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Introduction 
This booklet is a sampling of AdaCore blogs, including some of our 
engineers’ ARM project creations! They illustrate how embedded 
system developers can take advantage of Ada’s benefits in software 
reliability, early error detection, code readability, and maintainability 
while still satisfying performance requirements. 

The blogs were written by Raphaël Amiard, Jonas Attertun, Arnaud 
Charlet, Fabien Chouteau, Tristan Gingold, Anthony Leonardo Gracio, 
Johannes Kanig, Jérôme Lambourg, Yannick Moy, Jorge Real, 
J. German Rivera, Pat Rogers and Rob Tice. 

For more blogs, visit our AdaCore Blog Page 
http://blog.adacore.com . 
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Tetris in SPARK on 
ARM Cortex M4 
By Tristan Gingold, Yannick Moy 
Jan 07, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tetris is a well-known game from the 80's, which has been ported in 
many versions to all game platforms since then. There are even 
versions of Tetris written in Ada. But there was no version of Tetris 
written in SPARK, so we've repaired that injustice. Also, there was no 
version of Tetris for the Atmel SAM4S ARM processor, another 
injustice we've repaired. 

The truth is that our colleague Quentin Ochem was looking for a flashy 
demo for GNAT using SPARK on ARM, to run on the SAM4S Xplained 
Pro Evaluation Kit of our partner Atmel. Luckily, this kit has an 
extension with a small rectangular display that made us think 
immediately of Tetris. Add to that the 5 buttons overall between the 
main card and the extension, and we had all the necessary hardware. 
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Now, how do you make a Tetris in SPARK for ARM? First, the 
ingredients: 

• a SAM4S Xplained Pro Evaluation Kit + OLED1 Xplained Pro 
extension + Atmel manuals 

• GNAT GPL 2014 for ARM 
• a recent wavefront of SPARK Pro 15.1 (*) 
• the WikiPedia page describing Tetris rules 
• a webpage describing the Super Rotation System (SRS) for 

Tetris 
• an engineer who knows SPARK 
• an engineer who knows ARM 

 
(*) If you don't have access to SPARK Pro 15.1, you can use SPARK GPL 
2014, but expect some differences with the verification results 
presented here. 

Count 2 days for designing, coding and proving the logic of the game in 
SPARK, another 2 days for developing the BSP for the board, and 0.5 
day for putting it all together. Now the detailed instructions. 

The whole sources can be downloaded in the tetris.tgz archive at 
http://blog.adacore.com/uploads/attachments/tetris.tgz. 

A Core Game Logic in SPARK 
SPARK is a subset of Ada that can be analyzed very precisely 
for checking global data usage, data initialization, program 
integrity and functional correctness. Mostly, it excludes pointers and 
tasking, which is not a problem for our Tetris game. 

We modeled the display (the board) as an array of Y_Size lines, where 
each line is an array of X_Size cells, and the origin is at the top left 
corner: 
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A cell is either empty, or occupied by a piece in I, O, J, L, S, T, Z (the 
name of the piece hints to what form it takes...), and the piece falling as 
a record with the following components: 

• a shape in I, O, J, L, S, T, Z 
• a direction (North, East, South or West) according to SRS rules 
• a pair of (X,Y) coordinates in the board, corresponding to the 

coordinate of the top-left cell of the square box enclosing the 
piece in SRS 

Two global variables Cur_Board and Cur_Piece store the current value 
of the board and falling piece. Finally, SRS rules are encoded in Boolean 
matrices defining the masks for oriented shapes (where True stands for 
an occupied cell, and False for an empty cell). 

All the above can be expressed straightforwardly in SPARK as follows: 

--  possible content of the board cells 
type Cell is (Empty, I, O, J, L, S, T, Z); 
 
--  subset of cells that correspond to a shape 
subtype Shape is Cell range I .. Z; 
 
--  subset of shapes that fits in a 3 x 3 box, that is, all expect I and O 
subtype Three_Shape is Cell range J .. Z; 
 
--  the board is a matrix of X_Size x Y_Size cells, where the origin (1,1) 
--  is at the top left corner 
 
X_Size : constant := 10; 
Y_Size : constant := 50; 
 



Tetris in SPARK on ARM Cortex M4 

10 

subtype X_Coord is Integer range 1 .. X_Size; 
subtype Y_Coord is Integer range 1 .. Y_Size; 
 
type Line is array (X_Coord) of Cell; 
type Board is array (Y_Coord) of Line; 
 
Cur_Board : Board; 
 
--  the current piece has a shape, a direction, and a coordinate for the 
--  top left corner of the square box enclosing the piece: 
--    a 2 x 2 box for shape O 
--    a 3 x 3 box for all shapes except I and O 
--    a 4 x 4 box for shape I 
 
subtype PX_Coord is Integer range -1 .. X_Size - 1; 
subtype PY_Coord is Integer range -1 .. Y_Size - 1; 
 
type Direction is (North, East, South, West); 
 
type Piece is record 
   S : Shape; 
   D : Direction; 
   X : PX_Coord; 
   Y : PY_Coord; 
end record; 
 
Cur_Piece : Piece; 
 
--  orientations of shapes are taken from the Super Rotation System at 
--  http://tetris.wikia.com/wiki/SRS 
--    shape O has no orientation 
--    shape I has 4 orientations, which all fit in the 4 x 4 box 
--    shapes except I and O have 4 orientations, which all fit in the 3 x 3 box 
 
--  Note that Possible_I_Shapes and Possible_Three_Shapes should be accessed 
--  with Y component first, then X component, so that higher value for 
--  Direction correspond indeed to clockwise movement. 
 
subtype I_Delta is Integer range 0 .. 3; 
type Oriented_I_Shape is array (I_Delta, I_Delta) of Boolean; 
subtype Three_Delta is Integer range 0 .. 2; 
type Oriented_Three_Shape is array (Three_Delta, Three_Delta) of Boolean; 
 
--  orientations for I 
 
Possible_I_Shapes : constant array (Direction) of Oriented_I_Shape := 
  (((False, False, False, False), (True,  True,  True,  True),  (False, False, False, 
False), (False, False, False, False)), 
   ((False, False, True,  False), (False, False, True,  False), (False, False, True,  
False), (False, False, True,  False)), 
   ((False, False, False, False), (False, False, False, False), (True,  True,  True,  
True),  (False, False, False, False)), 
   ((False, True,  False, False), (False, True,  False, False), (False, True,  False, 
False), (False, True,  False, False))); 
 
Possible_Three_Shapes : constant array (Three_Shape, Direction) of 
Oriented_Three_Shape := 
  (--  orientations for J 
   (((True, False, False), (True,  True,  True),  (False, False, False)), 
    ((False, True, True), (False,  True,  False),  (False, True, False)), 
    ((False, False, False), (True,  True,  True),  (False, False, True)), 
    ((False, True, False), (False,  True,  False),  (True, True, False))), 
 
   --  orientations for L 
   (((False, False, True), (True,  True,  True),  (False, False, False)), 
    ((False, True, False), (False,  True,  False),  (False, True, True)), 
    ((False, False, False), (True,  True,  True),  (True, False, False)), 
    ((True, True, False), (False,  True,  False),  (False, True, False))), 
 
   --  orientations for S 
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   (((False, True, True), (True,  True,  False),  (False, False, False)), 
    ((False, True, False), (False,  True,  True),  (False, False, True)), 
    ((False, False, False), (False,  True,  True),  (True, True, False)), 
    ((True, False, False), (True,  True,  False),  (False, True, False))), 
 
   --  orientations for T 
   (((False, True, False), (True,  True,  True),  (False, False, False)), 
    ((False, True, False), (False,  True,  True),  (False, True, False)), 
    ((False, False, False), (True,  True,  True),  (False, True, False)), 
    ((False, True, False), (True,  True,  False),  (False, True, False))), 
 
   --  orientations for Z 
   (((True, True, False), (False,  True,  True),  (False, False, False)), 
    ((False, False, True), (False,  True,  True),  (False, True, False)), 
    ((False, False, False), (True,  True,  False),  (False, True, True)), 
    ((False, True, False), (True,  True,  False),  (True, False, False)))); 

 
Both the user (by punching buttons) and the main loop of the game (by 
moving the falling piece down), can perform one of 5 elementary 
actions, whose names are self explanatory: Move_Left, Move_Right, 
Move_Down, Turn_Counter_Clockwise, Turn_Clockwise. Dropping the 
piece is not an elementary action, as it can be obtained by rapidly 
moving the piece down. 

The game logic provides the following API: 

• Do_Action: attempts an action and returns whether it was 
successfully applied or not 

• Include_Piece_In_Board: transition from state where a piece is 
falling to its integration in the board when it cannot fall 
anymore 

• Delete_Complete_Lines: remove all complete lines from the 
board 

Note that all 3 services are implemented as procedures in SPARK, even 
Do_Action which could be implemented as a function in full Ada, 
because functions are not allowed to write to global variables in SPARK 
(that is, functions cannot perform side-effects in SPARK). 

There are a few additional functions to return the new value of the 
falling piece after a move (Move), to know whether a line in the board is 
empty (Is_Empty_Line) and whether a piece occupies only empty cells 
of the board (No_Overlap), that is, it fits in the board and does not 
conflict with already occupied cells. 

The complete game logic is only 165 sloc according to GNATmetrics 
(see tetris_initial.adx in the archive attached). The tool GNATprove in 
the SPARK toolset can check that this is valid SPARK by using switch –
mode=check or equivalently menu SPARK➤Examine File in GPS. See 
files tetris_initial.ad? in the tetris_core.tgz archive attached. 
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Note that we use expression functions to implement most small query 
functions. This allows both to define these functions in a spec file, and 
to prepare for proof, as the body of these functions acts as an implicit 
postcondition. 

Proving Absence of Run-Time Errors in 
Tetris Code 
Of course, the benefit of writing the core game logic in SPARK is that 
we can now apply the SPARK analysis tools to demonstrate that the 
implementation is free from certain classes or errors, and that it 
complies with its specification. 

The most immediate analysis is obtained by running GNATprove with 
switch –mode=flow or equivalently menu SPARK➤Examine File in 
GPS. Here, it returns without any message, which means that there are 
no possible reads of uninitialized data. Note that, as we did not provide 
data dependencies on subprograms (global variables that are input and 
output of subprograms), GNATprove generates them from the 
implementation. 

The next step is to add data dependencies or flow dependencies on 
subprograms, so that GNATprove checks that the implementation of 
subprograms does not read other global variables than specified (which 
may not be initialized), does not write other global variables than 
specified, and derives output values from input values as specified. 
Here, we settled for specifying only data dependencies, as flow 
dependencies would not give more information (as all outputs depend 
on all inputs): 

procedure Include_Piece_In_Board with 
  Global => (Input => Cur_Piece, In_Out => Cur_Board); 
--  transition from state where a piece is falling to its integration in the 
--  board when it cannot fall anymore. 
 
procedure Delete_Complete_Lines with 
  Global => (In_Out => Cur_Board); 
--  remove all complete lines from the board 

 
Running again GNATprove in flow analysis mode, it returns without any 
message, which means that procedures Include_Piece_In_Board and 
Delete_Complete_Lines access global variables as specified. See files 
tetris_flow.ad? in the tetris_core.tgz archive attached. 

The next step if to check whether the program may raise a run-time 
error. First, we need to specify with preconditions the correct calling 
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context for subprograms. Here, we only add a precondition to 
Include_Piece_In_Board to state that the piece should not overlap with 
the board: 

procedure Include_Piece_In_Board with 
  Global => (Input => Cur_Piece, In_Out => Cur_Board), 
  Pre    => No_Overlap (Cur_Board, Cur_Piece); 

 
This time, we run GNATprove in proof mode, either with switch –
mode=prove or equivalently menu SPARK➤Prove File in GPS. 
GNATprove returns with 7 messages: 3 possible array accesses out of 
bounds in procedure Include_Piece_In_Board, 3 possible violations of 
scalar variable range in function Move, and 1 similar violation in 
procedure Delete_Complete_Lines. 

The message on Delete_Complete_Lines points to a possible range 
check failure when decrementing variable To_Line. This is a false alarm, 
as To_Line is decremented at most the number of times the loop is run, 
which is To_Line - 1. As usual when applying GNATprove to a 
subprogram with a loop, we must provide some information about the 
variables modified in the loop in the form of a loop invariant: 

pragma Loop_Invariant (From_Line < To_Line); 

 
With this loop invariant, GNATprove proves there is no possible range 
check failure. 

Although the possible array index messages in Include_Piece_In_Board 
also occur inside loops, the situation is different here: the indexes used 
to access array Cur_Board are not modified in the loop, so no loop 
invariant is needed. Instead, the relevant part of the No_Overlap 
precondition that is needed to prove each case needs to be asserted as 
follows: 

 
when I => 
      --  intermediate assertion needed for proof 
      pragma Assert 
        (for all YY in I_Delta => 
           (for all XX in I_Delta => 
              (if Possible_I_Shapes (Cur_Piece.D) (YY, XX) then 
                 Is_Empty (Cur_Board, Cur_Piece.Y + YY, Cur_Piece.X + XX)))); 
 
      for Y in I_Delta loop 
         for X in I_Delta loop 
            if Possible_I_Shapes (Cur_Piece.D) (Y, X) then 
               Cur_Board (Cur_Piece.Y + Y) (Cur_Piece.X + X) := Cur_Piece.S; 
            end if; 
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         end loop; 
      end loop; 
 
   when Three_Shape => 
      --  intermediate assertion needed for proof 
      pragma Assert 
        (for all YY in Three_Delta => 
           (for all XX in Three_Delta => 
              (if Possible_Three_Shapes (Cur_Piece.S, Cur_Piece.D) (YY, XX) then 
                 Is_Empty (Cur_Board, Cur_Piece.Y + YY, Cur_Piece.X + XX)))); 
 
      for Y in Three_Delta loop 
         for X in Three_Delta loop 
            if Possible_Three_Shapes (Cur_Piece.S, Cur_Piece.D) (Y, X) then 
               Cur_Board (Cur_Piece.Y + Y) (Cur_Piece.X + X) := Cur_Piece.S; 
            end if; 
         end loop; 
      end loop; 
end case; 

 
With these intermediate assertions, GNATprove proves there is no 
possible array index out of bounds. 

The situation is again different in Move, as there is no loop here. In fact, 
the decrements and increments in Move may indeed raise an exception 
at run time, if Move is called on a piece that is too close to the borders 
of the board. We need to prevent such errors by adding a precondition 
to Move that does not allow such inputs: 

function Move_Is_Possible (P : Piece; A : Action) return Boolean is 
   (case A is 
      when Move_Left   => P.X - 1 in PX_Coord, 
      when Move_Right  => P.X + 1 in PX_Coord, 
      when Move_Down   => P.Y + 1 in PY_Coord, 
      when Turn_Action => True); 
 
function Move (P : Piece; A : Action) return Piece is 
   (case A is 
      when Move_Left   => P'Update (X => P.X - 1), 
      when Move_Right  => P'Update (X => P.X + 1), 
      when Move_Down   => P'Update (Y => P.Y + 1), 
      when Turn_Action => P'Update (D => Turn_Direction (P.D, A))) 
with 
  Pre => Move_Is_Possible (P, A); 

 
With this precondition, GNATprove proves there is no possible range 
check failure in Move, but it issues a message about a possible 
precondition failure when calling Move in Do_Action. We have 
effectively pushed the problem to Move's caller! We need to prevent 
calling Move in an invalid context by adding a suitable test: 

procedure Do_Action (A : Action; Success : out Boolean) is 
   Candidate : Piece; 
begin 
   if Move_Is_Possible (Cur_Piece, A) then 
      Candidate := Move (Cur_Piece, A); 
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      if No_Overlap (Cur_Board, Candidate) then 
         Cur_Piece := Candidate; 
         Success := True; 
         return; 
      end if; 
   end if; 
 
   Success := False; 
end Do_Action; 

 
The program is now up to 181 sloc, a relatively modest increase. With 
this code modification, GNATprove proves in 28s that the integrity of 
the program is preserved: there are no possible run-time errors, and no 
precondition violations. See files tetris_integrity.ad? in the 
tetris_core.tgz archive attached. All timings on GNATprove are given 
with switches -j0 –prover=cvc4,altergo –timeout=20 on a 2.7 GHz 
Core i7 with 16 GB RAM. 

 

Proving Functional Properties of Tetris 
Code 
We would like to express and prove that the code of Tetris maintains 
the board in one of 4 valid states: 

• Piece_Falling: a piece is falling, in which case Cur_Piece is set to 
this piece 

• Piece_Blocked: the piece Cur_Piece is blocked by previous 
fallen pieces in the board Cur_Board 

• Board_Before_Clean: the piece has been included in the board, 
which may contain complete lines that need to be deleted 

• Board_After_Clean: complete lines have been deleted from the 
board 

We define a type State that can have these 4 values, and a global 
variable Cur_State denoting the current state. We can now express the 
invariant that Tetris code should maintain: 

function Valid_Configuration return Boolean is 
   (case Cur_State is 
      when Piece_Falling | Piece_Blocked => No_Overlap (Cur_Board, Cur_Piece), 
      when Board_Before_Clean => True, 
      when Board_After_Clean => No_Complete_Lines (Cur_Board)) 
with Ghost; 

 
where No_Complete_Lines returns True if there are no complete lines in 
the board (that is, they have been removed and counted in the player's 
score): 
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function No_Complete_Lines (B : Board) return Boolean is 
   (for all Y in Y_Coord => not Is_Complete_Line (B(Y))) 
with Ghost; 

 
Note the aspect Ghost on both functions, which indicates that these 
functions should only be called in assertions and contracts. Ghost code 
has been introduced for SPARK, but it can also be used independently 
of formal verification. The idea is that ghost code (it can be a variable, a 
type, a function, a procedure, etc.) should not influence the behavior of 
the program, and be used only to verify properties (either dynamically 
or statically), so the compiler can remove it when compiling without 
assertions. As you can expect, we also declared type State and variable 
Cur_State as Ghost: 

 
type State is (Piece_Falling, Piece_Blocked, Board_Before_Clean, Board_After_Clean) 
with Ghost; 
 
Cur_State : State with Ghost; 

 
We add preconditions and postconditions to the API of Tetris, to 
express that they should maintain this invariant: 
 
procedure Do_Action (A : Action; Success : out Boolean) with 
  Pre  => Valid_Configuration, 
  Post => Valid_Configuration; 
 
procedure Include_Piece_In_Board with 
  Global => (Input => Cur_Piece, In_Out => (Cur_State, Cur_Board)), 
  Pre    => Cur_State = Piece_Blocked and then 
            Valid_Configuration, 
  Post   => Cur_State = Board_Before_Clean and then 
            Valid_Configuration; 
--  transition from state where a piece is falling to its integration in the 
--  board when it cannot fall anymore. 
 
procedure Delete_Complete_Lines with 
  Global => (Proof_In => Cur_Piece, In_Out => (Cur_State, Cur_Board)), 
  Pre    => Cur_State = Board_Before_Clean and then 
            Valid_Configuration, 
  Post   => Cur_State = Board_After_Clean and then 
            Valid_Configuration; 
--  remove all complete lines from the board 

 
Note the presence of Valid_Configuration in precondition and in 
postcondition of every procedure. We also specify in which states the 
procedures should be called and should return. Finally, we add code 
that performs the state transition in the body of 
Include_Piece_In_Board: 
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Cur_State := Board_Before_Clean; 

 
and Delete_Complete_Lines: 

Cur_State := Board_After_Clean; 

 
Although we're introducing here code to be able to express and prove 
the property of interest, it is identified as ghost code, so that the GNAT 
compiler can discard it during compilation when assertions are 
disabled. 

GNATprove proves that Do_Action and Include_Piece_In_Board 
implement their contract, but it does not prove the postcondition of 
Delete_Complete_Lines. This is expected, as this subprogram contains 
two loops whose detailed behavior should be expressed in a loop 
invariant for GNATprove to complete the proof. The first loop in 
Delete_Complete_Lines deletes all complete lines, replacing them by 
empty lines. It also identifies the first such line from the bottom (that is, 
with the highest value in the Y axis) for the subsequent loop. Therefore, 
the loop invariant needs to express that none of the lines in the range 
already treated by the loop is complete: 

for Del_Line in Y_Coord loop 
   if Is_Complete_Line (Cur_Board (Del_Line)) then 
      Cur_Board (Del_Line) := Empty_Line; 
      Has_Complete_Lines := True; 
      To_Line := Del_Line; 
      pragma Assert (Cur_Board (Del_Line)(X_Coord'First) = Empty); 
   end if; 
   pragma Loop_Invariant 
     (for all Y in Y_Coord'First .. Del_Line => not Is_Complete_Line (Cur_Board 
(Y))); 
end loop; 

 
The second loop in Delete_Complete_Lines shifts non-empty lines to 
the bottom of the board, starting from the deleted line identified in the 
previous loop (the line with the highest value in the Y axis). Therefore, 
the loop invariant needs to express that this loop maintains the 
property established in the first loop, that no line in the board is 
complete: 

if Has_Complete_Lines then 
   for From_Line in reverse Y_Coord'First .. To_Line - 1 loop 
      pragma Loop_Invariant (No_Complete_Lines (Cur_Board)); 
      pragma Loop_Invariant (From_Line < To_Line); 
      if not Is_Empty_Line (Cur_Board (From_Line)) then 
         Cur_Board (To_Line) := Cur_Board (From_Line); 
         Cur_Board (From_Line) := Empty_Line; 
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         To_Line := To_Line - 1; 
         pragma Assert (Cur_Board (From_Line)(X_Coord'First) = Empty); 
      end if; 
   end loop; 
end if; 

 
Note that we added also two intermediate assertions to help the proof. 
GNATprove now proves the program completely (doing both flow 
analysis and proof with switch –mode=all) in 50s. See files 
tetris_functional.ad? in the tetris_core.tgz archive attached. 

Obviously, proving that complete lines are deleted is only an example of 
what could be proved on this program. We could also prove that empty 
lines are all located at the top of the board, or that non-complete lines 
are preserved when deleting the complete ones. These and other 
properties of Tetris are left to you reader as an exercise! Now that the 
core game logic is developed, we can switch to running this game on the 
SAM4S Xplained Pro Evaluation Kit. 

 

Developing a Board Support Package (BSP) for the Atmel SAM4S - 
Startup code 

We already had a compiler targeting the ARM line of processors, 
including the variant present in the SAM4S - the Cortex-M4. But like 
many modern processors, the Atmel SAM4S is not simply a processor 
but a SOC (System On Chip). A SOC is a set of peripherals like memory 
controller, timers or serial controller around a core. Thus we needed to 
develop a Board Support Package to be able to run our Tetris program 
on the SAM4S. 

In order to run a program, some of the devices must be initialized. The 
first device to initialize (and it should be initialized early) is the clock 
controller. Like all integrated circuits, the SAM4S needs a clock. To 
build cheap applications, the SAM4S provide an internal oscillator that 
deliver a 4MHz clock. But that clock is neither very precise nor stable, 
and has a low frequency. So we use an external 12MHz crystal on the 
main board and setup the internal clock multiplier (a PLL) to deliver a 
120MHz clock, which provides much better performance than the 
default internal clock. This initialization is done very early before the 
initial setup of the Ada program (a.k.a. the program elaboration) so that 
the rest of the program is executed at full speed. Implementation-wise, 
that initialization sequence closely follows the sequence proposed by 
the Atmel manual, as this is very specific to the clock controller. 
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The second step is to adjust the number of wait states for accessing 
the flash memory. The flash memory is the non-volatile storage which 
contains the application. As accessing the flash memory is slower than 
the speed at which the processor runs, we need to add delays (also 
called wait states) for each access to the flash from the processor, and 
as we increase the speed of the processor we need to increase these 
delays. If we forget to insert these delays (this is simply a 
programmable parameter of the flash device), the processor will read 
incorrect values from the flash memory and crash very early. 
Fortunately the processor has a cache memory to reduce the number of 
flash memory accesses and therefore to limit the effect of the wait 
states. 

The third step is to setup the watchdog peripheral. The purpose of a 
watchdog is to reinitialize the application in case of crashes. To signal 
that it is running, the application should periodically access the 
watchdog. Note that by proving that the core application in SPARK is 
free from run-time errors, we already reduce the number of potential 
crashes. So we chose here to disable the watchdog. 

So what happens when the board is powered up? 

The processor starts by executing the program contained in flash 
memory. The first instructions are assembly code that copy initialized 
variables (that could be later modified) from flash to RAM. This is done 
using the default setup and therefore at low speed (but the amount of 
bytes to copy is very low). Then it increases the number of wait states 
for the flash. At this time, the performance is very low, the lowest in this 
application. Then the clock device is programmed, which is a long 
sequence (the processor has to wait until the clock is stable). This 
process switches the frequency from 12MHz to 120MHz, thus 
increasing speed by a factor of 10! The application then disables the 
watchdog, and now that the processor is running at full speed, the 
program can start to execute. 

 

Developing a BSP for the Atmel SAM4S - 
Simple Drivers 
So we can execute a program on the board. This is a very good news, 
but we cannot observe any effect of this program: there is no 
communication yet with the outside world. 
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On a standard PC, a program interacts using the keyboard, the screen, 
the filesystem or the network. On that SAM4S Xplained Pro board, the 
program will get inputs via buttons, and it will produce visible effects by 
switching LEDs on and off and displaying patterns on the small OLED 
screen. 

But there is no standard or predefined API for these devices. So we 
should write simple device drivers, starting with the simplest one: GPIO. 
GPIO is a common acronym used in the bare board world: General 
Purpose Input/Output. When configured as output, a GPIO pin can be 
commanded by a hardware register (in fact a variable mapped at a 
specific address) to emit current or not. On the board, four of them are 
interesting because they are connected to a LED. So if a 1 is written in a 
specific bit of the hardware register, the LED will be on and if a 0 is 
written it will be off. When configured as input, a GPIO register will 
reflect the value of a pin. Like for LEDs, four buttons are connected to a 
GPIO. So the application may read the status of a button from a 
register. A bit will be set to 1 when the button is pressed and set to 0 if 
not pressed. 

The configuration of a GPIO device is highly device specific and we 
simply closely follow the vendor manual. First we need to power-up the 
device and enable its clock: 

--  Enable clock for GPIO-A and GPIO-C 
 
PMC.PMC_PCER0 := 2 ** PIOA_ID + 2 ** PIOC_ID; 

 
Without that the device would be inactive. Technically, the LEDs and 
the buttons are connected to two different devices, GPIO-A and GPIO-
C. Then we need to configure the port. Each bit in a GPIO word 
correspond to a GPIO pin. We need to configure pins for LEDs as 
output, and pins for buttons as input. We also need to enable that GPIO 
lines (there are more settings like pull-up or multi-driver, curious 
readers shall refer to the SAM4D data sheet): 

--  Configure LEDs 
 
PIOC.PER := Led_Pin_C + Led1_Pin_C + Led3_Pin_C 
  + But2_Pin_C + But3_Pin_C; 
PIOC.OER := Led_Pin_C + Led1_Pin_C + Led3_Pin_C; 
PIOC.CODR := Led_Pin_C + Led1_Pin_C + Led3_Pin_C; 
PIOC.MDDR := Led_Pin_C + Led1_Pin_C + Led3_Pin_C; 
PIOC.PUER := But2_Pin_C + But3_Pin_C; 
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The device driver for a GPIO is often very simple. Here is a procedure 
that sets the state of LED 1: 

procedure Set_Led1 (On : Boolean) is 
begin 
   if On then 
      PIOC.CODR := Led1_Pin_C; 
   else 
      PIOC.SODR := Led1_Pin_C; 
   end if; 
end Set_Led1; 

 
CODR means clear output data register; so any bit written as 1 will clear 
the corresponding bit in the output data register. Respectively, SODR 
means set output data register; so any bit written as 1 will set the 
corresponding bit in the output data register and bit written as 0 have 
no effect. This particular interface (one word to set and one to clear) is 
common and makes atomic bit manipulation easier. 

The function to read the state of a button is also simple: 

function Button3_Pressed return Boolean is 
begin 
   return (PIOC.PDSR and But3_Pin_C) = 0; 
end Button3_Pressed; 

 
We simply need to test a bit of the hardware register. Note that this is a 
low level driver. The code that calls this function must debounce the 
button. What does it mean? Real life is somewhat more complex than 
boolean logic. A button is a simple device with two pins. One is 
connected to power supply (here +3.0V) and the other is connected to 
the GPIO pin, but also to the ground via a resistor. When the button is 
not pressed, the voltage at the GPIO pin is 0V and the program will read 
0 in the register. When the button is pressed, the voltage at the GPIO 
pin is +3.0V (well almost) and the program will read 1 in the register. 
But when the button is being pressed (this is not instantaneous), the 
voltage will increase irregularly from 0V to +3V, and due to capacity 
effects and non-uniformity of the button itself, the bit in the register 
will oscillate between 0 and 1 during a certain amount of time. If you 
don't take care, the application may consider a single push on the 
button as multiple pushes. Debouncing is avoiding that issue, and the 
simplest way to debounce is not reading the status again before a 
certain amount of time (like 20ms - but this depends on the button). 
We take care of that in the main loop of the Tetris game. 
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Developing a BSP for the Atmel SAM4S - OLED driver 

Despite being very simple, the GPIO driver is a first good step. You can 
write simple applications to blink the LEDs or to switch the LEDs if a 
user presses a button. But LEDs and buttons are too simple for a Tetris 
game. 

The SAM4S Xplained Pro has an OLED1 extension board. The OLED is a 
small screen and just behind it, there is a very small chip that controls 
the screen. This chip, the OLED controller, contains the bitmap that is 
displayed, refreshes periodically the screen, handles contrast, etc. 
These tasks are too complex to be performed by the CPU, hence the 
need for an OLED controller. 

But this controller is somewhat complex. It communicates with the 
SAM4S using a dedicated interface, the SPI bus. SPI stands for Serial 
Peripheral Interface and as you can guess it uses a few lines (3 in fact) 
for a serial communication. 

Let's have a closer look at the gory details. As you can suppose, we need 
to talk to the OLED controller whose reference is SSD1306. It accepts 
many commands, most of them to configure it (number of lines, 
number of columns, refresh rate) and some to change the bitmap (set 
the column or modify 8 pixels). All is done via the SPI so we need to 
first create an SPI driver for the SAM4S. Finally note that if commands 
can be sent to the OLED controller, that chip is not able to return any 
status. 

The initialization of the SPI isn't particularly complex: we need to power 
on the device, and to configure the pins. In order to reduce the size of 
the chip and therefore its price, the SPI pins are multiplexed with GPIO 
pins. So we need to configure the pins so that they are used for SPI 
instead of GPIO. Here is an excerpt of the code for that (package Oled, 
procedure Oled_Configure): 

--  Enable clock for SPI 
 
PMC.PMC_PCER0 := PMC.PMC_PCER0 + 2 ** SPI_ID; 
 
--  Configure SPI pins 
 
PIOC.PER := Spi_DC_Pin_C + Spi_Reset_Pin_C; 
PIOC.OER := Spi_DC_Pin_C + Spi_Reset_Pin_C; 
PIOC.CODR := Spi_DC_Pin_C + Spi_Reset_Pin_C; 
PIOC.MDDR := Spi_DC_Pin_C + Spi_Reset_Pin_C; 
PIOC.PUER := Spi_DC_Pin_C + Spi_Reset_Pin_C; 
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Then there is a sequence to setup the SPI features: baud rate, number 
of bits per byte... We just have to read the Atmel documentation and 
set the right bits! (package Oled, procedure Spi_Init): 

procedure Spi_Init is 
   Baudrate : constant := 200; -- 120_000_000 / 5_000_000; 
begin 
   --  Reset SPI 
   SPI.SPI_CR := SPI_CR.SWRST; 
 
   --  Set mode register. 
   --  Set master mode, disable mode fault, disable loopback, set chip 
   --  select value, set fixed peripheral select, disable select decode. 
   SPI.SPI_MR := (SPI.SPI_MR and not (SPI_MR.LLB or SPI_MR.PCS_Mask 
                                        or SPI_MR.PS or SPI_MR.PCSDEC 
                                        or SPI_MR.DLYBCS_Mask)) 
     or SPI_MR.MODFDIS or SPI_MR.MSTR or 0 * SPI_MR.DLYBCS; 
 
   --  Set chip select register. 
   SPI.SPI_CSR2 := 0 * SPI_CSR.DLYBCT or 0 * SPI_CSR.DLYBS 
     or Baudrate * SPI_CSR.SCBR or (8 - 8) * SPI_CSR.BITS 
     or SPI_CSR.CSAAT or 0 * SPI_CSR.CPOL or SPI_CSR.NCPHA; 
 
   --  enable 
   SPI.SPI_CR := SPI_CR.SPIEN; 
end Spi_Init; 

 
Now that the SPI interface is on, we need to configure the OLED 
controller. First action is to reset it so that it is in a known state. This is 
done via extra GPIO lines, and needs to follow a timing: 

procedure Oled_Reset 
is 
   use Ada.Real_Time; 
   Now : Time := Clock; 
   Period_3us : constant Time_Span := Microseconds (3); 
begin 
   --  Lower reset 
   PIOC.CODR := Spi_Reset_Pin_C; 
   Now := Now + Period_3us; 
   delay until Now; 
 
   --  Raise reset 
   PIOC.SODR := Spi_Reset_Pin_C; 
   Now := Now + Period_3us; 
   delay until Now; 
end Oled_Reset; 

 
Then we send the commands to configure the screen. That cannot be 
guessed and we'd better follow (again !) OLED controller manual: 

procedure Ssd1306_Init is 
begin 
   --  1/32 duty 
   Ssd1306_Cmd (SSD1306.CMD_SET_MULTIPLEX_RATIO); 
   Ssd1306_Cmd (31); 
 
   --  Set ram counter. 
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   Ssd1306_Cmd (SSD1306.CMD_SET_DISPLAY_OFFSET); 
   Ssd1306_Cmd (0); 
 
... 

 
The OLED is now ready to use. The interface for it is rather low-level: 
we need to select the 'page' (which correspond to the line of the screen 
when oriented horizontally): 

--  Set the current page (and clear column) 
procedure Oled_Set_Page (Page : Unsigned_8); 

 

And set pixels by groups of 8: 

--  Draw 8 pixels at current position and increase position to the next 
--  line. 
procedure Oled_Draw (B : Unsigned_8); 

 
Putting It All Together With Ravenscar 
Most of the low-level work could be done (and was initially done) using 
the ZFP runtime of GNAT compiler. This runtime is very lightweight and 
doesn't offer tasking. But for bare boards, we have a better runtime 
called Ravenscar which provides the well-known Ravenscar subset of 
tasking features. We have already used it above for implementing 
delays, and we will also use it for the SPI driver. In the SPI driver, we 
need to send packet of bytes. We can send a new byte only when the 
previous one has been sent. With ZFP, we needed to poll until the byte 
was sent. But with Ravenscar, we can use interrupts and do something 
else (run another task) until the hardware triggers an interrupt to signal 
that the byte was sent. A protected type is declared to use interrupts: 

protected Spi_Prot is 
   pragma Interrupt_Priority (System.Interrupt_Priority'First); 
 
   procedure Write_Byte (Cmd : Unsigned_8); 
 
   procedure Interrupt; 
   pragma Attach_Handler (Interrupt, Ada.Interrupts.Names.SPI_Interrupt); 
 
   entry Wait_Tx; 
private 
   Tx_Done : Boolean := False; 
end Spi_Prot; 

 
The protected procedure 'Interrupt' is attached to the hardware 
interrupt via the pragma Attach_Handler, and the protected object is 
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assigned to the highest priority via the pragma Interrupt_Priority (so 
that all interrupts are masked within the protected object to achieve 
exclusive access). The procedure Ssd1306_Write sends a command 
using the interrupt. It first programs the SPI device to send a byte and 
then waits for the interrupt: 

procedure Ssd1306_Write (Cmd : Unsigned_8) is 
begin 
   Spi_Prot.Write_Byte (Cmd); 
 
   Spi_Prot.Wait_Tx; 
end Ssd1306_Write; 

 
Writing a byte mostly consists of writing a hardware register (don't look 
at the PCS issue, that is an SPI low-level detail) and enabling SPI 
interrupts: 

procedure Write_Byte (Cmd : Unsigned_8) is 
begin 
   --  Set PCS #2 
   SPI.SPI_MR := (SPI.SPI_MR and not SPI_MR.PCS_Mask) 
     or (SPI_MR.PCS_Mask and not ((2 ** 2) * SPI_MR.PCS)); 
 
   --  Write cmd 
   SPI.SPI_TDR := Word (Cmd) * SPI_TDR.TD; 
 
   --  Enable TXEMPTY interrupt. 
   SPI.SPI_IER := SPI_SR.TXEMPTY; 
end Write_Byte; 

 
When the interrupt is triggered by the SPI device, the Interrupt 
procedure is called. It acknowledges the interrupt (by disabling it) and 
opens the entry (the Ssd1306_Write procedure is waiting on that 
entry): 

procedure Interrupt is 
begin 
   if (SPI.SPI_SR and SPI_SR.TXEMPTY) /= 0 then 
      --  Disable TXEMPTY interrupt 
      SPI.SPI_IDR := SPI_SR.TXEMPTY; 
 
      --  Set the barrier to True to open the entry 
      Tx_Done := True; 
   end if; 
end Interrupt; 

 
In the entry, we simply close the entry guard and clean the SPI state: 

entry Wait_Tx when Tx_Done is 
begin 
   --  Set the barrier to False. 
   Tx_Done := False; 
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   --  Deselect device 
   SPI.SPI_MR := SPI.SPI_MR or SPI_MR.PCS_Mask; 
 
   --  Last transfer 
   SPI.SPI_CR := SPI_CR.LASTXFER; 
end Wait_Tx; 

 
 

Conclusion 
Overall, it was one week effort to produce this demo of SPARK on ARM. 
The code is available in the tetris.tgz archive attached if you're 
interested in experimenting with formal verification using SPARK or 
development in Ada for ARM. The source code is bundled with the 
complete development and verification environment for Linux and 
Windows in the archive at http://adaco.re/85. 

 

To know more about SPARK: 

• The SPARK User's Guide 
http://docs.adacore.com/spark2014-docs/html/ug/index.html 

• SPARK Pro page 
www.adacore.com/sparkpro 

 

To know more about GNAT for ARM: 

• GNAT Pro for ARM page 
http://www.adacore.com/gnatpro-safety-critical/ 

• GNAT GPL for ARM page 
http://libre.adacore.com/tools/gnat-gpl-for-bare-board-arm 

 

Some other people blogs show projects using GNAT on ARM. 

• Mike Silva has great tutorials: 
o http://www.embeddedrelated.com/showarticle/585.p

hp 
o http://www.embeddedrelated.com/showarticle/617.ph

p 
o http://www.embeddedrelated.com/showarticle/625.p

hp 
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• Other very good tutorials by Jack Ganssle, Bill Wong and Jerry 
Petrey: 

o http://www.ganssle.com/video/episode9-ada-on-a-
microcontroller.html 

o http://electronicdesign.com/blog/arming-ada 
o http://demo.electronicdesign.com/blog/running-ada-

2012-cortex-m4 
o http://electronicdesign.com/dev-tools/armed-and-

ready 
 
This chapter was originally published at 
https://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4 
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How to Prevent Drone 
Crashes Using SPARK 
by Anthony Leonardo Gracio 
May 28, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
I recently joined AdaCore as a Software Engineer intern. The subject of 
this internship is to rewrite a drone firmware written in C into SPARK. 

Some of you may be drone addicts and already know the Crazyflie, a 
tiny drone whose first version has been released by Bitcraze company 
in 2013. But for all of those who don’t know anything about this project, 
or about drones in general, let’s do a brief presentation. 

The Crazyflie is a very small quadcopter sold as an open source 
development platform: both electronic schematics and source code are 
directly available on their GitHub and its architecture is very flexible. 
These two particularities allow the owner to add new features in an 
easy way. Moreover, a wiki and a forum have been made for this 
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purpose, making emerge a little but very enthusiastic Crazyflie 
community! 

Now that we know a little more about the Crazyflie, let me do a brief 
presentation of SPARK and show you the advantages of using it for 
drone-related software. 

Even if the Crazyflie flies out of the box, it has not been developed with 
safety in mind: in case of crash, its size, its weight and its plastic 
propellers won’t hurt anyone! 

But what if the propellers were made of carbon fiber, and shaped like 
razor blades to increase the drone’s performance? In theses 
circumstances, a bug in the flight control system could lead to dramatic 
events. 

SPARK is an Ada subset used for high reliability software. SPARK 
allows proving absence of runtime errors (overflows, reading of 
uninitialized variables...) and specification compliance of your program 
by using functional contracts. 

The advantages of SPARK for drone-related software are obvious: by 
using SPARK, you can ensure that no runtime errors can occur when 
the drone is flying. Then, if the drone crashes, you can only blame the 
pilot! 

After this little overview, let’s see how we can use SPARK on this kind 
of code. 

Interfacing SPARK with C 
Being an Ada subset, SPARK comes with the same facilities as Ada 
when it comes to interfacing it with other languages. This allowed me to 
focus on the most error-sensitive code (ex: stabilization system code), 
prove it in SPARK, let the less sensitive or proven-by-use code in C (ex: 
drivers), and mix SPARK code with the C one to produce the final 
executable. 

Let’s see how it works. The Crazyflie needs to receive the commands 
given by the pilot. These commands are retrieved from a controller 
(Xbox, PS3, or via the Android/iOS app) and are sent via Wi-Fi to the 
Crazyflie. This code is not related with the stabilization system and 
works great: for now, we just want to call this C code from our 
stabilization system code written in SPARK. 
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Here is the C procedure that interests us. It retrieves the desired angles, 
given by the pilot via his controller, for each axis (Roll, Pitch and Yaw). 

void commanderGetRPY 
   (float* eulerRollDesired,  
    float* eulerPitchDesired,  
    float* eulerYawDesired); 

 
And here is the Ada procedure declaration that imports this C function. 

procedure Commander_Get_RPY_Wrapper 
   (Euler_Roll_Desired  : in out Float; 
    Euler_Pitch_Desired : in out Float; 
    Euler_Yaw_Desired   : in out Float); 
pragma Import (C, Commander_Get_RPY_Wrapper, "commanderGetRPY"); 

 
Now we can use this function to get the commands and give them as 
inputs to our SPARK stabilization system! 

 

Helping SPARK: constrain your types and 
subtypes! 
Ada is well known for its features concerning types, which allow the 
programmer to define ranges over discrete or floating-point types. This 
specificity of Ada is very useful when it comes to prove absence of 
overflow and constraint errors using SPARK: indeed, when all the 
values used in the program’s computations are known to be in a certain 
range, it becomes easy to determine if these computations will cause a 
runtime error! 

Let’s see how it works in practice. The Crazyflie comes with a PC client 
used to control and track the drone’s movements. A lot of physical 
values can be seen in real-time via the PC client, including the drone’s 
acceleration magnitude. 

To calculate this magnitude, we use the accelerometer measurements 
given by the IMU (Inertial Measurement Unit) soldered on the Crazyflie. 

Let’s see how the magnitude was calculated in the original C code. The 
accelerometer measurements are hold in a structure containing 3 float 
fields, one for each axis: 

typedef struct { 
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   float x; 
   float y; 
   float z; 
} Axis3f; 
 
static Axis3f acc; 

 
In the stabilization loop, we get the fresh accelerometer, gyro and 
magnetometer measurements by calling a function from the IMU 
driver. Basically, this function simply reads the values from the IMU 
chip and filters the possible hardware errors: 

 
imu9Read(gyro, acc, mag); 

 
Now that we have the current accelerometer measurements, let’s 
calculate its magnitude: 
 
accMAG = (acc.x*acc.x) + (acc.y*acc.y) + (acc.z*acc.z); 

 
The type of each ‘acc’ field is a simple C ‘float’. This means that, for 
instance, ‘acc.x’ can possibly be equal to FLT_MAX, causing an obvious 
overflow at runtime… Without knowing anything about the return 
values of imu9Read, we can’t prove that no overflow can occur here. 
In SPARK, you can easily prove this type of computations by 
constraining your ADA types/subtypes. For this case, we can create a 
float subtype 'T_Acc' for the IMU acceleration measurements. Looking 
in the Crazyflie IMU documentation, we discover that the IMU 
accelerometer measurements are included in [-16, 16], in G: 
 
--  Type for acceleration output from accelerometer, in G 
subtype T_Acc  is Float range -16.0 .. 16.0; 
 
type Accelerometer_Data is record 
   X : T_Acc; 
   Y : T_Acc; 
   Z : T_Acc; 
end record; 

Now that we have constrained ranges for our accelerometer 
measurements, the acceleration magnitude computation code is easily 
provable by SPARK! 

Constrained subtypes can also be useful for cascaded calculations (i.e: 
when the result of a calculation is an operand for the next calculation). 
Indeed, SPARK checks each operand type's range in priority in order to 
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prove that there is no overflow or constraint error over a calculation. 
Thus, giving a constrained subtype (even if the subtype has no 
particular meaning!) for each variable storing an intermediate result 
facilitates the proof. 

 

Ensuring absence of constraint errors using 
saturation 
We have seen that defining constrained types and subtypes helps a lot 
when it comes to prove that no overflow can occur over calculations. 
But this technique can lead to difficulties for proving the absence of 
constraint errors. By using saturation, we can ensure that the result of 
some calculation will not be outside of the variable type range. 

In my code, saturation is used for two distinct cases: 

• Independently from SPARK, when we want to ensure that a 
particular value stays in a semantically correct range  

• Directly related to SPARK, due to its current limitations 
regarding floating-point types 

 
Let's see a code example for each case and explain how does it help 
SPARK. For instance, motor commands can't exceed a certain value: 
beyond this limit, the motors can be damaged. The problem is that the 
motor commands are deduced from the cascaded PID system and 
other calculations, making it difficult to ensure that these commands 
stay in a reasonable range. Using saturation here ensures that motors 
won't be damaged and helps SPARK to prove that the motor 
commands will fit in their destination variable range. 

First, we need the function that saturates the motor power. Here is its 
defintion: it takes a signed 32-bit integer as input and retrieves an 
unsigned 16-bit integer to fit with the motors drivers. 
 

--  Limit the given thrust to the maximum thrust supported by the motors. 
   function Limit_Thrust (Value : T_Int32) return T_Uint16 is 
      Res : T_Uint16; 
   begin 
      if Value > T_Int32 (T_Uint16'Last) then 
         Res := T_Uint16'Last; 
      elsif Value < 0 then 
         Res := 0; 
      else 
         pragma Assert (Value <= T_Int32 (T_Uint16'Last)); 
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         Res := T_Uint16 (Value); 
      end if; 
 
      return Res; 
   end Limit_Thrust; 

 
Then, we use it in the calculations to get the power for each motor, 
which is deduced from the PID outputs for each angle (Pitch, Roll and 
Yaw) and the thrust given by the pilot: 

procedure Stabilizer_Distribute_Power 
     (Thrust : T_Uint16; 
      Roll   : T_Int16; 
      Pitch  : T_Int16; 
      Yaw    : T_Int16)  
   is 
      T : T_Int32 := T_Int32 (Thrust); 
      R : T_Int32 := T_Int32 (Roll); 
      P : T_Int32 := T_Int32 (Pitch); 
      Y : T_Int32 := T_Int32 (Yaw); 
   begin 
       R := R / 2; 
       P := P / 2; 
 
      Motor_Power_M1 := Limit_Thrust (T - R + P + Y); 
      Motor_Power_M2 := Limit_Thrust (T - R - P - Y); 
      Motor_Power_M3 := Limit_Thrust (T + R - P + Y); 
      Motor_Power_M4 := Limit_Thrust (T + R + P - Y); 
 
      Motor_Set_Ratio (MOTOR_M1, Motor_Power_M1); 
      Motor_Set_Ratio (MOTOR_M2, Motor_Power_M2); 
      Motor_Set_Ratio (MOTOR_M3, Motor_Power_M3); 
      Motor_Set_Ratio (MOTOR_M4, Motor_Power_M4); 
  end Stabilizer_Distribute_Power; 

 
That's all! We can see that saturation here, in addition to ensure that 
the motor power is not too high for the motors, ensures also that the 
result of these calculations will fit in the 'Motor_Power_MX' variables. 

Let's switch to the other case now. We want to log the drone's altitude 
so that the the pilot can have a better feedback. To get the altitude, we 
use a barometer which isn't very precise. To avoid big differences 
between two samplings, we make a centroid calculation between the 
previous calculated altitude and the raw one given by the barometer. 
Here is the code: 

      subtype T_Altitude is Float range -8000.0 .. 8000.0;  -- Deduced from the 
barometer documentation 
 
   --  Saturate a Float value within a given range 
     function Saturate 
        (Value     : Float; 
         Min_Value : Float; 
         Max_Value : Float) return Float  
     is 
     (if Value < Min_Value then 
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         Min_Value 
      elsif Value > Max_Value then 
         Max_Value 
      else 
         Value); 
     pragma Inline (Saturate); 
 
      --  Other stuff... 
       
      Asl_Alpha            : T_Alpha       := 0.92;  --  Short term smoothing 
      Asl                  : T_Altitude    := 0.0; 
      Asl_Raw              : T_Altitude    := 0.0; 
  
      --  Other stuff... 
 
      --  Get barometer altitude estimations 
      LPS25h_Get_Data (Pressure, Temperature, Asl_Raw, LPS25H_Data_Valid); 
 
      if LPS25H_Data_Valid then 
         Asl := Saturate  
                      (Value          => Asl * Asl_Alpha + Asl_Raw * (1.0 - 
Asl_Alpha), 
                       Min_Value  => T_Altitude'First, 
                       Max_Value =>T_Altitude'Last); 
      end if; 

 
Theoretically, we don't need this saturation here: the two involved 
variables are in T_Altitude'Range by definition, and Asl_Alpha is strictly 
inferior to one. Mathematically, the calculation is sure to fit in 
T_Altitude'Range. But SPARK has difficulties to prove this type of 
calculations over floating-point types. That's why we can help SPARK 
using saturation: by using the 'Saturate' expression function, SPARK 
knows exactly what will be the 'Saturate' result range, making it able to 
prove that this result will fit in the 'Asl' destination variable. 

Using State Abstraction to improve the 
code readability 
The stabilization system code of the Crazyflie contains a lot of global 
variables: IMU outputs, desired angles given by the pilot for each axis, 
altitude, vertical speed… These variables are declared as global so that 
the log subsystem can easily access them and give a proper feedback to 
the pilot. 

The high number of global variables used for stabilization lead to never-
ending and unreadable contracts when specifying data dependencies 
for SPARK. As a reminder, data dependencies are used to specify what 
global variables a subprogram can be read and/or written. A simple 
solution for this problem is to use state abstraction: state abstraction 
allows the developer to map a group of global variables to an ‘abstract 
state’, a symbol that can be accessed from the package where it was 
created but also by other packages. 
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Here is a procedure declaration specifying data dependencies without 
the use of state abstraction: 

--  Update the Attitude PIDs 
   procedure Stabilizer_Update_Attitude 
     with 
       Global => (Input  => (Euler_Roll_Desired, 
                             Euler_Pitch_Desired, 
                             Euler_Yaw_Desired, 
                             Gyro, 
                             Acc, 
                             V_Acc_Deadband, 
                             V_Speed_Limit), 
                  Output => (Euler_Roll_Actual, 
                             Euler_Pitch_Actual, 
                             Euler_Yaw_Actual, 
                             Roll_Rate_Desired, 
                             Pitch_Rate_Desired, 
                             Yaw_Rate_Desired, 
                             Acc_WZ, 
                             Acc_MAG), 
                  In_Out => (V_Speed, 
                             Attitude_PIDs)); 

 
We can see that these variables can be grouped. For instance, the 
'Euler_Roll_Desired', 'Euler_Pitch_Desired' and 'Euler_Yaw_Desired' 
refer to the desired angles given by the pilot: we can create an abstract 
state Desired_Angles to refer them in our contracts in a more readable 
way. Applying the same reasoning for the other variables referenced in 
the contract, we can now have a much more concise specification for 
our data dependencies: 
 
   procedure Stabilizer_Update_Attitude 
     with 
       Global => (Input  => (Desired_Angles, 
                             IMU_Outputs, 
                             V_Speed_Parameters), 
                  Output => (Actual_Angles, 
                             Desired_Rates), 
                  In_Out => (SensFusion6_State, 
                             V_Speed_Variables, 
                             Attitude_PIDs)); 

 

Combining generics and constrained 
types/subtypes 
SPARK deals very well with Ada generics. Combining it with 
constrained types and subtypes can be very useful to prove absence of 
runtime errors on general algorithms that can have any kind of inputs. 

Like many control systems, the stabilization system of the Crazyflie 
uses a cascaded PID control, involving two kinds of PID: 
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• Attitude PIDs, using desired angles as inputs and outputting a 
desired rate 

• Rate PIDs, using attitude PIDs outputs as inputs 
 

In the original C code, the C base float type was used to represent both 
angles and rates and the PID related code was also implemented using 
floats, allowing the developer to give angles or rates as inputs to the PID 
algorithm. 

In SPARK, things are more complicated: PID functions do some 
calculations over the inputs, like calculating the error between the 
measured angle and the desired one. We’ve seen that, without any 
information about input ranges, it’s very difficult to prove the absence 
of runtime errors on calculations, even over a basic one like an error 
calculation (Error = Desired – Measured). In other words, we can’t 
implement a general PID controller using the Ada Float type if we intend 
to prove it with SPARK. 

The good practice here is to use Ada generics: by creating a generic PID 
package using input, output and PID coefficient ranges as parameters, 
SPARK will analyze each instance of the package with all information 
needed to prove the calculations done inside the PID functions. 

Conclusion 
Thanks to SPARK 2014 and these tips and tricks, the Crazyflie 
stabilization system is proved to be free of runtime errors! SPARK also 
helped me to discover little bugs in the original firmware, one of which 
directly related with overflows. It has been corrected by the Bitcraze 
team with this commit since then. 

All the source code can be found on my GitHub. 

Since Ada allows an easy integration with C, the Crazyflie currently flies 
with its rewritten stabilization system in SPARK on top of FreeRTOS! 
The next step for my internship is to rewrite the whole firmware in Ada, 
by removing the FreeRTOS dependencies and use Ravenscar instead. 
All the drivers will be rewritten in Ada too.  

I will certainly write a blog post about it at blog.adacore.com 

 

This chapter was originally published at 
https://blog.adacore.com/how-to-prevent-drone-crashes-using-spark 



How to Prevent Drone Crashes Using SPARK 

 

38 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



39 

Make with Ada: All that 
is Useless is Essential 
by Fabien Chouteau 
June 19, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solenoid Engine - Part 1 
A few weeks ago I discovered the wonderful world of solenoid engines. 
The idea is simple: take a piston engine and replace explosion with 
electromagnetic field. The best example being the incredible V12 of 
David Robert. 

Efficient? Probably not. Fun? Definitely! 

All the engines I found on YouTube use a mechanical switch to energize 
the coil at the right moment. On Robert’s V12, it is the blue cylinder. 
This is very similar to the intake camshaft of a piston engine. 
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While watching the video, I thought that if we replace the mechanical 
switch with an electronic detection of the rotor’s position, combined 
with a software-controlled solenoid ignition, we could: 

1. remove a mechanism that is not very reliable 
2. fine tune the ignition of the solenoids (when and how long it is 

energized) to control the motor’s speed and optimize energy 
consumption 

I will try to experiment that solution in this article. 

Hardware 
Unfortunately, I do not have the tools nor the knowhow of David Robert. 
So, inspired by a lot of projects on YouTube, I took the hacker path and 
used an old hard drive to build my motor. 

The hard drive has two mechanical elements: 

1. A brushless motor spinning the disk(s) (the spindle) 
2. An oscillating arm holding the read/write heads on one side and 

a coil surrounded by strong magnets on the other side. The arm 
is mounted on a pivot and moves when the coil is energized. 

If I add a connecting rod from the oscillating arm to an off-center point 
on the spindle, I can mimic the mechanism of a solenoid engine. 

 
To detect the spindle’s position, I use a hall effect sensor combined 
with a small magnet glued to the spindle. The sensor and magnet are 
set to detect when the spindle is at the top dead center 
(TDC http://en.wikipedia.org/wiki/Dead_centre). 
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To control the solenoid, I use one of the integrated H-bridges of a 
L293D. The advantage of an H-bridge is to be able to energize the coil 
in two directions, which means I can have two power strokes (push and 
pull on the spindle). 

The sensor and the L293D are connected to an STM32F4-discovery 
board that will run the software.  

Here is the schematic on Fritzing : https://github.com/Fabien-
Chouteau/solenoid-engine-
controller/blob/master/schematics/HDD_solenoid_engine.fzz 

 
 

Software 
The first version of the control software will be somewhat naive. 
Foremost, I want to check that I can control the engine with the 
STM32F4. I will explore advanced features later. 

The hall effect sensor will be connected to an interrupt. The interrupt 
will be triggered when the spindle is at TDC. By measuring the time 
between two interrupts, I can compute the speed of the spindle. 
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--  What time is it? 
Now := Clock; 
 
--  Time since the last interrupt 
Elapsed := To_Duration (Now - Last_Trigger); 
 
--  Store trigger time for the next interrupt 
Last_Trigger := Now; 
 
--  Compute number of revolutions per minute 
RPM := 60.0 / Float (Elapsed); 

 
Then I have to compute the 
best moment to energize the 
coil (ignition) and how long it 
should be energized (power 
phase). 

Intuitively, the coil is most 
efficient 90 degrees after top 
dead center (ATDC) which 
means the power phase should 
be fairly distributed around that 
point. 

For the moment, we arbitrarily 
decide that the power phase 
should be 50% of the TDC to 
BDC time.  

 
--  How much time will the engine take to go from Top Dead Center 
--  to Bottom Dead Center (half of a turn) based on how much time 
--  it took to make the last complete rotation. 
TDC_To_BDC := Elapsed / 2.0; 
 
--  We start energizing at 25% of the TDC to BDC time 
Ignition    :=  TDC_To_BDC * 0.25; 
 
--  We energize the coil during 50% of the TDC to BDC time 
Power_Phase := TDC_To_BDC * 0.5; 
 
--  Convert to start and stop time 
Start := Now + Milliseconds (Natural (1000.0 * Ignition)); 
Stop := Start + Milliseconds (Natural (1000.0 * Power_Phase)); 

 
To deliver the power command, we will use timing events (the 
implementation is inspired by the Gem #4 
— https://www.adacore.com/gems/gem-4/). Of course, a more 
advanced version should use the hardware timers available in the 
STM32F4 to reduce CPU usage. However, the engine will not exceed 
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3000 RPM, that’s 50 events per second and therefore not a big deal for 
the 168MHz micro-controller. 

You can find the sources on GitHub: https://github.com/Fabien-
Chouteau/solenoid-engine-controller  

That’s it for the software,let’s compile, program the board, plug in 
everything, give it a small push and see what happens...  

https://youtu.be/V4Et5AvYgXc 

In the next part, I will use the screen on the STM32F429 Discovery 
board to control the ignition and power_phase parameters, we will see 
how this changes the behavior of the engine. 

 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-all-that-is-useless-is-
essential 
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Make with Ada: "The 
Eagle has landed" 
by Fabien Chouteau 
July 20, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
July 20, 1969, 8:18 p.m. UTC, while a bunch of guys were about to turn 
blue on Earth, commander Neil A. Armstrong confirms the landing of 
his Lunar Module (LM), code name Eagle, on the moon. 

Even though the first footstep on the moon will certainly remain the 
most memorable moment of the Apollo 11, landing a manned spacecraft 
on the moon was probably the most challenging part of the mission. 

To celebrate the 46th anniversary of this extraordinary adventure, I 
decided to challenge you. Will you be able to manually land Eagle on the 
Sea of Tranquillity? 

In this article I will present my lunar lander simulator. It is a 2D 
simulation of the basic physics of the landing using GTKAda and Cairo 
for the graphic front-end. 
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The simulation starts at High-Gate point, altitude 7,500 ft (2.2 km). It 
is the beginning of the visibility phase, i.e. the astronauts start to see 
the ground and the target landing site. 

 
You have two controls to maneuver the Lunar Module: 

• Descent Propulsion System (DPS): It is the main engine of the 
LM. The DPS is on full throttle since the beginning of the 
landing (about 8 min. before High-Gate). It can only be throttled 
between 10% and 60%, otherwise it is either off or full throttle. 

• Reaction Control System (RCS): Composed of four pods of four 
small thrusters that provide attitude control. In the simulation 
you can control the throttle of opposite RCS to rotate the LM. 

In the simulator, you have the raw control of throttle for DPS and RCS, 
the real Apollo Lunar Module was heavily relying on software, the 
commander would only take manual control (still software assisted) for 
the very last approach where the Apollo Guidance Computer (AGC) 
could not evaluate the features of the landing site. For instance, Neil 
Armstrong had to fly the LM over a boulder field to find a suitable 
landing area.  

Physics engine 
In the physics engine I use GNAT’s dimensionality checking system. It is 
a static verification of dimensional correctness of the formulas. For 
instance if I multiply a speed by a time, GNAT will ensure that I can only 
put this data in a distance variable. Same goes for magnetic flux, 
electrical current, pressure, etc. 
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So in the simulator, all the calculi from net forces, acceleration, speed 
to position are statically checked for physical unit error. In fact, thanks 
to this system, I realized that I forgot the moment of inertia in my 
simulation. 

You can learn more about GNAT dimensionality checking in Gem #136 
— https://www.adacore.com/gems/gem-136-how-tall-is-a-kilogram/ 

Panels 
On the screen you will see the representation of some of the panels of 
the LM’s cockpit. All the panels can be moved with a left mouse click, 
and resized with right mouse click. 

• Gauges: Percentage of remaining fuel for DPS and RCS 
• Attitude: Pitch angle and pitch rate 
• T/W: Thrust to weight ratio 
• Alt / Alt Rate: Altitude from lunar surface and altitude rate 
• X-Pointer: In the real LM the X-pointer displays forward and 

lateral speed. Since this is a 2D simulator, I chose to display the 
forward speed on the X axis and vertical speed on Y axis. 

 
Optional help 
Manually landing Eagle can be tricky, to help you I added three features: 

• Speed vector direction: The speed vector direction is shown by 
a green line starting at the center of the LM, while the red line 
represents the LM’s orientation. If you manage to keep those 
two lines close to each other, you are not far from a good 
landing. 

• Forecast: It is a stream of blue dots showing the future 
positions of the LM if you do not touch the controls. 

• Overall situation panel: It is the big white panel. It shows the 
current position in blue, the target landing site in red and the 
trajectory since beginning of simulation in green. (Of course, 
this panel was not part of the real LM cockpit...) 

You can disable those two help features by clicking on the “Help” 
button on the top-right of the screen. 

Source code 
The code is available on GitHub (https://github.com/Fabien-
Chouteau/eagle-lander). You can compile it with GNAT Community on 
Windows and Linux (https://www.adacore.com/download) 
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Video 

To give you a preview or if you don't bother compiling the simulator, 
here is a video of a landing: https://youtu.be/9JksZqToFn4 

Links 
Here are a few links to great documents about the Apollo space 
program that I want to share with you. Many of the informations 
required to develop this simulator were grabbed from those sources. 

1. firstmenonthemoon.com: This website is difficult to describe, I 
would just say that this is the closest you will ever get to 
actually landing on the moon... 

2. TALES FROM THE LUNAR MODULE GUIDANCE COMPUTER: 
A paper written by Don Eyles, one of the engineer that worked 
on the AGC software. Eyles talks about the operating system 
and lunar landing guidance software. 
http://dodlithr.blogspot.fr/2014/08/lm-descent-to-moon-
part-1-theory-and.html 

3. Exo Cruiser Blog: A great blog with a lot of details about the LM 
and Moon landing theory.  
http://dodlithr.blogspot.fr/2014/08/lm-descent-to-moon-
part-1-theory-and.html 

4. Computer for Apollo: A video from 1965 showing the 
development of AGC at the MIT instrumentation lab. 
http://techtv.mit.edu/videos/12260-computer-for-apollo-
1965-science-reporter-tv-series 

5. Apollo 14: Mission to Fra Mauro: A NASA documentary from 
1971, lot's of great images. At 6:07, the documentary shortly 
explains how Don Eyles reprogrammed the AGC just a couple 
hours before landing. 
https://youtu.be/xY6Y0ISaYAI 

6. Apollo lunar descent and ascent trajectories: NASA document 
analyzing Apollo 11 and 12 lunar landings. 
https://www.hq.nasa.gov/alsj/nasa58040.pdf 

 
This chapter was originally published at 
https://blog.adacore.com/make-with-ada-the-eagle-has-landed 
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Make with Ada : From 
Bits to Music 
by Raphaël Amiard 
Aug 4, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I started out as an electronic musician, so one of my original 
motivations when I learnt programming was so that I could eventually 
*program* the sounds I wanted rather than just use already existing 
software to do it. 

https://youtu.be/L9KLnN0GczI 

If you know sound synthesis a bit, you know that it is an incredibly deep 
field. Producing a simple square wave is a very simple task, but doing so 
in a musical way is actually much more complex. I approached this as a 
total math and DSP newbie. My goal was not to push the boundaries of 
digital sound synthesis, but rather to make simple stuff, that would help 
me understand the underlying algorithms, and produce sound that 
could be labelled as musical. 
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Also, even if I'm bad at math, I picture myself as reasonably good at 
software architecture (don't we all!), and I figured that producing a 
simple sound synthesis library, that would be easy to use and to 
understand, and actually small enough not to be intimidating, would be 
a reasonable milestone for me. 

One of the other objectives was to make something that you could run 
on a small bareboard computer such as the stm32 or the raspberry pi, 
so it needs to be efficient, both in terms of memory and CPU 
consumption. Being able to run without an operating system would be a 
nice plus too! 

And this is how ada-synth-lib (https://github.com/raph-amiard/ada-
synth-lib) was born, for lack of a better name. The aim of the library is 
to present you with a toolkit that will allow you to produce sound 
waves, massage them into something more complex via effects and 
envelopes, regroup them as instruments, but also sequence them to 
produce a real musical sequence. 

But let's walk through the basics! We'll see how to build such a 
sequence with ada-synth-lib, from a very simple sine generator, to a full 
musical sequence. 

Preamble: How to compile and run the 
library 
As its name indicates, ada-synth-lib is developped in Ada, using the 
AdaCore Libre suite of tools. To build and run the examples, you'll need 
the GPL 2015 edition of the AdaCore libre release, that you can get 
from here:  https://www.adacore.com/download 

Starting simple: The sine 
generator 
Starting simple, we're gonna just generate a 
sound wave, and to make the sound not too 
aggressive to your ears, we'll use a sine wave, 
that has a smooth and soothing profile. 

 
Holy sine wave, witnessed 

by an old-school oscilloscope 
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If you know something about sound theory, you may know that you can 
recreate any (periodical) sound from a carefully arranged superposition 
of sine waves, so the choice of the sine wave is also a way of paying 
respect to the theory of sound generation in general, and to fourier in 
particular. 

Here is the code to generate a simple sine wave with ada-synth-lib. We 
just have a very simple sine generator, and we use the 
`Write_To_Stdout` helper to write the sound stream on the standard 
output. 

with Waves; use Waves; 
with Write_To_Stdout; 
 
procedure Simple_Sine is 
   --  Create a simple sine wave Generator. 
   Sine_Gen : constant access Sine_Generator := Create_Sine (Fixed (300.0)); 
begin 
   Write_To_Stdout (Sine_Gen); 
end Simple_Sine; 

 
Compiling this example and running it on the command line is simple, 
but we are just creating a sound stream and printing it directly to 
stdout! To hear it on our speakers, we need to give it to a program that 
will forward it to your audio hardware. There are several options to do 
that, the most known being the old /dev/dsp file on Unix like systems, 
but you have great cross platform tools such as sox that you can use for 
such a purpose. 

# you should hear a sine ! 
$ obj/simple_sine | play -t s16 -r 44100 - 

 
From bit to music – basic example (https://youtu.be/DwSyl801bnU) 

The interesting thing is that the input to `Create_Sine` is another 
generator. Here we use a fixed value generator, that will provide the 
value for the frequency, but we could use a more complex generator, 
which would modulate the input frequency! 
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with Waves; use Waves; 
with Write_To_Stdout; 
 
procedure Simple_Sine is 
   Sine_Gen : constant access Sine_Generator := 
     Create_Sine ( 
       Fixed 
         (1000.0, 
          -- The second parameter to the Fixed constructor is a generator 
          -- that will be added to the fixed frequency generated. 
 
          -- LFO is also a sine oscillator underneath, but you can set it to 
          -- have amplitudes much larger than +- 1.0 
          LFO (6.0, 200.0))); 
Begin. 
   Write_To_Stdout (Sine_Gen); 
end Simple_Sine; 

 

Going deeper 
This is just the beginning of what you can do. ada-synth-lib is just a lego 
toolkit that you can assemble to generate the sequences you want to 
generate. 

With only slightly more complex sequences, you can get into real 
musical sequences, such as the one you can hear below: 

From Bits to Music – Advanced Example 
(https://youtu.be/2eiWnN1xWcs) 

The sequencing part is done via the simple sequencer data type which 
you can use to create looping note sequences. Here is how it is done for 
the snare instrument: 

   o : constant Sequencer_Note := No_Seq_Note; 
   K : constant Sequencer_Note := (Note => (G, 3), Duration => 3000); 
   Z : constant Sequencer_Note := (Note => (G, 3), Duration => 5000); 
   B : constant Sequencer_Note := (Note => (G, 3), Duration => 8000); 
 
   Snare_Seq : constant access Simple_Sequencer := 
     Create_Sequencer 
       (Nb_Steps => 16, BPM => BPM, Measures => 4, 
        Notes => 
          (o, o, o, o, Z, o, o, o, o, o, o, o, K, o, o, o, 
           o, o, o, o, K, o, o, o, o, o, o, o, B, o, K, K, 
           o, o, o, o, Z, o, o, o, o, o, o, o, K, o, o, o, 
           o, o, o, o, K, o, o, K, o, o, Z, o, B, o, Z, o)); 

 
You can also see how we used Ada's named aggregates to make the 
code more readable and self documenting. Also interesting is how we 
can create complex synth sounds from basic bricks, as in the below 
example. The bricks are very simple to understand individually, but the 
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result is a full substractive synthetizer that can be programmed to 
make music! 

   Synth : constant access Disto := 
     --  We distort the output signal of the synthetizer with a soft clipper 
     Create_Dist 
       (Clip_Level => 1.00001,  
        Coeff      => 1.5, 
         
        --  The oscillators of the synth are fed to an LP filter 
        Source     => Create_LP 
          ( 
            
           --  We use an ADSR enveloppe to modulate the Cut frequency of the 
           --  filter. Using it as the modulator of a Fixed generator allows us 
           --  to have a cut frequency that varies between 1700 hz and 200 hz. 
           Cut_Freq_Provider =>  
             Fixed  
               (Freq      => 200.0, 
                Modulator => new Attenuator' 
                  (Level  => 1500.0, 
                   Source => Create_ADSR (10, 150, 200, 0.005, Synth_Source), 
                   others => <>)), 
 
           --  Q is the resonance of the filter, very high values will give a 
           --  resonant sound. 
           Q => 0.2, 
            
           --  This is the mixer, receiving the sound of 4 differently tuned 
           --  oscillators, 1 sine and 3 saws 
           Source =>  
             Create_Mixer 
               (Sources =>  
                    (4 => (Create_Sine 
                           (Create_Pitch_Gen 
                              (Rel_Pitch => -30, Source => Synth_Source)),  
                           Level => 0.6), 
                     3 => (BLIT.Create_Saw 
                           (Create_Pitch_Gen 
                              (Rel_Pitch => -24, Source => Synth_Source)),  
                           Level => 0.3), 
                     2 => (BLIT.Create_Saw 
                           (Create_Pitch_Gen 
                              (Rel_Pitch => -12, Source => Synth_Source)),  
                           Level => 0.3), 
                     1 => (BLIT.Create_Saw 
                           (Create_Pitch_Gen 
                              (Rel_Pitch => -17, Source => Synth_Source)),  
                           Level => 0.5))))); 

 
The ADSR envelope is what gives the sound a dynamic nature, shaping it 
in the time domain. The Low Pass filter shapes the sound by removing 
some high frequency components from it. 

That's it for today! In the next instalment of this series we'll see how to 
compile and run the code on a bare board system using the STM32F4 
board and AdaCore GPL tools. 
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Links and Credits 
• You can find the ada-synth-lib library on github- 

https://github.com/raph-amiard/ada-synth-lib 

• The needed toolchain to play with it is on the libre site. 

• A good, high-level guide to music synthesis here- 
http://beausievers.com/synth/synthbasics/ 

• A lot of the algorithms in ada-synth-lib were inspired by stuff I 
found on http://musicdsp.org/, so big thanks to every people 
putting algorithms in there. 

• The alias free oscillators in the BLIT module are done using the 
Bandlimited Impulse Train method, for which the seminal paper 
is here- https://ccrma.stanford.edu/~stilti/papers/blit.pdf 

• Thanks and credits to Mikael Altermark for the beautiful sound 
waves pictures, and to Bisqwit for the introduction video! 

 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-from-bits-to-music 
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Make with Ada: Formal 
Proof on My Wrist 
by Fabien Chouteau 
Nov 10,  2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the Pebble Time kickstarter went through the roof, I looked at the 
specification and noticed the watch was running on an STM32F4, an 
ARM cortex-M4 CPU which is supported by GNAT. So I backed the 
campaign, first to be part of the cool kids and also to try some Ada 
hacking on the device. 

At first I wasn't sure if I was going to replace the Pebble OS entirely or 
only write an application for it. The first option requires to re-write all 
the drivers (screen, bluetooth, etc) and I would also need a way to 
program the chip, which to my knowledge requires opening the watch 
and soldering a debug interface to the chip. Since I’m not ready to crack 
open a $200 watch just for the sake of hacking I decided to go with the 
second option, write an app. 
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Binding the C API to Ada 
The Pebble SDK is very well thought out and provides an emulator 
based on QEMU which is great for testing. In fact I developed and 
tested the binding with this SDK before I even got the real watch. 

The entire API is contained in a single C header (pebble.h). I used 
GNAT's switch -fdump-ada-spec to generate a first version of the 
binding, then I reformatted it to split the features in packages and 
rename the subprograms. For example, the function layer_create 
became: 

package Pebble.Ui.Layers is  
   function Create (Frame : Grect) return Layer; -- pebble.h:3790 
   pragma Import (C, Create, "layer_create");  
end Pebble.Ui.Layers; 

 
The API uses almost exclusively pointers to hidden structures: 
 
typedef struct Window Window; 
 
Window * window_create(void); 

 
which we can conveniently map in Ada like so: 

   type Window is private; 
 
   function Create return Window; 
   pragma Import (C, Create, "window_create");  
 
private 
 
   type Window is new System.Address; 

 
Overall the binding was relatively easy to create. 

Smartwatch app and formal proof 
To use this binding I decided to port the formally proven Tetris written 
in SPARK by Yannick and Tristan (http://blog.adacore.com/tetris-in-
spark-on-arm-cortex-m4), 

The game system being the same, this port consists of a new graphical 
front-end, menus and button handling. The app was quite 
straightforward to develop, the Pebble API is well designed and quite 
easy to use. 
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The formal proof is focused on things that are impossible to test, in our 
case, the game system. Can you think of a way to test that the code will 
reject invalid moves on any piece, in any orientation, at any position and 
for every board state possible (that's trillions or quadrillions of 
combinations)? 

The first thing we get from SPARK analysis is the absence of run-time 
error. For us it means, for instance, that we are sure not to do invalid 
access to the game board matrix. 

Then we prove high level game properties like: 

• Never move the falling piece into an invalid position 

• The falling piece will never overlap the pieces already in the 
board 

• All the complete lines are removed 

• Whatever the player does, the game will always be in a valid 
state 

This application was released on the Pebble app store under the name 
of PATRIS 
(http://apps.getpebble.com/en_US/application/559af16358bc81d93
0000067), and as of today more than 660 users downloaded it. 

I also made 
a watchface (http://apps.getpebble.com/en_US/application/561a7345
1a1d8994a700007e) using the blocks to display time digits. 

Persistent storage 
The last thing I did was to create a higher interface to the persistent 
storage API, a mechanism to store data and retrieve it after the app is 
closed. 

The C interface is very simple with only a couple of functions. Each data 
is associated with a uint32_t key, so the app can read, write and test 
the existence of data for a given key. 

int persist_read_data(const uint32_t key, void * buffer, const size_t buffer_size); 
int persist_write_data(const uint32_t key, const void * data, const size_t size); 
bool persist_exists(const uint32_t key); 
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But of course, the Ada type system doesn't like void pointers and to be 
able to use the persistent storage without having to deal with nasty 
unchecked conversions (same as C casts) I wrote a generic package 
that automatically takes care of everything: 

generic 
   Data_Key : Uint32_T; 
   type Data_Type is private; 
 
package Pebble.Generic_Persistent_Storage is 
    function Write (Data : Data_Type) return Boolean; 
   --  Write data associated with the key, return True on success 
 
   function Read (Data : out Data_Type) return Boolean; 
   --  Read data associated with the key, return True on success 
 
   function Exists return Boolean; 
   --  Return True if there is data associated with the key 
 
   procedure Erase; 
   --  Erase data associated with the key 
end Pebble.Generic_Persistent_Storage; 

 
Using the persistent storage is now as simple as: 
 
   type My_Data is record 
      Level : Natural; 
      XP    : Natural; 
   end record; 
 
   package My_Data_Storage is new Pebble.Generic_Persistent_Storage (1, My_Data); 
 
   Player : My_Data; 
begin 
 
   if not My_Data_Storage.Read (Player) then 
      Player.XP    := 0; 
      Player.Level := 1; 
   end if; 
 
    --   Insert complex gameplay here… 
 
   if not My_Data_Storage.Write (Player) then 
      Put_Line ("The game could not be saved"); 
   end if; 

 

Sources 
The binding and app source code are available on GitHub- 
https://github.com/Fabien-Chouteau/Ada_Time. 

Youtube video of the watch in action: https://youtu.be/5Ng5fmdXmwk 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-formal-proof-on-my-wrist 
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As a first article (for me) on this blog, I wanted to show you how to 
adapt and configure a ravenscar-compliant run-time (full or sfp) to a 
MCU/board when the specific MCU or board does not come predefined 
with the GNAT run-time. 

To do so, I will use GNAT GPL for ARM ELF and 3 boards of the same 
family: the STM32F429I-Discovery, the STM32F469I-Discovery, and 
the STM32F746G-Discovery. 
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These boards are interesting because: 

• They're fun to use, with lots of components to play with (exact 
features depends on the board): LCD, touch panel, audio in/out, 
SD-Card support, Networking, etc. 

• They are pretty cheap. 

• They are from the same manufacturer, so we can expect some 
reuse in terms of drivers. 

• The first one (STM32F429I-Disco) is already supported by 
default by the GNAT run-time. We can start from there to add 
support for the other boards. 

• They differ enough to deserve specific run-time adjustments, 
while sharing the same architecture (ARMv7) and DSP/FPU 
(Cortex-M4 & M7) 

 
So where to start ? First, we need to understand what is MCU-specific, 
and what is board-specific: 

• Instructions, architecture are MCU specific. GCC is configured 
to produce code that is compatible with a specific architecture. 
This also takes into account specific floating point instructions 
when they are supported by the hardware. 

• Initialization of an MCU is specific to a family (All STM32F4 
share the same code, the F7 will need adjustments). 
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• The interrupts are MCU-specific, but their number and 
assignments vary from one minor version to another depending 
on the features provided by the MCU. 

• Memory mapping is also MCU-specific. However there are 
differences in the amount of available memory depending on 
the exact version of the MCU (e.g. this is not a property of the 
MCU family). This concerns the in-MCU memory (the SRAM), 
not the potential external SDRAM memory that depends on the 
board. 

• Most clock configuration can be made board-independant, 
using the MCU's HSI clock (High Speed Internal clock), however 
this is in general not desirable, as external clocks are much 
more reliable. Configuring the board and MCU to use the HSE 
(High Speed External clock) is thus recommended, but board-
specific. 

From this list, we can deduce that - if we consider the CPU architecture 
stable, which is the case here - adapting the run-time to a new board 
mainly consists in: 

• Adapting the startup code in case of a major MCU version 
(STM32F7, that is Cortex-M7 based). 

• Checking and defining the memory mapping for the new MCU. 

• Checking and defining the clock configuration for the specific 
board. 

• Make sure that the hardware interrupts are properly defined 
and handled. 

Preparing the sources 
To follow this tutorial, you will need at least one of the boards, the stlink 
tools to flash the board or load examples in memory, and GNAT GPL for 
ARM (hosted on Linux or Windows) that can be downloaded 
from www.adacore.com/download. 

Install it (in the explanations below, I installed it in $HOME/gnat). 

The GNAT run-times for bareboard targets are all user-customizable. In 
this case, they are located in <install prefix>/arm-eabi/lib/gnat. 



Porting the Ada Runtime to a New ARM Board  

62 

The board-specific files are located in the arch and gnarl-arch 
subfolders of the run-times. 

So let's create our new run-time there, and test it. Create a new folder 
named ravenscar-sfp-stm32f469disco, in there, you will need to copy 
from the original ravenscar-sfp-stm32f4 folder: 

• arch/ 

• gnarl-arch/ 

• ada-object-path 

• runtime.xml 

• runtime_build.gpr and ravenscar_build.gpr and apply the 
following modifications: 

$ diff -ub ../ravenscar-sfp-stm32f4/runtime_build.gpr runtime_build.gpr 

--- ../ravenscar-sfp-stm32f4/runtime_build.gpr 2016-01-09 14:09:26.936000000 +0100 

+++ runtime_build.gpr 2016-01-09 14:10:43.528000000 +0100 

@@ -1,5 +1,6 @@ 

 project Runtime_Build is 

   for Languages use ("Ada", "C", "Asm_Cpp"); 

+  for Target use "arm-eabi"; 

 

   for Library_Auto_Init use "False"; 

   for Library_Name use "gnat"; 

@@ -8,7 +9,8 @@ 

   for Library_Dir use "adalib"; 

   for Object_Dir use "obj"; 

 

-  for Source_Dirs use ("arch", "common", "math"); 

+  for Source_Dirs use 

+    ("arch", "../ravenscar-sfp-stm32f4/common", "../ravenscar-sfp-stm32f4/math"); 

 

   type Build_Type is ("Production", "Debug"); 

 

$ diff -ub ../ravenscar-sfp-stm32f4/ravenscar_build.gpr ravenscar_build.gpr 

--- ../ravenscar-sfp-stm32f4/ravenscar_build.gpr 2015-04-30 12:36:37.000000000 +0200 

+++ ravenscar_build.gpr 2016-01-09 14:11:37.952000000 +0100 

@@ -1,7 +1,9 @@ 

 with "runtime_build.gpr"; 
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 project Ravenscar_Build is 

   for Languages use ("Ada", "C", "Asm_Cpp"); 

+   for Target use "arm-eabi"; 

 

   for Library_Auto_Init use "False"; 

   for Library_Name use "gnarl"; 

@@ -10,7 +12,8 @@ 

   for Library_Dir use "adalib"; 

   for Object_Dir use "obj"; 

 

-  for Source_Dirs use ("gnarl-arch", "gnarl-common"); 

+   for Source_Dirs use 

+     ("gnarl-arch", "../ravenscar-sfp-stm32f4/gnarl-common"); 

 

   type Build_Type is ("Production", "Debug"); 

• ada_source_path with the following content: 

1. arch 
2. ../ravenscar-sfp-stm32f4/common 
3. ../ravenscar-sfp-stm32f4/math 
4. ../ravenscar-sfp-stm32f4/gnarl-common 
5. gnarl-arch 

You are now ready to build your own run-time. To try it out, just do: 

$ cd ~/gnat/arm-eabi/lib/gnat/ravenscar-sfp-stm32f469disco 

$ export PATH=$HOME/gnat/bin:$PATH 

$ gprbuild -p  -f -P ravenscar_build.gpr 

 
If everything goes fine, then a new ravenscar-sfp run-time should have 
been created. 

As it has been created directly within the GNAT default search path, 
you can use it via its short name (e.g. the directory name) just as a 
regular run-time: by specifying --RTS=ravenscar-sfp-stm32f469disco 
in gprbuild's command line for example, or by specifying 'for Runtime 
("Ada") use "ravenscar-sfp-stm32f469disco"' in your project file. 

$ ls 

ada_object_path  adalib  gnarl-arch  ravenscar_build.gpr  runtime_build.gpr 

ada_source_path  arch    obj         runtime.xml 
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Handling the STM32F469I-Discovery: 
Let's start with the support of the STM32F469I-Discovery. Being the 
same MCU major version than the STM32F429, modifications to the 
run-time are less intrusive than the modifications for the STM32F7, 

First, we need to make sure the board is properly handled by gprbuild. 
For that, we edit runtime.xml and change 

type Boards is ("STM32F4-DISCO", "STM32F429-DISCO", 
"STM32F7-EVAL"); 
Board : Boards := external ("BOARD", "STM32F4-DISCO"); 

with: 

type Boards is ("STM32F469-DISCO"); 
Board : Boards := external ("BOARD", "STM32F469-DISCO"); 

Now we're ready to start the real thing. 

Memory mapping and linker scripts 
In this step, we're going to tell the linker at what addresses we need to 
put stuff. This is done by creating a linker script from the base 
STM32F429-DISCO script: 

$ cd arch 

$ mv STM32F429-DISCO.ld STM32F469-DISCO.ld 

# Additionally, you can cleanup the other STM32*.ld scripts, they are unused by this 

customized run-time 

 

Next, we need to find the technical documents that describe the MCU. 
Go to http://st.com and search for "stm32f469NI" (that is the MCU 
used by the discovery board), and once in the product page, click on 
"design resources" and check the RM0386 Reference Manual. 

From the chapter 2.3.1, we learn that we have a total of 384kB of 
SRAM, including 64kB of CCM (Core Coupled Memory) at 0x1000 
0000 and the remaining at 0x2000 0000. 

Additionally, we need to check the flash size. This is MCU micro version 
specific, and the specific MCU of the STM32F469-Disco board has 2 
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MB of flash. The STM32 reference manual tells us that this flash is 
addressed at 0x0800 0000. 

So with this information, you can now edit the STM32F469-DISCO-
memory-map.ld file: 

MEMORY 

{ 

  flash (rx)  : ORIGIN = 0x08000000, LENGTH = 2048K 

  sram  (rwx) : ORIGIN = 0x20000000, LENGTH = 320K 

  ccm   (rw)  : ORIGIN = 0x10000000, LENGTH = 64K 

} 

 

System clocks 
The run-time is responsible for initializing the system clock. We need 
the following information to do this - the various clock settings that are 
available, and the main clock source. 

STMicroelectonics provides a Windows tool to help set up their 
MCU: STM32CubeMX. Using the tool we can verify the clock settings: 

 
 

To properly setup the values, we now need to check the speed of the 
HSE clock on the board. So back to st.com, search for STM32F469-
Disco, and from the product page, download the board's user 
manual UM1932: Discovery kit with STM32F469NI MCU 
(http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user_manual/DM0
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0218846.pdf). From chapter "6.3.1 HSE clock source" check that the 
HSE clock is running at 8MHz. 

Now let's check that the run-time is doing the right thing: 

arch/setup_pll.adb is responsible for the clock setup 

gnarl-arch/s-bbpara.ads defines the clock constants 

arch/s-stm32f.ads define some of the MCU's registers, as well as 
Device ID constants. 

Start by adding the STM32F46x device id in s-stm32f.ads. You can 
search google for the device id, or use st-util to connect to the board 
and report the id. 

   DEV_ID_STM32F40xxx : constant := 16#413#; 

   DEV_ID_STM32F42xxx : constant := 16#419#; 

   DEV_ID_STM32F46xxx : constant := 16#434#; 

   DEV_ID_STM32F7xxxx : constant := 16#449#; 

 
Now let's check the clock constants in s-bbpara.ads: 

   function HSE_Clock 

     (Device_ID : STM32F4.Bits_12) return STM32F4.RCC.HSECLK_Range 

   is (case Device_ID is 

          when STM32F4.DEV_ID_STM32F42xxx => 8_000_000, 

          --  STM32F429 Disco board 

          when STM32F4.DEV_ID_STM32F7xxxx => 25_000_000, 

          --  STM32F7 Evaluation board 

          when others => 8_000_000) 

          --  STM32F407 Disco board and Unknown device 

   with Inline_Always; 

 
We see in s-bbpara.ads that the HSE is OK (we fall in the 'others' case). 
However the Clock_Frequency constant can be bumped to 
180_000_000. 

   Clock_Frequency : constant := 180_000_000; 

   pragma Assert (Clock_Frequency in STM32F4.RCC.SYSCLK_Range); 
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Looking now at setup_pll.adb, we can verify that this file does not 
require specific changes. PLLM is set to 8 to achieve a 1 MHz input 
clock. PLLP is a constant to 2, so PLLN is evaluated to 360 to achieve 
the expected clock speed : HSE / PLLM * PLLN / PLLP = 180 MHz. 

However, the PWR initialization should be amended to handle the 
STM32F46 case, and can be simplified as we're creating a run-time 
specific to the MCU: 

$ diff -u ../ravenscar-sfp-stm32f4/arch/setup_pll.adb arch/setup_pll.adb 

--- ../ravenscar-sfp-stm32f4/arch/setup_pll.adb 2015-04-30 12:36:37.000000000 +0200 

+++ arch/setup_pll.adb 2016-01-09 14:11:11.216000000 +0100 

@@ -90,7 +90,6 @@ 

    procedure Initialize_Clocks is 

 

       HSECLK    : constant Integer := Integer (HSE_Clock (MCU_ID.DEV_ID)); 

-      MCU_ID_Cp : constant MCU_ID_Register := MCU_ID; 

 

       ------------------------------- 

       -- Compute Clock Frequencies -- 

@@ -194,11 +193,7 @@ 

       --  and table 15 p79). On the stm32f4 discovery board, VDD is 3V. 

       --  Voltage supply scaling only 

 

-      if MCU_ID_Cp.DEV_ID = DEV_ID_STM32F40xxx then 

-         PWR.CR := PWR_CR_VOS_HIGH_407; 

-      elsif MCU_ID_Cp.DEV_ID = DEV_ID_STM32F42xxx then 

-         PWR.CR := PWR_CR_VOS_HIGH_429; 

-      end if; 

+      PWR.CR := PWR_CR_VOS_HIGH_429; 

 

       --  Setup internal clock and wait for HSI stabilisation. 

       --  The internal high speed clock is always enabled, because it is the 

 

Interrupts 
The available interrupts on the MCU can be found in the Reference 
Manual. 

However, an easier and better way to get the list of interrupts is by 
generating the Ada bindings from the CMSIS-SVD file for this board 
using the svd2ada tool that can be found on GitHub, and by 
downloading the SVD file that corresponds to the current MCU 
(STM32F46_79x.svd) directly from ARM. This binding generates the 
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interrupts list and we can then check the ones that are not mapped by 
the current run-time. 

$ svd2ada ~/SVD_FILES/STM32F46_79x.svd -p STM32_SVD -o temp 

$ cat temp/stm32_svd-interrupts.ads 

... 

... 

   UART7_Interrupt: constant Interrupt_ID := 84; 

 

   UART8_Interrupt: constant Interrupt_ID := 85; 

 

   SPI4_Interrupt: constant Interrupt_ID := 86; 

 

   SPI5_Interrupt: constant Interrupt_ID := 87; 

 

   SPI6_Interrupt: constant Interrupt_ID := 88; 

 

   SAI1_Interrupt: constant Interrupt_ID := 89; 

 

   LCD_TFT_Interrupt: constant Interrupt_ID := 90; 

 

   LCD_TFT_1_Interrupt: constant Interrupt_ID := 91; 

 

   DMA2D_Interrupt: constant Interrupt_ID := 92; 

 

   QUADSPI_Interrupt: constant Interrupt_ID := 93; 

 

A total of 91 interrupts are defined by the MCU, with an additional 2 
required by GNAT (Interrupt Id 0 is reserved, and GNAT maps the 
SysTick interrupt to Id 1). 

So let's amend the gnarl-arch/a-intnam.ads file: 

   HASH_RNG_Interrupt               : constant Interrupt_ID := 82; 

   FPU_Interrupt                    : constant Interrupt_ID := 83; --  This line and 

below are new 

   UART7_Interrupt                  : constant Interrupt_ID := 84; 

   UART8_Interrupt                  : constant Interrupt_ID := 85; 

   SPI4_Interrupt                   : constant Interrupt_ID := 86; 

   SPI5_Interrupt                   : constant Interrupt_ID := 87; 

   SPI6_Interrupt                   : constant Interrupt_ID := 88; 

   SAI1_Interrupt                   : constant Interrupt_ID := 89; 
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   LCD_TFT_Interrupt                : constant Interrupt_ID := 90; 

   LCD_TFT_1_Interrupt              : constant Interrupt_ID := 91; 

   DMA2D_Interrupt                  : constant Interrupt_ID := 92; 

   QUADSPI_Interrupt                : constant Interrupt_ID := 93; 

 

end Ada.Interrupts.Names; 

 

We also need to edit arch/handler.S to properly initialize the interrupt 
vector: 

$ diff -bu ../ravenscar-sfp-stm32f4/arch/handler.S arch/handler.S 

--- ../ravenscar-sfp-stm32f4/arch/handler.S 2014-09-15 11:28:25.000000000 +0200 

+++ arch/handler.S 2016-01-09 11:58:32.456000000 +0100 

@@ -145,6 +145,16 @@ 

  .word   __gnat_irq_trap      /* 95 IRQ79.  */ 

  .word   __gnat_irq_trap      /* 96 IRQ80.  */ 

  .word   __gnat_irq_trap      /* 97 IRQ81.  */ 

+ .word   __gnat_irq_trap      /* 98 IRQ82.  */ 

+ .word   __gnat_irq_trap      /* 99 IRQ83.  */ 

+ .word   __gnat_irq_trap      /* 100 IRQ84.  */ 

+ .word   __gnat_irq_trap      /* 101 IRQ85.  */ 

+ .word   __gnat_irq_trap      /* 102 IRQ86.  */ 

+ .word   __gnat_irq_trap      /* 103 IRQ87.  */ 

+ .word   __gnat_irq_trap      /* 104 IRQ88.  */ 

+ .word   __gnat_irq_trap      /* 105 IRQ89.  */ 

+ .word   __gnat_irq_trap      /* 106 IRQ90.  */ 

+ .word   __gnat_irq_trap      /* 107 IRQ91.  */ 

 

  .text 

 

And we also need to bump the number of interrupt IDs in gnarl-arch/s-
bbpara.ads: 

   Number_Of_Interrupt_ID : constant := 93; 

 

And that's it 
The necessary job has now been done to support the STM32F469I-
Disco. You can now install the run-time, and use it with the examples 
from our bareboard drivers repository on GitHub 
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(https://github.com/AdaCore/bareboard/tree/svd). Note that, as of 
the time when this article is written, only the 'svd' branch includes 
some drivers support for this board. 

$ gprbuild -P ravenscar_build.gpr 

$ cd ~/bareboard/ARM/STMicro/STM32/examples/balls 

$ git checkout svd 

$ gprbuild -p -P balls_demo.gpr -XBOARD=STM32F469-DISCO -XRTS=ravenscar-sfp -XLCH=lcd 

-XLOADER=ROM --RTS=ravenscar-sfp-stm32f469disco 

$ arm-eabi-objcopy -O binary obj/demo obj/demo.bin 

$ st-flash write obj/demo.bin 0x8000000 

 

Porting the run-time to the STM32F7-
DISCOVERY 
Now on to the STM32F7. This is going to be a bit more difficult for one 
reason: the STM32F7, being based on the Cortex-M7, can now benefit 
from Data and Instruction caches. These caches need explicit 
initialization. A minimal support for the STM32F7 already exists in the 
run-time, but it is incomplete as these caches are not properly 
initialized. 

Prepare the run-time 

First of all, let's create the new run-time for this board. We'll start this 
time from the work previously performed for the STM32F469-
Discovery board to speed up the process. 

$ cd ~/gnat/arm-eabi/lib/gnat 

$ cp -r ravenscar-sfp-stm32f469disco ravenscar-sfp-stm32f7disco 

 

Enable Data and Instruction caches 
Initialization of the cache is described in details by ARM in the Cortex-
M7 processor technical reference manual. 

So let's try to update the startup code. For that, we're going to add a 
new file 'arch/start-common.S': 
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 .syntax unified 

 .cpu cortex-m4 

 .thumb 

 .text 

 .thumb_func 

 .globl _stm32_start_common 

        .type _stm32_start_common, #function 

_stm32_start_common: 

        /**************/ 

        /* Enable FPU */ 

        /**************/ 

        movw     r0,#0xED88 

        movt     r0,#0xE000 

        ldr      r1,[r0] 

        orr      r1,r1,#(0xF << 20) 

        str      r1,[r0] 

        /* Wait for store to complete and reset pipeline with FPU enabled  */ 

        dsb 

        isb 

        /******************** 

         * Enable I/D cache * 

        ********************/ 

        /* Register definition for cache handling */ 

        .set    CCSIDR,  0xE000ED80 

        .set    CSSELR,  0xE000ED84 

        .set    DCISW,   0xE000EF60 

        .set    ICIALLU, 0xE000EF50 

        .set    CCR,     0xE000ED14 

        /* First invalidate the data cache */ 

dcache_invalidate: 

        mov     r1, #0x0 

        ldr     r0, =CSSELR 

        str     r1, [r0]        /* Select the data cache size */ 

        dsb 

        ldr     r0, =CCSIDR 

        ldr     r2, [r0]        /* Cache size identification */ 

        and     r1, r2, #0x7    /* Number of words in a cache line */ 

        add     r7, r1, #0x4 

        ubfx    r4, r2, #3, #10  /* r4 = number of ways - 1 of data cache */ 

        ubfx    r2, r2, #13, #15 /* r2 = number of sets - 1 of data cache */ 

        clz     r6, r4           /* Calculate bit offset for "way" in DCISW */ 

        ldr     r0, =DCISW 

inv_loop1: 

        mov     r1, r4 

        lsls    r8, r2, r7 
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inv_loop2: 

        lsls    r3, r1, r6 

        orrs    r3, r3, r8 

        str     r3, [r0]        /* Invalidate the D-Cache line */ 

        subs    r1, r1, #1 

        bge     inv_loop2 

        subs    r2, r2, #1 

        bge     inv_loop1 

        dsb 

        isb 

        /* Now invalidate the instruction cache */ 

icache_invalidate: 

        mov     r1, #0x0 

        ldr     r0, =ICIALLU 

        str     r1, [r0] 

        dsb 

        isb 

        /* Finally enable Instruction and Data cache */ 

        ldr     r0, =CCR 

        ldr     r1, [r0] 

        orr     r1, r1, #(0x1 << 16) /* Sets the data cache enabled field */ 

        orr     r1, r1, #(0x1 << 17) /* Sets the i-cache enabled field */ 

        str     r1, [r0] 

        dsb 

        isb 

        /***************************** 

         * TCM Memory initialisation * 

        *****************************/ 

        .set    CM7_ITCMCR, 0xE000EF90 

        .set    CM7_DTCMCR, 0xE000EF94 

        ldr     r0, =CM7_ITCMCR 

        ldr     r1, [r0] 

        orr     r1, r1, #0x1 /* set the EN field */ 

        str     r1, [r0] 

        ldr     r0, =CM7_DTCMCR 

        ldr     r1, [r0] 

        orr     r1, r1, #0x1 /* set the EN field */ 

        str     r1, [r0] 

        dsb 

        isb 

end: 

        bx lr 

        .size _stm32_start_common, . - _stm32_start_common 
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This file initializes the FPU, the data cache, the instruction cache 
(according to the ARM documentation), as well as the TCM memory. 

We now need to call it from the startup files, start-ram.S and start-
rom.S. 

start-ram.S: 

 

  /* Init stack */ 

  ldr sp,.LinitSp 

 

-        /* Enable FPU */ 

-        movw     r0,#0xED88 

-        movt     r0,#0xE000 

-        ldr      r1,[r0] 

-        orr      r1,r1,#(0xF << 20) 

-        str      r1,[r0] 

- 

-        /* Wait for store to complete and reset pipeline with FPU enabled  */ 

-        dsb 

-        isb 

+        bl _stm32_start_common 

 

  /* Clear .bss */ 

  movw r0,#:lower16:__bss_start 

 

start-rom.S: 

 

 _start_rom: 

-        /* Enable FPU */ 

-        movw     r0,#0xED88 

-        movt     r0,#0xE000 

-        ldr      r1,[r0] 

-        orr      r1,r1,#(0xF << 20) 

-        str      r1,[r0] 

+        bl _stm32_start_common 

 
Clocks, interrupts, linker scripts, etc. 

We will also create a linker script for the STM32F7, and add the new 
board to runtime.xml. We perform the same run-time modifications we 
did for the STM32F469-Disco board: 

create arch/STM32F7-DISCO-memory-map.ld: 
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MEMORY 

{ 

itcm (x) : ORIGIN = 0x00000000, LENGTH = 16K 

flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K 

dtcm (rx) : ORIGIN = 0x20000000, LENGTH = 64K 

sram (rwx) : ORIGIN = 0x20010000, LENGTH = 240K 

} 

 
In s-stm32f.ads, DEV_ID_STM32F7xxxx is already defined. 

In s-bbpara.ads, the HSE clock is also properly set to 25MHz, the MCU 
can run at 216 MHz, but STM32CubeMX shows some issues with such 
value, so we simplify by using a 200MHz value. 

Now edit runtime.xml: 

type Boards is ("STM32F7-DISCO"); 

Board : Boards := external ("BOARD", "STM32F7-DISCO"); 

 
The interrupts are very similar between the STM32F746 and the 
STM32F469, so you can benefit from the changes already performed. 

Et voilà. Now you can rebuild the run-time, and test it similarly to the 
stm32f469-disco. 

$ gprbuild -P ravenscar_build.gpr 

$ cd ~/bareboard/ARM/STMicro/STM32/examples/balls 

$ gprbuild -p -P balls_demo.gpr -XBOARD=STM32F7-DISCO -XRTS=ravenscar-sfp -XLCH=lcd -

XLOADER=ROM --RTS=ravenscar-sfp-stm32f7disco 

$ arm-eabi-objcopy -O binary obj/demo obj/demo.bin 

$ st-flash write obj/demo.bin 0x8000000 
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GNAT on the three boards 

 
Final words and refinements 
You will find below the source files for the runtimes. 

Although part of the initial run-time for the STM32F429-Disco is 
delivered with GNAT, it is not necessarily well optimized (some missing 
interrupts and a non-optimal clock speed in particular). So I included 
the sfp and full ravenscar run-times for it as well in the final source 
packages. 

Also, in the attached source package, I made use of extending projects 
to adjust the runtimes. The setup is a bit complex so I haven't explained 
it above as this is not really part of the subject, but you can have a look 
if you want. By using extending projects, the advantage is that I only 
needed to add the files that I'm actually modifying, and thus can more 
easily benefit from a futur upgrade of GNAT. 

Finally, in the downloadable sources, I got rid of the 'BOARD' scenario 
variable, as the runtimes are now board specific: such scenario variable 
is only useful when supporting a complete board family. 

To go further in customized run-time, you can refer to the following 
documentation: Customized run-time 
(https://docs.adacore.com/gnat_ugx-
docs/html/gnat_ugx/gnat_ugx/customized_run-time_topics.html). 

This chapter was originally published at 
https://blog.adacore.com/porting-the-ada-runtime-to-a-new-arm-
board 
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Make with Ada: Candy 
Dispenser, with a 
Twist... 
by Fabien Chouteau 
Mar 03, 2016 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A few months ago, my colleague Rebecca installed a candy dispenser in 
our kitchen here at AdaCore. I don’t remember how exactly, but I was 
challenged to make it more… fun. 

So my idea is to add a touch screen on which people have to answer 
questions about Ada or AdaCore’s technology, and to modify the 
dispenser so that people only get candy when they give the right 
answer. (Evil, isn’t it?) 

For this, I will use the great STM32F469 discovery board with a 
800x600 LCD and capacitive touch screen. But before that, I have to 
hack the candy dispenser.... 
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Hacking the dispenser  
The first thing to do is to hack the candy dispenser to be able to control 
the candy delivery system. 

The candy dispenser is made of : 

• A container for the candies 

• A motor that turns a worm gear pushing the candies out of the 
machine 

• An infrared proximity sensor which detects the user’s hand  

My goal is to find the signal that commands the motor and insert my 
system in the middle of it. When the dispenser will try to turn on the 
motor, it means a hand is detected and I can decide whether or not I 
actually want to turn on the motor. 

 
To find the signal controlling the motor, I started by looking at the wire 
going to the motor and where it lands on the board. It is connected to 
the center leg of a “big” transistor. Another leg of the transistor is tied 
to the ground, so the third one must be the signal I am looking for. By 
following the trace, I see that this signal is connected to an 8 pin IC: it 
must be the microcontroller driving the machine. 

At this point, I have enough info to hack the dispenser, but I want to 
understand how the detection works and see what the signal is going to 
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look like. So I hook up my logic analyser to each pin of the IC and start 
recording. 

Here are the 3 interesting signals: infrared LED, infrared sensor, and 
motor control. 

 

The detection works in 3 phases: 

• Wait: The microcontroller is turning on the infra-red LED 
(signal 01) only 0.2 milliseconds every 100ms.This is to save 
power as the machine is designed to be battery powered. 

• Detection: When something is detected, the MCU will then turn 
on the infra-red LED 10 times to confirm that there’s actually 
something in front of the sensor. 

• Delivery: The motor is turned on for a maximum of 300ms. 
During that period the MCU checks every 20ms to see if the 
hand is still in front of the sensor (signal 03). 

This confirms that the signal controlling the motor is where I want to 
insert my project. This way I let the MCU of the dispenser handle the 
detection and the false positive. 
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I scratched the solder mask, cut the trace and solder a wire to each 
side. The green wire is now my detection signal (high when a hand is 
detected) and the white wire is my motor command. 

I ran those two wires with an additional ground wire down to the base of 
the dispenser and then outside to connect them to the STM32F469 
discovery board. 

Software 
The software side is not that complicated: I use the GPL release of 
GNAT and the Ravenscar run-time on an ARM Cortex-M on the 
STM32F469. The green wire coming from the dispenser is connected 
to a GPIO that will trigger an interrupt, so whenever the software gets 
an interrupt it means that there’s a hand in front of the sensor. And 
using another GPIO, I can turn on or off the dispenser motor. 
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For the GUI, I used one of my toy projects called Giza: it’s a simple 
graphical tool kit for basic touch screen user interface. The interfaces 
has two windows. The first window shows the question and there is one 
button for each of the possible answers. When the player clicks on the 
wrong answer, another question is displayed after a few seconds; when  

it’s the right answer, the delivery window is shown. On the delivery 
window the player can abort by using the “No, thanks” button or put his 
hand under the sensor and get his candies! 

The code is available on GitHub here: https://github.com/Fabien-
Chouteau/AMCQ 

Now let’s see what happens when I put the candy dispenser back in the 
kitchen: Watch the video at https://youtu.be/n077RFpqTaE 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-candy-dispenser-with-twist 
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Make with Ada: ARM 
Cortex-M CNC 
Controller 
by Fabien Chouteau 
Jun 01, 2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I started this project more than a year ago. It was supposed to be the 
first Make with Ada project but it became the most challenging from 
both, the hardware and software side. https://youtu.be/uXfkWCUyjM8 

CNC and Gcode 
CNC stands for Computerized Numerical Control. It’s the automatic 
control of multi-axes machines, such as lathes, mills, laser cutters or 
3D printers. 
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Most of the CNC machines are operated via the Gcode language. This 
language provides commands to move the machine tool along the 
different axes. 

Here are some examples of commands: 

M17 ; Enable the motors 

G28 ; Homing. Go to a known position, usually at the beginning of each axis 

G00 X10.0 Y20.0 ; Fast positioning motion. Move to (X, Y) position as fast as 

possible 

G01 X20.0 Y30.0 F50.0 ; Linear motion. Move to (X, Y) position at F speed (mm/sec) 

G02/G03 X20.0 Y10.0 J-10.0 I0.0 ; Circular motion. Starting from the current 

position, move to (X, Y) along the circle of center (Current_Position + (I, J)) 

M18 ; Disable the motors 

 
The Gcode above will produce this tool motion: 
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Most of the time, machinists will use a software to generate Gcode 
from a CAD design file. In my case, I used Inkscape (the vector graphics 
editor — https://inkscape.org/ ) and 
a plugin (http://wiki.inkscape.org/wiki/index.php/Extension_repository
#Gcode_tools) that generates Gcode from the graphics. Here is an 
example of Gcode which I used with my machine: make_with_ada.gcode 
( https://github.com/Fabien-
Chouteau/ACNC/blob/master/examples/make_with_ada.gcode ). 

Hardware 
To achieve precise movements, CNC machines use a special kind of 
electric motors: stepper motors. With the appropriate electronic driver, 
stepper motors rotate by a small fixed angle every time a step signal is 
received by the driver. 

The rotation motion of the motor is translated to linear motion with a 
leadscrew. With the characteristic of both, the motor and leadscrew, 
we can determine the number of steps required to move one millimeter. 
This information is then used by the CNC controller to convert motion 
commands into a precise number of steps to be executed on each 
motor. 

 

To create my own small CNC machine, I used tiny stepper motors from 
old DVD drives and floppy disk drives. I mounted them on the enclosure 
of one of the DVD drives. The motors are driven by low voltage stepper 
drivers from Pololu and the software is running on an STM32F4 
Discovery. 
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Software 

My CNC controller is greatly inspired by the Grlb project. Besides the 
fact that my controller is running on an STM32F4 (ARM Cortex-M4F) 
and Grbl is running on an Arduino (AVR 8-bit), the main difference is 
the use of tasking provided by the Ada language and the Ravenscar run-
time. 

The embedded application is running in 3 tasks: 

1. Gcode interpreter: This task waits for Gcode commands from 
the UART port, parses them and translates all the motion 
commands into absolute linear movements (Motion blocks). 
The circle interpolations are transformed into a list of linear 
motions that will approximate the circle. 

2. The planner: This task takes motion blocks as an input and 
splits each one into multiple segments. A segment is a portion 
of a motion block with a constant speed. By setting the speed of 
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each segment within a block, the 
planner can create acceleration 
and deceleration profiles (as 
seen in the video). 

3. Stepper: This is a periodic task 
that will generate step signals to the 
motors. The frequency of the task 
will depend on the feed rate 
required for the motion and the 
acceleration profile computed by the 
planner. Higher frequency means 
more steps per second and 
therefore higher motion speed. 

 

 

 

Gcode simulator and machine interface 
To be able to quickly evaluate my Gcode/Stepper algorithm and to be 
able to control my CNC machine, I developped a native 
(Linux/Windows) application. 
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The center part of the application shows the simulated motions from 
the Gcode.The top left button matrix provides manual control of the 
CNC machine, for example ‘move left’ by 10 mm. The left text view 
shows the Gcode to be simulated/executed. The bottom text view 
(empty on this screenshot) shows the message sent to us by the 
machine. 

The Ada code running in the microcontroller and the code running in the 
simulation tool are 100% the same. This allows for very easy 
development, test and validation of the Gcode interpreter, motion 
planner and stepper algorithm. 

Give me the code!!! 
As with all the Make with Ada projects, the code is available on 
GitHub: https://github.com/Fabien-Chouteau/ACNC  Fork it, build it, 
use it, improve it. 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-arm-cortex-m-cnc-
controller 
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Make with Ada: DIY 
Instant Camera 
By Fabien Chouteau 
Dec 12, 2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are moments in life where you find yourself with an AdaFruit 
thermal printer in one hand, and an OpenMV camerain the other. You 
bought the former years ago, knowing that you would do something 
cool with it, and you are playing with the latter in the context of a 
Hackaday Prize project. When that moment comes — and you know it 
will come — it’s time to make a DIY instant camera. For me it was at the 
end of a warm Parisian summer day. The idea kept me awake until 5am, 
putting the pieces together in my head, designing an enclosure that 
would look like a camera. Here’s the result: 
https://youtu.be/5dyqzRtlMxI 

The Hardware 
On the hardware side, there’s nothing too fancy. I use a 2 cell LiPo 
battery from my drone. It powers the thermal printer and a 5V 
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regulator. The regulator powers the OpenMV module and the LCD 
screen. There’s a push button for the trigger and a slide switch for the 
mode selection, both are directly plugged in the OpenMV IOs. The 
thermal printer is connected via UART, while the LCD screen uses SPI. 
Simple. 

 

The Software 
For this project I added support for the OpenMV in 
the Ada_Drivers_Library 
(https://github.com/AdaCore/Ada_Drivers_Library). It was the 
opportunity to do the digital camera interface (DCMI) driver as well as 
two Omnivision camera sensors, ST7735 LCD driver and the thermal 
printer. 

The thermal printer is only capable of printing black or white pixel 
bitmap (not even gray scale), this is not great for a picture. Fortunately, 
the printing head has 3 times more pixels than the height of a QQVGA 
image, which is the format I get from the OpenMV camera. If I also 
multiply the width by 3, for each RGB565 pixel from the camera I can 
have 9 black or white pixels on the paper (from 160x120 to 480x360). 
This means I can use a dithering algorithm (a very naive one) to produce 
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a better quality image. A pixel of grayscale value X from 0 to 255 will be 
transformed in a 3x3 black and white matrix, like this: 

 

This is a quick and dirty dithering, one could greatly improve image 
quality by using the Floyd–Steinberg algorithm or similar (it would 
require more processing and more memory). 

As always, the code is on GitHub ( https://github.com/Fabien-
Chouteau/un_pola ). 

Have fun! 

 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-diy-instant-camera 
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Driving a 3D Lunar 
Lander Model with ARM 
and Ada 
by Pat Rogers 
Nov 10, 2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One of the interesting aspects of developing software for a bare-board 
target is that displaying complex application-created information 
typically requires more than the target board can handle. Although 
some boards do have amazing graphics capabilities, in some cases you 
need to have the application on the target interact with applications on 
the host. This can be due to the existence of special applications that 
run only (or already) on the host, in particular. 

For example, I recently created an Ada driver for a 9-DOF inertial 
measurement unit (IMU) purchased from AdaFruit. This IMU device 
takes accelerometer, magnetometer, and gyroscope data inputs and 
produces fused values indicating the absolute orientation of the sensor 
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in 3D space. It is sensor-fusion on a chip (strictly, a System in Package, 
or SiP), obviating the need to write your own sensor fusion code. You 
simply configure the sensor to provide the data in the format desired 
and then read the Euler angles, quaternions, or vectors at the rate you 
require.  I plan to use this orientation data in a small robot I am building 
that uses an STM32 Discovery board for the control system. 

The device is the "AdaFruit 9-DOF Absolute Orientation IMU Fusion 
Breakout - BNO055" that puts the Bosch BO055 sensor chip on its 
own breakout board, with 3.3V regulator, logic level shifting for the I2C 
pins, and a Cortex-M0 to do the actual sensor data fusion. 

 

The breakout board containing the BNO055 sensor and Cortex-M0 
processor, courtesy AdaFruit 
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The bottom of the BNO055 breakout board and a quarter coin, for 
comparison, courtesy AdaFruit 

See https://www.adafruit.com/products/2472  for further product 
details. 

So I have easy access to fused 3D orientation data but I don't know 
whether those data are correct -- i.e., whether my driver is really 
working. I could just display the values of the three axes on the target's 
on-board LCD screen but that is difficult to visualize in general.  

Again, AdaFruit provides a much more satisfying approach. They have a 
demonstration for their IMU breakout board that uses data from the 
sensor to drive a 3D object modeled on the host computer. As the 
breakout board is rotated, the modeled object rotates as well, providing 
instant (and much more fun) indication of driver correctness. 

The current version of the demonstration is described in detail here, 
using a web-based app to display the model.  I got an earlier version 
that uses the "Processing" application to display a model, and instead 
of using their 3D model of a cat I use a model of the Apollo Lunar 
Excursion Module (LEM).  
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The LEM model is available from NASA, but must be converted to the 
"obj" model data format supported by the Processing app.   

The Processing app is available here for free – 
https://learn.adafruit.com/bno055-absolute-orientation-sensor-with-
raspberry-pi-and-beaglebone-black/overview. Once downloaded and 
installed on the host, Processing can execute programs -- "sketches" -- 
that can do interesting things, including displaying 3D models.  The 
AdaFruit demo provided a sketch for displaying their cat model. I 
changed the hard-coded file name to specify the LEM model and 
changed the relative size of the model, but that was about all that was 
changed. 

 

The 3D LEM model displayed by the Processing app 

The sketch gets the orientation data from a serial port, and since the 
sensor breakout board is connected to an STM32 Discovery board, we 
need that board to communicate over one of the on-board 
USART ports. The Ada Drivers Library includes all that is necessary for 
doing that, so the only issue is how to connect the board's USART port 
to a serial port on the host.  

For that purpose I use a USB cable specifically designed to appear as a 
serial port on the host (e.g., a COM port on Windows). These cables are 
available from many vendors, including Mouser: 

• Mouser Part No:  895-TTL-232R-5V 
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• Manufacturer Part No:  TTL-232R-5V 

• Manufacturer:   FTDI 

but note that the above is a 5-volt cable in case that is an issue.  There 
are 3V versions available. 

The end of the cable is a female header, described in the datasheet 
(DS_TTL-232R_CABLES-217672.pdf).   Header pin 4 on the cable is 
TXD, the transmit data output. Header pin 5 on the cable is RXD, the 
receive data input.  The on-board software I wrote that sends the 
sensor data over the port uses specific GPIO pins for the serial 
connection, thus I connected the cable header pins to the STMicro 
board's GPIO pins as follows: 

• header pin 1, the black wire's header slot, to a ground pin on the 
board 

• header pin 4, the orange wire's header slot, to PB7 

• header pin 5, the yellow wire's header slot, to PB6 

On the host, just plug in the USB-
to-serial cable. Once the cable is 
connected it will appear like a 
host serial port and can be 
selected within the Processing 
app displaying the model.  Apply 
power to the board and the app 
will start sending the orientation 
data.  

The breakout board, STM32F429 Discovery board, and USB serial 
cable connections are shown in the following image. (Note that I 
connected a green wire to the USB cable's orange header wire because I 
didn't have an orange connector wire available.)  

When we rotate the breakout board the LEM model will rotate 
accordingly, as shown in the following video: 
https://youtu.be/FrhAqqUyuQ8 

To display the LEM model, double-click on the "lander.pde" file to 
invoke the Processing app on that sketch file. Then press the Run 
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button in the Processing app window.  That will bring up another 
window showing the LEM model.  

In the second window showing the lander, there is a pull-down at the 
upper left for the serial port selection.  Select the port corresponding to 
the USB cable attached to the STM32 board's serial port. That 
selection will be recorded in a file named "serialconfig.txt" located in 
the same directory as the model so that you don't have to select it 
again, unless it changes for some reason. 

Note that in that second window there is a check-box labeled "Print 
serial data."  If you enable that option you will see the IMU data coming 
from the breakout board via the serial port, displayed in the main 
Processing app window. That data includes the current IMU calibration 
states so that you can calibrate the IMU (by moving the IMU board 
slowly along three axes). When all the calibration values are "3" the 
IMU is fully calibrated, but you don't need to wait for that -- you can 
start rotating the IMU board as soon as the model window appears. 

The Ada Drivers Library is available here. 
https://github.com/AdaCore/Ada_Drivers_Library 

The Ada source code, the 3D LEM model, and the Processing sketch file 
for this example are available here. 
https://github.com/AdaCore/Lunar_Lander_Rotation_Demo 

This chapter was originally published at https://blog.adacore.com/3d-
lunar-lander-model 
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New Year’s Resolution 
for 2017: Use SPARK, 
Say Goodbye to Bugs 
By Yannick Moy 
Jan 04, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NIST has recently published a report called "Dramatically Reducing 
Software Vulnerabilities" (https://www.nist.gov/news-
events/news/2016/12/safer-less-vulnerable-software-goal-new-nist-
computer-publication) in which they single out five approaches which 
have the potential for creating software with 100 times fewer 
vulnerabilities than we do today. One of these approaches is formal 
methods. In the introduction of the document, the authors explain that 
they selected the five approaches that meet the following three criteria: 

• Dramatic impact, 

• 3 to 7-year time frame and 
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• Technical activities. 

The dramatic impact criteria is where they aim at "reducing 
vulnerabilities by two orders of magnitude". The 3 to 7-year time frame 
was meant to select "existing techniques that have not reached their 
full potential for impact". The technical criteria narrowed the selection 
to the technical area. 

Among formal methods, the report highlights strong suits of SPARK, 
such as "Sound Static Program Analysis" (the raison d'être of SPARK), 
"Assertions, Pre- and Postconditions, Invariants, Aspects and 
Contracts" (all of which are available in SPARK), and "Correct-by-
Construction". The report also cites SPARK 
projects Tokeneer and iFACTS as example of mature uses of formal 
methods. 

Another of the five approaches selected by NIST to dramatically reduce 
software vulnerabilities is what they call "Additive Software Analysis 
Techniques", where results of analysis techniques are combined. This 
has been on our radar since 2010 when we first planned an integration 
between our static analysis tool CodePeer and our formal verification 
toolset SPARK. We have finally achieved a first step in the integration 
of the two tools in SPARK 17, by using CodePeer as a first level of proof 
tool inside SPARK Pro.  

Paul Black who lead the work on this report was interviewed a few 
months ago, and he talks specifically about formal methods at 7:30 in 
the podcast ( https://www.fedscoop.com/radio/nists-paul-black/ ). His 
host Kevin Greene from US Homeland Security mentions that "There 
has been a lot of talk especially in the federal community about formal 
methods." To which Paul Black answers later that "We do have to get a 
little more serious about formal methods." 

NIST is not the only ones to support the use of SPARK. Editor Bill Wong 
from Electronic Design has included SPARK in his "2016 Gifts for the 
Techie", saying: 

It is always nice to give something that is good for you, so here is 
my suggestion (and it’s a cheap one): Learn SPARK. Yes, I mean 
that Ada programming language subset. 

For those who'd like to follow NIST or Bill Wong's advice, here is where 
you should start: 
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• The free SPARK Course on AdaCore U e-learning website 
http://university.adacore.com/courses/spark-2014/  

• The online SPARK User's Guide 
http://docs.adacore.com/spark2014-docs/html/ug/  

This chapter was originally published at 
https://blog.adacore.com/new-years-resolution-for-2017-no-bugs-
with-spark 
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Getting Started with 
the Ada Driver’s Library 
Device Drivers 
By Pat Rogers 
Feb 14, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Ada Drivers Library (ADL) is a collection of Ada device drivers and 
examples for ARM-based embedded targets. The library is maintained 
by AdaCore, with development originally (and predominantly) by 
AdaCore personnel but also by the Ada community at large.  It is 
available on GitHub ( 
https://github.com/AdaCore/Ada_Drivers_Library )and is licensed for 
both proprietary and non-proprietary use. 

The ADL includes high-level examples in a directory at the top of the 
library hierarchy. These examples employ a number of 
independent components such as cameras, displays, and touch 
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screens, as well as middleware services and other device-independent 
interfaces. The stand-alone components are independent of any given 
target platform and appear in numerous products. A previous blog 
entry ( http://blog.adacore.com/3d-lunar-lander-model ) examined one 
such component, the Bosch BLO055 inertial measurement unit IMU). 
Other examples show how to create high-level abstractions from low-
level devices. For instance, one shows how to create abstract data 
types representing serial ports. 

In this entry we want to highlight another extremely useful 
resource: demonstrations for the low-level device drivers. Most of these 
drivers are for devices located within the MCU package itself, such as 
GPIO, UART/USART, DMA, ADC and DAC, and timers. Other 
demonstrations are for some of the stand-alone components that are 
included in the supported target boards, for example gyroscopes and 
accelerometers. Still other demonstrations are for vendor-defined 
hardware such as a random number generator. 

These demonstrations show a specific utilization of a device, or in some 
cases, a combination of devices. As such they do not have the same 
purpose as the high-level examples. They may just display values on an 
LCD screen or blink LEDs. Their purpose is to provide working examples 
that can be used as starting points when incorporating devices into 
client applications. As working driver API references they are 
invaluable. 

Approach 
Typically there are multiple, independent demonstration projects for 
each device driver because each is intended to show a specific 
utilization. For example, there are five distinct demonstrations for the 
analog-to-digital conversion (ADC) driver. One shows how to set up the 
driver to use polling to get the converted value. Another shows how to 
configure the driver to use interrupts instead of polling. Yet another 
shows using a timer to trigger the conversions, and another builds on 
that to show the use of DMA to get the converted values to the user. In 
each case we simply display the resulting values on an LCD screen 
rather than using them in some larger application-oriented sense. 

Some drivers, the I2C and SPI communication drivers specifically,  do 
not have dedicated demonstrations of their own. They are used to 
implement drivers for devices that use those protocols, i.e., the drivers 
for the stand-alone components. The Bosch BLO055 IMU mentioned 
earlier is an example. 
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Some of the demonstrations illustrate vendor-specific capabilities 
beyond typical functionality. The STM32 timers, for example, have 
direct support for quadrature motor encoders. This support provides 
CPU-free detection of motor rotation to a resolution of a fraction of a 
degree. Once the timer is configured for this purpose the application 
merely samples a register to get the encoder count. The timer will even 
provide the rotation direction. See the encoder demonstration ( 
https://github.com/AdaCore/Ada_Drivers_Library/tree/master/arch/
ARM/STM32/driver_demos/demo_timer_quad_encoder )  if interested. 

Implementation 
All of the drivers and demonstration programs are written in Ada 2012. 
They use preconditions and postconditions, especially when the driver 
is complicated. The preconditions capture API usage requirements that 
are otherwise expressed only within the documentation, and 
sometimes not expressed at all. Similarly, postconditions help clients 
understand the effects of calls to the API routines, effects that are, 
again, only expressed in the documentation. Some of the devices are 
highly sophisticated -- a nice way of saying blindingly complicated -- 
and their documentation is complicated too. Preconditions and 
postconditions provide an ideal means of capturing information from 
the documentation, along with overall driver usage experience. The 
postconditions also help with the driver implementation itself, acting as 
unit tests to ensure implementer understanding. Other Ada 2012 
features are also used, e.g., conditional and quantified expressions. 

The STM32.Timers package uses preconditions and postconditions 
extensively because the STM timers are "highly sophisticated." STM 
provides several kinds of timer with significantly different capabilities. 
Some are defined as "basic," some "advanced," and others are "general 
purpose." The only way to know which is which is by the timer naming 
scheme ("TIM" followed by a number) and the documentation.  Hence 
TIM1 and TIM8 are advanced timers, whereas TIM6 and TIM7 are basic 
timers.  TIM2 through TIM5 are general purpose timers but not the 
same as TIM9 through TIM14, which are also general purpose. We use 
preconditions and postconditions to help keep it all straight. For 
example, here is the declaration of the routine for enabling an interrupt 
on a given timer. There are several timer interrupts possible, 
represented by the enumeration type Timer_Interrupt. The issue is that 
basic timers can only have one of the possible interrupts specified, and 
only advanced timers can have two of those possible. The preconditions 
express those restrictions to clients. 
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procedure Enable_Interrupt 

   (This   : in out Timer; 

    Source : Timer_Interrupt) 

with   

   Pre => 

      (if Basic_Timer (This) then Source = Timer_Update_Interrupt) and 

      (if Source in Timer_COM_Interrupt | Timer_Break_Interrupt then Advanced_Timer 

(This)), 

   Post => Interrupt_Enabled (This, Source); 

 
The preconditions reference Boolean functions Basic_Timer and 
Advanced_Timer in order to distinguish among the categories of timers. 
They simply compare the timer specified to a list of timers in those 
categories.  

The postcondition tells us that the interrupt will be enabled after the 
call returns. That is useful for the user but also for the implementer 
because it serves as an actual check that the implementation does 
what is expected. When working with hardware, though, we have to 
keep in mind that the hardware may clear the tested condition before 
the postcondition code is called. For example, a routine may set a bit in 
a register in order to make the attached device do something, but the 
device may clear the bit as part of its response. That would likely 
happen before the postcondition code could check that the bit was set. 
When looking throughout the drivers code you may notice some 
"obvious" postconditions are not specified. That may be the cause. 

The drivers use compiler-dependent facilities only when essential. In 
particular, they use an AdaCore-defined aspect specifying that access 
to a given memory-mapped register is atomic even when only one part 
of it is read or updated. This access reflects the hardware requirements 
and simplifies the driver implementation code considerably.  

Organization 
The device driver demonstrations are vendor-specific because the 
corresponding devices exist either within the vendor-defined MCU 
packages or outside the MCU on the vendors' target boards. The first 
vendor supported by the library was STMicroelectroncs (STM), 
although other vendors are beginning to be represented too. As a result, 
the device driver demonstrations are currently for MCU products and 
boards from STM and are, therefore, located in a library subdirectory 
specific to STM. Look for them in the 
/Ada_Drivers_Library/ARM/STM32/driver_demos/ subdirectory of 
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your local copy from GitHub. There you will see some drivers 
immediately. These are for drivers that are shared across an entire 
MCU family. Others are located in further subdirectories containing 
either a unique device's driver, or devices that do exist across multiple 
MCUs but nonetheless differ in some significant way. 

Let's look at one of the demonstration projects, the 
"demo_LIS3DSH_tilt" project, so that we can highlight the more 
important parts.  This program demonstrates basic use of the LIS3DSH 
accelerometer chip. The four LEDs surrounding the accelerometer will 
come on and off as the board is moved, reflecting the directions of the 
accelerations measured by the device. 

The first thing to notice is the "readme.md" file. As you might guess, 
this file explains what the project demonstrates and, if necessary, how 
to set it up. In this particular case the text also mentions the board that 
is intended for execution, albeit implicitly, because the text mentions 
the four LEDs and an accelerometer that are specific to one of the 
STM32 Discovery boards. In other words, the demo is intended for a 
specific target board. At the time of this writing, all the STM 
demonstration projects run on either the STM32F4 or 
the STM32F429I Discovery boards from STMicroelectronics. They are 
very inexpensive, amazingly powerful boards. Some demonstrations 
will run on either one because they do not use board-specific resources. 

But even if a demonstration does not require a specific target board, it 
still matters which board you use because the demo's project file (the 
"gpr file") specifies the target. If you use a different target the 
executable will download but may not run correctly, perhaps not at all. 

The executable may not run because the specified target's runtime 
library is used to build the binary executable. These libraries have 
configurations that reflect the differences in the target board, 
especially memory and clock rates, so using the runtime that matches 
the board is critical. This is the first thing to check when the board you 
are using simply won't run the demonstration at all. 

The demonstration project file specifies the target by naming another 
project in a with-clause. This other project represents a specific target 
board. Here is the elided content of this demonstration's project file. 
Note the second with-clause that specifies a gpr file for the 
STM32F407 Discovery board. That is one of the two lines to change if 
you want to use the F429I Discovery instead. 
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with "../../../../boards/common_config.gpr"; 

with "../../../../boards/stm32f407_discovery.gpr"; 

 

project Demo_LIS3DSH_Tilt extends "../../../../examples/common/common.gpr" is 

 

   ... 

   for Runtime ("Ada") use STM32F407_Discovery'Runtime("Ada"); 

   ... 

 

end Demo_LIS3DSH_Tilt; 

 
The other line to change in the project file is the one specifying the 
"Runtime" attribute. Note how the the value of the attribute is specified 
in terms of another project's Runtime attribute. That other project is 
the one named in the second with-clause, so when we change the with-
clause we must change the name of the referenced project too. 

That's really all you need to change in the gpr file. GPS and the builder 
will handle everything else automatically. 

There is, however, another effect of the with-clause naming a specific 
target. The demonstration programs must refer to the target MCU in 
order to use the devices in the MCU package. They may also need to 
refer to devices on the target board. Different MCU packages have 
differing numbers of devices (eg, USARTs) in the package. Similarly, 
different boards have different external components (accelerometers 
versus gyroscopes, for example). We don't want to limit the code in the 
ADL to work with specific boards, but that would be the case if the code 
referenced the targets by name, via packages representing the specific 
MCUs and boards. Therefore, the ADL defines two packages that 
represent the MCU and the board indirectly. These are 
the STM32.Device and STM32.Board packages, respectively. The 
indirection is then resolved by the gpr file named in the with-clause. In 
this demonstration the clause names the STM32F407_Discovery 
project so that is the target board represented by the STM32.Board 
package. That board uses an STM32F407VG MCU so that is the MCU 
represented by the STM32.Device package. Each package contains 
declarations for objects and constants representing the specific 
devices on that specific MCU and target board. 

You'll also see a file named ".gdbinit" at the same level as the 
readme.md and gpr files. This is a local gdb script that automatically 
resets the board when debugging. It is convenient but not essential. 
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At that same level you'll also see a "gnat.adc" file containing 
configuration pragmas. These files contain a single pragma that 
ensures all interrupt handlers are elaborated before any interrupts can 
trigger them, among other things. It is not essential for the correct 
function of these demonstrations but is a good idea in general. 

Other than those files you'll see subdirectories for the source files and 
compiler's products (the object and ALI files, and the executable file). 

And that's it. Invoke GPS on the project file and everything will be 
handled by the IDE. 

Application Use 
We mentioned that you must change the gpr file if you want to use a 
different target board. That assumes you are running the 
demonstration programs themselves. There is no requirement that you 
do so. You could certainly take the bulk of the code and use it on some 
other target that has the same MCU family inside. That's the whole 
point of the demonstrations: showing how to use the device drivers! 
The Certyflie project ( https://github.com/AdaCore/Certyflie ), also on 
the AdaCore GitHub, is just such a project. It uses these device drivers 
so it uses an STM32.Device package for the on-board STM32F405 
MCU, but the target board is a quad-copter instead of one of the 
Discovery kits. 

Concluding Remarks 
Finally, it must be said that not all available devices have drivers in the 
ADL, although the most important do. More drivers and demonstrations 
are needed. For example, the hash processor and the cryptographic 
processor on the STM Cortex-M4 MCUs do not yet have drivers. Other 
important drivers are missing as well. CAN and Ethernet support is 
either minimal or lacking entirely. And that's not even mentioning the 
other vendors possible. We need the active participation of the Ada 
community and hope you will join us! 

This chapter was originally published at 
https://blog.adacore.com/getting-started-with-the-ada-drivers-
library-device-drivers 
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SPARK Tetris on the 
Arduboy 
By Fabien Chouteau, Arnaud Charlet, Yannick Moy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One of us got hooked on the promise of a credit-card-size 
programmable pocket game under the name of Arduboy and 
participated in its kickstarter in 2015. The kickstarter was successful 
(but late) and delivered  the expected working board in mid 2016. Of 
course, the idea from the start was to program it in Ada , but this is an 
8-bits AVR microcontroller (the ATmega32u4 by Atmel) not supported 
anymore by GNAT Pro. One solution would have been to rebuild our 
own GNAT compiler for 8-bit AVR from the GNAT FSF repository and 
use the AVR-Ada project. Another solution, which we explore in this 
blog post, is to use the SPARK-to-C compiler that we developed at 
AdaCore to turn our Ada code into C and then use the Arduino toolchain 
to compile for the Arduboy board. 

This is in fact a solution we are now proposing to those who need to 
compile their code for a target where we do not propose an Ada 
compiler, in particular small microcontrollers used in industrial 
automation and automotive industries. Thanks to SPARK-to-C, you can 
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now develop your code in SPARK, compile it to C, and finally compile 
the generated C code to your target. We have built the universal SPARK 
compiler! This product will be available to AdaCore customers in the 
coming months. 

We started from the version of Tetris in SPARK that we already ported 
to the Atmel SAM4S, Pebble-Time smartwatch and Unity game engine. 
For the details on what is proved on Tetris, see the recording of a talk at 
FOSDEM 2017 conference ( 
https://fosdem.org/2017/schedule/event/spark/ ). The goal was to 
make this program run on the Arduboy. 

SPARK-to-C Compiler 
What we call the SPARK-to-C compiler in fact accepts both less and 
more than SPARK language as input. It allows pointers (which are not 
allowed in SPARK) but rejects tagged types and tasking (which are 
allowed in SPARK). The reason this is the case is that it’s easy to 
compile Ada pointers into C pointers but much harder to support object 
oriented or concurrent programming. 
 
SPARK-to-C supports, in particular, all of Ada’s scalar types 
(enumerations, integers, floating-point, fixed-point, and access) as well 
as records and arrays and subtypes of these. More importantly, it can 
generate all the run-time checks to detect violations of type constraints 
such as integer and float range checks and checks for array accesses 
out of bounds and access to a null pointer or invalid pointer. Therefore, 
you can program in Ada and get the guarantee that the executable 
compiled from the C code generated by SPARK-to-C preserves the 
integrity of the program, as if you had compiled it directly from Ada 
with GNAT. 
 
Compiling Ada into C poses interesting challenges. Some of them are 
resolved by following the same strategy used by GNAT during 
compilation to binary code. For example, bounds of unconstrained 
arrays are bundled with the data for the array in so-called "fat 
pointers", so that both code that directly references Array'First and 
Array'Last as well as runtime checks for array accesses can access the 
array bounds in C. This is also how exceptions, both explicit in the code 
and generated for runtime checks, are handled. Raising an exception is 
translated into a call to the so-called "last chance handler", a function 
provided by the user that can perform some logging before terminating 
the program. This is exactly how exceptions are handled in Ada for 
targets that don’t have runtime support. In general, SPARK-to-C 
provides very little runtime support, mostly for numerical computations 
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(sin, cosine, etc.), accessing a real time clock, and outputting characters 
and strings. Other features require specific source-to-source 
transformations of Ada programs. For example, functions that return 
arrays in Ada are transformed into procedures with an additional 
output parameter (a pointer to some preallocated space in the caller) in 
C. 
 
The most complex part of SPARK-to-C deals with unnesting nested 
subprograms because, while GCC supports nested functions as an 
extension, this is not part of standard C. Hence C compilers cannot be 
expected to deal with nested functions. Unnesting in SPARK-to-C relies 
on a tight integration of a source-to-source transformation of Ada code 
in the GNAT frontend, with special handling of nested subprograms in 
the C-generation backend. Essentially, the GNAT frontend creates an 
'activation record' that contains a pointer field for each uplevel variable 
referenced in the nested subprogram. The nested subprogram is then 
transformed to reference uplevel variables through the pointers in the 
activation record passed as additional parameters. A further difficulty 
is making this work for indirect references to uplevel variables and 
through references to uplevel types based on these variables (for 
example the bound of an array type). SPARK-to-C deals also with these 
cases: you can find all details in the comments of the compiler file 
exp_unst.ads 

Compiling Tetris from SPARK to C 
Once SPARK-to-C is installed, the code of Tetris can be compiled into C 
with the version of GPRbuild that ships i SPARK-to-C: 

$ gprbuild -P<project> --target=c 

 
For example, the SPARK expression function Is_Empty from Tetris 
code: 

function Is_Empty (B : Board; Y : Integer; X : Integer) return Boolean is 

      (X in X_Coord and then Y in Y_Coord and then B(Y)(X) = Empty); 

 
is compiled into the C function tetris_functional__is_empty, with 
explicit checking of array bounds before accessing the board: 
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boolean tetris_functional__is_empty(tetris_functional__board b, integer y, integer x) 

{ 

  boolean C123s = false; 

  if ((x >= 1 && x <= 10) && (y >= 1 && y <= 50)) { 

    if (!((integer)y >= 1 && (integer)y <= 50)) 

      __gnat_last_chance_handler(NULL, 0); 

    if (!((integer)x >= 1 && (integer)x <= 10)) 

      __gnat_last_chance_handler(NULL, 0); 

    if ((b)[y - 1][x - 1] == tetris_functional__empty) { 

      C123s = true; 

    } 

  } 

  return (C123s); 

} 

 

 
or into the following simpler C function when using compilation switch -
gnatp to avoid runtime checking: 

boolean tetris_functional__is_empty(tetris_functional__board b, integer y, integer x) 

{ 

  return (((x >= 1 && x <= 10) && (y >= 1 && y <= 50)) && ((b)[y - 1][x - 1] == 

tetris_functional__empty)); 

} 

 

Running on Arduboy 
To interface the SPARK Tetris implementation with the C API of the 
Arduboy, we use the standard language interfacing method of 
SPARK/Ada:  

procedure Arduboy_Set_Screen_Pixel (X : Integer; Y : Integer); 

pragma Import (C, Arduboy_Set_Screen_Pixel, "set_screen_pixel"); 

 
 A procedure Arduboy_Set_Screen_Pixel is 
declared in Ada but not implemented. The 
pragma Import tells the compiler that this 
procedure is implemented in C with the name 
“set_screen_pixel”. 

SPARK-to-C will translate calls to the procedure 
“Arduboy_Set_Screen_Pixel” to calls to the C 
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function “set_screen_pixel”. We use the same technique for all the 
subprograms that are required for the game (button_right_pressed, 
clear_screen, game_over, etc.). 

The program entry point is in the Arduino sketch file 
SPARK_Tetris_Arduboy.ino (link). In this file, we define and export the 
C functions (set_screen_pixel() for instance) and call the SPARK/Ada 
code with _ada_main_tetris(). 

It’s that simple :) 

If you have an Arduboy, you can try this demo by first…  

Follow the quick start guide 
http://community.arduboy.com/t/quick-start-guide/2790 

Download the project from GitHub 
https://github.com/AdaCore/SPARK-to-C_Tetris_Demo 

Load the Arduino sketch SPARK_Tetris_Arduboy 
https://github.com/AdaCore/SPARK-to-
C_Tetris_Demo/tree/master/SPARK_Tetris_Arduboy 

And then click the upload button. 

This chapter was originally published at 
https://blog.adacore.com/spark-tetris-on-the-arduboy 
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Writing on Air 
By Jorge Real 
March 27, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While searching for motivating projects for students of the Real-Time 
Systems course here at Universitat Politècnica de València, we found a 
curious device that produces a fascinating effect. It holds a 12 cm bar 
from its bottom and makes it swing, like an upside-down pendulum, at a 
frequency of nearly 9 Hz. The free end of the bar holds a row of eight 
LEDs. With careful and timely switching of those LEDs, and due to 
visual persistence, it creates the illusion of text... floating in the air! 

The web shows plenty of references to different realizations of this 
idea. They are typically used for displaying date, time, and also 
rudimentary graphics. Try searching for "pendulum clock LED", for 
example. The picture in Figure 1 shows the one we are using. 

The software behind this toy is a motivating case for the students, and 
it contains enough real-time and synchronisation requirements to also 
make it challenging.  
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We have equipped the lab with a set of these pendulums, from which 
we have disabled all the control electronics and replaced them 
with STM32F4 Discovery boards. We use also a self-made interface 
board (behind the Discovery board in Figure 1) to connect the Discovery 
with the LEDs and other relevant signals of the pendulum. The task we 
propose our students is to make it work under the control of a 
Ravenscar program running on the Discovery. We use GNAT GPL 2016 
for ARM hosted on Linux, along with the Ada Drivers Library ( 
https://github.com/AdaCore/Ada_Drivers_Library ). 

There are two different problems to solve: one is to make the pendulum 
bar oscillate with a regular period; the other one is to then use the LEDs 
to display some text. 

Swing that bar! 
The bar is fixed from the bottom to a flexible metal plate (see Figure 2). 
The stable position of the pendulum is vertical and still. There is a 
permanent magnet attached to the pendulum, so that the solenoid 
behind it can be energised to cause a repulsion force that makes the bar 
start to swing. 

At startup, the solenoid control is completely blind to the whereabouts 
of the pendulum. An initial sequence must be programmed with the 
purpose of moving the bar enough to make it cross the barrier (see 
detail in Figure 3), a pass detector that uses an opto-coupler sensor 
located slightly off-center the pendulum run. This asymmetry is crucial, 
as we'll soon see. 

Once the bar crosses the barrier at least three times, we have an idea 
about the pendulum position along time and we can then apply a more 
precise control sequence to 
keep the pendulum swinging 
regularly. The situation is pretty 
much like swinging a kid swing: 
you need to give it a small, 
regular push, at the right time. 
In our case, that time is when 
the pendulum enters the 
solenoid area on its way to the 
right side, since the solenoid 
repels the pendulum 
rightwards.  That happens at 
about one sixth of the pendulum 
cycle, so we first need to know when the cycle starts and what duration 
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it has. And for that, we need to pay close attention to the only input of 
the pendulum: the barrier signal. 

 

 

 

The figure below sketches a chronogram of the barrier signal. Due to its 
asymmetric placement, the signal captured from the opto-coupler is 
also asymmetric. 
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Chronogram of the barrier signal and correspondence with extreme 
pendulum positions 

To determine the start time and period of the next cycle, we take note 
of the times when rising and falling edges of the barrier signal occur. 
This is easy work for a small Finite State Machine (FSM), triggered by 
barrier interrupts to the Discovery board. Once we have collected the 
five edge times T1 to T5 (normally would correspond to 2 full barrier 
crossings plus the start of a third one) we can calculate the period by 
subtracting T5 - T1. Regarding the start time of the next cycle, we know 
the pendulum initiated a new cycle (reached its left-most position) just 
in between the two closest pulses (times T1 and T4). So, based on the 
information gathered, we estimate that the next cycle will start at time 
T5 + (T4 - T1) / 2. 

But… all we know when we detect a barrier edge is whether it is rising or 
falling. So, when we detect the first rising edge of Barrier, we can't be 
sure whether it corresponds to T1 (the second barrier crossing) or T3 
(the first). We have arbitrarily guessed it is T1, so we must verify this 
guess and fix things if it was incorrect. This check is possible precisely 
due to the asymmetric placement of the pass detector: if our guess was 
correct, then T3 - T1 should be less than T5 - T3. Otherwise we need to 
re-assign our measurements (T3, T4 and T5 become T1, T2 and T3) 
and then move on to the adequate FSM state (waiting for T4). 

Once we know when the pendulum will be in the left-most position (the 
cycle start time) and the estimated duration of the next cycle, we can 
give a solenoid pulse at the cycle start time plus one sixth of the period. 
The pulse duration, within reasonable range, affects mostly the 
amplitude of the pendulum run, but not so much its period. 
Experiments with pulse durations between 15 and 38 milliseconds 
showed visible changes in amplitude, but period variations of only 
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about 100 microseconds, for a period of 115 milliseconds (less than 
0.1%). We found 18-20 ms to work well. 

So, are we done with the pendulum control? Well... almost, but no, we’re 
not: we are also concerned by robustness. The software must be 
prepared for unexpected situations, such as someone or something 
suddenly stopping the bar. If our program ultimately relies on barrier 
interrupts and they do not occur, then it is bound to hang. A timeout 
timing event is an ideal mechanism to revive a dying pendulum. If the 
timeout expires, then the barrier-based control is abandoned and the 
initialisation phase engaged again, and again if needed, until the 
pendulum makes sufficient barrier crossings to let the program retake 
normal operation. After adding this recovery mechanism, we can say we 
are done with the pendulum control: the bar will keep on swinging while 
powered. 

Adding lyrics to that swing 
Once the pendulum is moving at a stable rate, we are ready to tackle 
the second part of the project: using the eight LEDs to display some 
text. Knowing the cycle start time and estimated period duration, one 
can devise a plan to display each line of a character at the proper period 
times. We have already calculated the next cycle start time and 
duration for the pendulum control. All we need to do now is to timely 
provide that information to a displaying task. 

 

Time to display an exclamation mark! 

The pendulum control functions described above are implemented by a 
package with the following (abbreviated) specification: 

 

 



Writing on Air  

122 

        with STM32F4;       use STM32F4; 

        with Ada.Real_Time; use Ada.Real_Time; 

 

        package Pendulum_IO is 

 

           --  Set LEDs using byte pattern (1 => On, 0 => Off) 

           procedure Set_LEDs (Pattern : in Byte);   

 

           --  Synchronization point with start of new cycle 

           procedure Wait_For_Next_Cycle (Init_Time      : out Time;  

                                          Cycle_Duration : out Time_Span); 

 

        private 

              task P_Controller with Storage_Size => 4 * 1024; 

        end Pendulum_IO; 

 
The specification includes subprograms for setting the LEDs (only one 
variant shown here) and procedure Wait_For_Next_Cycle, which in turn 
calls a protected entry whose barrier (in the Ada sense, this time) is 
opened by the barrier signal interrupt handler, when the next cycle 
timing is known. This happens at time T5 (see Figure 4), when the 
current cycle is about to end but with sufficient time before the calling 
task must start switching LEDs. The P_Controller task in the private 
part is the one in charge of keeping the pendulum oscillating. 

Upon completion of a call to Wait_For_Next_Cycle, the caller knows the 
start time and period of the next pendulum cycle (parameters Init_Time 
and Cycle_Period). By division of the period, we can also determine at 
what precise times we need to switch the LEDs. Each character is 
encoded using an 8 tall x 5 wide dot matrix, and we want to fit 14 
characters in the display. Adding some left and right margins to avoid 
the slowest segments, and a blank space to the right of each character, 
we  subdivide the period in 208 lines. These lines represent time 
windows to display each particular character chunk. Since the 
pendulum period is around 115 milliseconds, it takes just some 550 
microseconds for the pendulum to traverse one line. 

If that seems tight, there is an even tighter requirement than this inter-
line delay. The LEDs must be switched on only during an interval 
between 100 and 200 microseconds. Otherwise we would see 
segments, rather than dots, due to the pendulum speed. This must also 
be taken into account when designing the plan for the period, because 
the strategy changes slightly depending on the current pendulum 
direction. When it moves from left to right, the first 100 microseconds 
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of a line correspond to it's left part, whereas the opposite is true for the 
opposite direction.  

Dancing with the runtime 
Apart from careful planning of the sequence to switch the LEDs, this 
part is possibly less complex, due to the help of Wait_For_Next_Cycle. 
However, the short delays imposed by the pendulum have put us in 
front of a limitation of the runtime support. The first try to display some 
text was far from satisfactory. Often times, dots became segments. 
Visual glitches happened all the time as well. Following the track to this 
issue, we ended up digging into the Ravenscar runtime (the full version 
included in GNAT GPL 2016) to eventually find that the programmed 
precision for timing events and delay statements was set to one 
millisecond. This setting may be fine for less demanding applications, 
and it causes a relatively low runtime overhead; but it was making it 
impossible for us to operate within the pendulum’s tight delays. Things 
started to go well after we modified and recompiled the runtime 
sources to make delays and timing events accurate to 10 microseconds. 
It was just a constant declaration, but it was not trivial to find it! 
Definitely, this is not a problem we ask our students to solve: they use 
the modified runtime. 

If you come across the same issue and the default accuracy of 1 
millisecond is insufficient for your application, look for the declaration 
of constant Tick_Period in the body of package 
System.BB.Board_Support (file s-bbbosu.adb in the gnarl-common 
part of either the full or the small footprint versions of the runtime). For 
an accuracy of 10 microseconds, we set the constant to 
Clock_Frequency / 100_000.  

More fun 
There are many other things that can be done with the pendulum, such 
as scrolling a text longer than the display width, or varying the scrolling 
speed by pressing the user button in the Discovery board (both 
features are illustrated in the video below, best viewed in HD); or 
varying the intensity of the text by changing the LEDs flashing time; or 
displaying graphics rather than just text...  

See the video at https://youtu.be/h5K41rovKmI 

One of the uses we have given the pendulum is as a chronometer 
display for times such as the pendulum period, the solenoid pulse 
width, or other internal program delays. This use has proved very 
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helpful to better understand the process at hand and also to diagnose 
the runtime delay accuracy issue.  

The pendulum can also be used as a rudimentary oscilloscope. Figure 
6 shows the pendulum drawing the chronograms of the barrier signal 
and the solenoid pulse. The top two lines represent these signals, 
respectively, as the pendulum moves rightwards. The two bottom lines 
are for the leftwards semi-period and must be read leftwards. In Figure 
7, the two semi-periods are chronologically re-arranged. The result 
cannot be read as in a real oscilloscope, because of the varying 
pendulum speed; but knowing that, it is indicative. 

 

Pendulum used as an oscilloscope (original image) 

 

Oscilloscope image, chronologically re-arranged 

Credit, where it's due 
My colleague Ismael Ripoll was the one who called my attention to the 
pendulum, back in 2005. We implemented the text part only (we did 
not disconnect the solenoid from the original pendulum's 
microcontroller). Until porting (and extending) this project to the 
Discovery board, we’ve been using an industrial PC with a digital I/O 
card to display text in the pendulum. The current setup is about two 
orders of magnitude cheaper. And it also fits much better the new focus 
of the subject on real-time and also embedded systems. 
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I'm thankful to Vicente Lliso, technician at the DISCA department of 
UPV, for the design and implementation of the adapter card connecting 
the Discovery board with the pendulum, for his valuable comments and 
for patiently attending my requests for small changes here and there. 

My friend and amateur photographer Álvaro Doménech produced 
excellent photographical material to decorate this entry, as well as the 
pendulum video. Álvaro is however not to be blamed for the 
oscilloscope pictures, which I took with just a mobile phone camera.  

And many thanks to Pat Rogers, from AdaCore, who helped me with the 
delay accuracy issue and invited me to write this entry. It was one of 
Pat's excellent tutorials at the Ada-Europe conference that pushed me 
into giving a new angle to this pendulum project... and to others in the 
near future! 

This chapter was originally published at 
https://blog.adacore.com/writing-on-air 
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Ada on the First RISC-V 
Microcontroller 
By Fabien Chouteau 
June 13, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The RISC-V open instruction set is getting more and more news 
coverage these days. In particular since the release of the first RISC-V 
microcontroller from SiFive and the announcement of an Arduino 
board at the Maker Faire Bay Area 2017. 

As an Open Source software company we are very interested in this 
trendy, new, open platform. AdaCore tools already support an open IP 
core with the Leon processor family, a popular architecture in the space 
industry that is developed in VHDL and released under the GPL. RISC-V 
seems to be targeting a different market and opening new horizons. 

GNAT - the Ada compiler developed and maintained by AdaCore - is 
part of the GCC toolchain. As a result, when a new back-end is added 
we can fairly quickly start targeting it and developing in Ada. In this blog 
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post I will describe the steps I followed to build the tool chain and start 
programing the HiFive 1 RISC-V microcontroller in Ada.  

Building the tool chain 
The first step is to build the compiler. SiFive - manufacturer of the MCU 
- provides an SDK repository with scripts to build a cross RISC-V GCC. 
All I had to do was to change the configure options to enable Ada 
support  

--enable-languages=c,c++,ada 

 

and disable libada since this is a bare-metal target (no operating 
system) we won’t use a complete run-time 

--disable-libada 

 

If you want to build the toolchain yourself, I forked and modified the 
freedom-e-sdk repository. 

Just clone it 

$ git clone --recursive https://github.com/Fabien-Chouteau/freedom-e-sdk 

 
install a native GNAT from your Linux distrib (I use Ubuntu) 

$ sudo apt-get install gnat 

 
and start the build 

$ cd freedom-e-sdk 

$ make tools 

 
If you have a problem with this procedure don’t hesitate to open an 
issue on GitHub, I’ll see what I can do to help. 
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Building the run-time 
Ada programs always need a run-time library, but there are different 
run-time profiles depending on the constraints of the platform. In 
GNAT we have the so called Zero FootPrint run-time (ZFP) that 
provides the bare minimum and therefore is quite easy to port to a new 
platform (no exception propagation, no tasking, no containers, no file 
system access, etc.). 

I started from Shawn Nock’s ZFP for the Nordic nRF51 and then simply 
changed the linker script and startup code, everything else is platform 
independant. 

You can find the run-time in this 
repository: https://github.com/Fabien-Chouteau/zfp-hifive1 

Writing the drivers 
To control the board I need a few drivers. I started by writing the 
description of the hardware registers using the SVD 
format: https://github.com/AdaCore/svd2ada/blob/master/CMSIS-
SVD/SiFive/FE310.svd. 

I then generated Ada mapping from this file using the SVD2Ada tool. 
You can find more info about this process at the beginning of this blog 
post: https://community.arm.com/iot/embedded/b/embedded-
blog/posts/ada-driver-library-for-arm-cortex-m-r---part-2-2.  

From these register mappings it’s fairly easy to implement the drivers. 
So far I wrote GPIO and 
UART: https://github.com/AdaCore/Ada_Drivers_Library/tree/master
/arch/RISC-V/SiFive/drivers 

First Ada projects on the HiFive1 
The first project is always a blinky. The HiFive1 has RGB leds so I 
started by driving those. You can find this example in 
the Ada_Drivers_Library ( 
https://github.com/AdaCore/Ada_Drivers_Library/tree/master/examp
les/HiFive1 ). 

If you want to run this simple example on your board, get my fork of the 
freedom-e-sdk (as described above) and run:  
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$ make ada_blinky_build 

 
and then 

$ make ada_blinky_upload 

to flash the board. 

For the second project, thanks to the architecture of the 
Ada_Drivers_Library, I was able to re-use the thermal printer driver 
from my DIY instant camera and it took me only 5 minutes to print 
something from the HiFive1. 

 

Conclusion 
All of this is only experimental for the moment, but it shows how 
quickly we can start programing Ada on new platforms. Proper support 
would require a run-time with tasking, interruptions, protected objects 
(Ravenscar profile) and of course complete test and validation of the 
compiler. 

This chapter was originally published at https://blog.adacore.com/ada-
on-the-first-risc-v-microcontroller 
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DIY Coffee Alarm Clock 
By Fabien Chouteau 
May 16, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
See it in action : https://youtu.be/w7NEzSnPe70 

A few weeks ago one of my colleagues shared the kickstarter project, 
The Barisieur. It’s an alarm clock coffee maker, promising to wake you 
up with a freshly brewed cup of coffee every morning. I jokingly said 
“just give me an espresso machine and I can do the same”. Soon after, 
the coffee machine is in my office. Now it is time to deliver :) 

The basic idea is to control the espresso machine from an STM32F469 
board and use the beautiful screen to display the clock face and 
configuration interface. 

Hacking the espresso machine 
The first step is to be able to control the machine with the 3.3V signal 
of the microcontroller. To do this, I open the case to get to the two push 
buttons on the top. Warning! Do not open this kind of appliance if you 
don’t know what you are doing. First, it can be dangerous, second, these 
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things are not made to be serviceable so there’s a good chance you will 
never be able to put it back together. 

The push buttons are made with two exposed concentric copper traces 
on a small PCB and a conductive membrane that closes the circuit 
when the button is pushed. 

 

I use a multimeter to measure the voltage between two circles of one of 
the buttons. To my surprise the voltage is quite high, about 16V. So I 
will have to use a MOSFET transistor to act as an electronic switch 
rather than just connecting the microcontroller to the espresso 
machine signals. 

I put that circuit on an Arduino proto shield 
that is then plugged behind the 
STM32F469 disco board. The only things 
left to do are to drill a hole for the wires to 
go out of the the machine and to make a 
couple of metal brackets to attach to the 
board. Here’s a video showing the 
entire hacking process: 
https://youtu.be/n3AEIQGGn_g  
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Writing the alarm clock software 
For the clock face and configuration interface I will use Giza, one of my 
toy projects that I developed to play with the object oriented 
programming features of Ada. It’s a simplistic/basic UI framework. 

Given the resolution of the screen 
(800x480) and the size of the text I 
want to display, it will be too slow to 
use software font rendering. Instead, I 
will take advantage of the STM32F4’s 
2D graphic hardware acceleration 
(DMA2D) and have some bitmap 
images embedded in the executable. 
DMA2D can very quickly copy chunks 
of memory - typically bitmaps - but 
also convert them from one format to 
the other. This project is the 
opportunity to implement support of indexed bitmap in 
the Ada_Drivers_Library. 
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I also add support for STM32F4’s real time clock (RTC) to be able to 
keep track of time and date and of course trigger the coffee machine at 
the time configured by the user. 

It’s time to put it all together and ask my SO to perform in the the high 
budget video that you can see at the beginning of this post :) 

The code is available on GitHub: https://github.com/Fabien-
Chouteau/coffee-clock. 

This chapter was originally published at https://blog.adacore.com/diy-
coffee-alarm-clock 
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The Adaroombot 
Project 
by Rob Tice 
June 20, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
See the robot in action at https://youtu.be/2KtlZcpsAcY. 

Owning an iRobot RoombaⓇ is an interesting experience. For those not 
familiar, the RoombaⓇ is a robot vacuum cleaner that’s about the 
diameter of a small pizza and stands tall enough to still fit under your 
bed. It has two independently driven wheels, a small-ish dust bin, a 
rechargeable battery, and a speaker programmed with pleasant 
sounding beeps and bloops telling you when it’s starting or stopping a 
cleaning job. You can set it up to clean on a recurring schedule through 
buttons on the robot, or with the new models, the mobile app. It picks 
up an impressive amount of dust and dirt and it makes you wonder how 
you used to live in a home that was that dirty. 
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A Project to Learn Ada 
I found myself new to AdaCore without any knowledge of the Ada 
programming language around the same time I acquired a RoombaⓇ for 
my cats to use as a golf cart when I wasn’t home. In order to really learn 
Ada I decided I needed a good project to work on. Having come from an 
embedded Linux C/C++ background I decided to do a project involving a 
Raspberry Pi and something robotic that it could control. It just so 
happens that iRobot has a STEM initiative robot called the CreateⓇ 2 
which is aimed towards embedded control projects. That’s how the 
AdaRoombot project was born. 

 

The first goal of the project was to have a simple Ada program use the 
CreateⓇ 2’s serial port to perform some control algorithm. Mainly this 
would require the ability to send commands to the robot and receive 
feedback information from the robot’s numerous sensors. As part of 
the CreateⓇ 2 documentation package, there is a PDF detailing the 
serial port interface called the iRobot CreateⓇ 2 Open Interface 
Specification. 

On the command side of things there is a simple protocol: each 
command starts with a one-byte opcode specifying which command is 
being issued and then is followed by a number of bytes carrying the 
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data associated with the opcode, or the payload. For example, the Reset 
command has an opcode of 7 and has zero payload bytes. The Set 
Day/Time command has an opcode of 168 and has a 3-byte payload 
with a byte specifying the Day, another for the Hour, and another for 
the Minute. The interface for the Sensor data is a little more 
complicated. The host has the ability to request data from individual 
sensors, a list of sensors, or tell the robot to just stream the list over 
and over again for processing. To make things simple, I choose to just 
receive all the sensor data on each request. 

Because we are using a Raspberry Pi, it is quite easy to communicate 
with a serial port using the Linux tty interface. As with most userspace 
driver interfaces in Linux, you open a file and read and write byte data 
to the file. So, from a software design perspective, the lowest level of 
the program abstraction should take robot commands and transform 
them into byte streams to write to the file, and conversely read bytes 
from the file and transform the byte data to sensor packets. The next 
level of the program should perform some algorithm by interpreting 
sensor data and transmitting commands to make the robot perform 
some task and the highest level of the program should start and stop 
the algorithm and do some sort of system monitoring. 

The high level control algorithm I used is very simple: drive straight until 
I hit something, then turn around and repeat. However, the lower levels 
of the program where I am interfacing with peripherals is much more 
exciting. In order to talk to the serial port, I needed access to file I/O and 
Linux’s terminal I/O APIs.  

Ada has cool features 
Ada has a nifty way to interface with the Linux C libraries that can be 
seen near the bottom of “src/communication.ads”. There I am creating 
Ada specs for C calls, and then telling the compiler to use the C 
implementations supplied by Linux using pragma Import. This is similar 
to using extern  in C. I am also using pragma Convention which tells the 
compiler to treat Ada records like C structs so that they can be passed 
into the imported C functions. With this I have the ability to interface to 
any C call I want using Ada, which is pretty cool. Here is an example 
mapping the C select call into Ada: 
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--  #include <sys/select.h> 

--  fd_set represents file descriptor sets for the select function. 

--  It is actually a bit array. 

type Fd_Set is mod 2 ** 32; 

pragma Convention (C, Fd_Set); 

 

--  #include <sys/time.h> 

--  time_t tv_sec - number of whole seconds of elapsed time. 

--  long int tv_usec - Rest of the elapsed time in  microseconds. 

type Timeval is record 

    Tv_Sec  : C.Int; 

    Tv_Usec : C.Int; 

end record; 

pragma Convention (C, Timeval); 

 

function C_Select (Nfds : C.Int; 

                  Readfds   : access Fd_Set; 

                  Writefds  : access Fd_Set; 

                  Exceptfds : access Fd_Set; 

                  Timeout   : access Timeval) 

                  return C.int; 

pragma Import (C, C_Select, "select"); 

 
The other neat low-level feature to note here can be seen in 
“src/types.ads”. The record Sensor_Collection is a description of the 
data that will be received from the robot over the serial port. I am using 
a feature called a representation clause to tell the compiler where to 
put each component of the record in memory, and then overlaying the 
record on top of a byte stream. By doing this, I don’t have to use any bit 
masks or bit shift to access individual bits or fields within the byte 
stream. The compiler has taken care of this for me. Here is an example 
of a record which consists of Boolean values, or bits in a byte: 

type Sensor_Light_Bumper is record 

    LT_Bump_Left         : Boolean; 

    LT_Bump_Front_Left   : Boolean; 

    LT_Bump_Center_Left  : Boolean; 

    LT_Bump_Center_Right : Boolean; 

    LT_Bump_Front_Right  : Boolean; 

    LT_Bump_Right        : Boolean; 

end record 

 with Size => 8; 
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for Sensor_Light_Bumper use record 

    LT_Bump_Left at 0 range 0 .. 0; 

    LT_Bump_Front_Left at 0 range 1 .. 1; 

    LT_Bump_Center_Left at 0 range 2 .. 2; 

    LT_Bump_Center_Right at 0 range 3 .. 3; 

    LT_Bump_Front_Right at 0 range 4 .. 4; 

    LT_Bump_Right at 0 range 5 .. 5; 

end record; 

 
In this example, LT_Bump_Left is the first bit in the byte, 
LT_Bump_Front_Left is the next bit, and so on. In order to access these 
bits, I can simply use the dot notation to access members of the record, 
where with C I would have to mask and shift. Components that span 
multiple bytes can also include an endianness specification. This is 
useful because on this specific platform data is little endian, but the 
serial port protocol is big endian. So instead of byte swapping, I can 
specify certain records as having big endian mapping. The compiler 
then handles the swapping. 

These are some of the really cool low level features available in Ada. On 
the high-level programming side, the algorithm development, Ada feels 
more like C++, but with some differences in philosophy. For instance, 
certain design patterns are more cumbersome to implement in Ada 
because of things like, Ada objects don’t have explicit constructors or 
destructors. But, after a small change in mind-set it was fairly easy to 
make the robot drive around the office. 

    

The code for AdaRoombot, which is available on Github, can be 
compiled using the GNAT GPL cross compiler for the Raspberry Pi 2 
located at adacore.com/download. The directions to build and run the 
code is included in the README file in the root directory of the repo. 
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The next step is to add some vision processing and make the robot 
chase a ball down the hallway. Stay tuned…. 

The code is available on GitHub: https://github.com/Robert-
Tice/AdaRoombot. 

This chapter was originally published at https://blog.adacore.com/the-
adaroombot-project 
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Make with Ada: 
Brushless DC Motor 
Controller 
By Jonas Attertun 
Nov 14, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Jonas Attertun was a guest blogger and the winner of the Make with 
Ada 2017 competition. With a master's degree in Electrical Engineering 
from Chalmers University of Technology, he has mainly worked as an 
embedded software engineer within automotive applications.  

Not long after my first experience with the Ada programming language I 
got to know about the Make With Ada 2017 contest. And, just as it 
seemed, it turned out to be a great way to get a little bit deeper into the 
language I had just started to learn 

The ada-motorcontrol project involves the design of a BLDC motor 
controller software platform written in Ada. These types of applications 
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often need to be run fast and the core control software is often tightly 
connected to the microcontroller peripherals. Coming from an 
embedded systems perspective with C as the reference language, the 
initial concerns were if an implementation in Ada actually could meet 
these requirements.  

It turned out, on the contrary, that Ada is very capable considering both 
these requirements. In particular, accessing peripherals on the STM32 
with help of the Ada_Drivers_Library really made using the hardware 
related operations even easier than using the HAL written in C by ST.  

Throughout the project I found uses for many of Ada’s features. For 
example, the representation clause feature made it simple to extract 
data from received (and to put together the transmit) serial byte 
streams. Moreover, contract based programming and object oriented 
concepts such as abstracts and generics provided means to design 
clean and easy to use interfaces, and a well organized project.  

One of the objectives of the project was to provide a software platform 
to help developing various motor control applications, with the core 
functionality not being dependent on some particular hardware. 
Currently however it only supports a custom inverter board, since 
unfortunately I found that the HAL provided in Ada_Drivers_Library 
was not comprehensive enough to support all the peripheral features 
used. But the software is organized such as to keep driver dependent 
code separated. To put this to test, I welcome contributions to add 
support for other inverter boards. A good start would be the popular 
VESC-board. 

Motivation 
The recent advances in electric drives technologies (batteries, motors 
and power electronics) has led to increasingly higher output power per 
cost, and power density. This in turn has increased the performance of 
existing motor control applications, but also enabled some new - many 
of them are popular projects amongst diyers and makers, e.g. electric 
bike, electric skateboard, hoverboard, segway etc.  

On a hobby-level, the safety aspects related to these is mostly ignored. 
Professional development of similar applications, however, normally 
need to fulfill some domain specific standards putting requirements on 
for example the development process, coding conventions and 
verification methods. For example, the motor controller of an electric 
vehicle would need to be developed in accordance to ISO 26262, and if 
the C language is used, MISRA-C, which defines a set of programming 
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guidelines that aims to prevent unsafe usage of the C language 
features.  

Since the Ada programming language has been designed specifically for 
safety critical applications, it could be a good alternative to C for 
implementing safe motor controllers used in e.g. electric 
vehicle applications. For a comparison of MISRA-C and Ada/SPARK, 
see this report ( http://www.adacore.com/uploads/technical-
papers/2016-10-SPARK-MisraC-FramaC.pdf ). Although Ada is an 
alternative for achieving functional safety, during prototyping it is not 
uncommon that a mistake leads to destroyed hardware (burned motor 
or power electronics). Been there, done that! The stricter compiler of 
Ada could prevent such accidents.  

Moreover, while Ada is not a particularly "new" language, it includes 
more features that would be expected by a modern language, than is 
provided by C. For example, types defined with a specified range, 
allowing value range checks already during compile time, and built-in 
multitasking features. Ada also supports modularization very well, 
allowing e.g. easy integration of new control interfaces - which is 
probably the most likely change needed when using the controller for a 
new application.  

This project should consist of and fulfill: 

• Core software for controlling brushless DC motors, 
mainly aimed at hobbyists and makers. 

• Support both sensored and sensorless operation. 

• Open source software (and hardware). 

• Implementation in Ada on top of the Ravenscar runtime for the 
stm32f4xx. 

• Should not be too difficult to port to another microcontroller. 

And specifically, for those wanting to learn the details of motor control, 
or extend with extra features: 

• Provide a basic, clean and readable implementation. 

• Short but helpful documentation.  
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• Meaningful and flexible logging. 

• Easy to add new control interfaces (e.g. CAN, ADC, Bluetooth, 
whatever). 

Hardware 
The board that will be used for this project is a custom board that I 
previously designed with the intent to get some hands-on knowledge in 
motor control. It is completely open source and all project files can be 
found on GitHub ( 
https://github.com/osannolik/MotCtrl/tree/master/hw ).  

• Microcontroller STM32F446, ARM Cortex-M4, 180 MHz, FPU 

• Power MOSFETs 60 V 

• Inline phase current sensing 

• PWM/PPM control input 

• Position sensor input as either hall or quadrature encoder 

• Motor and board temp sensor (NTC) 

• Expansion header for UART/ADC/DAC/SPI/I2C/CAN 

It can handle power ranges in the order of what is required by an 
electric skateboard or electric bike, depending on the used battery 
voltage and cooling.  

There are other inverter boards with similar 
specifications. One very popular is 
the VESC ( 
http://vedder.se/2015/01/vesc-open-
source-esc/ ) by Benjamin Vedder. It is 
probably not that difficult to port this 
project to work on that board as well. 

Rough project plan 
I thought it would be appropriate to write down a few bullets of what 
needs to be done. The list will probably grow... 
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• Create a port of the Ravenscar runtime to the stm32f446 
target on the custom board  

• Add stm32f446 as a device in the Ada Drivers Library 

• Get some sort of hello world application running to show that 
stuff works  

• Investigate and experiment with interrupt handling with 
regards to overhead  

• Create initialization code for all used mcu peripherals  

• Sketch the overall software architecture and define interfaces  

• Implementation  

• Documentation...  

Support for the STM32F446 
The microprocessor that will be used for this project is the 
STM32F446. In the current version of the Ada Drivers Library and the 
available Ravenscar embedded runtimes, there is no explicit support for 
this device. Fortunately, it is very similar to other processors in the 
stm32f4-family, so adding support for stm32f446 was not very 
difficult once I understood the structure of the repositories. I forked 
these and added them as submodules in this project's repo ( 
https://github.com/osannolik/ada-motorcontrol ).  

Compared to the Ravenscar runtimes used by the discovery-boards, 
there are differences in external oscillator frequency, available interrupt 
vectors and memory sizes. Otherwise they are basically the same.  

An important tool needed to create the new driver and runtime variants 
is svd2ada ( https://github.com/AdaCore/svd2ada ). It generates 
device specification and body files in ada based on an svd file (basically 
xml) that describes what peripherals exist, how their registers look like, 
their address', existing interrupts, and stuff like that. It was easy to use, 
but a little bit confusing how flags/switches should be set when 
generating driver and runtime files. After some trail and error I think I 
got it right. I created a Makefile for generating all these file with correct 
switches.  
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I could not find an svd-file for the stm32f446 directly from ST, but 
found one on the internet. It was not perfect though. Some of 
the source code that uses the generated data types seems to make 
assumptions on the structure of these types. Depending on how the svd 
file looks, svd2ada may or may not generate them in the expected way. 
There were also other missing and incorrect data in the svd file, so I had 
to manually correct these. There are probably additional issues that I 
have not found yet... 

It is alive! 
I made a very simple application consisting of a task that is periodically 
delayed and toggles the two leds on the board each time the task 
resumes. The leds toggles with the expected period, so the 
oscillator seems to be initialized correctly.  

Next up I need to map the different mcu pins to the 
corresponding hardware functionality and try to initialize the 
needed peripherals correctly.  

The control algorithm and its use of 
peripherals 
There are several methods of controlling brushless motors, each with a 
specific use case. As a first approach I will implement sensored FOC, 
where the user requests a current value (or torque value).  

To simplify, this method can be divided into the following steps, 
repeated each PWM period (typically around 20 kHz): 

1. Sample the phase currents 

2. Transform the values into a rotor fixed reference frame 

3. Based on the requested current, calculate a new set of phase 
voltages 

4. Transform back to the stator's reference frame 

5. Calculate PWM duty cycles as to create the calculated phase 
voltages 

Fortunately, the peripherals of the stm32f446 has a lot of features that 
makes this easier to implement. For example, it is possible to trigger the 
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ADC directly from the timers that drives the PWM. This way the 
sampling will automatically be synchronized with the PWM cycle. Step 
1 above can thus be started immediately as the ADC triggers the 
corresponding conversion-complete-interrupt. In fact, many existing 
implementations perform all the steps 1-to-6 completely within an ISR. 
The reason for this is simply to reduce any unnecessary overhead since 
the performed calculations is somewhat lengthy. The requested current 
is passed to the ISR via global variables.  

I would like to do this the traditional way, i.e. to spend as little time as 
possible in the ISR and trigger a separate Task to perform all 
calculations. The sampled current values and the requested current 
shall be passed via Protected Objects. All this will of course create more 
overhead. Maybe too much? Need to be investigated. 

 

PWM and ADC is up and running 
I have spent some time configuring the PWM and ADC peripherals 
using the Ada Drivers Library. All in all it went well, but I had to do some 
smaller changes to the drivers to make it possible to configure the way I 
wanted.  

• PWM is complementary output, center aligned with frequency 
of 20 kHz 

• PWM channels 1 to 3 generates the phase voltages 

• PWM channel 4 is used to trigger the ADC, this way it is 
possible to set where over the PWM period the sampling should 
occur 
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• By default the sampling occurs in the middle of the positive 
waveform (V7) 

• The three ADC's are configured to Triple Multi Mode, meaning 
they are synchronized such that each sampled phase quantity 
is sampled at the same time.  

• Phase currents and voltages a,b,c are mapped to the injected 
conversions, triggered by the PWM channel 4 

• Board temperature and bus voltage is mapped to the regular 
conversions triggered by a timer at 14 kHz 

• Regular conversions are moved to a volatile array using DMA 
automatically after the conversions complete 

• ADC create an interrupt after the injected conversions are 
complete 

The drivers always assumed that the PWM outputs are mapped to a 
certain GPIO, so in order to configure the trigger channel I had to add a 
new procedure to the drivers. Also, the Scan Mode of the ADCs where 
not set up correctly for my configuration, and the config of injected 
sequence order was simply incorrect. I will send a pull request to get 
these changes merged with the master branch.  

Interrupt overhead/latency 
As was described in previous posts the structure used for the interrupt 
handling is to spend minimum time in the interrupt context and to 
signal an awaiting task to perform the calculations, which executes at a 
software priority level with interrupts fully enabled. The alternative 
method is to place all code in the interrupt context.  

This Ada Gem ( https://www.adacore.com/gems/ada-gem-13/ ) and its 
following part describes two different approaches for doing this type of 
task synchronization. Both use a protected procedure as the interrupt 
handler but signals the awaiting task in different ways. The first uses an 
entry barrier and the second a Suspension Object. The idiom using the 
entry barrier has the advantage that it can pass data as an integrated 
part of the signaling, while the Suspension Object behaves more like a 
binary semaphore.  
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For the ADC conversion complete interrupt, I tested both methods. The 
protected procedure used as the ISR read the converted values 
consisting of six uint16. For the entry barrier method these where 
passed to the task using an out-parameter. When using the second 
method the task needed to collect the sample data using a separate 
function in the protected object. 

Overhead in this context I define as the time from that the ADC 
generates the interrupt, to the time the event triggered task starts 
running. This includes, first, an isr-wrapper that is a part of the 
runtime which then calls the installed protected procedure, and second, 
the execution time of the protected procedure which reads the sampled 
data, and finally, the signaling to the awaiting task.  

I measured an approximation of the overhead by setting a pin high 
directly in the beginning of the protected procedure and then low by the 
waiting task directly when waking up after the signaling. For the 
Suspension Object case the pin was set low after the read data function 
call, i.e. for both cases when the sampled data was copied to the task. 
The code was compiled with the -O3 flag.  

The first idiom resulted in an overhead of ~8.4 us, and the second ~10 
us. This should be compared to the period of the PWM which at 20 kHz 
is 50 us. Obviously the overhead is not negligible, so I might consider 
using the more common approach for motor control applications of 
having the current control algorithm in the interrupt context instead. 
However, until the execution time of the algorithm is known, the entry 
barrier method will be assumed...  

Note: "Overhead" might be the wrong term since I don't know if during 
the time measured the cpu was really busy. Otherwise it should be 
called latency I think... 
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Purple: Center aligned PWM at 50 % duty where the ADC triggers in 
the center of the positive waveform. Yellow: Pin state as described 

above. High means time of overhead/latency. 

Reference frames 
A key benefit of the FOC algorithm is that the actual control is 
performed in a reference frame that is fixed to the rotor. This way the 
sinusoidal three phase currents, as seen in the stator's reference 
frame, will instead be represented as two DC values, assuming steady 
state operation. The transforms used (Clarke and Park) requires that 
the angle between the rotor and stator is known. As a first step I am 
using a quadrature encoder since that provides a very precise 
measurement and very low overhead due to the hardware support of 
the stm32.  

Three types have been defined, each representing a particular reference 
frame: Abc, Alfa_Beta and Dq. Using the transforms above one can 
simply write: 

declare 

   Iabc  : Abc;  --  Measured current (stator ref) 

   Idq   : Dq;   --  Measured current (rotor ref) 

   Vdq   : Dq;   --  Calculated output voltage (rotor ref) 

   Vabc  : Abc;  --  Calculated output voltage (stator ref) 

   Angle : constant Float := ...; 

begin 

   Idq := Iabc.Clarke.Park(Angle); 
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   --  Do the control... 

 

   Vabc := Vdq.Park_Inv(Angle).Clarke_Inv; 

end; 

 

Note that Park and Park_Inv both use the same angle. To be precise, 
they both use Sin(Angle) and Cos(Angle). Now, at first, I 
simply implemented these by letting each transform calculate Sin and 
Cos locally. Of  course, that is a waste for this particular application. 
Instead, I  defined an angle object that when created also computed Sin 
and Cos of the angle, and added versions of the transforms to use 
these "ahead-computed" values instead. 

declare 

   --  Same... 

 

   Angle : constant Angle_Obj := Compose (Angle_Rad);  

   --  Calculates Sin and Cos 

begin 

   Idq := Iabc.Clarke.Park(Angle); 

 

   --  Do the control... 

 

   Vabc := Vdq.Park_Inv(Angle).Clarke_Inv; 

end; 

 

This reduced the execution time somewhat (not as much as I thought, 
though), since the trigonometric functions are the heavy part. Using 
lookup table based versions instead of the ones provided by 
Ada.Numerics might be even faster... 

It spins! 
The main structure of the current controller is now in place. When a 
button on the board is pressed the sensor is aligned to the rotor by 
forcing the rotor to a known angle. Currently, the requested q-current is 
set by a potentiometer.  

Watch the Ada Motorcontrol first spin  https://youtu.be/SuBA_x9dE-I 
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As of now, it is definitely not tuned properly, but it at least it shows that 
the general algorithm is working as intended.  

In order to make this project easier to develop on, both for myself and 
any other users, I need to add some logging and tuning capabilities. This 
should allow a user to change and/or log variables in the application 
(e.g. control parameters) while the controller is running. I have written a 
tool for doing this (over serial) before, but then in C. It would be 
interesting to rewrite it in Ada.  

Contract Based Programming 
So far, I have not used this feature much. But when writing code for the 
logging functionality I ran into a good fit for it.  

I am using Consistent Overhead Byte Stuffing (COBS) to encode the 
data sent over uart. This encoding results in unambiguous packet 
framing regardless of packet content, thus making it easy for receiving 
applications to recover from malformed packets. The packets are 
separated by a delimiter (value 0 in this case), making it easy to 
synchronize the receiving parser. The encoding ensures that the 
encoded packet itself does not contain the delimiter value.  

A good feature of COBS is that given that the raw data length is less 
than 254, then the overhead due to the encoding is always exactly one 
byte. I could of course simply write this fact as a comment to the 
encode/decode functions, allowing the user to make this assumption in 
order to simplify their code. A better way could be to write this 
condition as contracts.  

Data_Length_Max : constant Buffer_Index := 253; 

 

   function COBS_Encode (Input : access Data) 

                         return Data 

   with 

      Pre => Input'Length <= Data_Length_Max, 

      Post => (if Input'Length > 0 then 

                  COBS_Encode'Result'Length = Input'Length + 1 

               else 

                  Input'Length = COBS_Encode'Result'Length); 

 

   function COBS_Decode (Encoded_Data : access Data) 

                         return Data 

   with 
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      Pre => Encoded_Data'Length <= Data_Length_Max + 1, 

      Post => (if Encoded_Data'Length > 0 then 

                  COBS_Decode'Result'Length = Encoded_Data'Length - 1 

               else 

                  Encoded_Data'Length = COBS_Decode'Result'Length); 

 

Logging and Tuning 
I just got the logging and tuning feature working. It is an Ada-
implementation using the protocol as used by a previous project of 
mine, Calmeas ( https://github.com/osannolik/calmeas ). It enables the 
user to log and change the value of variables in the application, in real-
time. This is very helpful when developing systems where the debugger 
does not have a feature of reading and writing to memory while the 
target is running.  

The data is sent and received over uart, encoded by COBS. The 
interfaces of the uart and cobs packages implements an abstract 
stream type, meaning it is very simple to change the uart to some other 
media, and that e.g. cobs can be skipped if wanted.  

Example 

The user can simply do the following in order to get the variable  

V_Bus_Log loggable and/or tunable: 

V_Bus_Log  : aliased Voltage_V; 

... 

Calmeas.Add (Symbol      => V_Bus_Log'Access, 

             Name        => "V_Bus", 

             Description => "Bus Voltage [V]"); 

 

It works for (un)signed integers of size 8, 16 and 32 bits, and for floats.  

After adding a few variables, and connecting the target to the gui: 
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As an example, this could be used to tune the current controller gains: 
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As expected, the actual current comes closer to the reference as the 
gain increases 

As of now, the tuning is not done in a "safe" way. The writing to added 
symbols is done by the separate task named Logger, simply by doing 
unchecked writes to the address of the added symbol, one byte at a 
time. At the same time the application is reading the symbol's value 
from another task with higher prio. The optimal way would be to pass 
the value through a protected type, but since the tuning is mostly for 
debugging purposes, I will make it the proper way later on... 

Note that the host GUI is not written in Ada (but Python), and is not 
itself a part of this project.  
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Architecture overview 
Here is a figure showing an overview of the software: 

 

Summary 
This project involves the design of a software platform that provides a 
good basis when developing motor controllers for brushless motors. It 
consist of a basic but clean and readable implementation of a sensored 
field oriented control algorithm. Included is a logging feature that will 
simplify development and allows users to visualize what is 
happening. The project shows that Ada successfully can be used for a 
bare-metal project that requires fast execution.  

The design is, thanks to Ada's many nice features, much easier to 
understand compared to a lot of the other C-implementations out 
there, where, as a worst case, everything is done in a single ISR. The 
combination of increased design readability and the strictness of Ada 
makes the resulting software safer and simplifies further collaborative 
development and reuse.  

Some highlights of what has been done: 

• Porting of the Ravenscar profiles to a custom board using the 
STM32F446 

• Adding support for the STM32F446 to Ada_Drivers_Library 
project 

• Adding some functionality to Ada_Drivers_Library in order to 
fully use all peripheral features 
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• Fixing a bug in Ada_Drivers_Library related to a bit more 
advanced ADC usage 

• Written HAL-isch packages so that it is easy to port to another 
device than STM32 

• Written a communication package and defined interfaces in 
order to make it easier to add control inputs. 

• Written a logging package that allows the developer to debug, 
log and tune the application in real-time.  

• Implemented a basic controller using sensored field oriented 
control 

• Well documented specifications with a generated html version 

Future plans: 

• Add hall sensor support and 6-step block commutation 

• Add sensorless operation 

• Add CAN support (the pcb has 
currently no transceiver, though) 

• SPARK proving 

• Write some additional examples showing how to use the 
interfaces. 

• Port the software to the popular VESC-board. 

 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-2017-brushless-dc-motor-
controller 
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Make with Ada 2017- A 
"Swiss Army Knife" 
Watch 
by J. German Rivera 
Nov 22, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
J. German Rivera is a guest blogger and the 2nd place winner for Make 
with Ada 2016 and 2017.  
 
The Hexiwear is an IoT wearable development board that has two NXP 
Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running 
the main embedded application software. The other one is a KW40 
(Cortex M0+ core) for running a wireless connectivity stack (e.g., 
Bluetooth BLE or Thread). The Hexiwear board also has a rich set of 
peripherals, including OLED display, accelerometer, magnetometer, 
gryroscope, pressure sensor, temperature sensor and heart-rate 
sensor. This blog article describes the development of a "Swiss Army 
Knife" watch on the Hexiwear platform. It is a bare-metal embedded 



Make with Ada 2017- A "Swiss Army Knife" Watch 

160 

application developed 100% in Ada 2012, from the lowest level device 
drivers all the way up to the application-specific code, for the 
Hexiwear's K64F microcontroller.  
 
I developed Ada drivers for Hexiwear-specific peripherals from scratch, 
as they were not supported by AdaCore's Ada drivers library. Also, 
since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT 
GPL distribution did not include a port of the Ada Runtime for the 
Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to 
the Hexiwear. All this application-independent code can be leveraged 
by anyone interested in developing Ada applications for the Hexiwear 
wearable device. 

Project Overview 
The purpose of this project is to develop the embedded software of a 
"Swiss Army Knife" watch in Ada 2012 on 
the Hexiwear wearable device. 

The Hexiwear is an IoT wearable development board that has 
two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for 
running the main embedded application software. The other one is 
a KW40 (Cortex M0+ core) for running a wireless connectivity stack 
(e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set 
of peripherals, including OLED display, accelerometer, magnetometer, 
gryroscope, pressure sensor, temperature sensor and heart-
rate sensor. 

The motivation of this project is two-fold. First, to demonstrate that the 
whole bare-metal embedded software of this kind of IoT wearable 
device can be developed 100% in Ada, from the lowest level device 
drivers all the way up to the application-specific code. Second, software 
development for this project will produce a series of reusable modules 
that can be used in the future as a basis for creating "labs" for teaching 
an Ada 2012 embedded software development class using the 
Hexiwear platform. Given the fact that the Hexiwear platform is a very 
attractive platform for embedded software development, its appeal can 
be used to attract more embedded developers to learn Ada. 

The scope of the project will be to develop only the firmware that runs 
on the application microcontroller (K64F). Ada drivers for Hexiwear-
specific peripherals need to be developed from scratch, as they are not 
supported by AdaCore’s Ada drivers library. Also, since I will be using 
the GNAT GPL 2017 Ada compiler and the GNAT GPL distribution does 
not include a port of the Ada Runtime for the Hexiwear board, 
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the GNAT GPL 2017 Ada runtime needs to be ported to the 
Hexiwear board. 

The specific functionality of the watch application for the time frame of 
"Make with Ada 2017" will include: 

• Watch mode: show current time, date, altitude 
and temperature 

• Heart rate monitor mode: show heart rate (when Hexiwear 
worn on the wrist) 

• G-Forces monitor mode: show G forces in the three axis (X, 
Y, Z).  

 

In addition, when the Hexiwear is plugged to a docking station, a 
command-line interface will be provided over the UART port of the 
docking station. This interface can be used to set configurable 
parameters of the watch and to dump debugging information. 

Summary of Accomplishments  
I designed and implemented the "Swiss Army Knife" watch application 
and all necessary peripheral drivers 100% in Ada 2012. The only third-
party code used in this project, besides 
the GNAT GPL Ravenscar SFP Ada runtime library, is the following: 

• A font generator, leveraged from AdaCore’s Ada drivers library.  

• Ada package specification files, generated by the the svd2ada 
tool, containing declarations for the I/O registers of the 
Kinetis K64F’s peripherals. 

 
Below are some diagrams depicting the software architecture of the 
"Swiss Army Knife" watch: 

• Hardware Context Diagram 
https://github.com/jgrivera67/make-with-
ada/blob/master/hexiwear_watch/doc/HW_context_diagram.p
df 

• Source Code Architecture 
https://github.com/jgrivera67/make-with-
ada/blob/master/hexiwear_watch/doc/code_architecture_diag
rma.pdf 
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• Ada Task Architecture 
https://github.com/jgrivera67/make-with-
ada/blob/master/hexiwear_watch/doc/Ada_task_architecture
_diagram.pdf 

 
The current implementation of the "Swiss Army Knife" watch firmware, 
delivered for "Make with Ada 2017" has the following functionality: 

• Three operating modes:  

• Watch mode: show current time, date, altitude 
and temperature 

• Heart rate monitor mode: show heart rate monitor raw reading, 
when Hexiwear worn on the wrist. 

• G-Forces monitor mode: show G forces in the three axis (X, 
Y, Z).  

• To switch between modes, the user just needs to do a double-
tap on the watch’s display. When the watch is first powered on, 
it starts in "watch mode". 

• To make the battery charge last longer, the microcontroller is 
put in deep-sleep mode (low-leakage stop mode) and the 
display is turned off, after 5 seconds. A quick tap on the 
watch’s display, will wake it up. Using the deep-sleep mode, 
makes it possible to extend the battery life from 2 hours to 12 
hours, on a single charge. Indeed, now I can use the Hexiwear as 
my personal watch during the day, and just need to charge it 
at night. 

• A command-line interface over UART, available when the 
Hexiwear device is plugged to its docking station. This interface 
is used for configuring the following attributes of the watch:  

1. Current time (not persistent on power loss, but 
persistent across board resets) 

2. Current date (not persistent on power loss, but 
persistent across board resets) 

3. Background color (persistent on 
the K64F microcontroller’s NOR flash, unless firmware 
is re-imaged) 
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4. Foreground color (persistent on 
the K64F microcontroller’s NOR flash, unless firmware 
is re-imaged) 

Also, the command-line interface can be used for dumping the different 
debugging logs: info, error and debug. 

 
 

See it in action at https://youtu.be/H9N91JuWNwU 

The final version of the code of the watch application and the 
associated peripheral drivers submitted to the "Make with Ada 2017" 
programming competition can be found in GitHub 
at: https://github.com/jgrivera67/make-with-ada/releases/tag/Make-
with-Ada-2017-final 

The top-level code of the watch application can be found 
at: https://github.com/jgrivera67/make-with-
ada/tree/master/hexiwear_watch 

I ported the GNAT GPL 2017 Ravenscar Small-Foot-Print Ada runtime 
library to the Hexiwear board and modify it to support the memory 
protection unit (MPU) of the K64 microcontroller, and more specifically 
to support MPU-aware tasks. This port of the Ravenscar Ada runtime 
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can be found in GitHub at https://github.com/jgrivera67/embedded-
runtimes 

The relevant folders are: 

• https://github.com/jgrivera67/embedded-
runtimes/tree/master/ravenscar-kinetis_k64f_hexiwear 

• https://github.com/jgrivera67/embedded-
runtimes/tree/master/bsps/kinetis_k64f_hexiwear 

• https://github.com/jgrivera67/embedded-
runtimes/tree/master/bsps/kinetis_k64f_common/bsp 

I developed device drivers for the following peripherals of the Kinetis 
K64 micrcontroller as part of this project and contributed their open-
source Ada code in GitHub at https://github.com/jgrivera67/make-
with-ada/tree/master/drivers/mcu_specific/nxp_kinetis_k64f: 

• DMA Engine 

• SPI controller 

• I2C controller 

• Real-time Clock (RTC) 

• Low power management 

• NOR flash 

These drivers are application-independent and can be easily reused for 
other Ada embedded applications that use the 
Kinetis K64F microcontroller. 

I developed device drivers for the following peripherals of the Hexiwear 
board as part of this project and contributed their open-source Ada 
code in GitHub at https://github.com/jgrivera67/make-with-
ada/tree/master/drivers/board_specific/hexiwear: 

• OLED graphics display (on top of the SPI and DMA engine 
drivers, and making use of the advanced DMA channel linking 
functionality of the Kinetis DMA engine) 

• 3-axis accelerometer (on top of the I2C driver) 

• Heart rate monitor (on top of the I2C driver) 

• Barometric pressure sensor (on top of the I2C driver) 
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These drivers are application-independent and can be easily reused for 
other Ada embedded applications that use the Hexiwear board. 

I designed the watch application and its peripheral drivers, to use the 
memory protection unit (MPU) of the K64F microcontroller, from the 
beginning, not as an afterthought. Data protection at the individual data 
object level is enforced using the MPU, for the private data structures 
from every Ada package linked into the application. For this, I leveraged 
the MPU framework I developed earlier and which I presented in 
the Ada Europe 2017 Conference. Using this MPU framework for the 
whole watch application demonstrates that the framework scales well 
for a realistic-size application. The code of this MPU framework is part 
of a modified Ravenscar small-foot-print Ada runtime library port for 
the Kinetis K64F microcontroller, whose open-source Ada code I 
contributed at https://github.com/jgrivera67/embedded-
runtimes/tree/master/bsps/kinetis_k64f_common/bsp 

I developed a CSP model ( https://github.com/jgrivera67/make-with-
ada/blob/master/hexiwear_watch/doc/hexiwear_watch.csp )of the 
Ada task architecture of the watch firmware with the goal of formally 
verifying that it is deadlock free, using the FDR4 tool ( 
https://www.cs.ox.ac.uk/projects/fdr/ ). Although I ran out of time to 
successfully run the CSP model through the FDR tool, developing the 
model helped me gain confidence about the overall completeness of the 
Ada task architecture as well as the completeness of the watch_task’s 
state machine. Also, the CSP model itself is a form a documentation 
that provides a high-level formal specification of the Ada task 
architecture of the watch code. 

Open 
My Project’s code is under the BSD license It’s hosted on Github. The 
project is divided in two repositories: 

• Application + Drivers Repository 

The relevant folders are: 

o https://github.com/jgrivera67/make-with-
ada/tree/master/hexiwear_watch 

o https://github.com/jgrivera67/make-with-
ada/tree/master/drivers/portable 

o https://github.com/jgrivera67/make-with-
ada/tree/master/drivers/board_specific/hexiwear 
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o https://github.com/jgrivera67/make-with-
ada/tree/master/drivers/mcu_specific/nxp_kinetis_k6
4f 

• GNAT Ravenscar SFP Ada Runtime Library Port for the 
Hexiwear Board with Memory Protection Unit 
Support Repository 

The relevant Folders are: 

o https://github.com/jgrivera67/embedded-
runtimes/tree/master/ravenscar-
kinetis_k64f_hexiwear 

o https://github.com/jgrivera67/embedded-
runtimes/tree/master/bsps/kinetis_k64f_hexiwear 

o https://github.com/jgrivera67/embedded-
runtimes/tree/master/bsps/kinetis_k64f_common/bs
p 

To do the development, I used the GNAT GPL 2017 toolchain 
- ARM ELF format (hosted on Windows 10 or Linux), including 
the GPS IDE. I also used the svd2ada tool to generate Ada code 
from SVD XML files for the Kinetis microcontrollers I used. 

Collaborative 
I designed this Ada project to make it easy for others to leverage my 
code. Anyone interested in developing their own flavor of "smart" 
watch for the Hexiwear platform can leverage code from my project. 
Also, anyone interested in developing any type of embedded application 
in Ada/SPARK for the Hexiwear platform can leverage parts of the 
software stack I have developed in Ada 2012 for the Hexiwear, 
particularly device drivers and platform-independent/application-
independent infrastructure code, without having to start from scratch 
as I had to. All you need is to get your own Hexiwear development kit 
(http://www.hexiwear.com/shop/), clone my Git repositories 
mentioned above and get the GNAT GPL 2017 toolchain 
for ARM Cortex-M (http://libre.adacore.com/download/, 
choose ARM ELF format). 

The Hexiwear platform is an excellent platform to teach embedded 
software development in general, and in Ada/SPARK in particular, given 
its rich set of peripherals and reasonable cost. The Ada software stack 
that I have developed for the Hexiwear platform can be used as a base 
to create a series of programming labs as a companion to courses in 
Embedded and Real-time programming in Ada/SPARK, from basic 
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concepts and embedded programming techniques, to more advanced 
topics such as using DMA engines, power management, connectivity, 
memory protection and so on.  

Dependable 
• I used the memory protection unit to enforce data protection at 

the granularity of individual non-local data objects, throughout 
the code of the watch application and its associated 
device drivers. 

• I developed a CSP model of the Ada task architecture of the 
watch firmware with the goal of formally verifying that it is 
deadlock free, using the FDR4 tool. Although I ran out of time to 
successfully run the CSP model through the FDR tool, 
developing the model helped me gain confidence about the 
completeness of the watch_task’s state machine and the 
overall completeness of the Ada task architecture of the 
watch code. 

• I consistently used the information hiding principles to 
architect the code to ensure high levels of maintainability and 
portability, and to avoid code duplication across projects and 
across platforms. 

• I leveraged extensively the data encapsulation and modularity 
features of the Ada language in general, such as private types 
and child units including private child units, and in some cases 
subunits and nested subprograms. 

• I used gnatdoc comments to document key data structures 
and subprograms.  

• I used Ada 2012 contract-based programming features and 
assertions extensively 

• I used range-based types extensively to leverage the Ada power 
to detect invalid integer values. 

• I Used Ada 2012 aspect constructs wherever possible 

• I Used GNAT coding style. I use the -
gnaty3abcdefhiklmnoOprstux GNAT compiler option to check 
compliance with this standard. 

• I used GNAT flags to enable rigorous compile-time checks, such 
as -gnato13 -gnatf -gnatwa -gnatVa -Wall. 
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Inventive 
The most innovative aspect of my project is the use of the memory 
protection unit (MPU) to enforce data protection at the granularity of 
individual data objects throughout the entire code of the project (both 
application code and device drivers). Although the firmware of a watch 
is not a safety-critical application, it serves as a concrete example of a 
realistic-size piece of embedded software that uses the memory 
protection unit to enforce data protection at this level of granularity. 
Indeed, this project demonstrates the feasibility and scalability of using 
the MPU-based data protection approach that I presented at the Ada 
Europe 2017 conference earlier this year, for true safety-
critical applications. 

CSP model of the Ada task architecture of the watch code, with the 
goal of formally verifying that the task architecture was deadlock free, 
using the FDR4 model checking tool. Although I ran out of time to 
successfully run the CSP model through the FDR tool, the model itself 
provides a high-level formal specification of the Ada task architecture 
of the watch firmware, which is useful as a concise form of 
documentation of the task architecture, that is more precise than the 
task architecture diagram alone. 

Short-Term Future Plans 
Implement software enhancements to existing features of the "Swiss 
Army Knife" watch: 

• Calibrate accuracy of altitude and temperature readings 

• Calibrate accuracy of heart rate monitor reading 

• Display heart rate in BPM units instead of just showing the raw 
sensor reading 

• Calibrate accuracy of G-force readings 

Develop new features of the "Swiss Army Knife" watch: 

• Display compass information (in watch mode). This entails 
extending the accelerometer driver to support the built-
in magnetometer 

• Display battery charge remaining. This entails writing a driver 
for the K64F’s A/D converter to interface with the 
battery sensor 
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• Display gyroscope reading. This entails writing a driver for the 
Hexiwear’s Gyroscope peripheral 

• Develop Bluetooth connectivity support, to enable the Hexiwear 
to talk to a cell phone over blue tooth as a slave and to talk to 
other Bluetooth slaves as a master. As part of this, a Bluetooth 
"glue" protocol will need to be developed for the K64Fto 
communicate with the Bluetooth BLE stack running on 
the KW40, over a UART. For the BLE stack itself, the one 
provided by the chip manufacturer will be used. A future 
challenge could entail to write an entire Bluetooth BLE stack in 
Ada to replace the manufacturer’s KW40 firmware. 

 
Finish the formal analysis of the Ada task architecture of the watch 
code, by successfully running its CSP model through the FDR tool to 
verify that the architecture is deadlock free, divergence free and that it 
satisfies other applicable safety and liveness properties. 

Long-Term Future Plans 
Develop more advanced features of the "Swiss Army Knife" watch: 

• Use sensor fusion algorithms combining readings from 
accelerometer and gyroscope 

• Add Thread connectivity support, to enable the watch to be an 
edge device in an IoT network (Thread mesh). This entails 
developing a UART-based interface to the 
Hexiwear’s KW40 (which would need to be running a Thread 
(804.15) stack). 

• Use the Hexiwear device as a dash-mounted G-force recorder 
in a car. Sense variations of the 3D G-forces as the car moves, 
storing the G-force readings in a circular buffer in memory, to 
capture the last 10 seconds (or more depending on available 
memory) of car motion. This information can be extracted 
over bluetooth.  

• Remote control of a Crazyflie 2.0 drone, from the watch, over 
Bluetooth. Wrist movements will be translated into steering 
commands for the drone. 

 
Develop a lab-based Ada/SPARK embedded software development 
course using the Hexiwear platform, leveraging the code developed in 
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this project. This course could include the following topics and 
corresponding programming labs: 

 

1. Accessing I/O registers in Ada. 

o Lab: Layout of I/O registers in Ada and the svd2ada tool 

2. Pin-level I/O: Pin Muxer and GPIO.  

o Lab: A Traffic light using the Hexiwear’s RGB LED 

3. Embedded Software Architectures: Cyclic Executive. 

o Lab: A watch using the real-time clock (RTC) peripheral 
with polling 

4. Embedded Software Architectures: Main loop with Interrupts. 

o Lab: A watch using the real-time clock (RTC) 
with interrupts 

5. Embedded Software Architectures: Tasks. 

o Lab: A watch using the real-time clock (RTC) with tasks 

6. Serial Console. 

o Lab: UART driver with polling and with interrupts) 

7. Sensors: A/D converter. 

o Lab: Battery charge sensor 

8. Actuators: Pulse Width Modulation (PWM). 

o Lab: Vibration motor and light dimmer 

9. Writing to NOR flash. 

o Lab: Saving config data in NOR Flash 

10. Inter-chip communication and complex peripherals: I2C. 

o Lab: Using I2C to interface with an accelerometer 

11. Inter-chip communication and complex peripherals: SPI. 

o Lab: OLED display 

12. Direct Memory Access I/O (DMA). 

o Lab: Measuring execution time and 
making OLED display rendering faster with DMA 

13. The Memory Protection Unit (MPU). 
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o Lab: Using the memory protection unit 

14. Power Management. 

o Lab: Using a microcontroller’s deep sleep mode 

15. Cortex-M Architecture and Ada Startup Code. 

o Lab: Modifying the Ada startup code in the Ada runtime 
library to add a reset counter) 

16. Recovering from failure. 

o Lab: Watchdog timer and software-triggered resets 

17. Bluetooth Connectivity 

o Lab: transmit accelerometer readings to a cell phone 
over Bluetooth 

 

This chapter was originally published at 
https://blog.adacore.com/make-with-ada-2017-a-swiss-army-knife-
watch 
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There’s a Mini-RTOS in 
My Language 
By Fabien Chouteau 
Nov 23, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first thing that struck me when I started to learn about the Ada 
programing language was the tasking support. In Ada, creating tasks, 
synchronizing them, sharing access to resources, are part of the 
language  

In this blog post I will focus on the embedded side of things. First 
because it's what I like, and also because it's much more simple :) 

For real-time and embedded applications, Ada defines a profile called 
`Ravenscar`. It's a subset of the language designed to help 
schedulability analysis, it is also more compatible with platforms such 
as micro-controllers that have limited resources. 

So this will not be a complete lecture on Ada tasking. I might do a 
follow-up with some more tasking features, if you ask for it in the 
comments ;) 
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Tasks 
So the first thing is to create tasks, right? 

There are two ways to create tasks in Ada, first you can declare and 
implement a single task: 

  --  Task declaration 

   task My_Task; 

   --  Task implementation 

   task body My_Task is 

   begin 

      --  Do something cool here... 

   end My_Task; 

 

If you have multiple tasks doing the same job or if you are writing a 
library, you can define a task type: 

   --  Task type declaration 

   task type My_Task_Type; 

 

   --  Task type implementation 

   task body My_Task_Type is 

   begin 

      --  Do something really cool here... 

   end My_Task_Type; 

 

And then create as many tasks of this type as you want: 

T1 : My_Task_Type; 

T2 : My_Task_Type; 

 

One limitation of Ravenscar compared to full Ada, is that the number of 
tasks has to be known at compile time. 
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Time 
The timing features of Ravenscar are provided by the package (you 
guessed it) Ada.Real_Time. 

In this package you will find: 

• a definition of the Time type which represents the time elapsed 
since the start of the system 

• a definition of the Time_Span type which represents a period 
between two Time values 

• a function Clock that returns the current time (monotonic 
count since the start of the system) 

• Various sub-programs to 
manipulate Time and Time_Span values 

The Ada language also provides an instruction to suspend a task until a 
given point in time: delay until. 

Here's an example of how to create a cyclic task using the timing 
features of Ada. 

  task body My_Task is 

      Period       : constant Time_Span := Milliseconds (100); 

      Next_Release : Time; 

   begin 

      --  Set Initial release time 

      Next_Release := Clock + Period; 

 

      loop 

         --  Suspend My_Task until the Clock is greater than Next_Release 

         delay until Next_Release; 

 

         --  Compute the next release time 

         Next_Release := Next_Release + Period; 

          

         --  Do something really cool at 10Hz... 

      end loop; 

 

   end My_Task; 
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Scheduling 
Ravenscar has priority-based preemptive scheduling. A priority is 
assigned to each task and the scheduler will make sure that the highest 
priority task - among the ready tasks - is executing. 

A task can be preempted if another task of higher priority is released, 
either by an external event (interrupt) or at the expiration of its delay 
until statement (as seen above). 

If two tasks have the same priority, they will be executed in the order 
they were released (FIFO within priorities). 

Task priorities are static, however we will see below that a task can 
have its priority temporary escalated. 

The task priority is an integer value between 1 and 256, higher value 
means higher priority. It is specified with the Priority aspect: 

   Task My_Low_Priority_Task 

     with Priority => 1; 

 

   Task My_High_Priority_Task 

     with Priority => 2; 

 

Mutual exclusion and shared resources 
In Ada, mutual exclusion is provided by the protected 
objects. 

At run-time, the protected objects provide the following 
properties: 

• There can be only one task executing a protected 
operation at a given time (mutual exclusion) 

• There can be no deadlock 

In the Ravenscar profile, this is achieved with Priority Ceiling 
Protocol. 
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A priority is assigned to each protected object, any tasks 
calling a protected sub-program must have a priority below 
or equal to the priority of the protected object. 

When a task calls a protected sub-program, its priority will be 
temporarily raised to the priority of the protected object. As 
a result, this task cannot be preempted by any of the other 
tasks that potentially use this protected object, and therefore 
the mutual exclusion is ensured. 

The Priority Ceiling Protocol also provides a solution to the 
classic scheduling problem of priority inversion. 

Here is an example of protected object: 

   --  Specification 

   protected My_Protected_Object 

     with Priority => 3 

   is 

 

      procedure Set_Data (Data : Integer); 

      --  Protected procedues can read and/or modifiy the protected data 

       

      function Data return Integer; 

      --  Protected functions can only read the protected data 

 

   private 

    

      --  Protected data are declared in the private part 

      PO_Data : Integer := 0; 

   end; 

 

   --  Implementation 

   protected body My_Protected_Object is 

 

      procedure Set_Data (Data : Interger) is 

      begin 

         PO_Data := Data; 

      end Set_Data; 

 

      function Data return Integer is 

      begin 
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         return PO_Data; 

      end Data; 

   end My_Protected_Object; 

 

Synchronization 
Another cool feature of protected objects is the synchronization 
between tasks. 

It is done with a different kind of operation called an entry. 

An entry has the same properties as a protected procedure except it 
will only be executed if a given condition is true. A task calling an entry 
will be suspended until the condition is true. 

This feature can be used to synchronize tasks. Here's an example: 

  protected My_Protected_Object is 

      procedure Send_Signal; 

      entry Wait_For_Signal; 

   private 

      We_Have_A_Signal : Boolean := False; 

   end My_Protected_Object; 

 

protected body My_Protected_Object is 

 

      procedure Send_Signal is 

      begin 

          We_Have_A_Signal := True; 

      end Send_Signal;     

       

      entry Wait_For_Signal when We_Have_A_Signal is 

      begin 

          We_Have_A_Signal := False; 

      end Wait_For_Signal; 

   end My_Protected_Object; 
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Interrupt Handling 
Protected objects are also used for interrupt handling. Private 
procedures of a protected object can be attached to an interrupt using 
the Attach_Handler aspect. 

   protected My_Protected_Object 

     with Interrupt_Priority => 255 

   is 

    

   private 

    

      procedure UART_Interrupt_Handler 

        with Attach_Handler => UART_Interrupt; 

    

   end My_Protected_Object; 

 
Combined with an entry it provides and elegant way to handle incoming 
data on a serial port for instance: 

   protected My_Protected_Object 

     with Interrupt_Priority => 255 

   is 

      entry Get_Next_Character (C : out Character); 

       

   private 

      procedure UART_Interrupt_Handler 

              with Attach_Handler => UART_Interrupt; 

       

      Received_Char  : Character := ASCII.NUL; 

      We_Have_A_Char : Boolean := False; 

   end 

 

   protected body My_Protected_Object is 

 

      entry Get_Next_Character (C : out Character) when We_Have_A_Char is 

      begin 

          C := Received_Char; 

          We_Have_A_Char := False; 

      end Get_Next_Character; 

       

      procedure UART_Interrupt_Handler is 



There’s a Mini-RTOS in My Language 

180 

      begin 

          Received_Char  := A_Character_From_UART_Device; 

          We_Have_A_Char := True; 

      end UART_Interrupt_Handler;       

   end 

 

A task calling the entry Get_Next_Character will be suspended until an 
interrupt is triggered and the handler reads a character from the UART 
device. In the meantime, other tasks will be able to execute on the CPU. 

Multi-core support 
Ada supports static and dynamic allocation of tasks to cores on multi 
processor architectures. The Ravenscar profile restricts this support to 
a fully partitioned approach were tasks are statically allocated to 
processors and there is no task migration among CPUs. These parallel 
tasks running on different CPUs can communicate and synchronize 
using protected objects. 

The CPU aspect specifies the task affinity: 

   task Producer with CPU => 1; 

   task Consumer with CPU => 2; 

   --  Parallel tasks statically allocated to different cores 

 

Implementations 
That's it for the quick overview of the basic Ada Ravenscar tasking 
features. 

One of the advantages of having tasking as part of the language 
standard is the portability, you can run the same Ravenscar application 
on Windows, Linux, MacOs or an RTOS like VxWorks. GNAT also 
provides a small stand alone run-time that implements the Ravenscar 
tasking on bare metal. This run-time is available, for instance, on ARM 
Cortex-M micro-controllers. 

It's like having an RTOS in your language. 

This chapter was originally published at 
https://blog.adacore.com/theres-a-mini-rtos-in-my-language 
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Bitcoin Blockchain in 
Ada: Lady Ada Meet 
Satoshi Nakamoto 
By Johannes Kanig 
Feb 15, 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bitcoin is getting a lot of press recently, but let's be honest, that's 
mostly because a single bitcoin worth 800 USD in January 2017 was 
worth almost 20,000 USD in December 2017. However, bitcoin and its 
underlying blockchain are beautiful technologies that are worth a closer 
look. Let’s take that look with our Ada hat on! 
 

So what's the blockchain? 
“Blockchain” is a general term for a database that’s maintained in a 
distributed way and is protected against manipulation of the entries; 
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Bitcoin is the first application of the blockchain technology, using it to 
track transactions of “coins”, which are also called Bitcoins. 

Conceptually, the Bitcoin blockchain is just a list of transactions. 
Bitcoin transactions in full generality are quite complex, but as a first 
approximation, one can think of a transaction as a triple (sender, 
recipient, amount), so that an initial mental model of the blockchain 
could look like this: 

Sender Recipient Amount 

<Bitcoin address> <Bitcoin address> 0.003 BTC 

<Bitcoin address> <Bitcoin address> 0.032 BTC 

... ... ... 

Other data, such as how many Bitcoins you have, are derived from this 
simple transaction log and not explicitly stored in the blockchain. 

Modifying or corrupting this transaction log would allow attackers to 
appear to have more Bitcoins than they really have, or, allow them to 
spend money then erase the transaction and spend the same money 
again. This is why it’s important to protect against manipulation of that 
database. 

The list of transactions is not a flat list.  Instead, transactions are 
grouped into blocks. The blockchain is a list of blocks, where each block 
has a link to the previous block, so that a block represents the full 
blockchain up to that point in time: 

 

Thinking as a programmer, this could be implemented using a linked list 
where each block header contains a prev pointer.  The blockchain is 
grown by adding new blocks to the end, with each new block pointing to 
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the former previous block, so it makes more sense to use a prev pointer 
instead of a next pointer.  In a regular linked list, prev pointer points 
directly to the memory used for the previous block. But the uniqueness 
of the blockchain is that it's a distributed data structure; it's maintained 
by a network of computers or nodes. Every bitcoin full node has a full 
copy of the blockchain, but what happens if members of the network 
don't agree on the contents of some transaction or block? A simple 
memory corruption or malicious act could result in a client having 
incorrect data.  This is why the blockchain has various checks built-in 
that guarantee that corruption or manipulation can be detected. 

How does Bitcoin check data integrity? 
Bitcoin’s internal checks are based on a cryptographic hash function. 
This is just a fancy name for a function that takes anything as input and 
spits out a large number as output, with the following properties: 

• The output of the function varies greatly and unpredictably 
even with tiny variations of the input; 

• It is extremely hard to deduce an input that produces some 
specific output number, other than by using brute force; that is, 
by computing the function again and again for a large number of 
inputs until one finds the input that produces the desired 
output. 

The hash function used in Bitcoin is called SHA256.  It produces a 256-
bit number as output, usually represented as 64 hexadecimal digits. 
Collisions (different input data that produces the same output hash 
value) are theoretically possible, but the output space is so big that 
collisions on actual data are considered extremely unlikely, in fact 
practically impossible. 

The idea behind the first check of Bitcoin's data integrity is to replace a 
raw pointer to a memory region with a “safe pointer” that can, by 
construction, only point to data that hasn’t been tampered with. The 
trick is to use the hash value of the data in the block as the “pointer” to 
the data. So instead of a raw pointer, one stores the hash of the 
previous block as prev pointer: 
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Here, I’ve abbreviated the 256-bit hash values by their first two and 
last four hex digits – by design, Bitcoin block hashes always start with a 
certain number of leading zeroes. The first block contains a "null 
pointer" in the form of an all zero hash. 

Given a hash value, it is infeasible to compute the data associated with 
it, so one can't really "follow" a hash like one can follow a pointer to get 
to the real data.  Therefore, some sort of table is needed to store the 
data associated with the hash value. 

Now what have we gained? The structure can no longer easily be 
modified. If someone modifies any block, its hash value changes, and all 
existing pointers to it are invalidated (because they contain the wrong 
hash value). If, for example, the following block is updated to contain 
the new prev pointer (i.e., hash), its own hash value changes as well. 
The end result is that the whole data structure needs to be completely 
rewritten even for small changes (following prev pointers in reverse 
order starting from the change). In fact such a rewrite never occurs in 
Bitcoin, so one ends up with an immutable chain of blocks. However, 
one needs to check (for example when receiving blocks from another 
node in the network) that the block pointed to really has the expected 
hash.  

Block data structure in Ada 
To make the above explanations more concrete, let's look at some Ada 
code (you may also want to have bitcoin documentation available : 
https://en.bitcoin.it/wiki/Block_hashing_algorithm ). 

A bitcoin block is composed of the actual block contents (the list of 
transactions of the block) and a block header. The entire type definition 
of the block looks like this (you can find all code in this post plus some 
supporting code in this github repository : 
https://github.com/kanigsson/bitcoin-ada/tree/blogpost_1 ) 
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type Block_Header is record 

      Version : Uint_32; 

      Prev_Block : Uint_256; 

      Merkle_Root : Uint_256; 

      Timestamp : Uint_32; 

      Bits : Uint_32; 

      Nonce : Uint_32; 

   end record; 

 

   type Transaction_Array is array (Integer range <>) of Uint_256; 

 

   type Block_Type (Num_Transactions : Integer) is record 

      Header : Block_Header; 

      Transactions : Transaction_Array (1 .. Num_Transactions); 

   end record; 

 

As discussed, a block is simply the list of transactions plus the block 
header which contains additional information. With respect to the fields 
for the block header, for this blog post you only need to understand two 
fields: 

• Prev_Block a 256-bit hash value for the previous block (this is 
the prev pointer I mentioned before) 

• Merkle_Root a 256-bit hash value which summarizes the 
contents of the block and guarantees that when the contents 
change, the block header changes as well. I will explain how it is 
computed later in this post. 

The only piece of information that’s missing is that Bitcoin usually uses 
the SHA256 hash function twice to compute a hash. So instead of just 
computing SHA256(data), usually SHA256(SHA256(data)) is 
computed. One can write such a double hash function in Ada as follows, 
using the GNAT.SHA256 library and String as a type for a data buffer 
(we assume a little-endian architecture throughout the document, but 
you can use the GNAT compiler’s Scalar_Storage_Order feature ( 
https://www.adacore.com/gems/gem-140-bridging-the-endianness-
gap ) to make this code portable) 
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with GNAT.SHA256; use GNAT.SHA256; 

 

   function Double_Hash (S : String) return Uint_256 is 

      D : Binary_Message_Digest := Digest (S); 

      T : String (1 .. 32); 

      for T'Address use D'Address; 

      D2 : constant Binary_Message_Digest := Digest (T); 

 

      function To_Uint_256 is new Ada.Unchecked_Conversion 

        (Source => Binary_Message_Digest, 

         Target => Uint_256); 

   begin 

      return To_Uint_256 (D2); 

   end Double_Hash; 

 
The hash of a block is simply the hash of its block header. This can be 
expressed in Ada as follows (assuming that the size in bits of the block 
header, Block_Header’Size in Ada, is a multiple of 8): 

   function Block_Hash (B : Block_Type) return Uint_256 is 

      S : String (1 .. Block_Header'Size / 8); 

      for S'Address use B.Header'Address; 

   begin 

      return Double_Hash (S); 

   end Block_Hash; 

 

Now we have everything we need to check the integrity of the 
outermost layer of the blockchain. We  simply iterate over all blocks and 
check that the previous block indeed has the hash used to point to it: 

declare 

   Cur : String := 

     "00000000000000000044e859a307b60d66ae586528fcc6d4df8a7c3eff132456"; 

   S : String (1 ..64); 

begin 

   loop 

      declare 

         B : constant Block_Type := Get_Block (Cur); 

      begin 

         S := Uint_256_Hex (Block_Hash (B)); 

         Put_Line ("checking block hash = " & S); 
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         if not (Same_Hash (S,Cur)) then  

            Ada.Text_IO.Put_Line ("found block hash mismatch"); 

         end if; 

         Cur := Uint_256_Hex (B.Prev_Block); 

      end; 

   end loop; 

end; 

 

A few explanations: the Cur string contains the hash of the current 
block as a hexadecimal string. At each iteration, we fetch the block with 
this hash (details in the next paragraph) and compute the actual hash 
of the block using the Block_Hashfunction. If everything matches, we 
set Cur to the contents of the Prev_Block field. Uint_256_Hex is the 
function to convert a hash value in memory to its hexadecimal 
representation for display. 

One last step is to get the actual blockchain data. The size of the 
blockchain is now 150GB and counting, so this is actually not so 
straightforward! For this blog post, I added 12 blocks in JSON format to 
the github repository, making it self-contained. The Get_Block function 
reads a file with the same name as the block hash to obtain the data, 
starting at a hardcoded block with the hash mentioned in the code. If 
you want to verify the whole blockchain using the above code, you have 
to either query the data using some website such as blockchain.info, or 
download the blockchain on your computer, for example using 
the Bitcoin Core client ( https://bitcoin.org/en/bitcoin-core/ ), and 
update Get_Block accordingly. 

How to compute the Merkle Root Hash 
So far, we were able to verify the proper chaining of the blockchain, but 
what about the contents of the block?  The objective is now to come up 
with the Merkle root hash mentioned earlier, which is supposed to 
"summarize" the block contents: that is, it should change for any slight 
change of the input. 

First, each transaction is again identified by its hash, similar to how 
blocks are identified. So now we need to compute a single hash value 
from the list of hashes for the transactions of the block. Bitcoin uses a 
hash function which combines two hashes into a single hash: 
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   function SHA256Pair (U1, U2 : Uint_256) return Uint_256 is 

      type A is array (1 .. 2) of Uint_256; 

      X : A := (U1, U2); 

      S : String (1 .. X'Size / 8); 

      for S'Address use X'Address; 

   begin 

      return Double_Hash (S); 

   end SHA256Pair; 

 

Basically, the two numbers are put side-by-side in memory and the 
result is hashed using the double hash function. 

Now we could just iterate over the list of transaction hashes, using this 
combining function to come up with a single value. But it turns out 
Bitcoin does it a bit differently; hashes are combined using a scheme 
that's called a Merkle tree: 

 

One can imagine the transactions (T1 to T6 in the example) be stored at 
the leaves of a binary tree, where each inner node carries a hash which 
is the combination of the two child hashes. For example, H7 is 
computed from H1 and H2. The root node carries the "Merkle root 
hash", which in this way summarizes all transactions. However, this 
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image of a tree is just that - an image to show the order of hash 
computations that need to be done to compute the Merkle root hash. 
There is no actual tree stored in memory.  

There is one peculiarity in the way Bitcoin computes the Merkle hash: 
when a row has an odd number of elements, the last element is 
combined with itself to compute the parent hash. You can see this in 
the picture, where H9 is used twice to compute H11. 

The Ada code for this is quite straightforward: 

   function Merkle_Computation (Tx : Transaction_Array) return Uint_256 is 

      Max : Integer := 

          (if Tx'Length rem 2 = 0 then Tx'Length else Tx'Length + 1); 

      Copy : Transaction_Array (1 .. Max); 

   begin 

      if Tx'Length = 1 then 

         return Tx (Tx'First); 

      end if; 

      if Tx'Length = 0 then 

         raise Program_Error; 

      end if; 

      Copy (1 .. Tx'Length) := Tx; 

      if (Max /= Tx'Length) then 

         Copy (Max) := Tx (Tx'Last); 

      end if; 

      loop 

         for I in 1 .. Max / 2 loop 

            Copy (I) := SHA256Pair (Copy (2 * I - 1), Copy (2 *I )); 

         end loop; 

         if Max = 2 then 

            return Copy (1); 

         end if; 

         Max := Max / 2; 

         if Max rem 2 /= 0 then 

            Copy (Max + 1) := Copy (Max); 

            Max := Max + 1; 

         end if; 

      end loop; 

   end Merkle_Computation; 

 

Note that despite the name, the input array only contains 
transaction hashes and not actual transactions. A copy of the input 
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array is created at the beginning; after each iteration of the loop in the 
code, it contains one level of the Merkle tree. Both before and inside the 
loop, if statements check for the edge case of combining an odd number 
of hashes at a given level. 

We can now update our checking code to also check for the correctness 
of the Merkle root hash for each checked block. You can check out the 
whole code from this repository; the branch “blogpost_1” will stay there 
to point to the code as shown here. 

Why does Bitcoin compute the hash of the transactions in this way? 
Because it allows for a more efficient way to prove to someone that a 
certain transaction is in the blockchain. 

Suppose you want to show someone that you sent her the required 
amount of Bitcoin to buy some product. The person could, of course, 
download the entire block you indicate and check for themselves, but 
that’s inefficient. Instead, you could present them with the chain of 
hashes that leads to the root hash of the block. 

If the transaction hashes were combined linearly, you would still have 
to show them the entire list of transactions that come after yours in the 
block. But with the Merkle hash, you can present them with a “Merkle 
proof”: that is, just the hashes required to compute the path from your 
transaction to the Merkle root. In your example, if your transaction is 
T3, it's enough to also provide H4, H7 and H11: the other person 
can  compute the Merkle root hash from that and compare it with the 
“official” Merkle root hash of that block. 

When I first saw this explanation, I was puzzled why an attacker 
couldn’t modify transaction T3 to T3b and then “invent” the hashes 
H4b, H7b and H11b so that the Merkle root hash H12 is unchanged. But 
the cryptographic nature of the hash function prevents this: today, 
there is no known attack against the hash function SHA256 used in 
Bitcoin that would allow inventing such input values (but for the weaker 
hash function SHA1 such collisions have been found : 
https://security.googleblog.com/2017/02/announcing-first-sha1-
collision.html ). 

Wrap-Up 
In this blog post I have shown Ada code that can be used to verify the 
data integrity of blocks from the Bitcoin blockchain. I was able to check 
the block and Merkle root hashes for all the blocks in the blockchain in a 
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few hours on my computer, though most of the time was spent in 
Input/Output to read the data in. 

There are many more rules that make a block valid, most of them 
related to transactions. I hope to cover some of them in later blog posts. 

This chapter was originally published at 
https://blog.adacore.com/bitcoin-in-ada 
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Ada on the micro:bit 
By Fabien Chouteau 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The micro:bit is a very small ARM Cortex-M0 board designed by the 
BBC for computer education. It's fitted with a Nordic nRF51 Bluetooth 
enabled 32bit ARM microcontroller. At $15 it is one of the cheapest yet 
most fun piece of kit to start embedded programming.  

In this blog post I will explain how to start programming your micro:bit 
in Ada. 

How to set up the Ada development 
environment for the Micro:Bit 
 

pyOCD programmer 

The micro:bit comes with an embedded programming/debugging probe 
implementing the CMSIS-DAP protocol defined by ARM. In order to use 
it, you have to install a Python library called pyOCD. Here is the 
procedure: 
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On Windows: 

Download the binary version of pyOCD from this link: 

https://launchpad.net/gcc-arm-embedded-misc/pyocd-binary/pyocd-
20150430/+download/pyocd_win.exe 

Plug your micro:bit using an USB cable and run pyOCD in a terminal: 

C:\Users\UserName\Downloads>pyocd_win.exe -p 1234 -t nrf51822 

Welcome to the PyOCD GDB Server Beta Version 

INFO:root:Unsupported board found: 9900 

INFO:root:new board id detected: 9900000037024e450073201100000021000000009796990 

1 

INFO:root:board allows 5 concurrent packets 

INFO:root:DAP SWD MODE initialised 

INFO:root:IDCODE: 0xBB11477 

INFO:root:4 hardware breakpoints, 0 literal comparators 

INFO:root:CPU core is Cortex-M0 

INFO:root:2 hardware watchpoints 

INFO:root:GDB server started at port:1234 

 

On Linux (Ubuntu): 

Install pyOCD from pip: 

$ sudo apt-get install python-pip 

$ pip install --pre -U pyocd 

 
pyOCD will need permissions to talk with the micro:bit. Instead of 
running the pyOCD as privileged user (root), it's better to add a UDEV 
rules saying that the device is accessible for non-privileged users: 

$ sudo sh -c 'echo SUBSYSTEM==\"usb\", ATTR{idVendor}==\"0d28\", 

ATTR{idProduct}==\"0204\", MODE:=\"666\" > /etc/udev/rules.d/mbed.rules' 

$ sudo udevadm control --reload 

 

Now that there's a new UDEV rule and if you already plugged your 
micro:bit before, you have to unplug it and plug it back again. 
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To run pyOCD, use the following command: 

$ pyocd-gdbserver -S -p 1234 

INFO:root:DAP SWD MODE initialised 

INFO:root:ROM table #0 @ 0xf0000000 cidr=b105100d pidr=2007c4001 

INFO:root:[0]<e00ff000: cidr=b105100d, pidr=4000bb471, class=1> 

INFO:root:ROM table #1 @ 0xe00ff000 cidr=b105100d pidr=4000bb471 

INFO:root:[0]<e000e000:SCS-M0+ cidr=b105e00d, pidr=4000bb008, class=14> 

INFO:root:[1]<e0001000:DWT-M0+ cidr=b105e00d, pidr=4000bb00a, class=14> 

INFO:root:[2]<e0002000:BPU cidr=b105e00d, pidr=4000bb00b, class=14> 

INFO:root:[1]<f0002000: cidr=b105900d, pidr=4000bb9a3, class=9, devtype=13, devid=0> 

INFO:root:CPU core is Cortex-M0 

INFO:root:4 hardware breakpoints, 0 literal comparators 

INFO:root:2 hardware watchpoints 

INFO:root:Telnet: server started on port 4444 

INFO:root:GDB server started at port:1234 

[...] 

 

Download the Ada Drivers Library 

Ada drivers library if a firmware library written in Ada. We currently 
have support for some ARM Cortex-M microcontrollers like the 
STM32F4/7 or the nRF51, but also the HiFive1 RISC-V board. 

You can download or clone the repository from GitHub: 
https://github.com/AdaCore/Ada_Drivers_Library 

$ git clone https://github.com/AdaCore/Ada_Drivers_Library 

 

Install the Ada ZFP run-time 

In Ada_Drivers_Library, go to the microb:bit example directory and 
download or clone the run-time from this GitHub repository: 
https://github.com/Fabien-Chouteau/zfp-nrf51 

$ cd Ada_Drivers_Library/examples/MicroBit/ 

$ git clone https://github.com/Fabien-Chouteau/zfp-nrf51 
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Install the GNAT ARM ELF toolchain 

If you have a GNAT Pro ARM ELF subscription, you can download 
the  toolchain from your GNATtracker account. Otherwise you can use 
the Community release of GNAT from this 
address: https://www.adacore.com/community 

Open the example project and build it 

Start GNAT Programming studio (GPS) and open the Micro:Bit example 
project: 
"Ada_Drivers_Library/examples/MicroBit/microbit_example.gpr". 

Press F4 and then press Enter to build the project. 

Program and debug the board 

Make sure your pyocd session is still running and then in GPS, start a 
debug session with the top menu "Debug -> Initialize -> main". GPS will 
start Gdb and connect it to pyOCD. 

In the gdb console, use the "load" command to program the board: 

(gdb) load 

Loading section .text, size 0xbd04 lma 0x0 

Loading section .ARM.exidx, size 0x8 lma 0xbd04 

[...] 

 
Reset the board with this command: 

(gdb) monitor reset 

 
And finally use the "continue" command to run the program: 

(gdb) continue 

 
You can interrupt the execution with the "CTRL+backslash" shortcut 
and then insert breakpoints, step through the application, inspect 
memory, etc. 
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Conclusion 
That’s it, your first Ada program on the Micro:Bit! If you have an issue 
with this procedure, please tell us in the comments section below. 

Note that the current support is limited but we working on adding 
tasking support (Ravenscar), improving the library as well as the 
integration into GNAT Programing Studio, so stay tuned. 

In the meantime, here is an example of the kind of project that you can 
do with Ada on the Micro:Bit 

 

Marble Machine Cover Machine : https://youtu.be/26x4Tfyd_pQ 

This chapter was originally published at https://blog.adacore.com/ada-
on-the-microbit 
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SPARKZumo: Ada and 
SPARK on Any Platform 
By Rob Tice 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So you want to use SPARK for your next microcontroller project? Great 
choice! All you need is an Ada 2012 ready compiler and the SPARK 
tools. But what happens when an Ada 2012 compiler isn’t available for 
your architecture? 

This was the case when I started working on a mini sumo robot based 
on the Pololu Zumo v1.2.  

The chassis is complete with independent left and right motors with 
silicone tracks, and a suite of sensors including an array of infrared 
reflectance sensors, a buzzer, a 3-axis accelerometer, magnetometer, 
and gyroscope. The robot’s control interface uses a pin-out and 
footprint compatible with Arduino Uno-like microcontrollers. This is 
super convenient, because I can use any Arduino Uno compatible board, 
plug it into the robot, and be ready to go. But the Arduino Uno is an 
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AVR, and there isn’t a readily available Ada 2012 compiler for AVR… 
back to the drawing board… 

Or… 

What if we could still write SPARK code and be able to compile it into 
some C code. Then use the Arduino compiler to compile and link this 
code in with the Arduino BSPs and runtimes? This would be ideal 
because I wouldn’t need to worry about writing a BSP for the board I am 
using, and I would only have to focus on the application layer. And I can 
use SPARK! Luckily, AdaCore has a solution for exactly this!  

CCG to the rescue! 
The Common Code Generator, or CCG, was developed to solve the issue 
where an Ada compiler is not available for a specific architecture, but a 
C compiler is readily available. This is the case for architectures like 
AVR, PIC, Renesas, and specialized DSPs from companies like TI and 
Analog Devices. CCG can take your Ada or SPARK code, and “compile” 
it to a format that the manufacturer’s supplied C compiler can 
understand. With this technology, we now have all of the benefits of 
Ada or SPARK on any architecture. 

Note that this is not fundamentally different from what’s already 
happening in a compiler today. Compilation is essentially a series of 
translations from one language to the other, each one being used for 
specific optimization or analysis phase. In the case of GNAT for 
example the process is as follows: 

The Ada code is first translated into a simplified version of Ada (called 
the expanded tree).  

Then into the gcc tree format which is common to all gcc-supported 
languages. 

Then into a format ideal for computing optimizations called gimple.  

Then into a generic assembly language called RTL.  

And finally to the actual target assembler. 

With CCG, C becomes one of these intermediate languages, with GNAT 
taking care of the initial compilation steps and a target compiler taking 
care of the final ones. One important consequence of this is that the C 
code is not intended to be maintainable or modified. CCG is not a 
translator from Ada or SPARK to C, it’s a compiler, or maybe half a 
compiler. 
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Ada Compilation Steps 

There are some limitations to this though, that are important to know, 
which are today mostly due to the fact that the technology is very 
young and targets a subset of Ada. Looking at the limitations more 
closely, they resemble the limitations imposed by the SPARK language 
subset on a zero-footprint runtime. I would generally use the zero-
footprint runtime in an environment where the BSP and runtime were 
supplied by a vendor or an RTOS, so this looks like a perfect time to use 
CCG to develop SPARK code for an Arduino supported board using the 
Arduino BSP and runtime support.  For a complete list of supported and 
unsupported constructs you can visit the CCG User’s Guide. 

Another benefit I get out of this setup is that I am using the Arduino 
framework as a hardware abstraction layer. Because I am generating C 
code and pulling in Arduino library calls, theoretically, I can build my 
application for many processors without changing my application code. 
As long as the board is supported by Arduino and is pin compatible with 
my hardware, my application will run on it! 

Abstracting the Hardware 
 

 
Left to Right: SiFive HiFive1 RISC V board, Arduino Uno Rev 3 
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For this application I looked at targeting two different architectures, the 
Arduino Uno Rev 3 which has an ATmega328p on board, and a SiFive 
HiFive1 which has a Freedom E310 on board. These were chosen 
because they are pin compatible but are massively different from the 
software perspective. The ATmega328p is a 16 bit AVR and the 
Freedom E310 is a 32 bit RISC-V. The system word size isn’t even the 
same! The source code for the project is located here. 

In order to abstract the hardware differences away, two steps had to be 
taken: 

Step 1: I used a target configuration file to tell the CCG tool how to 
represent data sizes during the code generation. By default, CCG 
assumes word sizes based on the default for the host OS. To compile 
for the 16 bit AVR, I used the target.atp file located in the base directory 
to inform the tool about the layout of the hardware. The configuration 
file looks like this: 

Bits_BE                       0 
Bits_Per_Unit                 8 
Bits_Per_Word                16 
Bytes_BE                      0 
Char_Size                     8 
Double_Float_Alignment        0 
Double_Scalar_Alignment       0 
Double_Size                  32 
Float_Size                   32 
Float_Words_BE                0 
Int_Size                     16 
Long_Double_Size             32 
Long_Long_Size               64 
Long_Size                    32 
Maximum_Alignment            16 
Max_Unaligned_Field          64 
Pointer_Size                 32 
Short_Enums                   0 
Short_Size                   16 
Strict_Alignment              0 
System_Allocator_Alignment   16 
Wchar_T_Size                 16 
Words_BE                      0 
float         15  I  32  32 
double        15  I  32  32 

Step 2: The bsp folder contains all of the differences between the two 
boards that were necessary to separate out. This is also where the 
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Arduino runtime calls were pulled into the Ada code. For example, in 
bsp/wire.ads you can see many pragma Import calls used to bring in the 
Arduino I2C calls located in wire.h. 

In order to tell the project which version of these files to use during the 
compilation, I created a scenario variable in the main project, zumo.gpr 

type Board_Type is ("uno", "hifive"); 
Board : Board_Type := external ("board", "hifive"); 
 
Common_Sources := ("src/**", "bsp/"); 
Target_Sources := ""; 
case Board is 
   when "uno" => 
      Target_Sources := "bsp/atmega328p"; 
   when "hifive" => 
      Target_Sources := "bsp/freedom_e310-G000"; 
end case; 
 
for Source_Dirs use Common_Sources & Target_Sources; 

 

Software Design 
Interaction with Arduino Sketch 
A typical Arduino application exposes two functions to the developer 
through the sketch file: setup and loop. The developer would fill in the 
setup function with all of the code that should be run once at start-up, 
and then populates the loop function with the actual application 
programming. During the Arduino compilation, these two functions get 
pre-processed and wrapped into a main generated by the Arduino 
runtime. More information about the Arduino build process can be 
found here: https://github.com/arduino/Arduino/wiki/Build-Process 

Because we are using the Arduino runtime we cannot have the actual 
main entry point for the application in the Ada code (the Arduino pre-
processor generates this for us). Instead, we have an Arduino sketch 
file called SPARKZumo.ino which has the typical Arduino setup() and 
loop() functions. From setup() we need to initialize the Ada 
environment by calling the function generated by the Ada binder, 
sparkzumoinit(). Then, we can call whatever setup sequence we want. 
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CCG maps Ada package and subprogram namespacing into C-like 
namespacing, so package.subprogram in Ada would become 
package__subprogram() in C. The setup function we are calling in the 
sketch is sparkzumo.setup in Ada, which becomes sparkzumo__setup() 
after CCG generates the files. The loop function we are calling in the 
sketch is sparkzumo.workloop in Ada, which becomes 
sparkzumo__workloop(). 

Handling Exceptions 
Even though we are generating C code from Ada, the CCG tool can still 
expand the Ada code to include many of the compiler generated checks 
associated with Ada code before generating the C code. This is very 
cool because we still have much of the power of the Ada language even 
though we are compiling to C. 

If any of these checks fail at runtime, the __gnat_last_chance_handler is 
called. The CCG system supplies a definition for what this function 
should look like, but leaves the implementation up to the developer. For 
this application, I put the handler implementation in the sketch file, but 
am calling back into the Ada code from the sketch to perform more 
actions (like blink LEDs and shut down the motors). If there is a range 
check failure, or a buffer overflow, or something similar, my 
__gnat_last_chance_handler will dump some information to the serial 
port then call back into the Ada code to  shut down the motors, and 
flash an LED on an infinite loop. We should never need this mechanism 
because since we are using SPARK in this application, we should be 
able to prove that none of these will ever occur! 

Standard.h file 
The minimal runtime that does come with the CCG tool can be found in 
the installation directory under the adalib folder. Here you will find the 
C versions of the Ada runtimes files that you would typically find in the 
adainclude directory. 

The important file to know about here is the standard.h file. This is the 
main C header file that will allow you to map Ada to C constructs. For 
instance, this header file defines the fatptr construct used under Ada 
arrays and strings, and other integral types like Natural, Positive, and 
Boolean. 

You can and should modify this file to fit within your build environment. 
For my application, I have included the Arduino.h at the top to bring in 
the Arduino type system and constructs. Because the Arduino 
framework defines things like Booleans, I have commented out the 
versions defined in the standard.h file so that I am consistent with the 
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rest of the Arduino runtime. You can find the edited version of the 
standard.h file for this project in the src directory. 

Drivers 
For the application to interact with all of the sensors available on the 
robot, we need a layer between the runtime and BSP, and the 
algorithms. The src/drivers directory contains all of the code necessary 
to communicate with the sensors and motors. Most of the initial source 
code for this section was a direct port from the zumo-shield library that 
was originally written in C++. After porting to Ada, the code was 
modified to be more robust by refactoring and adding SPARK contracts. 

Algorithms 
Even though this is a sumo robot, I decided to start with a line follower 
algorithm for the proof of concept. The source code for the line follower 
algorithm can be found in src/algos/line_finder. The algorithm was 
originally a direct port of the Line Follow example in the zumo-shield 
examples repo. 

SPARKZumo Simple Line Follower : 
https://www.youtube.com/watch?v=dFrLtvJ7JcE 

The C++ version of this algorithm worked ok but wasn’t really able to 
handle occasions where the line was lost, or the robot came to a fork, or 
an intersection. After refactoring and adding SPARK features, I added a 
detection lookup so that the robot could determine what type of 
environment the sensors were looking at. The choices are: Lost 
(meaning no line is found), Online (meaning there’s a single line), Fork 
(two lines diverge), BranchLeft (left turn), BranchRight (right turn), 
Perpendicular intersection (make a decision to go left or right), or 
Unknown (no clue what to do, let’s keep doing what we were doing and 
see what happens next). After detecting a change in state, the robot 
would make a decision like turn left, or turn right to follow a new line. If 
the robot was in a Lost state, it would go into a “re-finding” algorithm 
where it would start to do progressively larger circles. 

SPARKZumo Line Finding Algorithm: 
https://www.youtube.com/watch?v=SzpKmpr4VlQ 

This algorithm worked ok as well, but was a little strange. Occasionally, 
the robot would decide to change direction in the middle of a line, or 
start to take a branch and turn back the other way. The reason for this 
was that the robot was detecting spurious changes in state and 
reacting to them instantaneously. We can call this state noise. In order 
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to minimize this state noise, I added a state low-pass filter using a 
geometric graph filter.  

The Geometric Graph Filter 

 
Example plot of geometric graph filter 

If you ask a mathematician they will probably tell you there’s a better 
way to filter discrete states than this, but this method worked for me! 
Lets picture mapping 6 points corresponding to the 6 detection states 
onto a 2d graph, spacing them out evenly along the perimeter of a 
square. Now, let’s say we have a moving window average with X 
positions. Each time we get a state reading from the sensors we look up 
the corresponding coordinate for that state in the graph and add the 
coordinate to the window. For instance, if we detect a Online state our 
corresponding coordinate is (15, 15). If we detect a Perpendicular state 
our coordinate is (-15, 0). And so on. If we average over the window we 
will end up with a coordinate somewhere in the inside of the square. If 
we then section off the area of the square into sections, and assign 
each section to map to the corresponding state, we will then find that 
our average is sitting in one of those sections that maps to one of our 
states.  

For an example, let’s assume our window is 5 states wide and we have 
detected the following list of states (BranchLeft, BranchLeft, Online, 
BranchLeft, Lost). If we map these to coordinates we get the following 
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window: ((-15, 15), (-15, 15), (15, 15), (-15, 15), (-15, -15)). When we 
average these coordinates in the window we get a point with the 
coordinates (-9, 9). If we look at our lookup table we can see that this 
coordinate is in the BranchLeft polygon. 

One issue that comes up here is that when the average point moves 
closer to the center of the graph, there’s high state entropy, meaning 
our state can change more rapidly and noise has a higher effect. To 
solve this, we can hold on to the previous calculated state, and if the 
new calculated state is somewhere in the center of the graph, we throw 
away the new calculation and pass along the previous calculation. We 
don’t purge the average window though so that if we get enough of one 
state, the average point can eventually migrate out to that section of 
the graph.   

To avoid having to calculate this geometry every time we get a new 
state, I generated a lookup table which maps every point in the polygon 
to a state. All we have to do is calculate the average in the window and 
do the lookup at runtime. There are some python scripts that are used 
to generate most of the src/algos/line_finder/geo_filter.ads file. This 
script also generates a visual of the graph. For more information on 
these scripts, see part #2 [COMING SOON!!] of this blog post! One 
issue that I ran into was that I had to use a very small graph which 
decreased my ability to filter. This is because the amount of RAM I had 
available on the Arduino Uno was very small. The larger the graph, the 
larger the lookup table, the more RAM I needed.  

There are a few modifications to this technique that could be done to 
make it more accurate and more fair. Using a square and only 2 
dimensions to map all the states means that the distance between any 
two states is different than the distance between any other 2 states. 
For example, it’s easier to switch between BranchLeft and Online than 
it is to switch between BranchLeft and Fork. For the proof of concept 
this technique worked well though. 

SPARKZumo Advanced Line Follower: 
https://www.youtube.com/watch?v=5hsxAckSXgk 

Future Activity 
The code still needs a bit of work to get the IMU sensors up and going. 
We have another project called the Certyflie which has all of the gimbal 
calculations to synthesize roll, pitch, and yaw data from an IMU. The 
Arduino Uno is a bit too weak to perform these calculations properly. 
One issue is that there is no floating point unit on the AVR. The RISC-V 
has an FPU and is much more powerful. One option is to add a 
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bluetooth transceiver to the robot and send the IMU data back to a 
terminal on a laptop for synthesization. 

Another issue that came up during this development is that the HiFive 
board uses level shifters on all of the GPIO lines. The level shifters use 
internal pull-ups which means that the processor cannot read the 
reflectance sensors. The reflectance sensor is actually just a capacitor 
that is discharged when light hits the substrate. So to read the sensor 
we need to pull the GPIO line high to charge the capacitor then pull it 
low and read the amount of time it takes to discharge. This will tell us 
how much light is hitting the sensor. Since the HiFive has the pull ups 
on the GPIO lines, we can’t pull the line low to read the sensor. Instead 
we are always charging the sensor. More information about this 
process can be found on the IR sensor manufacturer’s website under 
How It Works: https://www.pololu.com/product/1419 

As always, the code for the entire project is available here: 
https://github.com/Robert-Tice/SPARKZumo 

 

Integrating the Arduino 
Build Environment Into 
GPS 
Next we go through how to actually integrate a CCG application in with 
other source code and how to create GPS plugins to customize features 
like automating builds and flashing hardware.  

The Build Process 
At the beginning of our build process we have a few different types of 
source files that we need to bring together into one binary, Ada/SPARK, 
C++, C, and an Arduino sketch. During a typical Arduino build, the build 
system converts the Arduino sketch into valid C++ code, brings in any 
libraries (user and system) that are included in the sketch, synthesizes 
a main, compiles and links that all together with the Arduino runtime 
and selected BSP, and generates the resulting executable binary. The 
only step we are adding to this process is that we need to run CCG on 
our SPARK code to generate a C library that we can pass to the Arduino 
build as a valid Arduino library. The Arduino sketch then pulls the 
resulting library into the build via an include.   
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Build Steps 
From the user’s perspective, the steps necessary to build this 
application are as follows: 

1 Run CCG on the SPARK/Ada Code to produce C files and Ada 
Library Information files, or ali files. For more information on 
these files, see the GNAT Compilation Model documentation. 

2 Copy the resulting C files into a directory structure valid for an 
Arduino library  

We will use the lib directory in the main repo to house the generated 
Arduino library. 

3 Run c-gnatls on the ali files to determine which runtime files 
our application depends on. 

4 Copy those runtime files into the Arduino library structure.  

5 Make sure our Arduino sketch has included the header files 
generated by the CCG tool. 

6 Run the arduino-builder tool with the appropriate options to tell 
the tool where our library lives and which board we are 
compiling for.  

The arduino-builder tool will use the .build directory in the repo to stage 
the build 

7 Then we can flash the result of the compilation to our target 
board. 

That seems like a lot of work to do every time we need to make a 
change to our software!  

Since these steps are the same every time, we can automate this. Since 
we should try to make this as host agnostic as possible, meaning we 
would like for this to be used on Windows and Linux, we should use a 
scripting language which is fairly host agnostic. It would also be nice if 
we could integrate this workflow into GPS so that we can develop our 
code, prove our code, and build and flash our code without leaving our 
IDE. It is an Integrated Development Environment after all. 

Configuration Files 
The arduino-builder program is the command line version of the 
Arduino IDE. When you build an application with the Arduino IDE it 
creates a build.options.json file with the options you select from the 
IDE. These options include the location of any user libraries, the 
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hardware to build for, where the toolchain lives, and where the sketch 
lives. We can pass the same options to the arduino-builder program or 
we can pass it the location of a build.options.json file.  

For this application I put a build.options.json file in the conf directory of 
the repository. This file should be configured properly for your build 
system. The best way, I have found, to get this file configured properly 
is to install the Arduino IDE and build one of the example applications. 
Then find the generated build.options.json file generated by the IDE and 
copy that into the conf directory of the repository. You then only need 
to modify: 

1 The “otherLibrariesFolders” to point to the absolute path of the 
lib folder in the repo. 

2 The”sketchLocation” to point at the SPARKZumo.ino file in the 
repo. 

The other conf files in the conf directory are there to configure the flash 
utilities. When flashing the AVR on the Arduino Uno, the avrdude flash 
utility is used. This application takes the information from the 
flash.yaml file and the path of the avrdude.conf file to configure the 
flash command. Avrdude uses this to inform the flashing utility about 
the target hardware. The HiFive board uses openocd as its flashing 
utility. The openocd.cfg file has all the necessary configuration 
information that is passed to the openocd tool for flashing.  

The GPS Plugin 
[DISCLAIMER: This guide assumes you are using version 18.1 or 
newer of GPS] 

Under the hood, GPS, or the GNAT Programming Studio, has a 
combination of Ada, graphical frameworks, and Python scripting 
utilities. Using the Python plugin interface, it is very easy to add 
functionality to our GPS environment. For this application we will add 
some buttons and menu items to automate the process mentioned 
above. We will only be using a small subset of the power of the Python 
interface. For a complete guide to what is possible you can visit 
the Customizing and Extending 
GPS (http://docs.adacore.com/live/wave/gps/html/gps_ug/extending.
html) and Scripting API Reference for 
GPS (http://docs.adacore.com/live/wave/gps/html/gps_ug/GPS.html)
sections of the GPS User’s Guide. 
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Plugin Installation Locations 
Depending on your use case you can add Python plugins in a few 
locations to bring them into your GPS environment. There are already a 
handful of plugins that come with the GPS installation. You can find the 
list of these plugins by going to Edit->Preferences and navigating to the 
Plugin tab (near the bottom of the preferences window on the left 
sidebar). Because these plugins are included with the installation, they 
live under the installation directory in <installation 
directory>/share/gps/plug-ins. If you would like to modify you 
installation, you can add your plugins here and reload GPS. They will 
then show up in the plugin list. However, if you reinstall GPS, it will 
overwrite your plugin! 

There is a better place to put your plugins such that they won’t 
disappear when you update your GPS installation. GPS adds a folder to 
your Home directory which includes all your user defined settings for 
GPS, such as your color theme, font settings, pretty printer settings, 
etc. This folder, by default, lives in <user’s home directory>/.gps. If you 
navigate to this folder you will see a plug-ins folder where you can add 
your custom plugins. When you update your GPS installation, this 
folder persists. 

Depending on your application, there may be an even better place to put 
your plugin. For this specific application we really only want this added 
functionality when we have the SPARKzumo project loaded. So ideally, 
we want the plugin to live in the same folder as the project, and to load 
only when we load the project. To get this functionality, we can name 
our plugin <project file name>.ide.py and put it in the same directory as 
our project. When GPS loads the project, it will also load the plugin. For 
example, our project file is named zumo.gpr, so our plugin should be 
called zumo.ide.py. The source for the zumo.ide.py file is located here: 
https://github.com/Robert-
Tice/SPARKZumo/blob/master/zumo.ide.py 

The Plugin Skeleton 
When GPS loads our plugin it will call the initialize_project_plugin 
function. We should implement something like this to create our first 
button: 

import GPS 
import gps_utils 
class ArduinoWorkflow: 
   def __somefunction(self): 
       # do stuff here 
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   def __init__(self): 
       gps_utils.make_interactive( 
               callback=self.__somefunction, 
               category="Build", 
               name="Example", 
               toolbar='main', 
               menu='/Build/Arduino/' + "Example", 
               description="Example") 
def initialize_project_plugin(): 
   ArduinoWorkflow() 

This simple class will create a button and a menu item with the text 
Example. When we click this button or menu item it will callback to our 
somefunction function. Our actual plugin creates a few buttons and 
menu items that look like this: 

 
Buttons in GPS created by user plug-in 

 
Menus in GPS created by user plug-in 
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Task Workflows 
Now that we have the ability to run some scripts by clicking buttons we 
are all set! But there’s a problem; when we execute a script from a 
button, and the script takes some time to perform some actions, GPS 
hangs waiting for the script to complete. We really should be executing 
our script asynchronously so that we can still use GPS while we are 
waiting for the tasks to complete. Python has a nice feature called 
coroutines which can allow us to run some tasks asynchronously. We 
can be super fancy and implement these coroutines using generators! 

Or… 

ProcessWrapper 

GPS has already done this for us with the task_workflow interface. The 
task_workflow call wraps our function in a generator and will 
asynchronously execute parts of our script. We can modify our 
somefunction function now to look like this: 

def __somefunction(self, task): 
       task.set_progress(0, 1) 
       try: 
           proc = promises.ProcessWrapper(["script", "arg1", "arg2"], 
spawn_console="") 
       except: 
           self.__error_exit("Could not launch script.") 
           return 
       ret, output = yield proc.wait_until_terminate() 
       if ret is not 0: 
           self.__error_exit("Script returned an error.") 
           return 
       task.set_progress(1, 1) 

In this function we are going to execute a script called script and pass 2 
arguments to it. We wrap the call to the script in a ProcessWrapper 
which returns a promise. We then yield on the result. The process will 
run asynchronously, and the main thread will transfer control back to 
the main process. When the script is complete, the yield returns the 
stdout and exit code of the process. We can even feed some 
information back to the user about the progress of the background 
processes using the task.set_progress call. This registers the task in the 
task window in GPS. If we have many tasks to run, we can update the 
task window after each task to tell the user if we are done yet. 

TargetWrapper 
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The ProcessWrapper interface is nice if we need to run an external 
script but what if we want to trigger the build or one of the gnat tools?  

Triggering CCG 

Just for that, there’s another interface: TargetWrapper. To trigger the 
build tools, we can run something like this: 

builder = promises.TargetWrapper("Build All") 
retval = yield builder.wait_on_execute() 
if retval is not 0: 
     self.__error_exit("Failed to build all.") 
     return 

 

With this code, we are triggering the same action as the Build All button 
or menu item.  

Triggering GNATdoc 

We can also trigger the other tools within the GNAT suite using the 
same technique. For example, we can run the GNATdoc tool against our 
project to generate the project documentation: 

gnatdoc = promises.TargetWrapper("gnatdoc") 
retval = yield gnatdoc.wait_on_execute(extra_args=["-P", 
GPS.Project.root().file().path, "-l"]) 
   if retval is not 0: 
           self.__error_exit("Failed to generate project 
documentation.") 
           return 

Here we are calling gnatdoc with the arguments listed in extra_args. 
This command will generate the project documentation and put it in the 
directory specified by the Documentation_Dir attribute of the 
Documentation package in the project file. In this case, I am putting the 
docs in the docs folder of the repo so that my GitHub repo can serve 
those via a GitHub Pages website: https://robert-
tice.github.io/SPARKZumo/ 

Accessing Project Configuration 
The file that drives the GNAT tools is the GNAT Project file, or the gpr 
file. This file has all the information necessary for GPS and CCG to 
process the source files and build the application. We can access all of 
this information from the plugin as well to inform where to find the 
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source files, where to find the object files, and what build configuration 
we are using. For example, to access the list of source files for the 
project we can use the following Python command: 
GPS.Project.root().sources(). 

Another important piece of information that we would like to get from 
the project file is the current value assigned to the “board” scenario 
variable. This will tell us if we are building for the Arduino target or the 
HiFive target. This variable will change the build configuration that we 
pass to arduino-builder and which flash utility we call. We can access 
this information by using the following command: 
GPS.Project.root().scenario_variables(). This will return a dictionary of 
all scenario variables used in the project. We can then access the 
“board” scenario variable using the typical Python dictionary syntax 
GPS.Project.root().scenario_variables()[‘board’]. 

Determining Runtime Dependencies 
Because we are using the Arduino build system to build the output of 
our CCG tool, we will need to include the runtime dependency files used 
by our CCG application in the Arduino library directory. To detect which 
runtime files we are using we can run the c-gnatls command against 
the ali files generated by the CCG tool. This will output a set of 
information that we can parse. The output of c-gnatls on one file looks 
something like this 

$ c-gnatls -d -a -s obj/geo_filter.ali  
geo_filter.ads 
geo_filter.adb 
<CCG install direction>/libexec/gnat_ccg/lib/gcc/x86_64-pc-linux-
gnu/7.3.1/adainclude/interfac.ads 
<CCG install directory>/libexec/gnat_ccg/lib/gcc/x86_64-pc-linux-
gnu/7.3.1/adainclude/i-c.ads 
line_finder_types.ads 
<CCG install directory>/libexec/gnat_ccg/lib/gcc/x86_64-pc-linux-
gnu/7.3.1/adainclude/system.ads 
types.ads 

When we parse this output we will have to make sure we run c-gnatls 
against all ali files generated by CCG, we will need to strip out any files 
listed that are actually part of our sources already, and we will need to 
remove any duplicate dependencies. The c-gnatls tool also lists the Ada 
versions of the runtime files and not the C versions. So we need to 
determine the C equivalents and then copy them into our Arduino 
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library folder. The __get_runtime_deps function is responsible for all of 
this work.  

Generating Lookup Tables 
If you had a chance to look at the first blog post in this series, I talked 
about a bit about code in this application that was used to do some 
filtering of discrete states using a graph filter. This involved mapping 
some states onto some physical geometry and sectioning off areas that 
belonged to different states. The outcome of this was to map each 
point in a 2D graph to some state using a lookup table.  

To generate this lookup table I used a python library called shapely to 
compute the necessary geometry and map points to states. Originally, I 
had this as a separate utility sitting in the utils folder in the repo and 
would copy the output of this program into the geo_filter.ads file by 
hand. Eventually, I was able to bring this utility into the plugin workflow 
using a few interesting features of GPS. 

GPS includes pip 

Even though GPS has the Python env embedded in it, you can still bring 
in outside packages using the pip interface. The syntax for installing an 
external dependency looks something like: 

import pip 
ret = pip.main(["install"] + dependency) 

Where dependency is the thing you are looking to install. In the case of 
this plugin, I only need the shapely library and am installing that when 
the GPS plugin is initialized. 

Accessing Ada Entities via Libadalang 

The Libadalang library is now included with GPS and can be used inside 
your plugin. Using the libadalang interface I was able to access the 
value of user defined named numbers in the Ada files. This was then 
passed to the shapely application to compute the necessary geometry. 

ctx = lal.AnalysisContext() 
unit = ctx.get_from_file(file_to_edit) 
myVarNode = unit.root.findall(lambda n: n.is_a(lal.NumberDecl) and 
n.f_ids.text=='my_var') 
value = int(myVarNode[0].f_expr.text) 

This snippet creates a new Libadalang analysis context, loads the 
information from a file and searches for a named number declaration 
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called ‘my_var’. The value assigned to ‘my_var’ is then stored in our 
variable value. 

I was then able to access the location where I wanted to put the output 
of the shapely application using Libadalang: 

array_node = unit.root.findall(lambda n: n.is_a(lal.ObjectDecl) and 
n.f_ids.text=='my_array') 
agg_start_line = 
int(array_node[0].f_default_expr.sloc_range.start.line) 
agg_start_col = 
int(array_node[0].f_default_expr.sloc_range.start.column) 
agg_end_line = int(array_node[0].f_default_expr.sloc_range.end.line) 
agg_end_col = int(array_node[0].f_default_expr.sloc_range.end.column) 

This gave me the line and column number of the start of the array 
aggregate initializer for the lookup table ‘my_array’.  

Editing Files in GPS from the Plugin 
Now that we have the computed lookup table, we could use the typical 
python file open mechanism to edit the file at the location obtained 
from Libadalang. But since we are already in GPS, we could just use 
the GPS.EditorBuffer interface to edit the file. Using the information 
from our shapely application and the line and column information 
obtained from Libadalang we can do this: 

buf = GPS.EditorBuffer.get(GPS.File(file_to_edit)) 
agg_start_cursor = buf.at(agg_start_line, agg_start_col) 
agg_end_cursor = buf.at(agg_end_line, agg_end_col) 
buf.delete(agg_start_cursor, agg_end_cursor) 
array_str = "(%s));" % ("(%s" % ("),\n(".join([', '.join([item for 
item in row]) for row in array]))) 
buf.insert(agg_start_cursor, array_str[agg_start_col - 1:]) 

First we open a buffer to the file that we want to edit. Then we create a 
GPS.Location for the beginning and end of the current array aggregate 
positions that we obtained from Libadalang. Then we remove the old 
information in the buffer. We then turn the array we received from our 
shapely application into a string and insert that into the buffer.  

We have just successfully generated some Ada code from our GPS 
plugin! 
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Writing Your Own Python 
Plugin 
Most probably, there is already a plugin that exists in the GPS 
distribution that does something similar to what you want to do. For 
this plugin, I used the source for the plugin that enables flashing and 
debugging of bare-metal STM32 ARM boards. This file can be found in 
your GPS installation at <install 
directory>/share/gps/support/ui/board_support.py. You can also see 
this file on the GPS GitHub repository here: 
https://github.com/AdaCore/gps/blob/master/share/support/ui/boar
d_support.py 

In most cases, it makes sense to search through the plugins that 
already exist to get a starting point for your specific application, then 
you can fill in the blanks from there. You can view the entire source of 
GPS on AdaCore’s Github repository: https://github.com/AdaCore/gps 

That wraps up the overview of the build system for this application. The 
source for the project can be found here: https://github.com/Robert-
Tice/SPARKZumo. Feel free to fork this project and create new and 
interesting things. 

Happy Hacking! 
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