-bit int and 64-bit type T, the above is shifting 32-bit value 1 by 63 bits. This is a case of
undefined behavior, producing an unexpected output with the Microsoft compiler. The correction
is to convert the first literal 1 to T before the shift:

8 https://msdn.microsoft.com/en-us/library/ms972705.aspx

30 Chapter 4. Enforcing Strong Typing

https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://msdn.microsoft.com/en-us/library/ms972705.aspx

SPARK for the MISRA-C Developer, Release 2021-02

return (T)((T)1 << (BitCount()-1));

Although he’d asked some expert programmers to review the code, no one found this problem.

To avoid these issues asmuch as possible, MISRA C defines its own type system on top of C types, in
the section on ”The essential typemodel” (eight rules). These can be seen as additional typing rules,
since all rules in this section are decidable, and can be enforced at the level of a single translation
unit. These rules forbid in particular the confusing cases mentioned above. They can be divided
into three sets of rules:

• restricting operations on types

• restricting explicit conversions

• restricting implicit conversions

4.2.1 Restricting Operations on Types

Apart from the application of some operations to floating-point arguments (the bitwise, mod and
array access operations) which are invalid and reported by the compiler, all operations apply to all
scalar types in C. MISRA C Rule 10.1 constrains the types on which each operation is possible as
follows.

4.2.1.1 Arithmetic Operations on Arithmetic Types

Adding two Boolean values, or an Apple and an Orange, might sound like a bad idea, but it is easily
done in C:

Listing 18: main.c

1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 bool b1 = true;
6 bool b2 = false;
7 bool b3 = b1 + b2;
8

9 typedef enum {Apple, Orange} fruit;
10 fruit f1 = Apple;
11 fruit f2 = Orange;
12 fruit f3 = f1 + f2;
13

14 printf("b3 = %d; f3 = %d\n", b3, f3);
15

16 return 0;
17 }

Runtime output

b3 = 1; f3 = 1

No error from the compiler here. In fact, there is no undefined behavior in the above code. Vari-
ables b3 and f3 both end up with value 1. Of course it makes no sense to add Boolean or enumer-
ated values, and thusMISRA C Rule 18.1 forbids the use of all arithmetic operations on Boolean and
enumerated values, while also forbidding most arithmetic operations on characters. That leaves
the use of arithmetic operations for signed or unsigned integers as well as floating-point types and
the use of modulo operation % for signed or unsigned integers.

Here’s an attempt to simulate the above C code in SPARK (and Ada):

4.2. Enforcing Strong Typing for Scalars 31

SPARK for the MISRA-C Developer, Release 2021-02

Listing 19: bad_arith.ads

1 package Bad_Arith is
2

3 B1 : constant Boolean := True;
4 B2 : constant Boolean := False;
5 B3 : constant Boolean := B1 + B2;
6

7 type Fruit is (Apple, Orange);
8 F1 : constant Fruit := Apple;
9 F2 : constant Fruit := Orange;

10 F3 : constant Fruit := F1 + F2;
11

12 end Bad_Arith;

Build output

Compile
[Ada] bad_arith.ads

bad_arith.ads:5:32: there is no applicable operator "+" for type "Standard.Boolean"
bad_arith.ads:10:30: there is no applicable operator "+" for type "Fruit" defined␣

↪at line 7
gprbuild: *** compilation phase failed

It is possible, however, to get the predecessor of a Boolean or enumerated value with Value'Pred
and its successor with Value'Succ, as well as to iterate over all values of the type:

Listing 20: ok_arith.adb

1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Ok_Arith is
4

5 B1 : constant Boolean := False;
6 B2 : constant Boolean := Boolean'Succ (B1);
7 B3 : constant Boolean := Boolean'Pred (B2);
8

9 type Fruit is (Apple, Orange);
10 F1 : constant Fruit := Apple;
11 F2 : constant Fruit := Fruit'Succ (F1);
12 F3 : constant Fruit := Fruit'Pred (F2);
13

14 begin
15 pragma Assert (B1 = B3);
16 pragma Assert (F1 = F3);
17

18 for B in Boolean loop
19 Put_Line (B'Img);
20 end loop;
21

22 for F in Fruit loop
23 Put_Line (F'Img);
24 end loop;
25 end Ok_Arith;

Build output

Compile
[Ada] ok_arith.adb

Bind
[gprbind] ok_arith.bexch
[Ada] ok_arith.ali

(continues on next page)

32 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

Link
[link] ok_arith.adb

Runtime output

FALSE
TRUE
APPLE
ORANGE

4.2.1.2 Boolean Operations on Boolean

”Two bee or not two bee? Let’s C”:

Listing 21: main.c

1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat} Animal;
6 bool answer = (2 * Bee) || ! (2 * Bee);
7 printf("two bee or not two bee? %d\n", answer);
8 return 0;
9 }

Runtime output

two bee or not two bee? 1

The answer to the question posed by Shakespeare’s Hamlet is 1, since it reduces to A or not A
and this is true in classical logic.

As previously noted, MISRA C forbids the use of the multiplication operator with an operand of
an enumerated type. Rule 18.1 also forbids the use of Boolean operations ”and”, ”or”, and ”not”
(&&, ||, !, respectively, in C) on anything other than Boolean operands. It would thus prohibit the
Shakespearian code above.

Below is an attempt to express the same code in SPARK (and Ada), where the Boolean operators
are and, or, and not. The and and or operators evaluate both operands, and the language also
supplies short-circuit forms that evaluate the left operand and only evaluate the right operand
when its value may affect the result.

Listing 22: bad_hamlet.ads

1 package Bad_Hamlet is
2 type Animal is (Ape, Bee, Cat);
3 Answer : Boolean := 2 * Bee or not 2 * Bee; -- Illegal
4 end Bad_Hamlet;

Build output

Compile
[Ada] bad_hamlet.ads

bad_hamlet.ads:3:28: expected type universal integer
bad_hamlet.ads:3:28: found type "Animal" defined at line 2
bad_hamlet.ads:3:43: expected a modular type
bad_hamlet.ads:3:43: found type "Animal" defined at line 2
gprbuild: *** compilation phase failed

4.2. Enforcing Strong Typing for Scalars 33

SPARK for the MISRA-C Developer, Release 2021-02

As expected, the compiler rejects this code. There is no available * operation that works on an
enumeration type, and likewise no available or or not operation.

4.2.1.3 Bitwise Operations on Unsigned Integers

Here’s a genetic engineering example that combines a Bee with a Dog to produce a Cat, by manip-
ulating the atomic structure (the bits in its representation):

Listing 23: main.c

1 #include <stdbool.h>
2 #include <assert.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat, Dog} Animal;
6 Animal mutant = Bee ^ Dog;
7 assert (mutant == Cat);
8 return 0;
9 }

This algorithmworks by accessing the underlying bitwise representation of Bee and Dog (0x01 and
0x03, respectively) and, by applying the exclusive-or operator ^, transforming it into the underlying
bitwise representation of a Cat (0x02). While powerful, manipulating the bits in the representation
of values is best reserved for unsigned integers as illustrated in the book Hacker’s Delight9. MISRA
C Rule 18.1 thus forbids the use of all bitwise operations on anything but unsigned integers.

Below is an attempt to do the same in SPARK (and Ada). The bitwise operators are
and, or, xor, and not, and the related bitwise functions are Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right:

Listing 24: bad_genetics.ads

1 package Bad_Genetics is
2 type Animal is (Ape, Bee, Cat, Dog);
3 Mutant : Animal := Bee xor Dog; -- ERROR
4 pragma Assert (Mutant = Cat);
5 end Bad_Genetics;

Build output

Compile
[Ada] bad_genetics.ads

bad_genetics.ads:3:27: there is no applicable operator "Xor" for type "Animal"␣
↪defined at line 2

gprbuild: *** compilation phase failed

The declaration of Mutant is illegal, since the xor operator is only available for Boolean and un-
signed integer (modular) values; it is not available for Animal. The same restriction applies to the
other bitwise operators listed above. If we really wanted to achieve the effect of the above code
in legal SPARK (or Ada), then the following approach will work (the type Unsigned_8 is an 8-bit
modular type declared in the predefined package Interfaces).

Listing 25: unethical_genetics.ads

1 with Interfaces; use Interfaces;
2 package Unethical_Genetics is
3 type Animal is (Ape, Bee, Cat, Dog);
4 A : constant array (Animal) of Unsigned_8 :=

(continues on next page)

9 http://www.hackersdelight.org/

34 Chapter 4. Enforcing Strong Typing

http://www.hackersdelight.org/

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

5 (Animal'Pos (Ape), Animal'Pos (Bee),
6 Animal'Pos (Cat), Animal'Pos (Dog));
7 Mutant : Animal := Animal'Val (A (Bee) xor A (Dog));
8 pragma Assert (Mutant = Cat);
9 end Unethical_Genetics;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Note that and, or, not and xor are used both as logical operators and as bitwise operators, but
there is no possible confusion between these two uses. Indeed the use of such operators on values
frommodular types is a natural generalization of their uses on Boolean, since values frommodular
types are often interpreted as arrays of Booleans.

4.2.2 Restricting Explicit Conversions

A simple way to bypass the restrictions of Rule 10.1 is to explicitly convert the arguments of an
operation to a type that the rule allows. While it can often be useful to cast a value from one type
to another, many casts that are allowed in C are either downright errors or poor replacements for
clearer syntax.

One example is to cast from a scalar type to Boolean. A better way to express (bool)x is to
compare x to the zero value of its type: x != 0 for integers, x != 0.0 for floats, x != '\0' for
characters, x != Enum where Enum is the first enumerated value of the type. Thus, MISRA C Rule
10.5 advises avoiding casting non-Boolean values to Boolean.

Rule 10.5 also advises avoiding other casts that are, at best, obscure:

• from a Boolean to any other scalar type

• from a floating-point value to an enumeration or a character

• from any scalar type to an enumeration

The rules are not symmetric, so although a float should not be cast to an enum, casting an enum
to a float is allowed. Similarly, although it is advised to not cast a character to an enum, casting an
enum to a character is allowed.

The rules in SPARK are simpler. There are no conversions between numeric types (integers, fixed-
point and floating-point) and non-numeric types (such as Boolean, Character, and other enumer-
ation types). Conversions between different non-numeric types are limited to those that make
semantic sense, for example between a derived type and its parent type. Any numeric type can
be converted to any other numeric type, with precise rules for rounding/truncating values when
needed and run-time checking that the converted value is in the range associated with the target
type.

4.2.3 Restricting Implicit Conversions

Rules 10.1 and 10.5 restrict operations on types and explicit conversions. That’s not enough to
avoid problematic C programs; a program violating one of these rules can be expressed using only
implicit type conversions. For example, the Shakespearian code in section Boolean Operations on
Boolean (page 33) can be reformulated to satisfy both Rules 10.1 and 10.5:

4.2. Enforcing Strong Typing for Scalars 35

SPARK for the MISRA-C Developer, Release 2021-02

Listing 26: main.c

1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat} Animal;
6 int b = Bee;
7 bool t = 2 * b;
8 bool answer = t || ! t;
9 printf("two bee or not two bee? %d\n", answer);

10 return 0;
11 }

Runtime output

two bee or not two bee? 1

Here, we’re implicitly converting the enumerated value Bee to an int, and then implicitly converting
the integer value 2 * b to a Boolean. This does not violate 10.1 or 10.5, but it is prohibited by
MISRA C Rule 10.3: ”The value of an expression shall not be assigned to an object with a narrower
essential type or of a different essential type category”.

Rule 10.1 also does not prevent arguments of an operation from being inconsistent, for example
comparing a floating-point value and an enumerated value. But MISRA C Rule 10.4 handles this
situation: ”Both operands of an operator in which the usual arithmetic conversions are performed shall
have the same essential type category”.

In addition, three rules in the ”Composite operators and expressions” section avoid common mis-
takes related to the combination of explicit/implicit conversions and operations.

The rules in SPARK (and Ada) are far simpler: there are no implicit conversions! This applies both
between types of a different essential type category as MISRA C puts it, as well as between types that
are structurally the same but declared as different types.

Listing 27: bad_conversions.adb

1 procedure Bad_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal; -- derived type
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;

10 C : Character := 'a';
11 begin
12 F := I; -- ERROR
13 I := A; -- ERROR
14 A := B; -- ERROR
15 M := A; -- ERROR
16 B := C; -- ERROR
17 C := F; -- ERROR
18 end Bad_Conversions;

Build output

Compile
[Ada] bad_conversions.adb

bad_conversions.adb:12:09: expected type "Standard.Float"
bad_conversions.adb:12:09: found type "Standard.Integer"

(continues on next page)

36 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

bad_conversions.adb:13:09: expected type "Standard.Integer"
bad_conversions.adb:13:09: found type "Animal" defined at line 5
bad_conversions.adb:14:09: expected type "Animal" defined at line 5
bad_conversions.adb:14:09: found type "Standard.Boolean"
bad_conversions.adb:15:09: expected type "My_Animal" defined at line 6
bad_conversions.adb:15:09: found type "Animal" defined at line 5
bad_conversions.adb:16:09: expected type "Standard.Boolean"
bad_conversions.adb:16:09: found type "Standard.Character"
bad_conversions.adb:17:09: expected type "Standard.Character"
bad_conversions.adb:17:09: found type "Standard.Float"
gprbuild: *** compilation phase failed

The compiler reports a mismatch on every statement in the above procedure (the declarations are
all legal).

Adding explicit conversions makes the assignments to F and M valid, since SPARK (and Ada) allow
conversions between numeric types and between a derived type and its parent type, but all other
conversions are illegal:

Listing 28: bad_conversions.adb

1 procedure Bad_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal; -- derived type
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;

10 C : Character := 'a';
11 begin
12 F := Float (I); -- OK
13 I := Integer (A); -- ERROR
14 A := Animal (B); -- ERROR
15 M := My_Animal (A); -- OK
16 B := Boolean (C); -- ERROR
17 C := Character (F); -- ERROR
18 end Bad_Conversions;

Build output

Compile
[Ada] bad_conversions.adb

bad_conversions.adb:13:18: illegal operand for numeric conversion
bad_conversions.adb:14:09: invalid conversion, not compatible with type "Standard.

↪Boolean"
bad_conversions.adb:16:09: invalid conversion, not compatible with type "Standard.

↪Character"
bad_conversions.adb:17:09: invalid conversion, not compatible with type "Standard.

↪Float"
gprbuild: *** compilation phase failed

Although an enumeration value cannot be converted to an integer (or vice versa) either implic-
itly or explicitly, SPARK (and Ada) provide functions to obtain the effect of a type conversion. For
any enumeration type T, the function T'Pos(e) takes an enumeration value from type T and re-
turns its relative position as an integer, starting at 0. For example, Animal'Pos(Bee) is 1, and
Boolean'Pos(False) is 0. In the other direction, T'Val(n), where n is an integer, returns the
enumeration value in type T at relative position n. If n is negative or greater then T'Pos(T'Last)
then a run-time exception is raised.

Hence, the following is valid SPARK (and Ada) code; Character is defined as an enumeration type:

4.2. Enforcing Strong Typing for Scalars 37

SPARK for the MISRA-C Developer, Release 2021-02

Listing 29: ok_conversions.adb

1 procedure Ok_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal;
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;

10 C : Character := 'a';
11 begin
12 F := Float (I);
13 I := Animal'Pos (A);
14 I := My_Animal'Pos (M);
15 I := Boolean'Pos (B);
16 I := Character'Pos (C);
17 I := Integer (F);
18 A := Animal'Val(2);
19 end Ok_Conversions;

38 Chapter 4. Enforcing Strong Typing

CHAPTER

FIVE

INITIALIZING DATA BEFORE USE

As withmost programming languages, C does not require that variables be initialized at their decla-
ration, whichmakes it possible to unintentionally read uninitialized data. This is a case of undefined
behavior, which can sometimes be used to attack the program.

5.1 Detecting Reads of Uninitialized Data

MISRA C attempts to prevent reads of uninitialized data in a specific section on ”Initialization”, con-
taining five rules. The most important is Rule 9.1: ”The value of an object with automatic storage
duration shall not be read before it has been set”. The first example in the rule is interesting, as it
shows a non-trivial (and common) case of conditional initialization, where a function f initializes
an output parameter p only in some cases, and the caller g of f ends up reading the value of the
variable u passed in argument to f in cases where it has not been initialized:

Listing 1: f.h

1 #include <stdint.h>
2

3 void f (int b, uint16_t *p);

Listing 2: f.c

1 #include "f.h"
2

3 void f (int b, uint16_t *p)
4 {
5 if (b)
6 {
7 *p = 3U;
8 }
9 }

Listing 3: g.c

1 #include <stdint.h>
2 #include "f.h"
3

4 static void g (void)
5 {
6 uint16_t u;
7

8 f (0, &u);
9

10 if (u == 3U)
11 {

(continues on next page)

39

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

12 /* Non-compliant use - "u" has not been assigned a value. */
13 }
14 }

Detecting the violation of Rule 9.1 can be arbitrarily complex, as the program points corresponding
to a variable’s initialization and read can be separated by many calls and conditions. This is one of
the undecidable rules, for which most MISRA C checkers won’t detect all violations.

In SPARK, the guarantee that all reads are to initialized data is enforced by the SPARK analysis tool,
GNATprove, through what is referred to as flow analysis. Every subprogram is analyzed separately
to check that it cannot read uninitialized data. To make this modular analysis possible, SPARK
programs need to respect the following constraints:

• all inputs of a subprogram should be initialized on subprogram entry

• all outputs of a subprogram should be initialized on subprogram return

Hence, given the following code translated from C, GNATprove reports that function F might not
always initialize output parameter P:

Listing 4: init.ads

1 with Interfaces; use Interfaces;
2

3 package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6 end Init;

Listing 5: init.adb

1 package body Init is
2

3 procedure F (B : Boolean; P : out Unsigned_16) is
4 begin
5 if B then
6 P := 3;
7 end if;
8 end F;
9

10 procedure G is
11 U : Unsigned_16;
12 begin
13 F (False, U);
14

15 if U = 3 then
16 null;
17 end if;
18 end G;
19

20 end Init;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:15:07: warning: if statement has no effect
init.ads:4:30: medium: "P" might not be initialized in "F"
gnatprove: unproved check messages considered as errors

We can correct the program by initializing P to value 0 when condition B is not satisfied:

40 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer, Release 2021-02

Listing 6: init.ads

1 with Interfaces; use Interfaces;
2

3 package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6 end Init;

Listing 7: init.adb

1 package body Init is
2

3 procedure F (B : Boolean; P : out Unsigned_16) is
4 begin
5 if B then
6 P := 3;
7 else
8 P := 0;
9 end if;

10 end F;
11

12 procedure G is
13 U : Unsigned_16;
14 begin
15 F (False, U);
16

17 if U = 3 then
18 null;
19 end if;
20 end G;
21

22 end Init;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:13:07: info: initialization of "U" proved
init.adb:17:07: warning: if statement has no effect
init.ads:4:30: info: initialization of "P" proved

GNATprove now does not report any possible reads of uninitialized data. On the contrary, it con-
firms that all reads are made from initialized data.

In contrast with C, SPARK does not guarantee that global data (called library-level data in SPARK
and Ada) is zero-initialized at program startup. Instead, GNATprove checks that all global data is
explicitly initialized (at declaration or elsewhere) before it is read. Hence it goes beyond the MISRA
C Rule 9.1, which considers global data as always initialized even if the default value of all-zeros
might not be valid data for the application. Here’s a variation of the above code where variable U
is now global:

Listing 8: init.ads

1 with Interfaces; use Interfaces;
2

3 package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G;
7 end Init;

5.1. Detecting Reads of Uninitialized Data 41

SPARK for the MISRA-C Developer, Release 2021-02

Listing 9: init.adb

1 package body Init is
2

3 procedure F (B : Boolean) is
4 begin
5 if B then
6 U := 3;
7 end if;
8 end F;
9

10 procedure G is
11 begin
12 F (False);
13

14 if U = 3 then
15 null;
16 end if;
17 end G;
18

19 end Init;

Listing 10: call_init.adb

1 with Init;
2

3 procedure Call_Init is
4 begin
5 Init.G;
6 end Call_Init;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
call_init.adb:5:08: medium: "U" might not be initialized after elaboration of main␣

↪program "Call_Init"
init.adb:14:07: warning: if statement has no effect
init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports here that variable Umight not be initialized at program startup, which is indeed
the case here. It reports this issue on the main program Call_Init because its analysis showed
that F needs to take U as an initialized input (since F is not initializing U on all paths, U keeps its value
on the other path, which needs to be an initialized value), which means that G which calls F also
needs to take U as an initialized input, which in turnmeans that Call_Initwhich calls G also needs
to take U as an initialized input. At this point, we’ve reached the main program, so the initialization
phase (referred to as elaboration in SPARK and Ada) should have taken care of initializing U. This is
not the case here, hence the message from GNATprove.

It is possible in SPARK to specify thatG should initialize variableU; this is donewith a data dependency
contract introduced with aspect Global following the declaration of procedure G:

Listing 11: init.ads

1 with Interfaces; use Interfaces;
2

3 package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G with Global => (Output => U);

(continues on next page)

42 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

7 end Init;

Listing 12: init.adb

1 package body Init is
2

3 procedure F (B : Boolean) is
4 begin
5 if B then
6 U := 3;
7 end if;
8 end F;
9

10 procedure G is
11 begin
12 F (False);
13

14 if U = 3 then
15 null;
16 end if;
17 end G;
18

19 end Init;

Listing 13: call_init.adb

1 with Init;
2

3 procedure Call_Init is
4 begin
5 Init.G;
6 end Call_Init;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
call_init.adb:5:08: medium: "U" might not be initialized after elaboration of main␣

↪program "Call_Init"
init.adb:14:07: warning: if statement has no effect
init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports the error on the call to F in G, as it knows at this point that F needs U to be
initialized but the calling context in G cannot provide that guarantee. If we provide the same data
dependency contract for F, then GNATprove reports the error on F itself, similarly to what we saw
for an output parameter U.

5.2 Detecting Partial or Redundant Initialization of Arrays and
Structures

The other rules in the section on ”Initialization” deal with common errors in initializing aggregates
and designated initializers in C99 to initialize a structure or array at declaration. These rules attempt
to patch holes created by the lax syntax and rules in C standard. For example, here are five valid
initializations of an array of 10 elements in C:

5.2. Detecting Partial or Redundant Initialization of Arrays and Structures 43

SPARK for the MISRA-C Developer, Release 2021-02

Listing 14: main.c

1 int main() {
2 int a[10] = {0};
3 int b[10] = {0, 0};
4 int c[10] = {0, [8] = 0};
5 int d[10] = {0, [8] = 0, 0};
6 int e[10] = {0, [8] = 0, 0, [8] = 1};
7 return 0;
8 }

Only a is fully initialized to all-zeros in the above code snippet. MISRA C Rule 9.3 thus forbids all
other declarations by stating that ”Arrays shall not be partially initialized”. In addition, MISRA C Rule
9.4 forbids the declaration of e by stating that ”An element of an object shall not be initialised more
than once” (in e’s declaration, the element at index 8 is initialized twice).

The same holds for initialization of structures. Here is an equivalent set of declarations with the
same potential issues:

Listing 15: main.c

1 int main() {
2 typedef struct { int x; int y; int z; } rec;
3 rec a = {0};
4 rec b = {0, 0};
5 rec c = {0, .y = 0};
6 rec d = {0, .y = 0, 0};
7 rec e = {0, .y = 0, 0, .y = 1};
8 return 0;
9 }

Here only a, d and e are fully initialized. MISRA C Rule 9.3 thus forbids the declarations of b and c.
In addition, MISRA C Rule 9.4 forbids the declaration of e.

In SPARK and Ada, the aggregate used to initialize an array or a record must fully cover the com-
ponents of the array or record. Violations lead to compilation errors, both for records:

Listing 16: init_record.ads

1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1); -- ERROR, Y and Z not specified
6 end Init_Record;

Compilation output

init_record.ads:5:15: no value supplied for component "Y"
init_record.ads:5:15: no value supplied for component "Z"

and for arrays:

Listing 17: init_array.ads

1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 => 1); -- ERROR, elements 2..10 not specified
4 end Init_Array;

Similarly, redundant initialization leads to compilation errors for records:

44 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer, Release 2021-02

Listing 18: init_record.ads

1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, Y => 1, Z => 1, X => 2); -- ERROR, X duplicated
6 end Init_Record;

Compilation output

init_record.ads:5:40: more than one value supplied for "X"

and for arrays:

Listing 19: init_array.ads

1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => 2, 7 => 3); -- ERROR, A(7) duplicated
4 end Init_Array;

Compilation output

init_array.ads:3:43: index value in array aggregate duplicates the one given at␣
↪line 3

init_array.ads:3:43: 7

Finally, while it is legal in Ada to leave uninitialized parts in a record or array aggregate by using the
box notation (meaning that the default initialization of the type is used, which may be no initializa-
tion at all), SPARK analysis rejects such use when it leads to components not being initialized, both
for records:

Listing 20: init_record.ads

1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, others => <>); -- ERROR, Y and Z not specified
6 end Init_Record;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init_record.ads:5:04: "R" is not allowed in SPARK (due to box notation without␣

↪default initialization)
init_record.ads:5:04: violation of pragma SPARK_Mode at /home/runner/work/ada-

↪learning-material/ada-learning-material/frontend/dist/test_output/projects/
↪Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_Record_3/main.adc:12

init_record.ads:5:15: box notation without default initialization is not allowed␣
↪in SPARK (SPARK RM 4.3(1))

init_record.ads:5:15: violation of pragma SPARK_Mode at /home/runner/work/ada-
↪learning-material/ada-learning-material/frontend/dist/test_output/projects/
↪Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_Record_3/main.adc:12

gnatprove: error during analysis of data and information flow

and for arrays:

5.2. Detecting Partial or Redundant Initialization of Arrays and Structures 45

SPARK for the MISRA-C Developer, Release 2021-02

Listing 21: init_array.ads

1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => <>); -- ERROR, A(9..10) not specified
4 end Init_Array;

46 Chapter 5. Initializing Data Before Use

CHAPTER

SIX

CONTROLLING SIDE EFFECTS

As with most programming languages, C allows side effects in expressions. This leads to subtle
issues about conflicting side effects, when subexpressions of the same expression read/write the
same variable.

6.1 Preventing Undefined Behavior

Conflicting side effects are a kind of undefined behavior; the C Standard (section 6.5) defines the
concept as follows:

”Between two sequence points, an object is modified more than once, or is modified and the
prior value is read other than to determine the value to be stored”

This legalistic wording is somewhat opaque, but the notion of sequence points is summarized in
Annex C of the C90 and C99 standards. MISRA C repeats these conditions in the Amplification of
Rule 13.2, including the read of a volatile variable as a side effect similar to writing a variable.

This rule is undecidable, so MISRA C completes it with two rules that provide simpler restrictions
preventing some side effects in expressions, thus reducing the potential for undefined behavior:

• Rule 13.3: ”A full expression containing an increment (++) or decrement (–) operator should have
no other potential side effects other than that caused by the increment or decrement operator”.

• Rule 13.4: ”The result of an assignment operator should not be used”.

In practice, conflicting side effects usuallymanifest themselves as portability issues, since the result
of the evaluation of an expression depends on the order in which a compiler decides to evaluate its
subexpressions. So changing the compiler version or the target platform might lead to a different
behavior of the application.

To reduce the dependency on evaluation order, MISRA C Rule 13.1 states: ”Initializer lists shall not
contain persistent side effects”. This case is theoretically different from the previously mentioned
conflicting side effects, because initializers that comprise an initializer list are separated by se-
quence points, so there is no risk of undefined behavior if two initializers have conflicting side
effects. But given that initializers are executed in an unspecified order, the result of a conflict is
potentially as damaging for the application.

6.2 Reducing Programmer Confusion

Even in cases with no undefined or unspecified behavior, expressions withmultiple side effects can
be confusing to programmers reading or maintaining the code. This problem arises in particular
with C’s increment and decrement operators that can be applied prior to or after the expression
evaluation, and with the assignment operator = in C since it can easily be mistaken for equality.
Thus MISRA C forbids the use of the increment / decrement (Rule 13.3) and assignment (Rule 13.4)
operators in expressions that have other potential side effects.

47

SPARK for the MISRA-C Developer, Release 2021-02

In other cases, the presence of expressions with side effects might be confusing, if the pro-
grammer wrongly thinks that the side effects are guaranteed to occur. Consider the function
decrease_until_one_is_null below, which decreases both arguments until one is null:

Listing 1: main.c

1 #include <stdio.h>
2

3 void decrease_until_one_is_null (int *x, int *y) {
4 if (x == 0 || y == 0) {
5 return;
6 }
7 while (--*x != 0 && --*y != 0) {
8 // nothing
9 }

10 }
11

12 int main() {
13 int x = 42, y = 42;
14 decrease_until_one_is_null (&x, &y);
15 printf("x = %d, y = %d\n", x, y);
16 return 0;
17 }

Runtime output

x = 0, y = 1

The program produces the following output:

x = 0, y = 1

I.e., starting from the same value 42 for both x and y, only x has reached the value zero after
decrease_until_one_is_null returns. The reason is that the side effect on y is performed
only conditionally. To avoid such surprises, MISRA C Rule 13.5 states: ”The right hand operand of a
logical && or || operator shall not contain persistent side effects” ; this rule forbids the code above.

MISRA C Rule 13.6 similarly states: ”The operand of the sizeof operator shall not contain any expression
which has potential side effects”. Indeed, the operand of sizeof is evaluated only in rare situations,
and only according to C99 rules, which makes any side effect in such an operand a likely mistake.

6.3 Side Effects and SPARK

In SPARK, expressions cannot have side effects; only statements can. In particular, there are no
increment/decrement operators, and no assignment operator. There is instead an assignment
statement, whose syntax using := clearly distinguishes it from equality (using =). And in any event
an expression is not allowed as a statement and this a construct such as X = Y; would be illegal.
Here is how a variable X can be assigned, incremented and decremented:

X := 1;
X := X + 1;
X := X - 1;

There are two possible side effects when evaluating an expression:

• a read of a volatile variable

• a side effect occurring inside a function that the expression calls

Reads of volatile variables in SPARK are restricted to appear immediately at statement level, so the
following is not allowed:

48 Chapter 6. Controlling Side Effects

SPARK for the MISRA-C Developer, Release 2021-02

Listing 2: volatile_read.ads

1 package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4 end Volatile_Read;

Listing 3: volatile_read.adb

1 package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 begin
4 Y := X - X; -- ERROR
5 end P;
6 end Volatile_Read;

Prover output

Phase 1 of 2: generation of Global contracts ...
volatile_read.adb:4:12: volatile object cannot appear in this context (SPARK RM 7.

↪1.3(10))
volatile_read.adb:4:16: volatile object cannot appear in this context (SPARK RM 7.

↪1.3(10))
gnatprove: error during generation of Global contracts

Instead, every read of a volatile variable must occur immediately before being assigned to another
variable, as follows:

Listing 4: volatile_read.ads

1 package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4 end Volatile_Read;

Listing 5: volatile_read.adb

1 package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 X1 : constant Integer := X;
4 X2 : constant Integer := X;
5 begin
6 Y := X1 - X2;
7 end P;
8 end Volatile_Read;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
volatile_read.ads:3:17: info: initialization of "Y" proved

Note here that the order of capture of the volatile value of X might be significant. For example, X
might denote a quantity which only increases, like clock time, so that the above expression X1 -
X2 would always be negative or zero.

Even more significantly, functions in SPARK cannot have side effects; only procedures can. The
only effect of a SPARK function is the computation of a result from its inputs, which may be passed
as parameters or as global variables. In particular, SPARK functions cannot have out or in out
parameters:

6.3. Side Effects and SPARK 49

SPARK for the MISRA-C Developer, Release 2021-02

Listing 6: bad_function.ads

1 function Bad_Function (X, Y : Integer; Sum, Max : out Integer) return Boolean;
2 -- ERROR, since "out" parameters are not allowed

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_function.ads:1:10: function with "out" parameter is not allowed in SPARK
bad_function.ads:1:10: violation of pragma SPARK_Mode at /home/runner/work/ada-

↪learning-material/ada-learning-material/frontend/dist/test_output/projects/
↪Courses/SPARK_For_The_MISRA_C_Dev/Side_Effect/Function_With_Out_Param/main.adc:12

gnatprove: error during analysis of data and information flow

More generally, SPARK does not allow functions that have a side effect in addition to returning their
result, as is typical of many idioms in other languages, for example when setting a new value and
returning the previous one:

Listing 7: bad_functions.ads

1 package Bad_Functions is
2 function Set (V : Integer) return Integer;
3 function Get return Integer;
4 end Bad_Functions;

Listing 8: bad_functions.adb

1 package body Bad_Functions is
2

3 Value : Integer := 0;
4

5 function Set (V : Integer) return Integer is
6 Previous : constant Integer := Value;
7 begin
8 Value := V; -- ERROR
9 return Previous;

10 end Set;
11

12 function Get return Integer is (Value);
13

14 end Bad_Functions;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_functions.ads:2:13: function with output global "Value" is not allowed in SPARK
gnatprove: error during analysis of data and information flow

GNATprove detects that function Set has a side effect on global variable Value and issues an error.
The correct idiom in SPARK for such a case is to use a procedure with an out parameter to return
the desired result:

Listing 9: ok_subprograms.ads

1 package Ok_Subprograms is
2 procedure Set (V : Integer; Prev : out Integer);
3 function Get return Integer;
4 end Ok_Subprograms;

50 Chapter 6. Controlling Side Effects

SPARK for the MISRA-C Developer, Release 2021-02

Listing 10: ok_subprograms.adb

1 package body Ok_Subprograms is
2

3 Value : Integer := 0;
4

5 procedure Set (V : Integer; Prev : out Integer) is
6 begin
7 Prev := Value;
8 Value := V;
9 end Set;

10

11 function Get return Integer is (Value);
12

13 end Ok_Subprograms;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
ok_subprograms.ads:2:32: info: initialization of "Prev" proved

With the above restrictions in SPARK, none of the conflicts of side effects that can occur in C can
occur in SPARK, and this is guaranteed by flow analysis.

6.3. Side Effects and SPARK 51

SPARK for the MISRA-C Developer, Release 2021-02

52 Chapter 6. Controlling Side Effects

CHAPTER

SEVEN

DETECTING UNDEFINED BEHAVIOR

Undefined behavior (and critical unspecified behavior, which we’ll treat as undefined behavior) are
the plague of C programs. Many rules in MISRA C are designed to avoid undefined behavior, as
evidenced by the twenty occurrences of ”undefined” in the MISRA C:2012 document.

MISRA C Rule 1.3 is the overarching rule, stating very simply:

”There shall be no occurrence of undefined or critical unspecified behaviour.”

The deceptive simplicity of this rule rests on the definition of undefined or critical unspecified be-
haviour. Appendix H of MISRA:C 2012 lists hundreds of cases of undefined and critical unspecified
behavior in the C programming language standard, a majority of which are not individually decid-
able.

It is therefore not surprising that a majority of MISRA C checkers do not make a serious attempt to
verify compliance with MISRA C Rule 1.3.

7.1 Preventing Undefined Behavior in SPARK

Since SPARK is a subset of the Ada programming language, SPARK programsmay exhibit two types
of undefined behaviors that can occur in Ada:

• bounded error: when the program enters a state not defined by the language semantics, but
the consequences are bounded in various ways. For example, reading uninitialized data can
lead to a bounded error, when the value read does not correspond to a valid value for the type
of the object. In this specific case, the Ada Reference Manual states that either a predefined
exception is raised or execution continues using the invalid representation.

• erroneous execution: when when the program enters a state not defined by the language
semantics, but the consequences are not bounded by the Ada Reference Manual. This is the
closest to an undefined behavior in C. For example, concurrently writing through different
tasks to the same unprotected variable is a case of erroneous execution.

Many cases of undefined behavior in C would in fact raise exceptions in SPARK. For example, ac-
cessing an array beyond its bounds raises the exception Constraint_Error while reaching the
end of a function without returning a value raises the exception Program_Error.

The SPARK Reference Manual defines the SPARK subset through a combination of legality rules
(checked by the compiler, or the compiler-like phase preceding analysis) and verification rules
(checked by the formal analysis tool GNATprove). Bounded errors and erroneous execution are
prevented by a combination of legality rules and the flow analysis part of GNATprove, which in par-
ticular detects potential reads of uninitialized data, as described in Detecting Reads of Uninitialized
Data (page 39). The following discussion focuses on how SPARK can verify that no exceptions can
be raised.

53

SPARK for the MISRA-C Developer, Release 2021-02

7.2 Proof of Absence of Run-Time Errors in SPARK

The most common run-time errors are related to misuse of arithmetic (division by zero, overflows,
exceeding the range of allowed values), arrays (accessing beyond an array bounds, assigning be-
tween arrays of different lengths), and structures (accessing components that are not defined for
a given variant).

Arithmetic run-time errors can occur with signed integers, unsigned integers, fixed-point and
floating-point (although with IEEE 754 floating-point arithmetic, errors are manifest as special run-
time values such as NaN and infinities rather than as exceptions that are raised). These errors can
occur when applying arithmetic operations or when converting between numeric types (if the value
of the expression being converted is outside the range of the type to which it is being converted).

Operations on enumeration values can also lead to run-time errors; e.g., T'Pred(T'First) or
T'Succ(T'Last) for an enumeration type T, or T'Val(N) where N is an integer value that is
outside the range 0 .. T'Pos(T'Last).

The Update procedure below contains what appears to be a simple assignment statement, which
sets the value of array element A(I+J) to P/Q.

Listing 1: show_runtime_errors.ads

1 package Show_Runtime_Errors is
2

3 type Nat_Array is array (Integer range <>) of Natural;
4 -- The values in subtype Natural are 0 , 1, ... Integer'Last
5

6 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer);
7

8 end Show_Runtime_Errors;

Listing 2: show_runtime_errors.adb

1 package body Show_Runtime_Errors is
2

3 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer) is
4 begin
5 A (I + J) := P / Q;
6 end Update;
7

8 end Show_Runtime_Errors;

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_runtime_errors.adb:5:12: medium: overflow check might fail (e.g. when I = -1␣

↪and J = Integer'First and Q = 0) [possible explanation: subprogram at show_
↪runtime_errors.ads:6 should mention I and J in a precondition]

show_runtime_errors.adb:5:12: medium: array index check might fail (e.g. when A
↪'First = 1 and I = 0 and J = 0 and Q = 0) [possible explanation: subprogram at␣
↪show_runtime_errors.ads:6 should mention I and J in a precondition]

show_runtime_errors.adb:5:22: medium: divide by zero might fail (e.g. when Q = 0)␣
↪[possible explanation: subprogram at show_runtime_errors.ads:6 should mention P␣
↪and Q in a precondition]

show_runtime_errors.adb:5:22: medium: overflow check might fail (e.g. when P = -1␣
↪and Q = 0) [possible explanation: subprogram at show_runtime_errors.ads:6 should␣
↪mention P and Q in a precondition]

show_runtime_errors.adb:5:22: medium: range check might fail (e.g. when P = -1 and␣
↪Q = 0) [possible explanation: subprogram at show_runtime_errors.ads:6 should␣
↪mention P and Q in a precondition]

gnatprove: unproved check messages considered as errors

54 Chapter 7. Detecting Undefined Behavior

SPARK for the MISRA-C Developer, Release 2021-02

However, for an arbitrary invocation of this procedure, say Update(A, I, J, P, Q), an excep-
tion can be raised in a variety of circumstances:

• The computation I+Jmay overflow, for example if I is Integer'Last and J is positive.

A (Integer'Last + 1) := P / Q;

• The value of I+Jmay be outside the range of the array A.

A (A'Last + 1) := P / Q;

• The division P / Qmay overflow in the special case where P is Integer'First and Q is -1,
because of the asymmetric range of signed integer types.

A (I + J) := Integer'First / -1;

• Since the array can only contain non-negative numbers (the element subtype is Natural), it
is also an error to store a negative value in it.

A (I + J) := 1 / -1;

• Finally, if Q is 0 then a divide by zero error will occur.

A (I + J) := P / 0;

For each of these potential run-time errors, the compiler will generate checks in the executable
code, raising an exception if any of the checks fail:

A (Integer'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : overflow check failed

A (A'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : index check failed

A (I + J) := Integer'First / (-1);
-- raised CONSTRAINT_ERROR : overflow check failed

A (I + J) := 1 / (-1);
-- raised CONSTRAINT_ERROR : range check failed

A (I + J) := P / 0;
-- raised CONSTRAINT_ERROR : divide by zero

These run-time checks incur an overhead in program size and execution time. Therefore it may be
appropriate to remove them if we are confident that they are not needed.

The traditional way to obtain the needed confidence is through testing, but it is well known that this
can never be complete, at least for non-trivial programs. Much better is to guarantee the absence
of run-time errors through sound static analysis, and that’s where SPARK and GNATprove can help.

More precisely, GNATprove logically interprets the meaning of every instruction in the program,
taking into account both control flow and data/information dependencies. It uses this analysis to
generate a logical formula called a verification condition for each possible check.

A (Integer'Last + 1) := P / Q;
-- medium: overflow check might fail

A (A'Last + 1) := P / Q;
-- medium: array index check might fail

A (I + J) := Integer'First / (-1);
-- medium: overflow check might fail

(continues on next page)

7.2. Proof of Absence of Run-Time Errors in SPARK 55

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

A (I + J) := 1 / (-1);
-- medium: range check might fail

A (I + J) := P / 0;
-- medium: divide by zero might fail

The verification conditions are then given to an automatic prover. If every verification condition
can be proved, then no run-time errors will occur.

GNATprove’s analysis is sound — it will detect all possible instances of run-time exceptions being
raised — while also having high precision (i.e., not producing a cascade of ”false alarms”).

The way to program in SPARK so that GNATprove can guarantee the absence of run-time errors
entails:

• declaring variables with precise constraints, and in particular to specify precise ranges for
scalars; and

• defining preconditions and postconditions on subprograms, to specify respectively the con-
straints that callers should respect and the guarantees that the subprogram should provide
on exit.

For example, here is a revised version of the previous example, which can guarantee through proof
that no possible run-time error can be raised:

Listing 3: no_runtime_errors.ads

1 package No_Runtime_Errors is
2

3 subtype Index_Range is Integer range 0 .. 100;
4

5 type Nat_Array is array (Index_Range range <>) of Natural;
6

7 procedure Update (A : in out Nat_Array; I, J : Index_Range; P, Q : Positive)
8 with
9 Pre => I + J in A'Range;

10

11 end No_Runtime_Errors;

Listing 4: no_runtime_errors.adb

1 package body No_Runtime_Errors is
2

3 procedure Update (A : in out Nat_Array; I, J : Index_Range; P, Q : Positive) is
4 begin
5 A (I + J) := P / Q;
6 end Update;
7

8 end No_Runtime_Errors;

56 Chapter 7. Detecting Undefined Behavior

CHAPTER

EIGHT

DETECTING UNREACHABLE CODE AND DEAD CODE

MISRA C defines unreachable code as code that cannot be executed, and it defines dead code as
code that can be executed but has no effect on the functional behavior of the program. (These
definitions differ from traditional terminology, which refers to the first category as ”dead code”
and the second category as ”useless code”.) Regardless of the terminology, however, both types
are actively harmful, as they might confuse programmers and lead to errors during maintenance.

The ”Unused code” section of MISRA C contains seven rules that deal with detecting both unreach-
able code and dead code. The two most important rules are:

• Rule 2.1: ”A project shall not contain unreachable code”, and

• Rule 2.2: ”There shall not be dead code”.

Other rules in the same section prohibit unused entities of various kinds (type declarations, tag
declarations, macro declarations, label declarations, function parameters).

While some simple cases of unreachable code can be detected by static analysis (typically if a con-
dition in an if statement can be determined to be always true or false), most cases of unreachable
code can only be detected by performing coverage analysis in testing, with the caveat that code
reported as not being executed is not necessarily unreachable (it could simply reflect gaps in the
test suite). Note that statement coverage, rather than the more comprehensive decision coverage
or modified condition / decision coverage (MC/DC) as defined in the DO-178C standard for airborne
software, is sufficient to detect potential unreachable statements, corresponding to code that is
not covered during the testing campaign.

The presence of dead code is much harder to detect, both statically and dynamically, as it requires
creating a complete dependency graph linking statements in the code and their effect on visible
behavior of the program.

SPARK can detect some cases of both unreachable and dead code through its precise construction
of a dependency graph linking a subprogram’s statements to all its inputs andoutputs. This analysis
might not be able to detect complex cases, but it goes well beyond what other analyses do in
general.

Listing 1: much_ado_about_little.ads

1 procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean);

Listing 2: much_ado_about_little.adb

1 procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean) is
2

3 procedure Ok is
4 begin
5 Success := True;
6 end Ok;
7

8 procedure NOk is
9 begin

(continues on next page)

57

SPARK for the MISRA-C Developer, Release 2021-02

(continued from previous page)

10 Success := False;
11 end NOk;
12

13 begin
14 Success := False;
15

16 for K in Y .. Z loop
17 if K < X and not Success then
18 Ok;
19 end if;
20 end loop;
21

22 if X > Y then
23 Ok;
24 else
25 NOk;
26 end if;
27

28 if Z > Y then
29 NOk;
30 return;
31 else
32 Ok;
33 return;
34 end if;
35

36 if Success then
37 Success := not Success;
38 end if;
39 end Much_Ado_About_Little;

Compilation output

much_ado_about_little.adb:36:04: warning: unreachable code

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:18
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:23
much_ado_about_little.adb:10:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:25
much_ado_about_little.adb:14:12: warning: unused assignment
much_ado_about_little.adb:16:20: warning: statement has no effect
much_ado_about_little.adb:17:07: warning: statement has no effect
much_ado_about_little.adb:22:04: warning: statement has no effect
much_ado_about_little.adb:36:04: warning: unreachable code
much_ado_about_little.adb:36:04: warning: this statement is never reached
much_ado_about_little.adb:37:15: warning: this statement is never reached
much_ado_about_little.ads:1:34: warning: unused initial value of "X"

The only code in the body of Much_Ado_About_Little that affects the result of the procedure’s
execution is the if Z > Y... statement, since this statement sets Success to either True or
False regardless of what the previous statements did. I.e., the statements preceding this if are
dead code in the MISRA C sense. Since both branches of the if Z > Y... statement return from
the procedure, the subsequent if Success... statement is unreachable. GNATprove detects
and issues warnings about both the dead code and the unreachable code.

58 Chapter 8. Detecting Unreachable Code and Dead Code

CHAPTER

NINE

CONCLUSION

The C programming language is ”close to themetal” and has emerged as a lingua franca for thema-
jority of embedded platforms of all sizes. However, its software engineering deficiencies (such as
the absence of data encapsulation) and itsmany traps and pitfalls presentmajor obstacles to those
developing critical applications. To some extent, it is possible to put the blame for programming
errors on programmers themselves, as Linus Torvalds admonished:

”Learn C, instead of just stringing random characters together until it compiles (with warn-
ings).”

But programmers are human, and even the best would be hard pressed to be 100% correct about
the myriad of semantic details such as those discussed in this document. Programming language
abstractions have been invented precisely to help developers focus on the ”big picture” (thinking
in terms of problem-oriented concepts) rather than low-level machine-oriented details, but C lacks
these abstractions. As Kees Cook from the Kernel Self Protection Project puts it (during the Linux
Security Summit North America 2018):

”Talking about C as a language, and how it’s really just a fancy assembler”

Even experts sometimes have problems with the C programming language rules, as illustrated by
Microsoft expert David LeBlanc (see Enforcing Strong Typing for Scalars (page 30)) or the MISRA C
Committee itself (see the Preface (page 3)).

The rules in MISRA C represent an impressive collective effort to improve the reliability of C code
in critical applications, with a focus on avoiding error-prone features rather than enforcing a par-
ticular programming style. The Rationale provided with each rule is a clear and unobjectionable
justification of the rule’s benefit.

At a fundamental level, however, MISRA C is still built on a base language that was not really de-
signed with the goal of supporting large high-assurance applications. As shown in this document,
there are limits to what static analysis can enforce with respect to the MISRA C rules. It’s hard to
retrofit reliability, safety and security into a language that did not have these as goals from the
start.

The SPARK language took a different approach, starting from a base language (Ada) that was de-
signed from the outset to support solid software engineering, and eliminating features that were
implementation dependent or otherwise hard to formally analyze. In this document we have
shown how the SPARK programming language and its associated formal verification tools can con-
tribute usefully to the goal of producing error-free software, going beyond the guarantees that can
be achieved in MISRA C.

59

SPARK for the MISRA-C Developer, Release 2021-02

60 Chapter 9. Conclusion

CHAPTER

TEN

REFERENCES

10.1 About MISRA C

The official website of the MISRA association https://www.misra.org.uk/ has many freely available
resources aboutMISRAC, someofwhich can be downloaded after registering on theMISRABulletin
Board at https://www.misra.org.uk/forum/ (such as the examples from theMISRA C:2012 standard,
which includes a one-line description of each guideline).

The following documents are freely available:

• MISRA Compliance 2016: Achieving compliance with MISRA coding guidelines, 2016, which ex-
plains the rationale and process for compliance, including a thorough discussions of accept-
able deviations

• MISRA C:2012 - Amendment 1: Additional security guidelines for MISRA C:2012, 2016, which con-
tains 14 additional guidelines focusing on security. This is a minor addition to MISRA C.

The main MISRA C:2012 document can be purchased from the MISRA webstore.

PRQA is the company that first developed MISRA C, and they have been heavily involved in every
version since then. Their webpage http://www.prqa.com/coding-standards/misra/ contains many
resources about MISRA C: product datasheets, white papers, webinars, professional courses.

The PRQA Resources Library at http://info.prqa.com/resources-library?filter=white_paper has
some freely available white papers on MISRA C and the use of static analyzers:

• An introduction to MISRA C:2012 at http://info.prqa.com/MISRA C-2012-whitepaper-
evaluation-lp

• The Myth of Perfect MISRA Compliance at http://info.prqa.com/myth-of-perfect-MISRA
Compliance-evaluation-lp, providing background information on the use and limitations of
static analyzers for checking MISRA C compliance

In 2013 ISO standardized a set of 45 rules focused on security, available in the C Secure Coding Rules.
A draft is freely available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1624.pdf

In 2018 MISRA published MISRA C:2012 - Addendum 2: Coverage of MISRA C:2012 against ISO/IEC TS
17961:2013 ”C Secure”, mapping ISO rules to MISRA C:2012 guidelines. This document is freely
available from https://www.misra.org.uk/.

10.2 About SPARK

The e-learning website https://learn.adacore.com/ contains a freely available interactive course on
SPARK.

The SPARK User’s Guide is available at http://docs.adacore.com/spark2014-docs/html/ug/.

The SPARK Reference Manual is available at http://docs.adacore.com/spark2014-docs/html/lrm/.

61

https://www.misra.org.uk/
https://www.misra.org.uk/forum/
http://www.prqa.com/coding-standards/misra/
http://info.prqa.com/resources-library?filter=white_paper
http://info.prqa.com/myth-of-perfect-MISRA
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1624.pdf
https://learn.adacore.com/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/lrm/

SPARK for the MISRA-C Developer, Release 2021-02

A student-oriented textbook on SPARK is Building High Integrity Applications with SPARK by John Mc-
Cormick and Peter Chapin, published by Cambridge University Press. It covers the latest version of
the language, SPARK 2014.

A historical account of the evolution of SPARK technology and its use in industry is covered in the
article Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK by Roderick Chapman
and Florian Schanda, at http://proteancode.com/keynote.pdf

The website https://www.adacore.com/sparkpro is a portal for up-to-date information and re-
sources on SPARK. AdaCore blog’s site https://blog.adacore.com/ contains a number of SPARK-
related posts.

The booklet AdaCore Technologies for Cyber Security shows how AdaCore’s technology can be used
to prevent or mitigate the most common security vulnerabilities in software. See https://www.
adacore.com/books/adacore-tech-for-cyber-security/.

The booklet AdaCore Technologies for CENELEC EN 50128:2011 shows how AdaCore’s technology can
be used in conjunction with the CENELEC EN 50128:2011 software standard for railway control
and protection systems. It describes in particular where the SPARK technology fits best and how it
can be used tomeet various requirements of the standard. See: https://www.adacore.com/books/
cenelec-en-50128-2011/.

The booklet AdaCore Technologies for DO-178C/ED-12C similarly shows how AdaCore’s technology
canbeused in conjunctionwith theDO-178C/ED-12C standard for airborne software, anddescribes
in particular how SPARK can be used in conjunction with the Formal Methods supplement DO-
333/ED-216. See https://www.adacore.com/books/do-178c-tech/.

10.3 About MISRA C and SPARK

Theblog post at https://blog.adacore.com/MISRA-C-2012-vs-spark-2014-the-subset-matching-game
reviews the 27 undecidable rules in MISRA C:2012 and describes how SPARK addresses them.

The white paper A Comparison of SPARK with MISRA C and Frama-C at https://www.adacore.com/
papers/compare-spark-MISRA-C-frama-c compares SPARK to MISRA C and to the formal verifica-
tion tool Frama-C for C programs.

62 Chapter 10. References

http://proteancode.com/keynote.pdf
https://www.adacore.com/sparkpro
https://blog.adacore.com/
https://www.adacore.com/books/adacore-tech-for-cyber-security/
https://www.adacore.com/books/adacore-tech-for-cyber-security/
https://www.adacore.com/books/cenelec-en-50128-2011/
https://www.adacore.com/books/cenelec-en-50128-2011/
https://www.adacore.com/books/do-178c-tech/
https://blog.adacore.com/MISRA-C-2012-vs-spark-2014-the-subset-matching-game
https://www.adacore.com/papers/compare-spark-MISRA-C-frama-c
https://www.adacore.com/papers/compare-spark-MISRA-C-frama-c

	SPARK-Ada-for-MISRA-C-Developer.pdf
	misra-c-cover-web.pdf
	SPARK_for_MISRA.pdf
	Preface
	Enforcing Basic Program Consistency
	Taming Text-Based Inclusion
	Hardening Link-Time Checking
	Going Towards Encapsulation

	Enforcing Basic Syntactic Guarantees
	Distinguishing Code and Comments
	Specially Handling Function Parameters and Result
	Handling the Result of Function Calls
	Handling Function Parameters

	Ensuring Control Structures Are Not Abused
	Preventing the Semicolon Mistake
	Avoiding Complex Switch Statements
	Avoiding Complex Loops
	Avoiding the Dangling Else Issue

	Enforcing Strong Typing
	Enforcing Strong Typing for Pointers
	Pointers Are Not Addresses
	Pointers Are Not References
	Pointers Are Not Arrays
	Pointers Should Be Typed

	Enforcing Strong Typing for Scalars
	Restricting Operations on Types
	Restricting Explicit Conversions
	Restricting Implicit Conversions

	Initializing Data Before Use
	Detecting Reads of Uninitialized Data
	Detecting Partial or Redundant Initialization of Arrays and Structures

	Controlling Side Effects
	Preventing Undefined Behavior
	Reducing Programmer Confusion
	Side Effects and SPARK

	Detecting Undefined Behavior
	Preventing Undefined Behavior in SPARK
	Proof of Absence of Run-Time Errors in SPARK

	Detecting Unreachable Code and Dead Code
	Conclusion
	References
	About MISRA C
	About SPARK
	About MISRA C and SPARK

	SPARK_for_the_MISRA_C_Developer.pdf
	Preface
	Enforcing Basic Program Consistency
	Taming Text-Based Inclusion
	Hardening Link-Time Checking
	Going Towards Encapsulation

	Enforcing Basic Syntactic Guarantees
	Distinguishing Code and Comments
	Specially Handling Function Parameters and Result
	Handling the Result of Function Calls
	Handling Function Parameters

	Ensuring Control Structures Are Not Abused
	Preventing the Semicolon Mistake
	Avoiding Complex Switch Statements
	Avoiding Complex Loops
	Avoiding the Dangling Else Issue

	Enforcing Strong Typing
	Enforcing Strong Typing for Pointers
	Pointers Are Not Addresses
	Pointers Are Not References
	Pointers Are Not Arrays
	Pointers Should Be Typed

	Enforcing Strong Typing for Scalars
	Restricting Operations on Types
	Arithmetic Operations on Arithmetic Types
	Boolean Operations on Boolean
	Bitwise Operations on Unsigned Integers

	Restricting Explicit Conversions
	Restricting Implicit Conversions

	Initializing Data Before Use
	Detecting Reads of Uninitialized Data
	Detecting Partial or Redundant Initialization of Arrays and Structures

	Controlling Side Effects
	Preventing Undefined Behavior
	Reducing Programmer Confusion
	Side Effects and SPARK

	Detecting Undefined Behavior
	Preventing Undefined Behavior in SPARK
	Proof of Absence of Run-Time Errors in SPARK

	Detecting Unreachable Code and Dead Code
	Conclusion
	References
	About MISRA C
	About SPARK
	About MISRA C and SPARK

