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1. Introduction 
 

This document explains how to use AdaCore’s technologies – the 

company’s tools, run-time libraries, and associated services – in 

conjunction with the safety-related standards for airborne software: RTCA 

DO-178C / EUROCAE ED-12C and its technology supplements and tool 

qualification considerations. It describes how AdaCore’s technologies fit 

into a project’s software life cycle processes, and how they can satisfy 

various objectives of the standards. 

Many of the advantages of AdaCore’s products stem from the underlying 

Ada programming language, or from the SPARK Ada subset. As a result, 

this document identifies how Ada and SPARK contribute toward the 

development of reliable software. AdaCore personnel have played key 

roles in the design and implementation of both of these languages. 

Although DO-178C doesn’t prescribe any specific software life cycle, the 

development and verification processes that it encompasses can be 

represented as a variation of the traditional “V” cycle. As shown in Figure 

1, AdaCore’s products and the Ada and SPARK languages contribute 

principally to the bottom portions of the “V” – coding and integration and 

their verification. The Table annotations in Figure 1 refer to the tables in 

DO-178C / ED-12C and, when applicable, specific objectives in those 

tables.  
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Figure 1: AdaCore Technologies and 

DO-178C / ED-12C Life Cycle Processes 

AdaCore also offers tools and technologies for projects using the C 

language. Although C lacks the built-in checks as well as other 

functionality that Ada provides, AdaCore’s Ada and C toolchains have 

similar capabilities. And mixed-language applications can take 

advantage of Ada’s interface checking that is performed during inter-

module communication. 

AdaCore’s Ada and C compilers can help developers produce reliable 

software, targeting embedded platforms with RTOSes as well as “bare 

metal” configurations. These are available with long term support, 

certifiable run-time libraries, and source-to-object traceability analyses 

as required for DO-178C / ED-12C Level A. Supplementing the compilers 

are a comprehensive set of tools including coding standard checkers, test 

and coverage analyzers, and static analysis tools. 

A number of these tools are qualifiable with respect to the DO-330 / ED-

215 recommendations (Tool Qualification Considerations). The use of 

qualified tools can save considerable effort during development and/or 

verification since the output of the tools does not need to be manually 

checked. Qualification material, at the applicable Tool Qualification Level 

(TQL), are available for specific AdaCore tools. 

Supplementing the core DO-178C/ED-12C standard are three 

supplements that address specific technologies: 
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 DO-331/ED-218: Model-Based Development and Verification 

 DO-332/ED-217: Object-Oriented Technology and Related 

Techniques 

 DO-333/ED-216: Formal Methods 

AdaCore’s tools make it easier to comply with these supplements: 

 QGen, a qualifiable code generator for model-based 

development, accepts a safe subset of Simulink® and Stateflow® 

models and generates SPARK and MISRA-C. Certification credit 

for the use of a qualified code generator may be claimed on 

most of the source code verification objectives and low-level 

testing. 

 Ada and SPARK provide specific features that help meet the 

objectives of DO-332/ED-217, thus allowing developers to 

specify a hierarchy of classes in a certified application. 

 The SPARK language and technology directly support DO-

333/ED-216, allowing the use of formal proofs in place of low 

level testing. 

The technologies and associated options presented in this document are 

known to be acceptable, and certification authorities have already 

accepted most of them on actual projects. However, acceptance is project 

dependent. An activity using a technique or method may be considered as 

appropriate to satisfy one or several DO-178C / ED-12C objectives for 

one project (determined by the development standards, the input 

complexity, the target computer and system environment) but not 

necessarily on another project. The effort and amount of justification to 

gain approval may also differ from one auditor to another, depending of 

their background. Whenever a new tool, method, or technique is 

introduced, it’s important to open a discussion with AdaCore and the 

designated authority to confirm its acceptability. The level of detail in the 

process description provided in the project plans and standard is a key 

factor in gaining acceptance. 
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2. The DO-178C/ED-12C 

Standards Suite 

2.1. Overview 

“Every State has complete and exclusive sovereignty over the airspace 

above its territory.” This general principle was codified in Article 1 of the 

Convention on International Civil Aviation (the “Chicago Convention”) in 

1944. To control the airspace, harmonized regulations have been 

formulated to ensure that the aircraft are airworthy. 

A type certificate is issued by a certification authority to signify the 

airworthiness of an aircraft manufacturing design. The certificate reflects 

a determination made by the regulating body that the aircraft is 

manufactured according to an approved design, and that the design 

complies with airworthiness requirements. To meet those requirements the 

aircraft and each subassembly must also be approved. Typically, 

requirements established by a regulating body refer to “Minimum 

Operating Performance Standards” (MOPS) and a set of recognized 

“Acceptable Means of Compliance” such as DO-178/ED-12 for software, 

DO-160/ED-14 for environmental conditions and test procedures, and 

DO-254/ED-80 for Complex Electronic Hardware. 

DO-178C/ED-12C – Software Considerations in Airborne Systems and 

Equipment Certification – was issued in December 2011, developed jointly 

by RTCA, Inc., and EUROCAE. It is the primary document by which 

certification authorities such as the FAA, EASA, and Transport Canada 

approve all commercial software-based aerospace systems. 

The DO-178C/ED-12C document suite includes: 

 The core document, which is a revision of the previous release 

(DO-178B/ED-12B). The changes are mostly clarifications, and 

also address the use of “Parameter Data Items” (e.g., 

Configuration tables) 
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 DO-278A/ED-109A, which is similar to DO-178C/ED-12C and 

addresses ground-based software used in the domain of 

CNS/ATM (Communication Navigation Surveillance/Air Traffic 

Management) 

 DO-248C/ED-94C (Supporting Information for DO-178C/ED-

12C and DO-278A/ED-109A), which explains the rationale 

behind the guidance provided in the core documents 

 Three technology-specific supplements 

o DO-331/ED-218: Model Based Development and 
Verification 

o DO-332/ED-217: Object Oriented Technology and 
Related Techniques 

o DO-333/ED-216: Formal Methods 

Each supplement adapts the core document guidance as 

appropriate for its respective technology. These supplements are 

not standalone documents but must be used in conjunction with 

DO-178C/ED-12C or DO-278A/ED-109A 

 The Tool Qualification Considerations document (DO-330/ED-

215), providing guidance for qualifying software tools 

One of the main principles of these documents is to be “objective 

oriented”. The guidance in each document consists of a set of objectives 

that relate to the various software life-cycle processes (planning, 

development, verification, configuration management, quality assurance, 

certification liaison). The objectives that must be met for a particular 

software component depend on the software level (also known as a Design 

Assurance Level or DAL) of the component. The level in turn is based on the 

potential effect of an anomaly in that software component on the 

continued safe operation of the aircraft. Software levels range from E 

(the lowest) where there is no effect, to A (the highest) where an anomaly 

can cause the loss of the aircraft. A software component’s level is 

established as part of the system life-cycle processes. 

To gain software approval for a system, the applicant has to demonstrate 

that the objectives relevant to the software level for each component 
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have been met. To achieve this goal, the development team specifies the 

various software life-cycle activities (based on those recommended by 

DO-178C/ED-12C and/or others), and its associated methods, 

environment, and organization/management. In case the chosen methods 

are addressed by one of the technology supplements, additional or 

alternative objectives must also be satisfied. The technology supplements 

may replace or add objectives and/or activities. 

2.2. Software Tool Qualification Considerations: 

  DO-330/ED-215 

A software tool needs to be qualified when a process is automated, 

eliminated, or reduced, but its outputs are not verified. The systematic 

verification of the tool outputs is replaced by activities performed on the 

tool itself: the “tool qualification”. The qualification effort depends on the 

assurance level of the airborne software and the possible effect that an 

error in the tool may have on this software. The resulting combination, the 

Tool Qualification Level, is a 5 level scale, from TQL-5 (the lowest level, 

applicable to software tools that cannot insert an error in the resulting 

software, but might fail to detect an error) to TQL-1 (the highest, 

applicable to software tools that can insert an error in software at 

level A). 

A tool is only qualified in the context of a specific project, for a specific 

certification credit, expressed in term of objectives and activities. 

Achieving qualification for a tool on a specific project does of course 

greatly increase the likelihood of being able to qualify the tool on 

another project. However, a different project may have different 

processes or requirements, or develop software with different 

environment constraints. As a result, the qualifiability of a tool needs to be 

systematically assessed on a case-by-case basis. 

Although many references are made in the literature about “qualified” 

tools, strictly speaking this term should only be used in the context of a 

specific project. Tools provided by tool vendors, independently of any 

project, should be identified as “qualifiable” only. The tool qualification 

document guidance (DO-330/ED-215) includes specific objectives that 

can only be satisfied in the context of a given project environment. 
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Throughout this document, the applicable tool qualification level is 

identified together with the relevant objective or activity for which credit 

may be sought. The qualification activities have been performed with 

respect to DO-330/ED-215 at the applicable Tool Qualification Level. 

Tool qualification material is available to customers as a supplement to 

AdaCore’s GNAT Pro Assurance product. 

2.3. Object Oriented Technology and Related 

Techniques Supplement: DO-332 / ED-217 

Although DO-332 / ED-217 is often referred as the “object oriented 

supplement”, the “related techniques” mentioned in the title are equally 

relevant and are addressed in detail. They may be used in conjunction 

with Object-Oriented Technology (OOT) but are not necessarily related 

to OO features. Such “related techniques” include virtualization, 

genericity (also known as templates), exceptions, overloading, and 

dynamic memory management. 

Considering the breadth of features covered by DO-332/ED-217, at 

least some of its guidance should be followed regardless of whether the 

actual application is using object orientation. For example, type 

conversion is probably present in most code bases regardless of which 

language is being used. 

The DO-332 / ED-217 supplement is much more code-centric than the 

others, and only two objectives are added: one related to local type 

consistency (dynamic dispatching) and another one related to dynamic 

memory. All other guidance takes the form of additional activities for 

existing DO-178C / ED-12C objectives. 

Of particular relevance is the supplement’s Vulnerability Analysis annex. 

Although not binding, it explains in detail what is behind these additional 

activities. The following features in particular may need to be addressed 

when Ada is used: 

 Inheritance / local type consistency 

 Parametric polymorphism (genericity) 

 Overloading 
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 Type conversion 

 Exception management 

 Dynamic memory 

 Component-based development 

The Ada language, the precautions taken during the design and coding 

processes, and the use of AdaCore tools combine to help address or 

mitigate the vulnerabilities associated with these features. 

2.4. Model-Based Development and Verification 

Supplement: DO-331 / ED-218 

A model is defined as “an abstract representation of a given set of 

aspects of a system that is used for analysis, verification, simulation, code 

generation, or any combination thereof”. The supplement identifies two 

kinds of models: specification models that express the High-Level 

Requirements, and design models expressing the software architecture 

and/or Low-Level Requirements. 

Model-based development covers a wide range of techniques for 

representing the software requirements and/or architecture, most often 

through a graphical notation. The source code itself is not considered as a 

model. Well known examples include UML for software architecture, 

SysSML for system representation, and Simulink® for control algorithms 

and related requirements. DO-331 / ED-218 presents the objectives and 

activities associated with the use of such techniques. The main added 

value of the supplement is its guidance on how to use model simulation 

and obtain certification credit. 

Model-based development might not be appropriate for capturing the 

complete set of system aspects. For example, while a large part of the 

analog control code can be effectively modeled by Simulink®, it would 

typically be easier to use traditional requirements definition methods 

(most notably natural language) to express I/O, low level layers, or 

complex logic. 
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In the context of AdaCore’s technology, the focus is on design models that 

can be used to express control algorithms or state machines, namely 

Mathworks’ Simulink® and Stateflow® languages. These are typically used 

to represent a subset of the software’s low-level requirements. The 

correctness of these requirements can be verified in a simulation 

environment. Model simulation is therefore an appropriate and efficient 

technique to verify that the requirements expressed in the model are a 

correct and complete implementation of the higher level of requirements. 

This higher level is referred to as “requirements from which the model is 

developed”. 

Design models are translated into source code, for example C or Ada, 

either manually or automatically. The way to convert the model into 

source code – i.e., manually or through a code generator (qualified or 

not) – is not addressed in the supplement. Additional information is 

provided in the Tool Qualification Considerations standard (DO-330/ED-

215) concerning the use of a qualified code generator or the verification 

of the outputs of a non-qualified code generator. 

The AdaCore technology relevant to this supplement is QGen, a 

qualifiable model-based toolsuite that includes a code generator (TQL-1) 

for a safe subset of Simulink® and Stateflow® models, and a model 

verification capability that can identify potential run-time errors and also 

support proof of safety properties at the model level. The code 

generator is tunable and can generate SPARK/Ada or MISRA-C. A model 

debugger is also available for QGen, providing a synchronized view 

across the model, the generated source code, and the compiled object 

code. 

2.5. Formal Methods Supplement: DO-333 /  

ED-216 

DO-333 / ED-216 provides guidance on the use of formal methods. A 

formal method is defined as “a formal model combined with a formal 

analysis”. A formal model should be precise, unambiguous and have a 

mathematically defined syntax and semantics. The formal analysis should 

be sound; i.e., if it is supposed to determine whether the formal model (for 

example the software source code in a language such as SPARK) satisfies 
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a given property, then the analysis should never assert that the property 

holds when in fact it does not. 

A formal method may be used to satisfy DO-178C/ED-12C verification 

objectives; formal analysis may therefore replace some reviews, analyses 

and tests. Almost all verification objectives are potential candidates for 

formal methods. 

In DO-178C / ED-12C, the purpose of testing is to verify the Executable 

Object Code (EOC) based on the requirements. The main innovation of 

DO-333 / ED-216 is to allow the use of formal methods to replace some 

categories of tests. In fact, with the exception of software / hardware 

integration tests showing that the EOC is compatible with the target 

computer, the other objectives of EOC verification may be satisfied by 

formal analysis. This is a significant added value. However, employing 

formal analysis to replace tests is a new concept in the avionics domain, 

with somewhat limited experience in practice thus far (see [1] for further 

information). Details from tool providers on the underlying models or 

mathematical theories implemented in the tool are necessary to assess the 

maturity of the method. Then substantiation and justification need to be 

documented, typically in the PSAC, and provided to certification 

authorities at an early stage for review. 

AdaCore provides the SPARK technology as a formal method that can 

eliminate or reduce the testing based on low-level requirements. Using 

SPARK will also get full or partial credit for other objectives, such as 

requirements and code accuracy and consistency, verifiability, etc. Its 

usage is consistent with the example provided in Appendix B of DO-

333/ED-216, “FM.B.1.5.1 Unit Proof”. Certification credit for using formal 

proofs is summarized in Figure 2: 
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Figure 2:  SPARK contributions to verification objectives 
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3. AdaCore Tools and 

Technologies Overview 
3.1. Ada  

Ada is a modern programming language designed for large, long-lived 

applications – and embedded systems in particular – where reliability, 

maintainability, and efficiency are essential. It was originally developed 

in the early 1980s (this version is generally known as Ada 83) by a team 

led by Jean Ichbiah at CII-Honeywell-Bull in France. The language was 

revised and enhanced in an upward compatible fashion in the early 

1990s, under the leadership of Tucker Taft from Intermetrics in the U.S. 

The resulting language, Ada 95, was the first internationally standardized 

(ISO) object-oriented language. Under the auspices of ISO, a further 

(minor) revision was completed as an amendment to the standard; this 

version of the language is known as Ada 2005. Additional features 

(including support for contract-based programming in the form of 

subprogram pre- and postconditions and type invariants) were added in 

the most recent version of the language standard, Ada 2012 (see [2] [3] 

[4] for information about Ada). 

The name “Ada” is not an acronym; it was chosen in honor of Augusta 

Ada Lovelace (1815-1852), a mathematician who is sometimes regarded 

as the world’s first programmer because of her work with Charles 

Babbage. She was also the daughter of the poet Lord Byron. 

Ada is seeing significant usage worldwide in high-integrity / safety-

critical / high-security domains including commercial and military aircraft 

avionics, air traffic control, railroad systems, and medical devices. With its 

embodiment of modern software engineering principles Ada is an 

excellent teaching language for both introductory and advanced 

computer science courses, and it has been the subject of significant 

university research especially in the area of real-time technologies. 

AdaCore has a long history and close connection with the Ada 

programming language. Company members worked on the original Ada 
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83 design and review and played key roles in the Ada 95 project as well 

as the subsequent revisions. The initial GNAT compiler was essential to the 

growth of Ada 95; it was delivered at the time of the language’s 

standardization, thus guaranteeing that users would have a quality 

implementation for transitioning to Ada 95 from Ada 83 or other 

languages. 

3.1.1. Language Overview  

Ada is multi-faceted. From one perspective it is a classical stack-based 

general-purpose language, not tied to any specific development 

methodology. It has a simple syntax, structured control statements, 

flexible data composition facilities, strong type checking, traditional 

features for code modularization (“subprograms”), and a mechanism for 

detecting and responding to exceptional run-time conditions (“exception 

handling”). 

But it also includes much more: 

Scalar ranges  

Unlike languages based on C syntax (such as C++, Java, and C#), Ada 

allows the programmer to simply and explicitly specify the range of 

values that are permitted for variables of scalar types (integer, floating-

point, fixed-point, and enumeration types). The attempted assignment of 

an out-of-range value causes a run-time error. The ability to specify 

range constraints makes programmer intent explicit and makes it easier to 

detect a major source of coding and user input errors. It also provides 

useful information to static analysis tools and facilitates automated proofs 

of program properties. 

Here’s an example of an integer scalar range: 

Score : Integer range 1..100; 

N     : Integer; 

... 

Score := N; 

-- A run-time check verifies that N is within the range 1..100 

-- If this check fails, the Constraint_Error exception is 

raised 
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Contract-based programming 

Ada 2012 allows extending a subprogram specification or a 

type/subtype declaration with a contract (a Boolean assertion). 

Subprogram contracts take the form of preconditions and postconditions; 

type contracts are used for invariants, and subtype contracts provide 

generalized constraints (predicates). Through contracts the developer can 

formalize the intended behavior of the application, and can verify this 

behavior by testing, static analysis or formal proof. 

Here’s a skeletal example that illustrates contact-based programming; a 

Table object is a fixed-length container for distinct Float values. 

package Table_Pkg is 

   type Table is private;  -- Encapsulated type 

 

   procedure Insert (T : in out Table; Item: in Float) 

     with Pre  => not Is_Full(T) and not Contains(T, Item), 

          Post => Contains(T, Item); 

 

   procedure Remove (T : in out Table; Item: in Float); 

     with Pre  => Contains(T, Item), 

          Post => not Contains(T, Item); 

 

   function Is_Full  (T : in Table) return Boolean; 

   function Contains (T : in Table; Item: in Float) return 

Boolean; 

   ... 

private 

   ... 

end Table_Pkg; 

A compiler option controls whether the pre- and post-conditions are 

checked at run time. If checks are enabled, a failure raises the 

Assertion_Error exception. 

Programming in the large  

The original Ada 83 design introduced the package construct, a feature 

that supports encapsulation (“information hiding”) and modularization, 

and which allows the developer to control the namespace that is 

accessible within a given compilation unit. Ada 95 introduced the concept 

of “child units,” adding considerable flexibility and easing the design of 
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very large systems. Ada 2005 extended the language’s modularization 

facilities by allowing mutual references between package specifications, 

thus making it easier to interface with languages such as Java. 

Generic templates  

A key to reusable components is a mechanism for parameterizing modules 

with respect to data types and other program entities, for example a 

stack package for an arbitrary element type. Ada meets this requirement 

through a facility known as “generics”; since the parameterization is done 

at compile time, run-time performance is not penalized.  

Object-Oriented Programming (OOP)  

Ada 83 was object-based, allowing the partitioning of a system into 

modules corresponding to abstract data types or abstract objects. Full 

OOP support was not provided since, first, it seemed not to be required 

in the real-time domain that was Ada’s primary target, and, second, the 

apparent need for automatic garbage collection in an OO language 

would have interfered with predictable and efficient performance. 

However, large real-time systems often have components such as GUIs 

that do not have real-time constraints and that could be most effectively 

developed using OOP features. In part for this reason, Ada 95 supplies 

comprehensive support for OOP, through its “tagged type” facility: 

classes, polymorphism, inheritance, and dynamic binding. Ada 95 does 

not require automatic garbage collection but rather supplies definitional 

features allowing the developer to supply type-specific storage 

reclamation operations (“finalization”). Ada 2005 brought additional 

OOP features including Java-like interfaces and traditional obj.op(...) 

operation invocation notation. 

Ada is methodologically neutral and does not impose a “distributed 

overhead” for OOP. If an application does not need OOP, then the OOP 

features do not have to be used, and there is no run-time penalty. 

See [4] or [5] for more details. 

Concurrent programming  

Ada supplies a structured, high-level facility for concurrency. The unit of 

concurrency is a program entity known as a “task.” Tasks can communicate 

implicitly via shared data or explicitly via a synchronous control 
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mechanism known as the rendezvous. A shared data item can be defined 

abstractly as a “protected object” (a feature introduced in Ada 95), with 

operations executed under mutual exclusion when invoked from multiple 

tasks. Asynchronous task interactions are also supported, specifically 

timeouts and task termination. Such asynchronous behavior is deferred 

during certain operations, to prevent the possibility of leaving shared 

data in an inconsistent state. Mechanisms designed to help take 

advantage of multi-core architectures were introduced in Ada 2012. 

Systems programming  

Both in the “core” language and the Systems Programming Annex, Ada 

supplies the necessary features for hardware-specific processing. For 

example, the programmer can specify the bit layout for fields in a 

record, define alignment and size properties, place data at specific 

machine addresses, and express specialized code sequences in assembly 

language. Interrupt handlers can also be written in Ada, using the 

protected type facility. 

Real-time programming  

Ada’s tasking facility and the Real-Time Systems Annex support common 

idioms such as periodic or event-driven tasks, with features that can help 

avoid unbounded priority inversions. A protected object locking policy is 

defined that uses priority ceilings; this has an especially efficient 

implementation in Ada (mutexes are not required) since protected 

operations are not allowed to block. Ada 95 defined a task dispatching 

policy that basically requires tasks to run until blocked or preempted, and 

Ada 2005 introduced several others including Earliest Deadline First.  

High-integrity systems  

With its emphasis on sound software engineering principles Ada supports 

the development of high-integrity applications, including those that need 

to be certified against safety standards such DO-178B / ED-12B and 

DO-178C / ED-12C for avionics, CENELEC EN 50128 for rail systems 

and security standards such as the Common Criteria. For example, strong 

typing means that data intended for one purpose will not be accessed via 

inappropriate operations; errors such as treating pointers as integers (or 

vice versa) are prevented. And Ada’s array bounds checking prevents 

buffer overflow vulnerabilities that are common in C and C++. 
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However, the full language may be inappropriate in a safety-critical 

application, since the generality and flexibility could interfere with 

traceability / certification requirements. Ada addresses this issue by 

supplying a compiler directive, pragma Restrictions, that allows 

constraining the language features to a well-defined subset (for example, 

excluding dynamic OOP facilities). 

The evolution of Ada has seen the continued increase in support for 

safety-critical and high-security applications. Ada 2005 standardized the 

Ravenscar Profile, a collection of concurrency features that are powerful 

enough for real-time programming but simple enough to make 

certification practical. Ada 2012 has introduced contract-based 

programming facilities, allowing the programmer to specify preconditions 

and/or postconditions for subprograms, and invariants for encapsulated 

(private) types. These can serve both for run-time checking and as input to 

static analysis tools. 

In brief, Ada is an internationally standardized language combining 

object-oriented programming features, well-engineered concurrency 

facilities, real-time support, and built-in reliability through both compile-

time and run-time checks. As such it is an appropriate language for 

addressing the real issues facing software developers today. Ada is used 

throughout a number of major industries to design software that protects 

businesses and lives. 

3.2. SPARK  

SPARK is a software development technology (programming language 

and verification toolset) specifically designed for engineering ultra-low 

defect level applications, for example where safety and/or security are 

key requirements. SPARK Pro is AdaCore’s commercial-grade offering of 

the SPARK technology. The main component in the toolset is GNATprove, 

which performs formal verification on SPARK code. 

SPARK has an extensive industrial track record. Since its inception in the 

late 1980s it has been used worldwide in a range of industrial 

applications such as civil and military avionics, air traffic management / 

control, railway signaling, cryptographic software, and cross-domain 

solutions. SPARK 2014 is the most recent version of the technology (see 

[6]). 
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3.2.1. Flexibility  

SPARK 2014 offers the flexibility of configuring the language on a per-

project basis. Restrictions can be fine-tuned based on the relevant coding 

standards or run-time environments. 

SPARK 2014 code can easily be combined with full Ada code or with C, 

so that new systems can be built on and reuse legacy codebases. 

3.2.2. Powerful Static Verification  

The SPARK 2014 language supports a wide range of static verification 

techniques. At one end of the spectrum is basic data and control flow 

analysis, i.e., exhaustive detection of errors such as attempted reads of 

uninitialized variables, and ineffective assignments (where a variable is 

assigned a value that is never read). For more critical applications, 

dependency contracts can constrain the information flow allowed in an 

application. Violations of these contracts – potentially representing 

violations of safety or security policies – can then be detected even 

before the code is compiled. 

In addition, the language supports mathematical proof and can thus 

provide high confidence that the software meets a range of assurance 

requirements: from the absence of run-time exceptions, to the enforcement 

of safety or security properties, to compliance with a formal specification 

of the program’s required behavior. 

3.2.3. Ease of Adoption  

The SPARK 2014 technology is easy to learn and can be smoothly 

integrated into an organization’s existing development and verification 

methodology and infrastructure. 

Pre-2014 versions of the SPARK language used a special annotation 

syntax for the various forms of contracts. In SPARK 2014 this has been 

merged with the standard Ada 2012 contract syntax, which both 

simplifies the learning process and also allows new paradigms of 

software verification. Programmers familiar with writing executable 

contracts for run-time assertion checking can use the same approach but 

with additional flexibility: the contracts can be verified either dynamically 
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through classical run-time testing methods or statically (i.e., pre-

compilation and pre-test) using automated tools. 

SPARK supports “hybrid verification” that can mix testing with formal 

proofs. For example an existing project in Ada and C can adopt SPARK 

to implement new functionality for critical components. The SPARK units 

can be analyzed statically to achieve the desired level of verification, 

with testing performed at the interfaces between the SPARK units and the 

modules in the other languages. 

3.2.4. Reduced Cost and Improved Efficiency 

of Executable Object Code (EOC) verification  

Software verification typically involves extensive testing, including unit 

tests and integration tests. Traditional testing methodologies are a major 

contributor to the high delivery costs for safety-critical software. 

Furthermore, they may fail to detect errors. SPARK 2014 addresses this 

issue by allowing automated proof to be used to demonstrate functional 

correctness at the subprogram level, either in combination with or as a 

replacement for unit testing. In the high proportion of cases where proofs 

can be discharged automatically the cost of writing unit tests is completely 

avoided. Moreover, verification by proofs covers all execution conditions 

and not just a sample. 

3.3. GNAT Pro Assurance 

GNAT Pro Assurance is an Ada and C development environment for 

projects requiring specialized support, such as bug fixes and “known 

problems” analyses, on a specific version of the toolchain. This product 

line is especially suitable for applications with long maintenance cycles or 

certification requirements, since critical updates to the compiler or other 

product components may become necessary years after the initial 

release. Such customized maintenance of a specific version of the product 

is known as a “sustained branch”. 

Based on the GNU GCC technology, GNAT Pro Assurance supports all 

versions of the Ada language standard, from Ada 83 to Ada 2012, and 

also handles multiple versions of C (C89, C99, and C11). It includes an 

Integrated Development Environment (GNAT Programming Studio and/or 
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GNATbench), a comprehensive toolsuite including a visual debugger, and 

a set of libraries and bindings. 

3.3.1. Sustained Branches 

Unique to GNAT Pro Assurance is a service known as a “sustained 

branch”: customized support and maintenance for a specific version of the 

product. A project on a sustained branch can monitor relevant known 

problems, analyze their impact, and if needed update to a newer version 

of the product on the same development branch (i.e., not incorporating 

changes introduced in later versions of the product). 

Sustained branches are a practical solution to the problem of ensuring 

toolchain stability while allowing flexibility in case an upgrade is needed 

to correct a critical problem. 

3.3.2. Configurable Run-Time Library  

GNAT Pro Assurance includes a configurable run-time capability, which 

allows specifying support for Ada’s dynamic features in an a la carte 

fashion ranging from none at all to full Ada. The units included in the 

executable may be either a subset of the standard libraries provided 

with GNAT Pro, or specially tailored to the application. This latter 

capability is useful, for example, if one of the predefined profiles 

implements almost all the dynamic functionality needed in an existing 

system that has to meet new safety-critical requirements, and where the 

costs of adapting the application without the additional run-time support 

are considered prohibitive. 

3.3.3. Full Ada 83 to 2012 Implementation  

GNAT Pro provides a complete implementation of the Ada language 

from Ada 83 to Ada 2012. Developers of safety-critical and high-

security systems can thus take advantage of features such as contract-

based programming. 

3.3.4. Source to Object Traceability 

A compiler option can limit the use of language constructs that generate 

object code that is not directly traceable to the source code. As an add-
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on service, AdaCore can perform an analysis that demonstrates this 

traceability and justifies any remaining cases of non-traceable code. 

3.3.5. Safety-Critical Support and Expertise  

At the heart of every AdaCore subscription are the support services that 

AdaCore provides to its customers. AdaCore staff are recognized experts 

on the Ada language, software certification standards in several domains, 

compilation technologies, and static and dynamic verification. They have 

extensive experience in supporting customers in avionics, railway, space, 

energy, air traffic management/control, and military projects. 

Every AdaCore product comes with front-line support provided directly 

by these experts, who are also the developers of the technology. This 

ensures that customers’ questions (requests for guidance on feature usage, 

suggestions for technology enhancements, or defect reports) are handled 

efficiently and effectively. 

Beyond this bundled support, AdaCore also provides Ada language and 

tool training as well as on-site consulting on topics such as how to best 

deploy the technology, and assistance on start-up issues. On-demand tool 

development or ports to new platforms are also available. 

3.4. CodePeer 

CodePeer is an Ada source code analyzer that detects run-time and logic 

errors. It assesses potential bugs before program execution, serving as an 

automated peer reviewer, helping to find errors efficiently and early in 

the development life-cycle. It can also be used to perform impact analysis 

when introducing changes to the existing code, as well as helping 

vulnerability analysis. Using control-flow, data-flow, and other advanced 

static analysis techniques, CodePeer detects errors that would otherwise 

only be found through labor-intensive debugging. 

3.4.1. Early Error Detection  

CodePeer’s advanced static error detection finds bugs in programs 

before programs are run. By mathematically analyzing every line of 

code, considering every possible input, and every path through the 

program, CodePeer can be used very early in the development life-cycle 
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to identify problems when defects are much less costly to repair. It can 

also be used retrospectively on existing code bases, to detect latent 

vulnerabilities. 

CodePeer is a standalone tool that may be used with any Ada compiler 

or fully integrated into the GNAT Pro development environment. It can 

detect several of the “Top 25 Most Dangerous Software Errors” in the 

Common Weakness Enumeration: CWE-120 (Classic Buffer Overflow), 

CWE-131 (Incorrect Calculation of Buffer Size), and CWE-190 (Integer 

Overflow or Wraparound). See [7] for more details. 

3.4.2. Qualified for usage in Safety-Critical 

Industries  

CodePeer has been qualified as a Verification Tool under DO-178B/ED-

12B, automating a number of activities associated with that standard’s 

objectives for software accuracy and consistency. 

Qualification material for both DO-178B/ED-12B and DO-178C/ED-12C 

is available as a product option. 

3.5. Basic Static Analysis tools 

3.5.1. ASIS, GNAT2XML  

ASIS, the Ada Semantic Interface Specification, is a library that gives 

applications access to the complete syntactic and semantic structure of an 

Ada compilation unit. This library is typically used by tools that need to 

perform some sort of static analysis on an Ada program. 

ASIS is an international standard (ISO/IEC 15291:1995) and is designed 

to be compiler independent. Thus a tool that processes the ASIS 

representation of a program will work regardless of which ASIS 

implementation has been used. ASIS-for-GNAT is AdaCore’s 

implementation of the ASIS standard, for use with the GNAT Pro Ada 

development environment and toolset. 

AdaCore can assist customers in developing ASIS-based tools to meet 

their specific needs, as well as develop such tools upon request. 
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Typical ASIS-for-GNAT applications include: 

 Static analysis (property verification) 

 Code instrumentation 

 Design and document generation tools 

 Metric testing or timing Tools 

 Dependency tree analysis tools 

 Type dictionary generators 

 Coding standard enforcement tools 

 Language translators (e.g., to CORBA IDL) 

 Quality assessment tools 

 Source browsers and formatters 

 Syntax directed editors 

GNAT2XML provides the same information as ASIS, but allows users to 

manipulate it through an XML tree. 

3.5.2. GNATmetric  

The GNATmetric tool analyzes source code to calculate a set of commonly 

used industry metrics, thus allowing developers to estimate the size and 

better understand the structure of the source code. This information also 

facilitates satisfying the requirements of certain software development 

frameworks. 

3.5.3. GNATcheck  

GNATcheck is a coding standard verification tool that is extensible and 

rule-based. It allows developers to completely define a coding standard 

as a set of rules, for example a subset of permitted language features. It 

verifies a program’s conformance with the resulting rules and thereby 



AdaCore Technologies for DO-178C / ED-12C 

34 

facilitates demonstration of a system’s compliance with certification 

standards such as DO-178B / ED-12B and DO-178C / ED-12C. 

Key features include: 

 An integrated Ada Restrictions mechanism for banning specific 

features from an application. This can be used to restrict features 

such as tasking, exceptions, dynamic allocation, fixed- or floating 

point, input/output and unchecked conversions. 

 Restrictions specific to GNAT Pro, such as banning features that 

result in the generation of implicit loops or conditionals in the 

object code, or in the generation of elaboration code. 

 Additional Ada semantic rules resulting from customer input, such 

as ordering of parameters, normalized naming of entities, and 

subprograms with multiple returns. 

 Easy-to-use interface for creating and using a complete coding 

standard. 

 Generation of project-wide reports, including evidence of the 

level of compliance with a given coding standard. 

 Over 30 compile-time warnings from GNAT Pro that detect 

typical error situations, such as local variables being used before 

being initialized, incorrect assumptions about array lower bounds, 

infinite recursion, incorrect data alignment, and accidental hiding 

of names. 

 Style checks that allow developers to control indentation, casing, 

comment style, and nesting level. 

3.5.4. GNATstack  

GNATstack is a software analysis tool that enables Ada/C software 

development teams to accurately predict the maximum size of the 

memory stack required to execute an embedded software application. 

The GNATstack tool statically predicts the maximum stack space required 

by each task in an application. The computed bounds can be used to 
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ensure that sufficient space is reserved, thus guaranteeing safe execution 

with respect to stack usage. The tool uses a conservative analysis to deal 

with complexities such as subprogram recursion, while avoiding 

unnecessarily pessimistic estimates. 

This static stack analysis tool exploits data generated by the compiler to 

compute worst-case stack requirements. It performs per-subprogram stack 

usage computation combined with control flow analysis. 

GNATstack can analyze object-oriented applications, automatically 

determining maximum stack usage on code that uses dynamic dispatching 

in Ada. A dispatching call challenges static analysis because the identity 

of the subprogram being invoked is not known until run time. GNATstack 

solves this problem by statically determining the subset of potential 

targets (primitive operations) for every dispatching call. This significantly 

reduces the analysis effort and yields precise stack usage bounds on 

complex Ada code. 

This is a static analysis tool in the sense that its computation is based on 

information known at compile time. When the tool indicates that the result 

is accurate, the computed bound can never be exceeded. 

On the other hand, there may be cases in which the results will not be 

accurate (the tool will report such situations) because of some missing 

information (such as the maximum depth of subprogram recursion, indirect 

calls, etc.). The user can assist the tool by specifying missing call graph 

and stack usage information. 

GNATstack’s main output is the worst-case stack usage for every entry 

point, together with the paths that result in these stack sizes. The list of 

entry points can be automatically computed (all the tasks, including the 

environment task) or can be specified by the user (a list of entry points or 

all the subprograms matching a given regular expression). 

GNATstack can also detect and display a list of potential problems when 

computing stack requirements: 

 Indirect (including dispatching) calls. The tool will indicate the 

number of indirect calls made from any subprogram. 
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 External calls. The tool displays all the subprograms that are 

reachable from any entry point for which there is no stack or call 

graph information. 

 Unbounded frames. The tool displays all the subprograms that 

are reachable from any entry point with an unbounded stack 

requirement. The required stack size depends on the arguments 

passed to the subprogram. For example: 

procedure P(N : Integer) is 

   S : String (1..N); 

begin 

   ... 

end P; 

 Cycles. The tool can detect all the cycles (i.e., potential 
recursion) in the call graph. 

GNATstack allows the user to supply a text file with the missing 

information, such as the potential targets for indirect calls, the stack 

requirements for externals calls, and the maximal size for unbounded 

frames. 

3.6. Dynamic Analysis Tools 

3.6.1. GNATtest  
The GNATtest tool helps create and maintain a complete unit testing 

infrastructure for complex projects. Based on AUnit, it captures the simple 

idea that each visible subprogram should have at least one 

corresponding unit test. GNATtest takes a project file as input, and 

produces two outputs: 

 The complete harnessing code for executing all the unit tests 

under consideration. This code is generated completely 

automatically. 

 A set of separate test stubs for each subprogram to be tested. 

These test stubs are to be completed by the user. 
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GNATtest handles Ada’s Object-Oriented Programming features and can 

be used to help verify tagged type substitutability (the Liskov Substitution 

Principle) that can be used to demonstrate consistency of class hierarchies. 

3.6.2. GNATemulator 

GNATemulator is an efficient and flexible tool that provides integrated, 

lightweight target emulation. 

Based on the QEMU technology, a generic and open-source machine 

emulator and virtualizer, GNATemulator allows software developers to 

compile code directly for their target architecture and run it on their host 

platform, through an approach that translates from the target object code 

to native instructions on the host. This avoids the inconvenience and cost of 

managing an actual board, while offering an efficient testing environment 

compatible with the final hardware. 

There are two basic types of emulators. The first can serve as a surrogate 

for the final hardware during development for a wide range of 

verification activities, particularly those that require time accuracy. 

However, they tend to be extremely costly, and are often very slow. The 

second, which includes GNATemulator, does not attempt to be a complete 

time-accurate target board simulator, and thus it cannot be used for all 

aspects of testing. But it does provide a very efficient and cost-effective 

way to execute the target code very early in the development and 

verification processes. GNATemulator thus offers a practical compromise 

between a native environment that lacks target emulation capability, and 

a cross configuration where the final target hardware might not be 

available soon enough or in sufficient quantity. 

3.6.3. GNATcoverage  

GNATcoverage is a dynamic analysis tool that analyzes and reports 

program coverage. GNATcoverage can perform coverage analysis at 

both the object code level (instruction and branch coverage), and the 

source code level for Ada or C (Statement, Decision, and Modified 

Condition/Decision Coverage - MC/DC). 

Unlike most other technologies, GNATcoverage is nonintrusive: it works 

without requiring instrumentation of the application code. Instead, the 
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code runs directly on an instrumented execution platform, such as 

GNATemulator, Valgrind on Linux, or on a real board monitored by a 

probe. 

See [8] for more details on the underlying technology. 

3.7. Integrated Development Environments 

(IDEs) 

3.7.1. GNAT Programming Studio (GPS)  

GPS is a powerful and simple-to-use IDE that streamlines software 

development from the initial coding stage through testing, debugging, 

system integration, and maintenance. GPS is designed to allow 

programmers to get the most out of GNAT Pro technology. 

Tools 

GPS’s extensive navigation and analysis tools can generate a variety of 

useful information including call graphs, source dependencies, project 

organization, and complexity metrics, giving a thorough understanding of 

a program at multiple levels. It allows interfacing with third-party Version 

Control Systems, easing both development and maintenance. 

Robust, Flexible and Extensible  

Especially suited for large, complex systems, GPS can import existing 

projects from other Ada implementations while adhering to their file 

naming conventions and retaining the existing directory organization. 

Through the multi-language capabilities of GPS, components written in C 

and C++ can also be handled. GPS is highly extensible; additional tools 

can be plugged in through a simple scripting approach. It is also 

tailorable, allowing various aspects of the program’s appearance to be 

customized in the editor. 

Easy to learn, easy to use  

GPS is intuitive to new users thanks to its menu-driven interface with 

extensive online help (including documentation on all the menu selections) 

and “tool tips”. The Project Wizard makes it simple to get started, 

supplying default values for almost all of the project properties. For 

experienced users, GPS offers the necessary level of control for 
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advanced purposes; e.g., the ability to run command scripts. Anything that 

can be done on the command line is achievable through the menu 

interface.  

Remote Programming  

Integrated into GPS, Remote Programming provides a secure and 

efficient way for programmers to access any number of remote servers on 

a wide variety of platforms while taking advantage of the power and 

familiarity of their local PC workstations.  

3.7.2. Eclipse support - GNATbench  

GNATbench is an Ada development plug-in for Eclipse and Wind River’s 

Workbench environment. The Workbench integration supports Ada 

development on a variety of VxWorks real-time operating systems. The 

Eclipse version is primarily for native applications, with some support for 

cross development. In both cases the Ada tools are tightly integrated. 

3.7.3. GNATdashboard  

GNATdashboard serves as a one-stop control panel for monitoring and 

improving the quality of Ada software. It integrates and aggregates the 

results of AdaCore’s various static and dynamic analysis tools 

(GNATmetric, GNATcheck, GNATcoverage, CodePeer, SPARK Pro, among 

others) within a common interface, helping quality assurance managers 

and project leaders understand or reduce their software’s technical debt, 

and eliminating the need for manual input. 

GNATdashboard fits naturally into a continuous integration environment, 

providing users with metrics on code complexity, code coverage, 

conformance to coding standards, and more. 

3.8. Model-Based Development: QGen  
QGen is a qualifiable and tunable code generation and model 

verification tool for a safe subset of Simulink® and Stateflow® models. It 

reduces the development and verification costs for safety- critical 

applications through qualifiable code generation, model verification, and 

tight integration with AdaCore’s qualifiable simulation and structural 

coverage analysis tools. 
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QGen addresses one core issue: how to decrease the verification costs on 

the model and the code when applying model-based design and 

automatic code generation with the Simulink® and Stateflow® 

environments. QGen achieves this by 

 Enforcing a safe subset of Simulink® blocks 

 Providing high-performance and tunable code generation 

 Performing static analysis for upfront detection of potential 

errors, and 

 Making available DO-178B/ED-12B and DO-178C/ED-12CC 

qualification material for both the code generator and the model 

verification tools. QGen can also integrate smoothly with 

AdaCore’s qualifiable simulation and structural coverage analysis 

tools. 

3.8.1. Support for Simulink® and Stateflow® 

models 

QGen supports a wide range of features from the Simulink® and 

Statefow® environments, including more than one hundred blocks, 

Simulink® signals and parameters objects, and several Matlab® 

operations. The supported feature set from the Simulink® and Stateflow® 

environments has been carefully selected to ensure code generation that 

is amenable to safety-critical systems. MISRA-C Simulink® constraints can 

be optionally checked with QGen. Features that would imply 

unpredictable behavior, or that would lead to the generation of unsafe 

code, have been removed. The modelling standard enforced by QGen is 

then suitable for DO-178/EN-12(B/C), CENELEC EN 50128 and ISO 

26262 development out-of-the-box. 

3.8.2. Qualification material 

Qualification for QGen will demonstrate compliance with the DO-178C / 

ED-12C standard at Tool Qualification Level 1 (TQL-1, equivalent to a 

Development Tool in DO-178B / ED-12B), making QGen the only code 

generator for Simulink® and Stateflow® models for which a TQL-1 
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qualification kit is available. The QGen qualification kit will show 

compliance with DO-330 / ED-215 (Tool Qualification Considerations) 

and include a Tool Qualification Plan, a Tool Development Plan, a Tool 

Verification Plan, a Tool Quality Assurance Plan and a Tool Configuration 

Management Plan. It will also include detailed Tool Operational 

Requirements, Tool Requirements, Test Cases and Test Execution Results, 

together with a Tool Configuration Index and a Tool Accomplishment 

Summary. 

3.8.3. Support for model static analysis 

QGen supports static verification that three kinds of defects are 

prevented: run-time errors, logical errors, and safety violations. Run-time 

errors, such as division by zero or integer overflow, may lead to 

exceptions being raised during software execution. Logical errors, for 

example a Simulink® “If” block condition that is always True, imply a 

defect in the designed model. And safety properties, which can be 

modeled using Simulink® Model Verification blocks, represent safety 

requirements that are embedded in the design model. QGen is able to 

statically verify all these properties and generate run-time checks as well 

if configured to do so. 

3.8.4. Support for Processor-in-the-Loop 

testing  

QGen can be integrated with AdaCore’s GNATemulator and 

GNATcoverage tools to support streamlined Processor-In- the-Loop (PIL) 

testing. The simulation of Simulink® models can be tested back-to-back 

against the generated code, which is cross-compiled and deployed on a 

GNATemulator installation on the user workstation. While conducting PIL 

testing, GNATcoverage can also perform structural coverage analysis up 

to MC/DC without any code instrumentation. Both GNATcoverage and 

GNATemulator have already been qualified in an operational context. 
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4. Compliance with DO-
178C / ED-12C Guidance: 
Analysis 

4.1. Overview 

DO-178C / ED-12C uses the term “requirement” to identify the expected 

behavior of the system, the software, or a part thereof. The desired 

functions are formulated at the system level as “system requirements” and 

are refined and elaborated into “software requirements”. DO-178C / 

ED-12C identifies several categories of software requirements. 

The High-Level Requirements (HLR) define the expected behavior of the 

complete software loaded on the target computer, independent of the 

software architecture. The HLR are further refined into one or more lower 

levels, specifying the expected behavior of each software subpart 

(component) based on the architecture definition. The lowest level of 

requirements (the LLR) and the architecture are translated into source 

code, which finally is compiled to produce the Executable Object Code 

(EOC). 

Within this basic framework, the development process activities 

(requirements definition, design, coding, and integration) should be 

conducted so as to reduce the likelihood of introducing errors. Verification 

process activities are designed to detect errors through multiple filters, by 

assessing the same artifacts in different ways. This naturally applies to the 

EOC, whose verification involves checking compliance with the 

requirements at each level, using both normal and abnormal inputs. Such 

verification is typically performed by testing. Finally, the EOC verification 

must itself be verified. 

While it is not a DO-178C / ED-12C concept, a “V” cycle is often used to 

represent the complete software life cycle. A variation of the traditional 

“V” cycle, oriented around the DO-178C / ED-12C processes, was shown 
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earlier in Figure 1. As is seen in that figure, AdaCore tools mostly apply 

towards the bottom stages of the “V” cycle: 

 Design (architecture + LLR), coding and integration (EOC 

generation), for the development activities. 

 Design and source code review / analysis and LLR testing, for the 

verification activities. 

Additional support is provided for design activities in conjunction with the 

three technology supplements (on model-based development, object-

oriented technology, and formal methods). 

The core element of the AdaCore tool chain is a development 

environment, including a compiler for Ada and C. Complementary tools 

support several verification activities, such as GNATcheck for code 

standard checking, CodePeer for static analysis, GNATstack for stack 

checking, and GNATtest / GNATcoverage for testing and structural code 

coverage analysis. 

To show how AdaCore tools can be used in connection with the software 

life cycle processes for a system that is to be assessed against DO-178C 

/ ED-12C, several possible scenarios will be described: 

 Use Case 1: Traditional development process, excluding or 

including OOT 

The development process produces requirements specified in text 

(natural language) that are implemented in Ada source code. A 

code standard defines a set of restrictions, which may or may not 

include limitations on object-oriented features. Both cases need to 

be considered: 

o Use Case 1a: No use is made of object oriented 

technology or related techniques 

o Use Case 1b: Ada’s OOT features are used, and the 

guidance in DO-332 / ED-217 is considered 
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 Use Case 2: Model-Based Development 

The development process includes a design model, which is 

automatically translated into MISRA-C or SPARK/Ada by a 

qualified code generator such as provided in QGen. The 

certification effort follows the additional guidance from the 

Model-Based Development supplement (DO-331 / ED-218) and 

the Tool Qualification Considerations standard (DO-330 / ED-

215), to obtain certification credit for using a qualified code 

generator. 

 Use Case 3: Formal Methods 

The development uses a formal description of the low-level 

requirements, namely SPARK / Ada 2012 contracts. A formal 

analysis is performed, and credit is claimed on reducing the 

testing. The certification effort follows the additional guidance 

from the Formal Methods Supplement (DO-333 / ED-216). 

In the tables that appear in this chapter, the references shown in 

parentheses for the objectives identify the table, objective number, and 

paragraph reference for the objective in the DO-178C / ED-12C 

standard or the relevant technology supplement. For example, A-2[6]: 

5.3.1.a refers to Table A-2, Objective 6, paragraph 5.3.1a. 
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4.2. Use case #1a: Coding with Ada 2012  

The adoption of Ada as the coding language brings a number of benefits 

during design, coding, and testing, both from language features (as 

summarized in the table below) and from the AdaCore ecosystem. 

4.2.1. Benefits of the Ada language  
 

Contributions 

Objectives Software Coding (A-2[6]: 5.3.1.a) 
Reviews and Analyses of Source Code:  

- Verifiability (A-5[3]- 6.3.4.c) 

- Accuracy and consistency (A-5[6]- 6.3.4.f) 

Activities Software Coding (5.3.2.a) 
Reviews and Analyses of Source Code (6.3.4) 

 

Ada’s most significant contribution is towards the reliability of the written 

code; the language is designed to promote readability and 

maintainability, and to detect errors early in the software development 

process. This section will summarize several Ada features that help meet 

these goals. 

Strong typing 

The emphasis on early error detection and program clarity is perhaps 

most clearly illustrated in the language’s “strong typing”. A type in Ada is 

a semantic entity that can embody static (and possibly also dynamic) 

constraints. For example: 

type Ratio is digits 16 range -1.0 .. 1.0; 

In the above example, Ratio is a floating-point type. Two constraints are 

specified: 

 digits specifies the minimum precision needed for objects of this 

type, in terms of decimal digits. Here the compiler will likely 

choose a 64-bit representation. If the target architecture only 
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supports 32-bit floating-point, the compiler will reject the 

program. 

 range defines the set of acceptable values. Here, only values 

between -1.0 and 1.0 are acceptable; an attempt to assign a 

value outside this range to a variable of type Ratio will raise a 

run-time exception (Constraint_Error). 

Strong typing means an absence of implicit conversions (implicit “casts”), 

since such conversions can mask logical errors. For example: 

type Miles      is digits 16; 

type Kilometers is digits 16; 

... 

Distance_1 : Miles; 

Distance_2 : Kilometers; 

... 

Distance_1 := Distance_2; -- Illegal, rejected at compile time 

Both Miles and Kilometers are 16-digit floating-point types (the 

range constraint is optional in a floating-point type declaration) but they 

are different types, and thus the assignment is illegal. Likewise, it is illegal 

to combine Miles and Kilometers in an expression; Miles + Kilometers 

would also be rejected by the compiler. 

With strong typing the program’s data can be partitioned so that an 

object of a given type can only be processed using operations that make 

sense for that type. This helps prevent data mismatch errors. 

Explicit conversions between related types are allowed, either 

predefined (for example between any two numeric types) or supplied by 

the programmer. Explicit conversions make the programmer’s intent clear. 

For example: 
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type Grade is range 0..100;  -- a new integer type 

 

Test_Grade : Grade; 

N          : Integer;        -- predefined type 

... 

Test_Grade := N;         

  -- Illegal (type mismatch), rejected at compile time 

 

Test_Grade := Grade (N);  

  -- Legal, with run-time constraint check that N is in 0..100 

Dimensionality checking 

One of the challenges to a language’s type model is the enforcement of 

the proper use of units of measurement. For example dividing a distance 

by a time should be allowed, yielding a velocity. But the error of dividing 

a time by a distance where a velocity value is required should be 

detected and reported as an error at compile time. 

Although this issue could be addressed in theory by defining a separate 

type for each unit of measurement, such an approach would require 

defining functions (likely as overloaded operator symbols) for the 

permitted operand combinations. This would be notationally cumbersome 

and probably not used much in practice. 

The GNAT Pro environment provides a solution through the 

implementation-defined aspects Dimension_System which can be 

applied to a type, and Dimension which can be applied to a subtype. 

Uses of variables are checked at compile time for consistency based on 

the Dimension aspect of their subtypes. The GNAT library includes a 

package System.Dim.Mks that defines a type and its associated 

subtypes that will be used for meters (Length), kilograms (Mass), seconds 

(Time), and other units. The programmer can define a subtype such as 

Velocity that corresponds to Length (in meters) divided by Time (in 

seconds): 
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subtype Velocity is Mks_Type with 

   Dimension => ("m/sec", 

                 Meter  => 1,    

                  -- Values are exponents in the product of 

                  -- the units 

                 Second => -1, 

                 others => 0); 

With such a declaration the following is permitted: 

My_Distance : Length    := 10 * m;   -- m is 1.0 meter 

My_Time     : Time      := 5.0 * h;  -- h is 1.0 hour  

                                     -- (3600.0 sec) 

My_Velocity : Velocity  := My_Distance / My_Time; -- OK 

A Velocity value should be computed as a distance divided by a time. 

The following will be detected as an error: 

My_Distance : Length    := 10 * m; 

My_Time     : Time      := 5.0 * h; 

My_Velocity : Velocity  := My_Time / My_Distance;  -- Illegal 

GNAT Pro’s support for dimensionality checking is a useful adjunct to 

Ada’s strong typing facilities. 

Pointers 

For compliance with DO-178C/ED-12C, the use of dynamic memory (and 

pointers) should be kept to the bare minimum, and Ada helps support this 

goal. Features such as arrays or by-reference parameter passing, which 

require pointers or explicit references in other languages, are captured 

by specific facilities in Ada. For example, Ada’s parameter passing 

mechanism reflects the direction of data flow (in, out, or in out) rather 

than the implementation technique. Some data types always require by-

copy (for example scalars), and some types always require by-reference 

(for example tagged types, in OOP). For all other types the compiler will 

choose whether it is more efficient to use by-reference (via a hidden 

pointer or reference) or by-copy. Since the developer does not have to 

explicitly manipulate pointers to obtain by-reference passing, many 

common errors are avoided. Here’s an example: 



Frédéric Pothon & Quentin Ochem 

49 

type Rec is 

   record 

      A, B : Integer; 

   end record; 

 

My_Rec : Rec; 

 

procedure Update (R : in out Rec); 

 

... 

 

Update (My_Rec); 

 

The above procedure takes a Rec object as an in out parameter. In the 

invocation Update (My_Rec), the compiler may choose to pass My_Rec 

either by reference or by copy based on efficiency considerations. In 

other languages the programmer would need to use pointers to obtain 

by-reference passing if the actual parameter needs to be modified by 

the called subprogram. 

When pointers are absolutely required, Ada’s approach is to supply a 

type-safe and high-level mechanism (known as “access types”) to obtain 

the needed functionality while also providing low-level facilities that are 

potentially unsafe but whose usage is always explicitly indicated in the 

source text (thus alerting the human reader). To illustrate this, here’s a C 

code fragment that performs pointer arithmetic: 

int *ptr = malloc (sizeof (int)); 

ptr++; 

This may or may not be safe; after the increment, ptr points to a location 

immediately beyond the storage for the allocated int. 

As part of its C interfacing facilities Ada supports such pointer arithmetic, 

indeed with algorithmic code that is similar to the C notation, but the 

dependence on a potentially unsafe operation is explicit: 
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with Interfaces.C.Pointers; 

procedure Pointer_Arith is 

   type Int_Array is  

     array (Positive range <>) of aliased Integer; 

 

   package P is  

     new Interfaces.C.Pointers(Positive, Integer,  

                               Int_Array, Integer'First); 

   -- This generic instantiation defines the access type 

   -- Pointer and its associated operations 

   use type P.Pointer;  

   -- For notational convenience in invoking "+"  

 

   Ref  : P.Pointer := new Integer; 

begin 

   Ref  := Ref+1;  

   -- Increments Ref by the size (number of storage elements) 

   -- of an Integer 

end Pointer_Arith; 

This syntax, though verbose, makes potentially unsafe operations much 

more visible, hence easier to identify and review. 

Arrays 

The array (an indexable sequence of elements) is a fundamental and 

efficient data structuring mechanism, but a major vulnerability unless 

attempted accesses to data outside the bounds of the array are 

prevented. Ada avoids this vulnerability since array operations such as 

indexing are checked to ensure that they are within the specified bounds. 

In addition to indexing, Ada provides various array operations 

(assignment, comparison, slicing, catenation, etc.) which allow manipulating 

arrays in an explicit and safe manner. 

Ada’s arrays are “fixed size”; once an array object is created, its bounds 

are established and cannot change. This simplifies the storage 

management (arrays in Ada can go on the stack and do not require 

hidden pointers). Additional flexibility (for example bounded-size arrays 

whose length can vary up to a specified maximum limit, or unbounded 

arrays of arbitrary length) is obtained through the Ada predefined 

library. 
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Here’s an example: 

type Int_Array is array(Positive range <>) of Integer; 

-- Different objecTs of type Int_Array can have different 

-- bounds 

 

A : Int_Array (1 .. 8); 

B : Int_Array (2 .. 12); 

I : Integer; 

... 

 

A := (others => 0); 

B := (2 .. 7 => 0, others => 1); 

... 

if A (1 .. 3) = B (6 .. 8) then 

   Put_Line ("Slices are equal"); 

end if; 

 

Get (I);        -- Read in an integer 

A (I) := 100;   -- Run-time check that I is in range 

The above code creates two arrays, A with 8 elements indexed from 1 to 

8, and B with 11 elements indexed from 2 to 12. A is assigned all zeroes, 

and B is assigned 0 in its first 6 elements and 1 in the rest. Contiguous 

sequences (slices) of the two arrays are compared for equality. All of this 

is done through standard language syntax as opposed to explicit loops 

or library calls. 

The code at the end of the example illustrates Ada’s index checking. If I 

is not in the index range of array A (i.e., between 1 and 8 inclusive) then 

a run-time exception (Constraint_Error) is raised. 

Other Ada features 

Many other features contribute to Ada’s support for reliable and 

maintainable embedded software. Some were described briefly in 

Section 3.1.1. Others include the Ravenscar Profile, a deterministic tasking 

subset that is simple enough for certification but rich enough to program 

real-time embedded systems; and Ada’s low-level facilities, which allow 

the programmer to specify target-specific representations for data types 

(including the bit layout of fields in a record, and the values for 
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enumeration elements). Further information on features that contribute to 

safe software may be found in [3]. 

In summary, Ada’s benefits stem from its expressive power, allowing the 

developer to specify the needed functionality or to constrain the feature 

usage to a deterministic subset, together with its support for reliability 

and readability. A variety of errors, including some of the most frequent 

and harmful vulnerabilities, are detected in Ada either at compilation 

time or through dynamic checks automatically added by the compiler. 

Such checks can be either retained (for example during a testing 

campaign) or removed (for example at production time, after verification 

has provided confidence that they are not needed). 

Additional Ada features will be described and highlighted in other 

sections of this document. 

4.2.2. Using Ada during the design process 
 

Contributions 

Objectives Software Design Process (A-2[3,4]: 5.2.1.a) 
Reviews and Analyses of Source Code: Compliance with 
architecture (A-5[2]: 6.3.4.b), traceability (A-5[5]:6.3.4.e) 
Reviews and Analyses of LLR: Compatibility with target (A-
5[3]: 6.3.2.c) 
Reviews and Analyses of architecture: Compatibility with 
target (A-4[10]: 6.3.3.c) 

Activities Software Design Activities (5.2.2.a, 5.2.2.d) 
Software Development Process Traceability (5.5.c) 
Reviews and Analyses of Source Code (6.3.4) 
Reviews and Analyses of LLR: Compatibility with target 
(6.3.2) 
Reviews and Analyses of architecture: Compatibility with 
target (6.3.3) 

 

An application’s design – that, its low-level requirements and software 

architecture – may be specified in many ways, combining text and 

graphics at various levels of formality. The main principle is to keep the 

design at a higher level of abstraction than the code: in particular 

avoiding expression of requirements as code or pseudo-code. 
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Requirements are properties to be verified by the code and are not the 

code itself. Thus the general advice is to avoid using a programming 

language as the medium for expressing – even in part – the software 

design. 

Ada, however, presents an exception to this advice. The language 

provides extensive facilities for capturing a program unit’s specification (its 

“what”) separately from the implementation (its “how”). An Ada package 

and an Ada subprogram each consists of a specification (the interface) 

and a body (the implementation) and a similar separation of interface 

from implementation is found in generic units, tasks, and encapsulated 

types. 

A unit’s specification establishes the constraints on its usage, that is, the 

permitted relationships between that unit and other parts of the program. 

These are the unit’s architectural properties, in contrast to its 

implementation. It thus makes sense for a significant part of the Ada 

specifications to be developed during the design process. An interesting 

effect is that the design elements defined as Ada specifications are easy 

to verify, sometimes simply by compiling the code and showing that the 

interface usages are correct. 

The separation of specification and implementation means that an Ada 

specification can have an implementation written in a different language, 

for example C. Although this may lose some of Ada’s benefits, it illustrates 

the flexibility and relevance of the approach. 

4.2.2.1 Component identification 

Regardless of the method used for architecting the software as a 

hierarchical set of components, Ada may be directly used to identify the 

software components and define their interfaces. This is typically done via 

package specifications and subprogram specifications. 

A few comments on the term “interface” may be helpful. (We are not 

referring to the OOP language feature here.) Informally, a component’s 

interface is the collection of its properties that establish whether any given 

usage of the component is correct. These properties arise at several 

levels. As an example, for a procedure that sorts an array of floating 

point values its interface may be regarded as comprising the following: 



AdaCore Technologies for DO-178C / ED-12C 

54 

 Syntactic interface: the procedure’s name and its formal 

parameters (their names, parameter passing modes, and types). 

 Information flow interface: how, if at all, non-local data are 

accessed by the procedure (read, written, or both) 

 Semantic (functional) interface: the function performed by the 

procedure – what does it mean to sort an array, independent of 

the algorithm – which is a low-level requirement for the 

procedure 

Other low-level constraints may also be considered as part of the 

interface, such as a time or space constraint. 

The syntactic interface in Ada is a simple subprogram specification: 

type Float_Array is array (Integer range <>) of Float; 

 

procedure Sort (My_Array : in out Float_Array); 

This will also suffice for information flow if Sort does not access non-local 

data. If Sort does access non-local data then the uses can be specified 

informally by comments: 

type Float_Array is array (Positive range <>) of Float; 

 

procedure Sort (My_Array : in out Float_Array); 

 

-- Inputs: None 

 

-- Outputs 

-- p_GLOBAL.Status : p_GLOBAL.T_Status; 

They can also be captured more formally as aspects of the procedure 

specification if the SPARK subset of Ada is used, as will be explained 

below. 

The LLR (including the semantic interface) are developed in parallel and 

may be specified separately from or together with the component’s 

specification. They can be defined in natural language, as comments, or 
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using contracts (pre- and/or postconditions) as illustrated in the next 

subsection. 

4.2.2.2. Low-Level Requirements 

A simple example of a low-level requirement, for the Sort procedure 

defined above, is the following: 

The component shall order the array from the smallest value to 

highest one 

In Ada, we can capture this requirement as a postcondition aspect of the 

procedure: 

type Some_Array is array (Positive range <>) of Integer; 

 

procedure Sort (My_Array : in out Some_Array) 

with Post =>  

   (for all I in My_Array'First .. My_Array'Last-1 => 

                   My_Array (I) <= My_Array (I+1) ); 

The with Post construct defines the postcondition for the procedure; i.e., 

the condition that is asserted to be True when the procedure returns. Here 

it expresses, in Ada syntax, the low-level requirement that the procedure 

sort the array in ascending order: for each index I into the array, from 

the first position through the next-to-last, the value of the element at 

position I+1 is at least as large as the element at position I. In the 

degenerate case where the array is either empty or contains a single 

element (i.e., when the range of I is empty) the “for all” condition is 

considered to be True. 

It’s clear that the postcondition expression says nothing about how the 

procedure is implemented. It’s not pseudo-code for an algorithm but 

rather a property of the procedure that will need to be verified. It’s the 

formalization of a requirement that happens to use Ada syntax. 

Moreover, a postcondition can refer to the values of variables and/or 

global data, both at the point of call and the point of return, and a 

function postcondition can refer to the value being returned by the 

function. 
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A subprogram can also have a precondition (a Boolean expression), which 

is a requirement that the caller needs to satisfy and that is assumed to be 

True by the called subprogram. For example, a procedure that inserts an 

element into a bounded-length data structure would have a precondition 

asserting that the data structure is not full. 

Preconditions and postconditions, and related features such as type 

invariants, are referred to collectively as contract-based 

programming and were introduced in the Ada 2012 version of the 

language. Based on the assertion policy (as specified by a pragma), the 

contracts can be checked at run-time, raising an exception on failure. 

They also support (but do not require) formal analysis, since the Ada 

syntax is the same as is used in SPARK 2014. In SPARK the contracts are 

subject to additional restrictions (for example they must conform to the 

SPARK language subset). The contracts are then considered to be low-

level requirements and verification cases at the same time, used by the 

SPARK proof technology for formal verification, for example to 

demonstrate that if a subprogram satisfies its precondition then on return 

it will satisfy its postcondition. 

In summary, functional contracts (such as pre- and postconditions) serve 

three purposes: 

 As conditions to be formally proved by SPARK technology, 

 As run-time conditions to be evaluated/checked using standard 

Ada semantics, and 

 As comments to the human reader (if checks are not enabled and 

formal methods are not used) in an unambiguous notation (i.e., 

using Ada syntax rather than natural language) 

When used for defining the software’s architecture, Ada specifications 

can obviously express concepts such as modules (packages), groups of 

modules (package hierarchies), subprograms, class inheritance hierarchies, 

etc. Additional interface properties can be expressed using SPARK 

aspects, for example a subprogram’s data and flow dependencies. 

Here’s an example which, for simplicity and purposes of illustration, uses 

visible variables in a package specification to represent a data structure 

for a last-in first-out stack: 
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package Stack_Pkg is 

 

   Max_Length : constant := 100; 

   subtype Element_Type is Integer; 

 

   Length     : Natural range 0.. Max_Length := 0; 

   Stack      : array (1..Max_Length) of Element_Type); 

 

   procedure Push ( Item : in Element_Type ) 

   with Global  => (In_Out => (Length, Stack)), 

        Depends => (Length => Length, 

                    Stack  => (Stack, Length, Item)), 

        Pre     => Length < Max_Length, 

        Post    => Length = Length'Old+1; 

   ... 

end Stack_Pkg; 

 

The Global aspect captures the data dependency: Push will reference 

and assign to the global variables Length and Stack. 

The Depends aspect captures the flow dependency: the new value of 

Length depends on its old value, and the new value of Stack depends 

on the values of Stack, Length, and Item. These dependencies can be 

verified by the SPARK tools (assuming that the subprogram body is 

written in the SPARK subset). The pre- and postconditions reflect some of 

the functional properties of the procedure, and the postcondition 

illustrates the 'Old attribute for referencing the point-of-call value of a 

variable. 

A more realistic version of this example would hide the representation in 

the private part or body of the package. The contracts would then be 

expressed differently, for example with the Global and Depends 

referring to the abstract state of the package rather than visible 

variables. 

Some low-level requirements might not be expressible using the aspect 

mechanism (for example timing constraints). A convenient approach during 

architecture definition is to separately specify those components whose 

requirements can be defined using contracts, from those that cannot. 
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4.2.2.3. Implementation of Hardware/Software Interfaces 

Ada’s type system makes it straightforward to implement 

hardware/software interfaces, while also detecting target 

incompatibilities at compile time. Such interfaces may be defined as part 

of the coding process, but performing this activity during the design 

process has a number of benefits. It may avoid duplication of effort and 

also helps prevent errors from being introduced during the translation 

from design to code. It also allows early error detection through 

compilation checks. 

Package Interfaces 

Applications sometimes need to use types that correspond exactly to the 

native numeric data representations supported on the target machine, for 

example 16- or 32-bit signed and unsigned integers. Such types are 

defined in package Interfaces, which is part of the standard Ada library. 

The exact set of types depends on the target but typically includes 

integer types such as Unsigned_16, Unsigned_32, Integer_16, and 

Integer_32, as well as several floating-point types. The unsigned integer 

types are especially useful for hardware / software interfacing since they 

support bitwise operations including shift and rotate functions. 

Specifying data representation 

Embedded systems often need to deal with external data having a 

specific representation, and Ada has a variety of features to help meet 

this requirement. For example, the following can be defined: 

 the values of the elements in an enumeration type, 

 the layout of a record (size and position of each field, possibly 

with fields overlaid), and 

 the address, size, and/or alignment of a data object. 

The compiler will check that the specified representation is consistent with 

the target hardware. 

For example, Figure 3 shows the required layout (on a “little-endian” 

machine) for a data object consisting of an unsigned 16-bit integer (Num), 
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a 4-bit enumeration value (Urgency) that is either Low, Medium, or High, 

with the respective values 2, 5, and 10), and a Boolean flag (F). 

 

Figure 3: Data Layout 

As with other entities, Ada separates the type’s “interface” (its logical 

structure as a record type with named fields) from its “implementation” 

(its physical representation / layout including size, alignment, and exact 

position of each field). The representation can be specified through a 

combination of aspects and representation clauses. Defining the 

Bit_Order and the Scalar_Storage_Order explicitly means that the 

code will work correctly on both little-endian and big-endian hardware. 

type Urgency_Type is (Low, Medium, High); 

for Urgency_Type use (Low => 2, Medium => 5, High => 10); 

for Urgency_Type'Size use 4; -- Number of bits 
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type Message is 

   record 

      Num     : Interfaces.Unsigned_16; 

      Urgency : Urgency_Type; 

      F       : Boolean; 

   end record 

with 

   Bit_Order            => System.Low_Order_First, 

   Scalar_Storage_Order => System.Low_Order_First, -- GNAT-

specifc aspect 

   Size                 => 32, -- Bits 

   Alignment            => 4;  -- Storage units 

 

for Message use   -- Representation clause 

   record 

      Num     at 0 range 0..15; 

      Urgency at 2 range 0..3; 

      F       at 3 range 2..2; 

   end record; 

 

The “at” syntax in the record representation clause specifies the offset (in 

storage units) to the storage unit where the field begins, and the bit 

positions that are occupied. A field can overlap multiple storage units. 

When the program specifies these kinds of representational details, it’s 

typical for the application to read a “raw” value from an external source, 

and in such cases it is important to ensure that such data values are valid. 

In the above example, the Urgency field needs to have one of the 

values 2, 5, or 10. Any other value has to be detected by the program 

logic, and Ada’s 'Valid attribute can perform that check. The following 

example illustrates a typical style: 

M : Message; 

... 

Device.Read (M);  -- Reads a value into M 

if not M.Urgency'Valid then 

   ... -- Report non-valid input value 

else 

   ... -- Normal processing 

end if; 
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The 'Valid attribute can be applied to data objects from numeric and 

enumeration types. It is useful when the permitted values for the object 

are a proper subset of the full value set supported by the object’s 

representation. 

Numeric types 

Another feature related to hardware/software interfaces is Ada’s 

numeric type facility (integer, floating-point, fixed-point). The 

programmer can specify the type’s essential properties, such as range 

and precision, in a machine-independent fashion; these will be mapped to 

an efficient data representation, with any incompatibilities detected at 

compile time. As an example: 

type Nanoseconds is range 0 .. 20_000_000_000; 

 

V : Nanoseconds; 

 

The above code requires integers up to 20 billion to be represented. This 

would only be accepted on a 64-bit machine, and the compiler would 

reject the program if the target lacks such support. This can even be made 

explicit as part of the type declaration: 

type Nanoseconds is range 0 .. 20_000_000_000 

with Size => 64; 

 

V : Nanoseconds; 

 

The compiler will check that 64 bits are sufficient, and that it can be 

implemented on the target computer. 

Similar constraints can be expressed for floating-point types: 

type Temperature is digits 14; 

 

V : Temperature; 
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At least 14 digits of decimal precision are required in the representation 

of Temperature values. The program would be accepted if the target has 

a 64-bit floating point unit, and would be rejected otherwise. 

4.2.3. Integration of C components with Ada  
 

Contributions 

Objectives Software Coding (A-2[6]: 5.3.1.a) 
Software Integration (A-2[7]: 5.4.1.a) 

Activities Software Coding (5.3.2.a) 
Software integration (5.4.2.a) 

 

C is widely used for embedded development, including safety-critical 

systems. Even where Ada is the main language for a system, components 

written in C are very commonly included, either from legacy libraries or 

third party software. (Languages such as Java and C++ are used much 

less frequently. This is due in part to their semantic complexity and the 

difficulty of demonstrating compliance with certification standards, for 

example for the C++ standard library or the Java Garbage Collector.) 

Friendly cooperation between Ada and C is supported in several ways 

by AdaCore tools and the Ada language. 

 Most of the tools provided by AdaCore (compiler, debugger, 

development environments, etc.) can support systems written 

entirely in Ada, in a mixture of Ada and C, and entirely in C. 

 Specific interfacing tools are available to automatically generate 

bindings between Ada and C, either creating Ada specification 

from a C header file (g++ -fdump-ada-spec) or a C header file 

from an Ada specification (gcc -gnatceg). These binding 

generators make it straightforward to integrate C components in 

an Ada application or vice versa. 

 The Ada language directly supports interfacing Ada with other 

languages, most notably C (and also Fortran and COBOL). One 

of the standard libraries is a package Interfaces.C that 

defines Ada types corresponding to the C basic types (int, char, 
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etc.) and implementation advice in the Ada Language Reference 

Manual explains how to import C functions and global data to be 

used in Ada code, and in the other direction, how to export Ada 

subprograms and global data so that they can be used in C. 

 The GNAT Pro compiler uses the same back end technology for 

both Ada and C, facilitating interoperability. 

 A project using a C codebase can incrementally introduce Ada or 

SPARK. Technologies allowing SPARK to specify a component 

implemented in C, or compiling SPARK into C code, are under 

development [9]. This allows progressive adoption of higher-tier 

languages without losing the investment made in existing 

components. 

4.2.4. Robustness / defensive programming  
 

Contributions 

Objectives Software Coding (A-2[6]: 5.3.1.a) 
Reviews and Analyses of Source Code: Accuracy and 
consistency (A-5[6]: 6.3.4.f) 

Activities Software Coding (5.3.2.b – standards)  
Software Coding (5.3.2.c – inadequate/incorrect inputs)  
Reviews and Analyses of Source Code (6.3.4) 
Robustness Test Cases (6.4.2.2) 

 

Robustness means ensuring correct software behavior in the presence of 

abnormal input, and (as per DO-178C / ED-12C) such behavior should 

be defined in the software requirements. There is no fundamental 

difference between requirements concerning abnormal input (robustness 

requirements) and those concerning normal input (functional requirements). 

One approach to meeting robustness requirements is through defensive 

programming techniques; that is, code that detects incorrect input and 

performs the appropriate actions. However, this has two undesirable side 

effects. 
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 “Correct behavior in case of incorrect input” is sometimes difficult 

to define, resulting in code that cannot be verified by 

requirements based tests. Additional test cases based on the code 

itself (called “structural testing”) are not acceptable from a DO-

178C / ED-12C perspective, since they are not appropriate for 

revealing errors. 

 Unexercised defensive code complicates structural coverage 

analysis. It can’t be classified as “extraneous” (since it does meet 

a requirement), but neither can it be considered as “deactivated” 

(since it is intended to be executed when the input is abnormal). 

As with any other non-exercised code, justification should be 

provided for defensive code, and this may entail difficult 

discussions with certification authorities. 

An alternative approach is to ensure that no invalid input is ever supplied 

(in other words, to make each caller responsible for ensuring that the input 

is valid, rather than having the callee deal with potential violations). This 

can be done through the use of Ada 2012 contracts. Here’s an example, 

a procedure that interchanges two elements in an array: 

type Float_Array is array (1..100) of Float; 

 

procedure Swap (FA     : in out Float_Array;  

                I1, I2 : in Integer); 

-- I1 and I2 have to be indices into the array,  

--  i.e., in FA'Range 

 

procedure Swap (FA     : in Float_Array; 

                I1, I2 : in Integer) is 

   Temp : Float; 

begin 

   if I1 in FA'Range and then I2 in FA'Range then 

      Temp    := FA (I1); 

      FA (I1) := FA (I2); 

      FA (I2) := Temp; 

   end if; 

end Swap; 

 

The above example illustrates the ambiguity of the requirements for 

defensive code. What does it mean to invoke Swap when one or both 
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indices are out of range? Not doing anything (which is the effect of the 

above code) is a possible answer, but this should be identified as a 

derived requirement (since it is an additional behavior of the component). 

Other possibilities: 

 Raise an exception 

 Report the error through an additional out parameter to the 

procedure, or as a status value returned (if the subprogram were 

expressed as a function rather than a procedure) 

 Map an out-of-bounds low value to FA'First, and an out-of-

bounds high value to FA'Last 

Even if one of these options is chosen as the required behavior, there are 

both efficiency questions (why should the procedure spend execution time 

checking for a condition that is expected to be met) and methodological 

issues with such defensive code. 

The responsibility should really be on the caller to avoid invoking the 

procedure if any of the actual parameters has an incorrect value. A 

comment in the code states that the indexes should be in range, but Ada 

2012 allows formalizing this comment in an automatically verifiable way: 

type Float_Array is array (Positive range <>) of Float; 

 

procedure Swap (FA : in out Float_Array; I1, I2 : Integer) 

   with Pre => I1 in FA'Range and then I2 in FA'Range 

 

procedure Swap (FA : in Float_Array; I1, I2 : Integer) is 

   Temp : Float; 

begin 

   Temp    := FA (I1); 

   FA (I1) := FA (I2); 

   FA (I2) := Temp; 

end Swap; 

The comment has been replaced by a precondition, which is part of the 

procedure specification. Assuming proper verification at each call site, 

defensive code in the implementation of the procedure is not needed. The 

requirement is now to check that the values passed at each call meet the 
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precondition, and to take appropriate action if not. This action may differ 

from call to call, and may involve further preconditions to be defined 

higher up in the call chain. 

Enforcement of these preconditions may be accomplished through several 

possible activities: 

 Code reviews using the Ada contracts as constraints. This is least 

formal technique, but the explicit specification of the 

preconditions in Ada contract syntax (versus comments) helps 

improve the thoroughness of the review and avoids the potential 

ambiguity of requirements expressed in natural language. 

 Enabling dynamic checks during testing, and removing them in the 

final executable object code. Run-time checks are generated for 

pre- and postconditions if the program specifies 

pragma Assertion_Policy (Check) and the code is compiled 

with the compiler switch -gnata. A violation of a pre- or 

postcondition will then raise the Assertion_Error exception. 

After testing and related verification activities achieve sufficient 

assurance that no violations will occur, the checking code can be 

removed (either by pragma Asserion_Policy(Ignore) or by 

compiling without -gnata). 

 Enabling dynamic checks during testing, and keeping them in the 

final executable object code. In this case, the software 

requirements should define the expected behavior in case a pre- 

or postcondition is violated, for example to reset the application 

to a known safe state as soon as an inconsistency is detected. 

 Static analysis or formal proof. The CodePeer technology takes 

preconditions into account as part of its analysis. The tool can 

statically verify (or else report otherwise) that (1) the 

precondition is strong enough to guarantee the absence of run-

time errors in the subprogram, and (2) every call satisfies the 

precondition. In order to gain DO-178C / ED-12C credit, 

CodePeer needs to be qualified at level TQL-5 for the 

corresponding activity. Analogously for the SPARK tools, for code 

that adheres to the SPARK language subset. 
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The methods and activities adopted to address the robustness issue should 

be described in the software plans and, when applicable, in the software 

development standards (requirements and/or code standards). 

Note that pre- or postcondition contracts do not in themselves implement 

robustness requirements. Instead they help to formalize and verify such 

requirements (through static analysis, formal proof, or testing). The 

robustness code is the code that is developed, if any, to make sure that 

these contracts are respected. 

4.2.5. Defining and Verifying a Code Standard 

with GNATcheck and GNAT2XML  

 
Contributions 

Objectives Software Planning Process (A-1[5]: 4.1.e) 
Software Coding (A-2[6]: 5.3.1.a) 
Reviews and Analyses of Source Code (A-5[4]: 6.3.4.d) 

Activities Software Planning Process Activities (4.2.b) 
Software Development Standards (4.5.b, 4.5.c) 
Software Coding (5.3.2.b) 
Reviews and Analyses of Source Code (6.3.4) 

 

Defining a Software Code Standard serves at least two purposes: 

 It helps to make the application source code consistent, more 

verifiable, and more easily maintainable. While these qualities 

do not have a direct safety benefit, adherence to a code 

standard will improve the efficiency of the source code 

verification activities. 

 It can prevent the use of language features that complicate 

software product verification or introduce potential safety issues. 

A common example is the deallocation of dynamically allocated 

objects, which can lead to dangling references if used incorrectly. 

Verification that a program is not susceptible to such errors would 
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require thorough and complex analysis, and as a result it’s typical 

for a code standard to prohibit deallocation. 

GNATcheck provides an extensive set of user-selectable rules to verify 

compliance with various Ada coding standard requirements. These 

includes style convention enforcement (casing, indentation, etc.), detection 

of features that are susceptible to misuse (floating-point equality, goto 

statements), static complexity checks (block nesting, cyclomatic complexity) 

and detection of features with complex run-time semantics (tasking, 

dynamic memory). 

Since a code standard may include qualitative rules, or rules that are not 

handled by GNATcheck, verifying that the source code complies with the 

standard is not always fully automatable. However, there are two ways 

to extend automated verification: 

 GNATcheck’s rules are extended on a regular basis in response 

to customer input, and the tool’s enforcement of the new rules is 

eligible for qualification. Even in the absence of tool qualification, 

the tool can still save time during verification by detecting rule 

violations. 

 Users can define their own rules as well, in particular using the 

GNAT2XML tool. GNAT2XML transforms an Ada syntax tree into 

an XML file, making it very easy for a third party to develop a 

checker based on XML technologies such as XPath. 

One issue that comes up with a code standard is how to apply it 

retrospectively to an existing code base. The first time a compliance 

checking tool is run, it would not be uncommon to find hundreds or even 

thousands of deviations. Fixing them all is not only a cumbersome and 

tedious task, but as a manual activity it’s also a potential for introducing 

new errors into the code. As a result, it is often more practical to focus on 

those deviations that are directly linked to safety, rather than trying to 

update the entire application. Then for newly written code the compliance 

checker can verify that no new deviations are introduced. Deviation 

identification may be monitored (e.g. with SonarQube or SQUORE) and 

viewed with AdaCore’s GNATdashboard tool. This approach can provide 

an analysis over time, for example showing the progress of removal of 

certain categories of deviations that were present in a given baseline. 
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Another practicality with code standards is that some rules might need to 

admit deviations in specific contexts when justified (for example the goto 

statement might be acceptable to implement state transitions in code that 

simulates a finite-state machine, and be forbidden elsewhere). 

GNATcheck allows adding local check exemptions, around a statement or 

a piece of code. Such exemptions and their justification would then 

appear in the tool’s report. 

TQL-5 qualification material is available for GNATcheck. 

4.2.6. Checking source code accuracy and 

consistency with CodePeer 
 

Contributions 

Objectives Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f) 

Activities Reviews and Analyses of Source Code (6.3.4) 

 

“Accuracy and consistency” is a rather broad objective in DO-178C / ED-

12C, identifying a range of development errors that need to be 

prevented. Satisfying this objective requires a combination of reviews, 

analyses and tests, and tools may be used for some of these activities. 

CodePeer specifically targets issues that correspond to Ada exceptions, 

such as scalar overflow, range constraint violations, and array indexing 

errors. It also detects other errors including reads of uninitialized 

variables, useless assignments, and data corruption due to race conditions. 

CodePeer handles all versions of the Ada language standard, from Ada 

83 through Ada 2012, without any restrictions or additional annotation. 

Since CodePeer’s conservative analysis may flag constructs that in fact 

are correct, the tool’s output report needs to be manually reviewed so 

that such “false alarms” can be discarded. This issue is common to all 

sound static analysis tools; i.e., if a tool detects all instances of a given 

potential error, then it will sometimes diagnose correct code as containing 

an error. 

TQL-5 qualification material is available for CodePeer. 
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4.2.7. Checking worst case stack 

consumption with GNATstack 
 

Contributions 

Objectives Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f) 

Activities Reviews and Analyses of Source Code (6.3.4) 

 

Stack usage is one of the items listed in the “source code accuracy and 

consistency” objective; i.e., ensuring that the application has sufficient 

stack memory reserved during program execution. Verification is often 

achieved by running test cases and measuring the actual stack space 

used. This approach may provide a false sense of confidence, however, 

since there is no evidence that the worst case usage has been addressed. 

A more precise analysis method is to statically determine the actual stack 

consumption, looking at the memory statically allocated by the compiler 

together with the stack usage implied by the subprogram call graphs. The 

GNATstack tool can perform this analysis for Ada and C, determining the 

maximum amount of memory needed for each task stack. 

In many cases, however, not everything can be statically computed; 

examples are recursive calls, dynamically sized stack frames, and system 

calls. In such cases, the user can provide a worst-case estimate as input to 

GNATstack’s computation. 

TQL-5 qualification material is available for GNATstack. 
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4.2.8. Compiling with the GNAT Pro compiler  
 

Contributions 

Objectives Integration Process (A-2[7]: 5.4.1.a) 
Reviews and Analyses of Integration (A-5[7]: 6.3.5.a) 

Activities Integration Process (5.4.2.a, 5.4.2.b, 5.4.2.d) 
Reviews and Analyses of Integration (6.3.5) 
Software Development Environment (4.4.1.f) 

 

GNAT Pro is a gcc-based Ada and C compilation toolsuite that is widely 

used by developers of high assurance software, in particular in a DO-

178C / ED-12C context. It is available on a broad range of platforms, 

both native and cross. Embedded targets include various RTOSes for 

certified applications (such as VxWorks 653, VxWorks 6 Cert, Lynx178, 

PikeOS) as well as bare metal configurations, for a wide range of 

processors (such as PowerPC and ARM). 

The Ada language helps reduce the risk of introducing errors during 

software development (see [7]). This is achieved through a combination of 

specific programming constructs together with static and dynamic checks. 

As a result, Ada code standards tend to be shorter and simpler than C 

code standards, since many issues are taken care of by default. The 

GNAT Pro compiler and linker provide detailed error and warning 

diagnostics, making it easy to correct potential problems early in the 

development process. 

As with all AdaCore tools, the list of known problems in the compiler is 

kept up to date and is available to all subscribers to the technology. A 

safety analysis of the list entries is also available, helping developers 

assess potential impact and decide on appropriate actions. Possible 

actions are code workarounds or a choice of a different set of compiler 

code generation options. 

For certain Ada language features the GNAT Pro compiler may generate 

object code that is not directly traceable to source code. This non-

traceable code can be verified using a traceability analysis as described 

in Section 4.2.13. 
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4.2.9. Using GNATtest for low-level testing 
 

Contributions 

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d) 
Review and Analyses of Test procedures (A-7[1]: 6.4.5.b) 
and results (A-7[2]: 6.4.5.c) 

Activities Normal Range Test Cases (6.4.2.1) 
Robustness Test Cases (6.4.2.2) 
Review and Analyses of Test procedures and results (6.4.5) 
Software Verification Process Traceability (6.5.b, 6.5.c)  

 

The software architecture is developed during the design process, 

identifying components and sometimes subcomponents. The behavior of 

each terminal component is defined through a set of low-level 

requirements. Typically, low-level testing consists in 

1. Developing test cases from the low-level requirements, 

2. Implementing the test cases into test procedures, 

3. Exercising the test procedures separately on one or more 

components, and 

4. Verifying the test results 

GNATtest may be used to develop the test data. Test cases and 

procedures are produced in the Ada language. The general approach is 

for GNATtest to generate an Ada test harness around the component 

under test, leaving the tester to complete test skeletons based on the 

predefined test cases, with actual inputs and expected results. Since the 

test generation in carried out in a systematic way, it’s very easy to 

identify where tests are missing (they will be reported as non-

implemented). 

The tool works iteratively. If it’s called a second time on a set of files that 

have changed, it will identify the changes automatically, preserving 

existing tests and generating new tests for newly added subprograms. 
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A component under test may call external components. One possible 

approach is to integrate the components incrementally. This has the 

benefit of preserving the actual calls, but it may be difficult to accurately 

manage the component interfaces. Another approach is to replace some 

of the called subprograms with dummy versions (stubs). GNATtest support 

both approaches, and can generate stub skeletons if needed. 

The functionality just described is common to most test tools. A novel and 

useful feature of GNATtest is its ability to develop the test cases during 

the design process. (Note that independence between design and test 

cases is not required. Independence is required between code 

development and test case derivation, to satisfy the independence criteria 

of objectives A6-3 and 4 for software level A and B). 

Approach 1: Test cases are not specified in Ada specifications 

A traditional approach can be followed by GNATtest – that is to say, 

tests cases are described outside of the Ada specification, but linked to a 

particular function. When working this way, GNATtest will generate one 

test per subprogram; for example : 

function Sqrt (X : Float) return Float; 

This will generate one unique test procedure skeleton. 

Approach 2: Test cases are developed during the design process  

In this approach, Ada package specifications are considered as an output 

of the design process (see Section 4.2.2). More than one test per 

subprogram may be developed. Here’s a simple example: 
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function Sqrt (X : Float) return Float 

with Pre       =>  X >= 0.0, 

     Post      =>  Sqrt'Result >= 0.0, 

     Test_Case => 

       (Name     => "test case 1", 

        Mode     => Nominal, 

        Requires => X = 16.0, 

        Ensures  => Sqrt'Result = 4.0), 

     Test_Case =>  

       (Name     => "test case 2", 

        Mode     => Robustness, 

        Requires => X < 0.0, 

        Ensures  => raise Constraint_Error  

                    with "Non-negative value needed"); 

 

As part of the specification for the Sqrt function, the GNAT-specific 

aspect Test_Case is used to define two test cases. The one named “test 

case 1” is identified as Nominal, which means that the argument supplied 

as Requires should satisfy the function’s precondition, and the argument 

supplied as Ensures should satisfy the function’s postcondition. The test 

case named “test case 2” is specified as Robustness, so the pre- and 

postconditions are ignored. As with all test cases, these are based on the 

function’s requirements. 

When generating the test harness, GNATtest provides a skeleton of the 

test procedures, and the user has to plug in the input values (from the 

Requires argument) and the expected results (from the Ensures 

argument) for all test cases defined in the Ada package specification. 

GNATtest will insert specific checks to verify that, within “test case 1”, all 

calls made to Sqrt have X equal to 16.0, and each value returned is 

equal to 4.0. This not only verifies that the test succeeded, but also 

confirms that the test conducted is indeed the intended test. As a result, 

GNATtest verifies that the test procedures comply with the test cases, that 

they are complete (all test cases have been implemented and exercised), 

and that the test results are as expected. 

In addition, the traceability between test case, test procedures and test 

results is direct, and does not require production of further trace data. 
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Approach 3: Test case are developed separately from the design 

process 

The two test cases developed in Approach 2 are not sufficient to fully 

verify the Sqrt function. To comply with DO-178C / ED-12C Table A-6 

Objectives 3 and 4, the activities presented in §6.4.2 (Requirements-

Based Test Selection) for normal and robustness cases are applicable. It is 

not generally practical to include all the test cases in the Ada package 

specification. 

Another consideration is the criterion of independence between code and 

test case development. Thus Approach 2 is applicable only if the Ada 

package specification is developed during the design process (and not 

during the coding process). 

An alternative approach is to develop the test data separately from the 

Ada package specifications, while some “meta” test cases (or test case 

“classes”) are still defined and used by GNATtest to develop the test 

harness. Here’s an example: 

function Sqrt (X : Float) return Float 

with Test_Case =>  

       (Name     => "test case 1", 

        Mode     => Nominal, 

        Requires => X > 0.0, 

        Ensures  => Sqrt'Result > 0.0), 

     Test_Case =>  

       (Name     => "test case 2", 

        Mode     => Nominal, 

        Requires => X = 0.0, 

        Ensures  => Sqrt'Result = 0.0), 

     Test_Case =>  

       (Name     => "test case 3", 

        Mode     => Robustness, 

        Requires => X < 0.0, 

        Ensures  => raise Constraint_Error 

                    with "Non-negative value needed"); 

 

In this approach, three “meta” test cases are identified, defining the 

expected high-level characteristics of the function. For each “meta” test 

case, at least one actual test case will be developed. In this example, at 
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least three test cases need to be defined, corresponding to an actual 

parameter that is positive, zero, or negative, with the respective 

expected results of positive, zero, and raising an exception. 

As in Approach 2, the skeleton generated by GNATtest must be 

completed by the user, but in that case the data produced are the actual 

test cases (and cannot be considered as test procedures). For example, 

based on the range of the input, the user should define tests for boundary 

values, for the value 1, or any representative data (equivalent classes). 

As previously, GNATtest will insert specific checks for the 3 “meta” test 

cases. Then GNATtest will verify that at least one test case for each 

“meta” test case has been implemented, and that the results are correct. 

Note that in this approach, the test procedures become the internal files 

generated by GNATtest. Therefore, as it will be difficult to verify the 

correctness of these files, GNATtest qualification is needed in order to 

satisfy objective A7-1 “test procedures are correct”. 

4.2.10. Using GNATemulator for low-level and 

software / software integration tests 
 

Contributions 

Objectives Software testing (A-6[1,2,3,4]: 6.4.a, 6.4.b, 6.4.c, 6.4.d) 

Activities Test environment (6.4.1) 
Software Integration testing (6.4.3.b) 
Low Level testing (6.4.3.c) 
Structural coverage analysis (6.4.4.2.a) 

 

As stated in DO-178C/ED-12C §6.4.1: 

“More than one test environment may be needed to satisfy the 

objectives for software testing.... Certification credit may be 

given for testing done using a target computer emulator or a host 

computer simulator”. 

But an integrated target computer environment is still necessary to satisfy 

the verification objective (A6-5) that the executable object code is 



Frédéric Pothon & Quentin Ochem 

77 

compatible with the target computer. These tests, referred to as 

“Hardware / Software integration tests”, are necessary since some errors 

might only be detected in this environment. As stated in DO-330 / ED-

215, FAQ D.3, qualification of a target emulator or simulator may be 

required if they are used to execute the Hardware / Software 

integration tests. 

Although GNATemulator might thus not be applicable in the scope of 

Hardware / Software integration tests, it is allowed for all other tests 

(see DO-330 / ED-215 FAQ D.3). Two approaches may be used: 

 To perform some tests (that may be part of low-level testing 

and/or Software / Software integration testing) on 

GNATemulator, and to claim credit on this environment for 

satisfying the objectives concerning the Executable Object Code’s 

compliance with its requirements 

 To use GNATemulator to prototype and gain confidence in tests 

prior to re-running the tests on the actual target computer 

environment. 

In any event GNATemulator helps considerably in the early detection of 

errors in both the software and the test procedures. GNATemulator works 

in much the same fashion as a “Just In Time” (JIT) compiler: it analyzes the 

target instructions as it encounters them and translates them on the fly (if 

not done previously) into host instructions, for example an x86. This makes 

it particularly suitable for low-level testing, at least for those tests that do 

not depend on actual timing on the target. 

GNATemulator also provides an easy way to interact with emulated 

devices and drivers on the host. Reads and writes to emulated memory 

can trigger interactions with such code, through the GNATbus interface. 

GNATemulator can be used with the GNATcoverage tool for structural 

coverage analysis. As long as the test environment with GNATemulator is 

acceptable for analyzing the structural coverage, there is no need to 

exercise the tests twice (as is typically done when the analysis is 

performed on instrumented code). 
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4.2.11. Structural code coverage with 

GNATcoverage 
 

Contributions 

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c) 

Activities Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b) 

 

The structural coverage analysis objectives of DO-178C / ED-12C serve 

to verify the thoroughness of the requirements-based tests and to help 

detect unintended functionality. The scope of this analysis depends on the 

Development Assurance Level: 

 Statement coverage for Level C, 

 Statement and Decision coverage for level B, and 

 Statement, Decision and Modified Condition / Decision Coverage 

(MC/DC) at level A. 

These three criteria will be explained through a simple (and artificial) 

example, to determine whether a command should be issued to open the 

aircraft doors: 

Closed_Doors               : Integer; 

Open_Ordered, Plane_Landed : Boolean; 

... 

 

if Closed_Doors > 0 and then Open_Ordered and then 

Plane_Landed then 

   Open_Doors; 

end if; 

Note: the Ada short-circuit form “and then” is equivalent to the C shortcut 

boolean operator “&&”. 

This code fragment consists of two statements: 

 The enclosing “if” statement 
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 The enclosed “Open_Doors;” statement, which will be executed if 

the decision in the “if” statement is True 

The “if” statement in turn contains a single decision: 

Closed_Doors > 0 and then Open_Ordered and then Plane_Landed 

and this decision contains three conditions: 

 Close_Doors > 0 

 Open_Ordered 

 Plane_Landed 

At the statement level, both statements need to be executed during 

requirements-based tests. This criterion may be achieved with only one 

test, with all three conditions True. 

It’s important to realize that this piece of code is the implementation of 

one or several requirements, and a single test with all three conditions 

True will almost certainly fail to satisfy the requirement coverage 

criterion. Further, this single test is probably not sufficient to detect 

implementation errors: the purpose of testing is to detect errors, not to 

achieve structural code coverage. Structural coverage analysis is mainly a 

test completeness activity. 

At the decision level, each decision must be exercised both with a True 

and False outcome. In the example above, this may be achieved with only 

two tests; one test with all three conditions True, and a second test with at 

least one False. 

The third level is called MC/DC, for Modified Condition / Decision 

Coverage. The goal is to assess that each condition within a decision has 

an impact, independently of other conditions, on the decision outcome. 

The motivation for MC/DC is most easily appreciated if we first look at 

what would be required for full coverage of each possible combination of 

truth values for the constituent conditions. This would require eight tests, 

represented in the following table: 
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Closed_Doors > 0 Open_Ordered Plane_Landed Result 

True True True True 

True True False False 

True False True False 

True False False False 

False True True False 

False True False False 

False False True False 

False False False False 

 

In the general case, 2n cases would be needed for a decision with n 

conditions, and this would be impractical for all but small values of n. The 

MC/DC criterion is achieved by selecting combinations demonstrating that 

each condition contributes to the outcome of the decision. 

With MC/DC, each condition in the decision must be exercised with both 

True and False values, and each condition must be shown to 

independently affect the result. That is, each condition must be exercised 

by two tests, one with that condition True and the other with the condition 

False, such that: 

 The result of the decision is different in the two tests, and 

 For each other condition, the condition is either True in both tests 

or False in both tests 

Here the MC/DC criteria may be achieved with four tests: one test with 

all three conditions True, and each other test changing the value of one 

condition to False: 

 Closed_Doors 
> 0 

Open_Ordered Plane_Landed Result 

Baseline True True True True 

Test 1 False True True False 

Test 2 True False True False 

Test 3 True True False False 
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Each condition thus has two associated tests, the one marked as baseline, 

and the one with an italicized False in that condition’s column. These two 

tests show how that condition independently affects the outcome: The 

given condition is True in the baseline and False in the other, each other 

condition has the same value in both tests, and the outcome of the two 

tests is different. 

In the general case, the MC/DC criterion for a decision with n conditions 

requires n+1 tests, instead of 2n. For more information about MC/DC, see 

[10]. 

GNATcoverage handles all three levels of structural code coverage. It 

reports this both for Ada and C source code. Moreover, the 

GNATcoverage technology does not require source code instrumentation. 

Most code coverage technologies instrument the code (either at source or 

object level) to insert logging commands between statements and 

decisions to track execution. This requires performing the test twice, one 

execution for verification of compliance with the requirements, and a 

second (with instrumented code) for structural coverage analysis. 

GNATcoverage is based on the instrumentation of the execution platform, 

so there is no modification of the code being tested. GNATcoverage can 

operate with several execution environments: 

 On an emulation platform (e.g. GNATemulator) that can generate 

a binary execution trace, 

 On a native platforms with a virtualization layer (such as 

Valgrind or DynamoRIO) that can generate a binary execution 

traces, or 

 On actual hardware with a probe supporting real-time tracing 

(such as a Nexus interface) that can retrieve binary execution 

information. 

Selection of one of these approaches is based on hardware constraints 

and on test environment capabilities. For example, hardware may or may 

not have real-time tracing available. 

Although the coverage data generated by an execution trace is in terms 

of the object code (instruction or branch coverage), this is not sufficient to 
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determine whether MC/DC has been achieved. GNATcoverage handles 

this issue by using static information generated by the compiler (either for 

Ada or for C) that conveys the relationship between the source code and 

the binary. 

TQL-5 qualification material is available for GNATcoverage. 

4.2.12. Data and control coupling coverage 

with GNATcoverage  
 

Contributions 

Objectives Test Coverage Analysis (A-7[8]: 6.4.4.d) 

Activities Structural Coverage Analysis (6.4.4.2.c) 

 

DO-178C / ED-12C objective A7-8 states: 

“Test coverage of software structure (data coupling and control 

coupling) is achieved”. 

This is part of overall structural coverage analysis. Although structural 

coverage activities (statement, decision, or MC/DC) can be carried out at 

various times, it is often performed during low-level testing. This allows 

precise control and monitoring of test inputs and code execution. If code 

coverage data is retrieved during low-level testing, structural coverage 

analysis can assess the completeness of the low-level tests. 

In addition, the completeness of the integration tests needs to be verified. 

For that purpose the integration tests have to be shown to exercise the 

interactions between components that are otherwise tested independently. 

This is done through data and control coupling coverage activities. Each 

data and control coupling relationship must be exercised at least once 

during integration tests. 

Data and control coupling are the interfaces between components, as 

defined in the architecture. More specifically, data coupling concerns the 

data objects that are passed between modules. These may be global 

variables, subprogram parameters, or any other data passing 

mechanisms. Control coupling concerns the influence on control flow. Inter-
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module subprogram calls are obvious cases of control coupling (they 

initiate a control flow sequence) but subtler cases such as a global 

variable influencing a condition can be also considered as control 

coupling. For example, if module Alpha has something like: 

if G then 

   Do_Something; 

else 

   Do_Something_Else; 

end if; 

and in a module Beta: 

G := False; 

Then this is really an example of control coupling, and not data coupling. 

Using a global variable to effect this control flow is considered an 

implementation choice. 

In the software engineering literature, the term “coupling” generally has 

negative connotations since high coupling can interfere with a module’s 

maintainability and reusability. In DO-178C / ED-12C there is no such 

negative connotation; coupling simply indicates a relationship between 

two modules. That relationship needs to be defined in the software 

architecture and verified by requirements-based integration tests. 

One strategy to verify coverage of data and control coupling is to 

perform statement coverage analysis during integration testing. 

GNATcoverage may be used in this way to detect incomplete execution 

of such data and control flows. This may require coding constraints, such 

as limited use of global data, or additional verification for such data: 

 Parameter passing and subprogram calls: Statement coverage 

ensures that all subprograms are called at least once 

 Global data: Statement coverage ensures that all uses 

(read/write) of global data are exercised at least once. 
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4.2.13. Demonstrating traceability of source to 

object code 
 

Contributions 

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c) 

Activities Structural Coverage Analysis (6.4.4.2.b) 

 

For DAL A software, DO-178C/ED-12C objective A7-9 requires 

identifying if code not visible at the source code level is added by the 

compiler, linker, or other means; if so, it is necessary to verify such code 

for correctness. Compiler-added code typically takes the form of extra 

branches or loops that are explicit in the object code but not at the source 

level. One example in Ada is the implicit checking that is often required 

by the language semantics. 

A statement like: 

A : Integer range 1..10; 

B : Integer; 

... 

A := B; 

 

may be compiled into the following pseudo-object code: 

if B >= 1 or else B <= 10 then 

   A := B; 

else 

   raise Constraint_Error; 

end if; 

 

This assumes that checks are retained at run-time. However, even with 

checks disabled, a compiler for either Ada or C may still need to 

generate non-traceable code to implement some language constructs. An 

Ada example is array slice assignment, which results in loops at the object 

code level on typical target hardware: 
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A, B : String (1..100) 

... 

A (1..50) := B (11..60); 

 

AdaCore has verified the correctness of non-traceable code for GNAT 

Pro Ada and GNAT Pro C, based on representative samples of source 

code. Samples were chosen for the language features permitted by 

common code standards. Object code was generated for each sample, 

and any additional (non-traceable) code was identified. For each non-

traceable feature, additional requirements and tests were provided to 

verify that the behavior of the resulting code was indeed as required. 

Traceability analyses for GNAT Pro Ada and GNAT Pro C are available. 

These analyses take into account the specific compiler version, compiler 

options, and code standard that are used, to ensure that the code 

samples chosen are representative. If some specific language features, 

options, or compiler versions are not suitable for the analysis, appropriate 

adaptations are made. 
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4.3. Use case #1b: Coding with Ada using OOT 

features 
This use case is based on use case #1, taking advantage of Ada and the 

AdaCore ecosystem, but with a design that uses Object-Oriented 

Technologies. As a result, the following “vulnerabilities” identified in the 

technology supplement DO-332 / ED-217 need to be addressed: 

 Local type consistency 

 Dynamic memory management 

 Parametric polymorphism (genericity) 

 Overloading 

 Type conversion 

 Exception management 

 Component-based development 

4.3.1. Object orientation for the architecture 
 

Contributions 

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a) 

Activities Software Design Process Activities (OO.5.2.2.h) 
Software Development Process Traceability (OO.5.5.d) 

Vulnerabilities Traceability (OO.D.2.1) 

 

Object orientation is a design methodology, a way to compose a system 

where the focus is on the kinds of entities that the system deals with, and 

their interrelationships. Choosing an object-oriented design will thus have 

a significant impact on the architecture, which is expressed in terms of 

classes and their methods (or primitive operations in Ada). This 

architecture can be modeled in many ways, for example with UML class 

diagrams. 
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The use of OOT can affect traceability between low-level requirements 

and code. Without object orientation, traceability is generally between a 

set of requirements and one module, one function or one piece of code. In 

an object-oriented design, as defined in DO-332 / ED-217, §O.O.5.5: 

“All functionality is implemented in methods; therefore, 

traceability is from requirements to the methods and attributes 

that implement the requirements”. 

4.3.2. Coverage in the case of generics 
 

Contributions 

Objectives Test Coverage Analysis (A-7[4,5]: 6.4.4.b, 6.4.4.c) 

Activities Requirement coverage analysis (6.4.4.1) 
Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b) 

Vulnerabilities Parametric Polymorphism (OO.D.1.2) 
Structural Coverage (OO.D.2.2) 

 

Genericity is one of the “related techniques” (not part of OOT) that is 

covered by DO-332 / ED-217. A generic unit is a template for a piece 

of code that can be instantiated with different parameters, including 

types and subprograms. A complication with respect to certification is that 

the same generic unit may have different instantiations that behave 

differently. Consider, for example, a simple generic Ada function that can 

be instantiated with an integer type to perform some basic computation: 

generic 

   type Int_Type is range <>; 

function Add_Saturated (Left, Right, Max : Int_Type) return 

Int_Type 

  with Pre => Max>0; 
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function Add_Saturated (Left, Right, Max : Int_Type) return 

Int_Type is 

   Temp : Int_Type; 

begin 

   Temp := Left + Right; 

 

   if Temp > Max then 

      return Max; 

   elsif Temp < -Max then 

      return -Max; 

   else 

      return Temp; 

   end if; 

end Add_Saturated; 

 

Then consider two separate instantiations: 

with Add_Saturated; 

procedure Test_Gen is 

   function Add_1 is new Add_Saturated (Integer); 

 

   type Small_Int is range -10 .. 10; 

   function Add_2 is new Add_Saturated (Small_Int); 

 

   N1 : Integer; 

   N2 : Small_Int; 

begin 

   N1 := Add_1 (6, 6, 10); -- Correctly yields 10 

   N2 := Add_2 (6, 6, 10); -- Raises Constraint_Error 

end Test_Gen; 

 

Calling Add_1 (6, 6, 10) will yield 10 as a result. Calling Add_2 (6, 

6, 10) will raise Constraint_Error on the first addition, since the sum 

Left+Right will be equal to 12 and therefore violate the range 

constraint for Small_Int. 

Different instantiations of the same generic unit can thus exhibit different 

behaviors. As a result, DO-332 / ED-217 specifies that each generic 

instance must be tested (and covered). 
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GNATtest will generate a test harness taking this requirement into 

account. In particular, it will generate a separate testing setup for each 

instance, while keeping a generic test procedure for all of them. 

GNATcoverage can separately report the coverage of each generic 

instance, based on the “-S instance” switch. 

With respect to traceability, the code of a generic instantiation is 

traceable to the source. Indeed, at the point of instantiation, the effect is 

as though the generic template were expanded in place, with formal 

parameters replaced by the actuals. (This expansion is not at the level of 

source text, but rather is based on a program representation where all 

names have been semantically resolved.) As a result, using a generic 

doesn’t add any non-traceable code. Code is traced from the generic 

template to the object code, once per instance. 

4.3.3. Dealing with dynamic dispatching and 

substitutability 
 

Contributions 

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a) 
Local Type Consistency Verification Objective (OO.A-
7[OO 10]: OO.6.7.1) 

Activities Software Design Process Activities (OO.5.2.2.i)  
Local Type Consistency Verification Activity (OO.6.7.2) 

Vulnerabilities Inheritance (OO.D.1.1) 

 

One of the major features of OOT is dynamic dispatching (also called 

“dynamic binding”), which adds considerable expressive power but also 

presents challenges to verification. With dynamic dispatching, the 

subprogram to be invoked on a reference to a target object is not known 

statically but rather is resolved at run time based on which class the 

target object belongs to. This differs from a call through an access-to-

subprogram value in the sense that, with dynamic dispatching, the 

potential destination subprograms are constrained to a specific class 

hierarchy as determined by the type of the reference to the target object 

(the “controlling parameter”, in Ada terms). 
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In Ada, a subprogram that can be invoked through dynamic dispatching – 

this is known as a “primitive subprogram” – can never be removed by a 

subclass; it is either inherited or overridden. Thus on a call that is 

dynamically dispatched, although it is not known at compile time which 

subclass’s version of the subprogram will be invoked, some subclass’s 

implementation of the subprogram will indeed be called. Ada is not 

susceptible to “no such method” errors that can arise with dynamic 

dispatching in some other languages. 

Understanding Substitutability 

From a safety point of view, not knowing the specific target of a given 

call introduces significant issues for verifiability. DO-332 / ED-217 states 

that if an inheritance hierarchy is constructed so that each subclass 

specializes its superclass (i.e., wherever a superclass instance is permitted 

a subclass instance may be substituted) then dynamic dispatching is 

acceptable. This substitutability property for a class inheritance hierarchy 

is known as the “Liskov Substitution Principle” (LSP). 

If a hierarchy complies with LSP, then testing and other verification can be 

conducted based on properties defined at the class level, which will then 

need to be respected by each subclass. As we shall see, this has 

implications on the pre- and postconditions that are allowed when a 

dispatching subprogram is overridden. 

Here is a specific – although simplified – example: an aircraft type with a 

subprogram that is supposed to open the doors. 

package Aircraft_Pkg is 

   type Aircraft is abstract tagged private; 

 

   procedure Open_Doors (Self : Aircraft) 

   with Pre'Class  => Self.On_Ground, 

        Post'Class => Self.Doors_Opened; 

 

   ... 

private 

   ... 

end Aircraft_Pkg; 
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The contracts for the pre- and postconditions reflect the low-level 

requirements: 

 the aircraft has to be on the ground prior to having its doors 

opened, and 

 the doors are opened as a result of the call. 

The Aircraft type could be used as follows: 

procedure Landing_Procedure (My_Aircraft : Aircraft'Class) is 

begin 

   ... 

   while not My_Aircraft.On_Ground loop 

      ... 

   end loop; 

 

   -- Here if My_Aircraft is on the ground 

 

   My_Aircraft.Open_Doors;  -- Dispatching call 

   My_Aircraft.Let_Passengers_Out; 

   ... 

end Landing_Procedure; 

We’re first waiting until the aircraft is actually on the ground, then open 

the doors, then as the doors are opened we let passengers out. 

All types in the Aircraft inheritance hierarchy have to comply with the 

Aircraft contracts. That is, for any type in the Aircraft'Class hierarchy, 

the Open_Doors subprogram for that type can require at most the 

On_Ground precondition and nothing stronger. If a stronger precondition 

were imposed, then a dynamically dispatching call of Open_Doors could 

fail if the actual parameter were of this (non-substitutable) type. The 

extra precondition would not necessarily be known to clients of the root 

type Aircraft. 

Analogously for the postcondition, any type in the Aircraft'Class 

hierarchy has to guarantee at least the Doors_Opened property, since 

this will be assumed by callers of Open_Doors. 

In short, the substitutability property can be summarized as follows: 
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If a type hierarchy is to be substitutable, then a dispatching 

subprogram for a derived type can weaken but not strengthen 

the precondition of the overridden subprogram for its parent 

type, and can strengthen but not weaken the postcondition. 

The class-wide Pre'Class and Post'Class aspects are inherited (unless 

overridden) and have other semantics that directly support this 

substitutability property. The specific (non-class-wide) aspects Pre and 

Post are not inherited and should only be used if the hierarchy does not 

support substitutability. 

Let’s now define a Jet: 

type Jet is new Aircraft with ... 

 

overriding 

procedure Open_Doors (Self : Jet) 

with Pre        => Self.On_Ground and Self.Engines_Off, 

     Post'Class => Self.Doors_Opened and not Self.Pressurized; 

Suppose that Landing_Procedure is invoked on an object of type Jet: 

J : Aircraft'Class := Jet'(...); 

... 

Landing_Procedure (J); 

In the call My_Aircraft.Open_Doors, first the precondition for 

Open_Doors for Aircraft will be evaluated (since the actual parameter 

is of the class-wide type Aircraft'Class. That’s not a problem, since the 

caller sees this precondition. However, then the specific precondition for 

Open_Doors for Jet is evaluated, and there is a problem with the 

additional constraint – requiring the engines to be off. The Jet type 

could have been defined long after the Landing_Procedure 

subprogram was written, so the design of the Landing_Procedure code 

would not have taken the added precondition into account. As a result, 

the Open_Doors procedure could be invoked when the engines were still 

running, violating the requirement. (With run-time assertion checking 

enabled, an exception would be raised.) The type Jet is not substitutable 

for the type Aircraft on invocations of Open_Doors. 
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The non-substitutabiity is reflected in the use of the specific aspect Pre 

rather than the class-wide aspect Pre'Class. In a type hierarchy rooted 

at type T where Pre'Class is specified at each level for a subprogram 

Proc, the effective precondition for a dispatching call X.Proc where X is 

of the type T'Class is simply the precondition specified for Proc for the 

root type T (which is the only precondition known to the caller). In the Jet 

example, if Pre'Class had been used, a dispatching call to Open_Doors 

would not check the Engines_Off condition. 

In short, if a subclass is to be substitutable then it may weaken but not 

strengthen a subprogram’s precondition, and it should use Pre'Class 

rather than Pre. If a subclass needs to strengthen a precondition then it is 

not substitutable and should use Pre rather than Pre'Class. 

The postcondition for Open_Doors for Jet does not have this problem. It 

adds an additional guarantee: pressurization is off after the opening of 

the doors. That’s OK; it doesn’t contradict the expectations of the 

Landing_Procedure subprogram, it just adds an additional guarantee. 

The Jet type illustrated non-substitutability due to precondition 

strengthening. Non-substitutability can also arise for postconditions, as 

illustrated in a slight variation of the Aircraft type: 

package Aircraft_Pkg is 

   type Aircraft is abstract tagged private; 

 

   procedure Open_Doors (Self : Aircraft) 

   with Pre'Class  => Self.On_Ground, 

        Post       => Self.Doors_Opened;  -- Specific, not 

class-wide 

 

   ... 

private 

   ... 

end Aircraft_Pkg; 

Here’s a possible declaration for a hot air balloon: 
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type Hot_Air_Balloon is new Aircraft with ... 

 

overriding 

procedure Open_Doors (Self  : Hot_Air_Balloon) 

with Pre'Class  => Self.On_Ground or Self.Tethered, 

     Post       => Self.Doors_Unlocked; 

In this case, the precondition is relaxed (we’re assuming a short tether). 

This is acceptable, since the landing procedure will still check the stronger 

precondition and wait for the aircraft to be on the ground; the class-wide 

precondition of the root type is checked on a dispatching call. (The 

weaker precondition would be checked on a call such as B.Open_Doors 

where B is either of the specific type Hot_Air_Balloon or the class-

wide type Hot_Air_Balloon'Class.) 

However, a Hot_Air_Balloon is less automated than a Jet: the doors 

don’t open automatically, they just unlock. The Landing_Procedure 

subprogram assumes the postcondition for Aircraft (that the doors are 

opened), but this is not guaranteed for a Hot_Air_Balloon, so 

passengers might be pushed out while the doors are unlocked but still 

closed. The new postcondition is breaking the requirement by weakening 

its parent type’s postcondition, and this is not acceptable. Thus the 

Hot_Air_Balloon type is not substitutable for Aircraft. 

Substitutability defects may be evidence of a number of problems; for 

example, the hierarchy of classes or requirements may be incorrect, or the 

classes may be modeling properties inappropriately. Overall, this 

indicates design issues to be addressed when specifying the low-level 

requirements and/or architecture. 

A natural question is how to detect substitutability defects (or achieve 

confidence that such defects are not present) in the application. DO-332 

/ ED-217 provides three approaches: pessimistic testing, local substitution 

tests, or formal proofs. 

Verifying substitutability by pessimistic testing 

Pessimistic testing is conceptually the easiest to understand. The idea is to 

test at each point of dispatch all possible types that could be substituted. 

In the Landing_Procedure example, assuming that our system is 
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managing both jets and hot air balloons, this would mean two sets of 

tests: one for the Jet type, and one for Hot_Air_Balloon. This is working 

around the difficulty of not knowing statically the potential target of a 

call: we just test all possible scenarios. 

This is particularly appropriate with “flat” hierarchies, which may be 

broad but not deep. An example is an OOP design pattern for an 

abstract root type (such as a container data structure) with concrete 

specializations corresponding to different representational choices. In this 

case, regular requirement-based testing is equivalent to pessimistic 

testing. However, the complexity of additional testing can quickly become 

unmanageable as the depth of the class hierarchy increases. 

Verifying substitutability through requirement-based testing 

In this case verification of substitutability is done on top of regular testing. 

In the above examples the Aircraft, Jet and Hot_Air_Balloon 
requirements are all associated with specific requirement-based tests. 

Substitutability can be demonstrated by running top level tests with 

instances of other types of the class. In other words, tests developed 

based on requirements of Aircraft must pass with instances of Jet and 

Hot_Air_Balloon. This is enough to demonstrate substitutability, 

effectively testing the substitution. This may require more or fewer tests 

depending on OOP usage. In particular, for large class hierarchies, 

testing at the class level is much more cost-effective than testing every 

possible target of every possible dispatching call in the actual code. 

The GNATtest tool supports generation of the appropriate test 

framework for substitution testing; see the GNATtest option --validate-

type-extensions. 

Verifying substitutability through formal proof 

In conjunction with DO-333 / ED-216  (Formal Methods supplement), and 

assuming that requirements can be expressed in the form of pre- and 

postconditions, the consistency between an overriding subprogram and its 

parent type’s version can be verified through formal proof. This can be 

done in particular with the SPARK language. There are two criteria for 

substitutability: 
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 The precondition of a subprogram for a type must imply the 

precondition of each overriding subprogram in the class 

hierarchy. 

 The postcondition of any overriding subprogram for a type must 

imply the postcondition of the corresponding subprogram for 

each ancestor type in the hierarchy 

These preconditions and postconditions – or requirements – must also be 

verified, through either requirement-based testing or formal proofs. 

The SPARK tool can verify consistency of classes of types, and in 

particular consistency of pre- and postconditions as described above. To 

enable such verification, these must be declared as class-wide contracts 

as in the initial example of the Aircraft type above. 

Differences between local and global substitutability 

DO-332 / ED-217 does not require classes to be globally substitutable, 

but only locally; that is, only around actual dispatching points. For 

example, the following code is not globally substitutable, but is locally 

substitutable at the dispatching calls: 

package Aircraft_Pkg is 

   type Aircraft is abstract tagged private; 

 

   procedure Open_Doors (Self : Aircraft) 

   with Pre'Class  => Self.On_Ground, 

        Post'Class => Self.Doors_Opened; 

 

   procedure Take_Off (Self : Aircraft) 

   with Pre'Class  => Self.On_Ground and not 

                      Self.Doors_Opened, 

        Post'Class => not Self.On_Ground; 

   ... 

private 

   ... 

end Aircraft_Pkg; 
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package Aircraft_Pkg.Jet_Pkg is 

   type Jet is new Aircraft with ... 

 

   overriding 

   procedure Open_Doors (Self : Jet) 

   with Pre        => Self.On_Ground and Self.Engines_Off, 

                      -- Not substitutable 

        Post'Class => not Self.Pressurized; 

 

   overriding 

   procedure Take_Off (Self : Aircraft) 

   -- Inherit Aircraft's precondition 

   with Post'Class => not Self.On_Ground and  

                      Self.Speed >= 100.0; 

 

   ... 

private 

   ... 

end Aircraft_Pkg.Jet_Pkg; 

... 

X, Y : Aircraft'Class := Jet'(...) 

... 

 

X.Take_Off; 

Y.Take_Off; 

 

The Jet type is not globally substitutable for Aircraft, since the 

precondition on Open_Doors for Jet is stronger than the precondition on 

Open_Doors for Aircraft. But Jet is locally substitutable in the above 

fragment: 

 The invocations X.Take_Off and Y.Take_Off dispatch to Jet, 

but Jet is substitutable for Aircraft here: 

o The precondition for Take_Off(Aircraft) is inherited 

by Jet, and 

o The postcondition for Take_Off(Aircraft) is 

strengthened by Jet 
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Whether it is easier to demonstrate local versus global suitability for a 

given class depends on the architecture and the ease of identification of 

actual dispatch destinations and substitutability. DO-332 / ED-217 allows 

the applicant to decide on whichever means is the most appropriate. 

4.3.4. Dispatching as a new module coupling 

mechanism 
 

Contributions 

Objectives Test Coverage Analysis (A-7[8]: 6.4.4.d) 

Activities Structural Coverage Analysis (6.4.4.2.c) 

Vulnerabilities Structural Coverage (OO.D.2.2) 

 

With procedural programming, modules can be interfaced, or coupled, 

through parameter passing, subprogram calls or global variables (data 

and control coupling). Object orientation introduces a new way in which 

two modules may interface with each other: by extension / type 

derivation. Following-up on previous examples: 

procedure Control_Flight (Plane : Aircraft'Class) is 

begin 

 

   ... 

 

   -- Dispatching call, may call Take_Off from instances 

   -- defined in other modules, creating coupling  

   -- relationship with those modules 

   Plane.Take_Off;  

 

   ... 

 

end Control_Flight; 

 

Aircraft of different types may be defined in separate modules. A 

connection between these modules and the rest of the application may be 

made by dispatching from this call. All objectives that apply to control 

and data coupling now apply to type derivation coupling, in particular 
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the coverage objectives. Whether or not testing with all possible 

derivations in the system is used (i.e., pessimistic testing) depends of the 

strategy chosen for substitutability demonstration. 

4.3.5. Memory management issues 
 

Contributions 

Objectives Software Design Process Objectives (A-2[3,4]: 5.2.1.a) 
Reviews and Analyses of Software Architecture (OO.A-
4[8]: OO.6.3.3.a) 
Dynamic Memory Management Verification Objective 
(OO.A-7[OO10]: OO.6.8.1) 

Activities Software Design Process Activities (OO.5.2.2.j) 
Dynamic Memory Management Verification Activities  
(OO.6.8.2) 
Reviews and Analyses of Software Architecture 
(OO.6.3.3) 

Vulnerabilities Dynamic Memory Management (OO.D.1.6) 

 

In addition to local type consistency, which was described in the 

preceding section, DO-332 / ED-217 also introduced another new 

verification objective: robustness of dynamic memory management. This 

objective encompasses not only explicit use of dynamic memory, through 

either automatic means (“garbage collection”) or application-provided 

allocation / deallocation, but also implicit uses through higher level data 

structures such as object collections of various kinds. DO-332 / ED-217 

identifies a number of criteria that need to be met by any memory 

management scheme: 

 The allocator returns a reference to a valid piece of memory, not 

otherwise in use 

 If enough space is available, allocations will not fail due to 

memory fragmentation 

 An allocation cannot fail because of insufficient reclamation of 

inaccessible memory 
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 The total amount of memory needed by the application is 

available (that is, the application will not fail because of 

insufficient memory) 

 An object is only deallocated after it is no longer used 

 If the memory management system moves objects to avoid 

fragmentation, inconsistent references are prevented 

 Allocations and deallocations complete in bounded time 

Meeting these criteria may be the responsibility of the run-time memory 

management library (referred to as the “memory management 

infrastructure”, or MMI in DO-332 / ED-217) or the application code 

(AC). Table OO.D.1.6.3 in DO-332 / ED-217 presents several different 

memory management techniques that can be used. For each technique the 

table identifies whether the MMI or the AC is responsible for meeting 

each criterion. 

Dynamic memory is identified as a specific issue in object orientation 

because, in many languages, it is very difficult or even impossible to use 

object-oriented paradigms without dynamic memory management. This is 

in particularly true for referenced-based languages such as Java. 

Although dynamic memory is also helpful when OOP is used in Ada, 

simple architectures may allow creating (and subsequently dispatching on) 

stack-resident or library-level objects, without needing dynamic memory. 

This can be done if such objects are of a class-wide type. The main 

constraint is that each object has to be initialized at declaration, and its 

specific type cannot change later. For example, the following code 

provides a function returning an object of a type in the Aircraft class 

hierarchy, depending on a parameter: 

type Aircraft        is abstract tagged ... 

type Jet             is new Aircraft with ... 

type Hot_Air_Balloon is new Aircraft with ... 

... 
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function Create (T : Integer) return Aircraft'Class is 

begin 

   if T = 1 then 

      return Jet'(<initialization of a Jet>); 

   elsif T = 2 then 

      return Hot_Air_Balloon'(…);  

       -- initialization of a Hot_Air_Balloon 

   else 

      raise <some exception>; 

   end if; 

end Create; 

Objects of the class-wide type Aircraft'Class can be created as local 

or global variables: 

N : Integer        := Get_Integer;  -- Dynamically computed 

P : Aircraft'Class := Create (N); 

... 

P.Take_Off; 

 

Here, P is allocated on the stack and may be either a Jet or a 

Hot_Air_Balloon. The call to P.Take_Off will dispatch accordingly. 

For notational convenience it may be useful to reference objects of a 

class-wide type through access values (pointers), since that makes it easier 

to compose data structures, but to prevent dynamic allocation. This can be 

achieved in Ada: 

type Aircraft        is abstract tagged ... 

type Jet             is new Aircraft with ... 

type Hot_Air_Balloon is new Aircraft with ... 

 

type Aircraft_Ref is access all Aircraft'Class; 

for Aircraft_Ref'Storage_Size use 0;   

   -- No dynamic allocations 

... 
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Jet_1, Jet_2                    : aliased Jet := ...; 

Balloon_1, Balloon_2, Balloon_3 : aliased Hot_Air_Balloon := 

...; 

 

type Aircraft_Pool_Type is array(Positive range <>) of 

Aircraft_Ref; 

Pool : Aircraft_Pool_Type := (Jet_2'Access,  

                              Balloon_3'Access, 

                              Jet_1'Access); 

... 

for P of Pool loop 

   P.Take_Off;  -- Dispatches 

end loop; 

 

These examples show how object orientation can be used in Ada without 

dynamic memory. More complicated designs, however, would probably 

need some form of dynamic memory and thus need to comply with the 

criteria listed above. 

4.3.6. Exception handling 
 

Contributions 

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a) 
Reviews and Analyses of Software Architecture (OO.A-
4[8]: OO.6.3.3.a) 

Activities Software Design Process Activities (OO.5.2.2.k) 
Reviews and Analyses of Software Architecture 
(OO.6.3.3) 

Vulnerabilities Exception Management (OO.D.1.5) 

 

An exception identifies a condition that is detected by the executing 

program (often implicitly by the generated code) and causes an 

interruption of the normal control flow and a transfer to a handler. The 

condition is typically an error of some sort, for example an out-of-bounds 

index. 

Exceptions are useful in certain scenarios: 
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 When a program deals with externally provided data (operator 

input, sensor readings), the exception mechanism is a convenient 

way to express validity checks. A handler can perform 

appropriate diagnostic / recovery actions. 

 When an emergency shutdown is needed for a system 

component, a “last chance handler” can take the appropriate 

measures. 

However, the general exception mechanism complicates certification for 

several reasons: 

 Typically, verification should have detected and prevented the 

exception from occurring in the final code. That is, exceptions 

often correspond to violations of preconditions, and such 

violations should not occur in verified code. 

 Since the normal control flow has been abandoned, the program 

may be in an instable state (for example with aggregate data 

structures not fully updated) and writing an appropriate handler 

can be difficult 

DO-332 / ED-217 specifies that exception handling needs to be taken 

into account at the architecture level, but doesn’t provide many more 

details. It also lists vulnerabilities to consider; for example, an exception 

might not be handled properly and as a result the program could be left 

in an inconsistent state. 

The GNAT Pro compiler supplies several strategies concerning exceptions. 

 Checks can be globally deactivated. By default, execution of 

certain constructs (an out-of-range assignment for example) 

generates a run-time check. This can be removed through the -

p option for the compiler. This should only be done after verifying 

that such checks cannot fail. 

 If exceptions are kept but are meant to trigger an application 

shutdown, they can be connected to a “last chance handler”. This 

allows the application to perform the needed finalization, such as 
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diagnostics and logging, after which it is terminated and possibly 

rebooted. 

 Exceptions can also be locally handled; this is achieved by 

specifying 

pragma Restrictions (No_Exception_Propagation). This 

GNAT-specific restriction ensures that an exception is only raised 

when its handler is statically in the same subprogram. Exception 

handling can then be implemented (conceptually) by a simple 

branch to its handler. Such a policy is much easier to manage in a 

safe way than general exception propagation. Local handling is 

useful in situations where the software requirements specify a 

particular termination behavior for a subprogram under 

conditions that are best detected by raising an exception. An 

example is a “saturated add” procedure that takes two positive 

integers and delivers a positive integer result and an overflow 

status: the integer result will be the actual sum if no overflow 

occurred, and the maximum positive value if an overflow 

occurred. 

type Overflow_Status is (No_Overflow, Overflow); 

 

procedure Saturated_Add (I1, I2 : in Positive; 

                         Result : out Positive; 

                         Status : out Overflow_Status) 

is 

begin 

   Result := I1+I2; 

   Status := No_Overflow; 

exception 

   when Constraint_Error => 

      Result := Integer'Last; 

      Status := Overflow; 

end Saturated_Add; 

SPARK addresses the exception handling issue by ensuring that 

exceptions are never raised: 

 The SPARK tools can be used to demonstrate the absence of run-

time exceptions. 
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 Handlers are not permitted. 

 Raise statements are permitted but must be proved to never 

execute. 

4.3.7. Overloading and type conversion 

vulnerabilities 
 

Contributions 

Objectives Reviews and Analyses of Source Code  (OO.A-5[6]: 
OO.6.3.4.f) 

Activities Reviews and Analyses of Source Code  (OO.6.3.4) 

Vulnerabilities Overloading  (OO.D.1.3) 
Type Conversion  (OO.D.1.4) 

 

Many languages allow subprogram overloading (use of the same name 

for different subprograms, with a call resolved based on the types of the 

actual parameters and possibly also the return type for a function) and 

implicit type conversions. This combination can lead to readability and/or 

maintainability issues. For example, the application may have two 

functions with the same name and the same number of parameters, only 

distinguished by their type. In C++ this could be: 

int f (int x); 

int f (float x); 

 

... 

 

int r = f (100); 

 

Knowing which function f() will be called is not immediately obvious. 

Furthermore, if the original version of the program contained only the 

declaration of f() with a float parameter, and the declaration of f() 

with an int parameter was added during maintenance, then the 

recompilation of f(100) would silently change the effect of the program 

to invoke the new version of f(). 
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Compiler warnings or static analysis tools are required to identify such 

cases and warn the user that a possibly unintended call may be made. 

Such problems are much less frequent in Ada, since the language does not 

allow these sorts of implicit conversions. If a call is ambiguous, this is 

detected and the developer will need to specify the intent. Here is an 

example: 

type Miles      is new Integer; 

type Kilometers is new Integer; 

 

function F (Distance : Miles)      return Integer; 

function F (Distance : Kilometers) return Integer; 

 

R : Integer := F (100);  -- Ambiguous 

 

The above code is illegal in Ada due to the ambiguity: the literal 100 

could be interpreted as either a Miles or a Kilometers value. A 

construct called “type qualification” can be used to make the type explicit 

and the call unambiguous: 

R1 : Integer := F ( Miles'(100) ); 

R2 : Integer := F ( Kilometers'(100) ); 

 

With its restrictions on implicit conversions and its provision of an explicit 

facility for making subprogram calls unambiguous, Ada supports the 

necessary verification activity to mitigate the vulnerabilities in question. 

4.3.8. Accounting for dispatching in 

performing resource analysis 
 

Contributions 

Objectives Reviews and Analyses of Source Code  (OO.A-5[6]: 
OO.6.3.4.f) 

Activities Reviews and Analyses of Source Code  (OO.6.3.4) 

Vulnerabilities Resource analysis (OO.D.2.4) 
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One of the difficulties in resource analysis (worst case execution time, 

maximal stack usage, etc.) is how to take into account that the target of a 

dispatching call is unknown. This can be addressed by including resource 

consumption limits as part of the call requirements. E.g., each overriding 

version of a given subprogram must complete within a particular relative 

deadline, or use at most a particular amount of stack space. The usual 

substitutability rules would then apply; in effect such resource consumption 

requirements are a form of postcondition. 

The GNATstack tool would provide a more pessimistic approach to worst-

case stack computation, and use the maximum value required over all 

possible targets in its computation. 
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4.4. Use case #2: Developing a design model and 

using a qualified code generator (QGen) 
 

This use case entails developing the lower level of architecture and 

requirements in the form of Simulink® and/or Stateflow® models during 

the design process, based on a higher level of requirements. This 

representation is considered a “design model” in DO-331 / ED-218 (the 

Model-Based Development and Verification Supplement). A design model 

may be translated directly into source code. In this use case, QGen is 

used as a qualified code generator, to automatically generate source 

code in SPARK or MISRA-C from the design model. 

4.4.1. Model development / verification and 

code generation 
 

  Contributions 

Objectives Software Design (MB.A-2[3,4,5, MB9, MB10]: MB.5.2.1) 
Software Coding (A-2[6]: 5.3.1.a) 

Activities Software Design (MB.5.2.2) 
Software Coding (5.3.2.d – Autocode)  

 

To apply this use case, a Simulink® and/or StateFlow® design model is 

developed. One of the main benefits of this approach is the ability to 

detect potential errors early by verifying the model through model 

simulation. 

Although most of activities around the development and the verification of 

the model are outside the scope of AdaCore solutions, QGen can be used 

to help identify certain kinds of errors in the model (see below). 

Source code can be generated from the model manually, by a non-

qualified code generator, or by a qualified code generator. Each 

approach has benefits and drawbacks: 

Manual code generation 

 Advantages 
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o No need to develop or buy a tool 

o Any source code language may be used 

o Flexibility in defining source code format 

o Problems may be repaired at source code level 

o No constraints in model development 

 Disadvantages 

o Workload in source code development and verification 

o High impact of model modifications 

Automated code generation with non-qualified tool 

 Advantages 

o Almost no source code development workload, except 

libraries (if any) 

o Problems may be repaired at source code level 

o No need to qualify the code generator 

 Disadvantages 

o Need to buy or develop a code generator 

o All source code verification activities need to be 

performed, automatically or manually 

o Constraints in model development for tool compliance 

o Limited choice of source code language and format 

Use of a qualified code generator 

 Advantages 

o No source code development workload, except libraries 

(if any) 
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o Significantly reduced effort in verification activities for 

source code, low-level testing and structural coverage 

analysis 

 Disadvantages 

o Need to buy or develop a qualified code generator 

o Constraints in model development for tool compliance 

o Changing the source code entails modifying the model 

o Limited choice of source code language and format 

AdaCore’s solution for this use case is the QGen tool, which automates the 

generation of SPARK / Ada or MISRA-C source code from a safe subset 

of Simulink® and Stateflow® blocks. This discussion assumes using the 

qualified version of QGen. 

The use of a qualified code generator facilitates a very efficient life 

cycle, reducing the effort for a number of verification activities. The next 

sections describe a possible strategy to gain credit for QGen in the areas 

of source code verification (Table A-5, objectives 1-6), low-level testing 

(A-6, objectives 3-4) and structural coverage analysis (A-7, objectives 5-

7). 

4.4.2. Contributions to model verification 
 

Contributions 

Objectives Reviews and Analyses of Low-Level Requirements (A-4[2]: 
6.3.2.b) 
Reviews and Analyses of Software Architecture (A-4[9]: 
6.3.3.b) 

Activities Reviews and Analyses of Low-Level Requirements (6.3.2) 
Reviews and Analyses of Software Architecture (6.3.3) 

 

QGen uses the same code analysis as CodePeer. Thus a variety of 

accuracy and consistency objectives that are typically verified at source 

code level (such as freedom from scalar overflows, out-of-range array 
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indexes, and uses of uninitialized variables) can be verified at the model 

level, ensuring model consistency. 

Through qualification, the analysis performed on the model by QGen 

provides the necessary confidence that no additional errors have been 

inserted in the source code. 

4.4.3. Qualification credit on source code 

verification objectives 
 

Contributions 

Objectives Reviews and Analyses of Source Code (MB.A-
5[1,2,3,4,5,6]: MB.6.3.4.a, MB.6.3.4.b, MB.6.3.4.c, 
MB.6.3.4.d, MB.6.3.4.e, MB.6.3.4.f) 

Activities Reviews and Analyses of Source Code  (6.3.4) 

 

QGen qualification guarantees that “what is in the model is in the code”. 

To justify this claim, qualification includes (among other things) the 

following activities 

 developing accurate tool requirements, 

 defining the exact source code to be produced for each model 

element, and 

 verifying that the code produced for each allowed model 

element and combination complies with the tool requirements. 

Since tool qualification provides confidence that the generated source 

code is complete and correct (as a faithful translation of the model), the 

verification activities on the source code are significantly reduced. For 

example the following objectives are met by tool qualification, so their 

associated activities do not need to be performed: 

 source code complies with the requirements (the model), 

 source code complies with the software architecture (expressed in 

the model), 
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 source code is verifiable 

 source code conforms to standards expressed in the qualification 

kit, 

 source code is traceable to low level requirements (the model), 

i.e., all low-level requirements have been implemented in source 

code (DO-178C / ED-12C §6.3.4.e) 

The elimination of these activities applies both at the initial stage (the first 

time code is generated from the model) and subsequently at each 

iteration (after the model has been updated for whatever reason). 

As previously noted, the DO-178C / ED-12C objective for “Accuracy and 

consistency of source code” lists a number of development errors that 

need to be prevented. Some of these, such as unused variables and reads 

of uninitialized variables, are addressed through tool qualification. 

Others are not linked to the translation of requirements into source code, 

but rather relate to the integration phase. Examples include target 

computer capabilities such as Worst Case Execution Time, memory usage, 

stack usage, and arithmetic calculation resolution. These items just need to 

be addressed independently of the code generation method. Note that 

use case #1 addresses some of these aspects (e.g., stack size). 

4.4.4. Qualification credit on Executable 

Object Code verification objectives 
 

Contributions 

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d) 

Activities Requirement-Based Testing Methods (6.4.3) 
Requirement-Based Test Selection (6.4.2, 6.4.2.1, 6.4.2.2) 
Software Verification Process Traceability (6.5) 

 

DO-178C / ED-12C requires verifying that the executable object code 

complies with all levels of requirements. This is typically accomplished 

through testing. Since the design model expresses the low-level 
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requirements, it is necessary to demonstrate that the executable object 

code complies with the requirements reflected in the model. 

There are several possible approaches, without developing the low-level 

testing based on requirements contained in the model itself. Each has 

benefits and drawbacks. The choice depends on the modeling standard 

(and whether/how it restricts model complexity), the nature of the 

requirements from which the model was developed, and the capabilities 

of the test environment. Early discussion with the certification authorities is 

encouraged. There are two main approaches: 

 Tool qualification credit, as defined in DO-330 / ED-215, FAQ 

§D.8 scenario 3: “Satisfaction of low-level requirements-based 

test objectives through qualification of the ACG (Automatic Code 

Generator) and verification of a set of representative input files” 

The Tool Operational Verification and Validation activity that is 

part of the qualification process offers an equivalent to low-level 

requirements-based testing. It involves taking a representative set 

of input files (models) based on the modeling standard, invoking 

the ACG to produce source code, generating the executable 

object code (EOC) through the same build environment (compiler, 

linker) that is used for the airborne software, and verifying 

compliance of the EOC with the representative input files through 

testing that satisfies objectives 1, 2, and 4 in Table A-7 of DO-

178C / ED-12C. 

Tool Operational Verification and Validation is project 

dependent, and the activities need to be conducted in the tool 

operational environment (DO-330 / ED-215 §6.2.2c). These 

activities may be performed either by AdaCore or the QGen 

user depending on the context. 

A key point in this approach is the choice of the model samples. 

To demonstrate that they are representative, the samples must 

include all allowed elements (based on the modeling standard), 

and combinations of such elements representative of what will 

occur in the airborne software. Further, the source code 

generated from these samples must include all possible source 

code constructs that may be generated by the ACG. 
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The rules in the modeling standard must be sufficiently restrictive 

to make this effort manageable, but general enough to express 

the required functionality. QGen’s selection of a safe subset of 

Simulink® and Stateflow® elements helps strike an appropriate 

balance. 

 Requirement coverage analysis based on high-level testing 

As noted above, DO-178C / ED-12C requires verifying that the 

EOC complies with all levels of requirements. But the standard 

also recognizes that if a test developed for a higher-level 

requirement satisfies the objectives (including structural coverage) 

for a low-level requirement, it is not necessary to duplicate the 

test in low-level testing (DO-178C/ED-12C §6.4 Note). 

The ability to have the same test serve at multiple levels is 

independent of the formalism for developing the requirements 

and the method for generating the code. But it is especially 

applicable in model-based development and verification. 

o A design model is generally verified using model 

simulation. As required by DO-331 / ED-218, simulation 

cases are developed based on the “requirements from 

which the model is developed” and thus at a higher level 

(typically the high-level requirements) than those defined 

in the design model. 

o In order to detect possible unintended elements in the 

design model, “Model Coverage Analysis” is required. 

This analysis consists in identifying the model elements not 

exercised during the verification (simulation or tests) and 

is performed based on the “requirements from which the 

model is developed”. 

o The criteria for Model Coverage Analysis are not 

completely defined in DO-331 / ED-218. But if these 

include the same criteria as those for requirements 

coverage analysis, then the verification cases developed 

based on the “requirements from which the model is 

developed” also cover the requirements defined in the 
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design model. It is then not necessary to duplicate the 

tests, as long as structural coverage analysis is also 

achieved. 

In order for this method to be accepted, the simulation cases 

should be converted into test procedures and run on the 

executable object code (see DO-331 / ED-218 FAQ #16). To 

perform this re-execution, the code generated by QGen and 

compiled with a cross-compiler may be included in the form of an 

S-Function in the Simulink® model. Then the outputs from the model 

and the S-function may be compared, confirming (or not) that the 

binary code is equivalent to the model behavior. 

4.4.5. Qualification credit on structural code 

coverage 
 

Contributions 

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c) 

Activities Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)  

 

Model coverage analysis activities may satisfy structural code coverage 

analysis objectives under appropriate conditions. As defined in DO-331 / 

ED-218 FAQ #11 these conditions include the following: 

 The applicable structural code coverage analysis criteria apply 

to model coverage analysis, for the level of the software being 

developed; for example, MC/DC for level A. 

 Qualification of the code generation tool chain with respect to the 

objectives for which certification credit is sought shows that the 

applicable coverage properties for the model are preserved for 

the code. (The QGen qualification material demonstrates 

equivalence between model-level coverage and source-level 

coverage. As a result, credit for source code coverage is 

obtained from model coverage without the need for any 

additional activity beyond qualification.) 
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 Any libraries used by code generated from the Design Model 

are verified according to DO-178C / ED-12C Section 6 

(Software Verification Process), including structural code 

coverage analysis based on the software level. 
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4.5. Use case #3: Using SPARK and formal 

analysis 
 

This use case is also a variant of use case #1, since the source code is 

developed in Ada. It thus benefits from Ada’s advantages and the 

AdaCore ecosystem. The difference here is that the contracts, in the 

SPARK subset of Ada, are used to develop the low-level requirements. 

These contracts are amenable to formal analysis by GNATProve, which 

can verify consistency with the implementation. 

 

4.5.1. Using SPARK for design data development 
 

Contributions 

Objectives Software Design (A-2[3,4]: 5.2.1.a, 5.2.1.b) 
Software Reviews and analyses – Requirement 
formalization correctness (FM.A-5[FM12]: FM.6.3.i) 
Considerations for formal methods (FM.A-5[FM13]: 
FM.6.2.1.a, FM.6.2.1.b, FM.6.2.1.c) 

Activities Software Development Standards (4.5) 
Software Design (5.2.2.a, 5.2.2.b) 
Software Reviews and analyses – Requirement 
formalization correctness (FM.6.3.i) 
Considerations for formal methods (FM.6.2.1) 

 

The Ada language in itself is already a significant step forward in terms 

of software development reliability. However, as a general-purpose 

language it contains features whose semantics is not completely specified 

(for example, order of evaluation in expressions) or which complicate 

static analysis (such as pointers). Large applications may need the latter, 

for example to define and manipulate complex data structures, to 

implement low-level functionality, or to interface with other languages. 

However, sound design principles should isolate such uses in well-

identified modules, outside a safe core whose semantics is deterministic 

and which is amenable to static analysis. This core can be developed with 
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much more stringent coding rules, such as those enforced in the SPARK 

language. 

SPARK is an Ada subset with deterministic semantics, whose features are 

amenable to static analysis based on formal methods. For example, it 

excludes pointers, exception handling, side effects in functions, and 

aliasing (two variables referring to the same object at the same time), 

and guarantees that variables are only read after they have been 

initialized. Note that a SPARK program has the same run-time semantics 

as Ada. It is compiled with a standard Ada compiler, and can be 

combined with code written in full Ada. 

SPARK is also a superset of the Ada language in terms of statically 

verified specifications. A variety of pragmas and aspects can be used to 

define properties (contracts) such as data coupling, type invariants, and 

subprogram pre- and postconditions. These are interpreted by the SPARK 

analysis tool and do not have any effect at run-time (and thus they can 

be ignored by the compiler, although dynamic verification is allowed for 

some) but they can formally document the code and allow further static 

analysis and formal proof. 

Even without taking advantage of SPARK’s support for formal methods, 

coding in SPARK (or using SPARK as the basis of a code standard) helps 

make the software more maintainable and reliable. SPARK’s contracts use 

the same syntax as Ada, and as just noted, a number of checks that a 

SPARK analysis tool could enforce statically can be enabled as run-time 

checks using standard Ada semantics, allowing traditional testing-based 

verification. 

SPARK programs can be verified to have safety and secutity properties 

at various levels. At minimum, SPARK analysis can demonstrate absence of 

run-time errors/exceptions (such as buffer overrun and integer overflow) 

and ensure that variables are assigned to before they are read. In the 

extreme, SPARK can show that an implementation complies with a formal 

specification of its requirements, and this may be appropriate for some 

critical kernel modules. Since subprogram pre- and postcondition contracts 

often express low-level requirements, some testing of the low-level 

requirements may be replaced by formal proofs as described in the DO-

333 / ED-216 Formal Methods supplement to DO-178C / ED-12C. 
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In summary, SPARK enhances Ada’s benefits in reducing programming 

errors, increasing the quality and effectiveness of code reviews, and 

improving the overall verifiability of the code. It facilitates advanced 

static analysis and formal proof. At the start of a new development, 

considering SPARK for at least part of the application kernel can greatly 

decrease defects found late in the process. And when adding functionality 

to an existing project, SPARK can likewise bring major benefits since it 

allows interfacing with other languages and supports combining formal 

methods with traditional testing-based verification. 

As part of the DO-178C / ED-12C processes, a manual review of the 

requirements translated into SPARK contracts needs to be conducted. 

Although SPARK can ensure that contracts are correctly and consistently 

implemented by the source code, the language and its analysis tools 

cannot verify that the requirements themselves are correct. 

Another issue that needs to be taken into account is the justification of the 

formal method itself. It should provide a precise and unambiguous 

notation, and it needs to be sound (i.e., if it is supposed to identify a 

particular property in the source code, such as no reads of uninitialized 

variables, then it has to detect all such instances). The qualification 

material for the formal analysis tool would typically address this issue. 

Moreover, any assumptions concerning the formal method must be 

identified and justified. 

4.5.2. Robustness and SPARK 
 

Contributions 

Objectives Software Design (A-2[3,4,5]: 5.2.1.a, 5.2.1.b) 

Activities Software Design (5.2.2.f) 

 

As discussed in Section 4.2.4, robustness is concerned with ensuring correct 

software behavior under abnormal input conditions. Abnormal input can 

come from two sources: 

 External: invalid data from the operational environment (for 

example due to an operator input error or a hardware failure), 

or 
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 Internal: a defect in the software logic. 

Behavior in the external case needs to be considered during requirements 

development, and from the SPARK perspective (where these requirements 

are captured as pre- or postconditions) there is no fundamental 

difference between a regular requirement and a robustness requirement. 

The proof performed by SPARK takes into account the entire potential 

input space, whether normal or abnormal. 

The internal case, where faulty code passes an invalid value to a 

subprogram, can be detected by SPARK (GNATprove) if the validity 

requirement is part of the subprogram’s precondition. That is, GNATprove 

will report its inability to prove that the subprogram invocation satisfies 

the precondition. 

4.5.3. Contributions to Low Level 

Requirement reviews 
 

Contributions 

Objectives Reviews and Analyses of Low-Level Requirements (FM.A-
4[2,4,5]: FM.6.3.2.b, FM.6.3.2.d, FM.6.3.2.e) 
Reviews and analyses of formal analysis cases, procedures 
and results (FM.A-5[FM10,FM11]: FM.6.3.6.a, FM.6.3.6.b, 
FM 6.3.6.c) 

Activities Reviews and Analyses of Low-Level Requirements 
(FM.6.3.2) 
Reviews and analyses of formal analysis cases, procedures 
and results (FM.6.3.6.) 

 

Using SPARK to define low-level requirements (LLRs) simplifies the 

verification process. Since the LLRs are expressed in a formal language 

(Ada 2012 or SPARK contracts), by definition they are accurate, 

unambiguous, and verifiable: expressed as Boolean expressions that can 

be either tested or formally proven. 

SPARK also makes it easier to define a software design standard, which 

can use the same terms and concepts as a code standard, and can be 

checked with similar tools. 
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4.5.4. Contributions to architecture reviews 
 

Contributions 

Objectives Reviews and Analyses of Software Architecture (FM.A-
4[9,11,12]: FM.6.3.3.b, FM.6.3.3.d, FM.6.3.3.e) 

Activities Software Development Standards (4.5) 
Reviews and Analyses of Software Architecture (FM.6.3.3) 

 

According to DO-333 / ED-216, the reviews and analyses of the 

software architecture “detect and report errors that may have been 

introduced during the development of the software architecture”. SPARK 

helps meet several of the associated objectives: 

 Consistency. SPARK’s flow analysis contracts can specify various 

relationships between the software components, including a 

component’s data dependencies and how its outputs depend on 

its inputs. The SPARK analysis tool (GNATprove) can then verify 

the correctness of these contracts / relationships, assuming TQL-5 

qualification, and the consistency of the architecture. For 

example: 

type Probe_Type is 

   record 

      ... 

   end record; 

 

Probes : array (1 .. 10) of Probe_Type; 

 

procedure Calibrate_Probe (Index : Integer;  

                           Min, Max : Integer) 

   with Globals =>  

          (In_Out => Probes), 

        Depends =>  

          (Probes => (Probes, Index, Min, Max)); 

The Calibrate_Probe procedure will use the global variable 

Probes in in out mode (it can read from and write to the 

variable) and will compute its new value using the old value of 

Probes (at the point of call) together with the parameters Index, 
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Min and Max. SPARK will verify that the only global variable 

used is Probes, and that this variable and the parameters 

specified in the Depends aspect (and no other variables) are 

used to compute the value. 

 Verifiability. As a formal notation with tool support, SPARK can 

help ensure that the architecture is verifiable. One example is the 

protection against one component sending invalid input to 

another. As noted earlier, this is part of the robustness 

requirement that is met by SPARK’s pre- and postconditions. 

Keeping these contracts active even in the final executable object 

code will protect a component from sending or receiving invalid 

input, and will detect any misuse. 

 Conformance with standards. An architecture standard can be 

defined in part using similar formalisms as a code standard, thus 

allowing the use of similar tools for verification. 

4.5.5. Contributions to source code reviews 
 

Contributions 

Objectives Reviews and Analyses of Source Code (FM.A-5[1,2,3,6]: 
FM.6.3.4.a, FM.6.3.4.b, FM.6.3.4.c, FM.6.3.4.f) 

Activities Software Development Standards (4.5) 
Reviews and Analyses of Source Code (FM.6.3.4) 

 

The SPARK analysis tool (GNATprove) can verify that the source code 

complies with its low-level requirements (LLRs) defined as SPARK contracts. 

This can satisfy the source code verification objectives, depending on the 

part of the design data formally defined: 

 Compliance with the LLRs: code is proven against the LLRs 

 Compliance with the architecture: code is proven against the 

architectural properties defined at the specification level 

 Verifiability: if the code is verified by SPARK, it is verifiable. No 

specific activity is needed here. 
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 Traceability: traceability is implicit, from the LLRs defined in the 

specification to the implementation 

The SPARK tool achieves proof in a local context; it’s doing a “unit proof”. 

The postcondition of a subprogram will be proven according to its code 

and its precondition, which makes the SPARK approach scalable. For 

example, consider the following function: 

type My_Array is array(Positive range <>) of Integer; 

 

function Search (Arr   : My_Array;  

                 Start : Positive;  

                 Value : Integer) 

   return Integer 

with Pre  =>  

       Start in Arr'Range, 

     Post =>  

       (if Search'Result = -1 then 

          (for all I in Start .. Arr'Last => Arr (I) /= Value) 

        else Arr(Search'Result) = Value); 

 

The code inside the body might start with: 

function Search (Arr   : My_Array;  

                 Start : Positive;  

                 Value : Integer) 

   return Integer is 

begin 

   if Arr (Start) = Value then 

      return Start; 

   end if; 

   ... 

 

Because of the precondition, the SPARK analysis tool can deduce that the 

array indexing will not raise an exception. 

Here’s another piece of code, responsible for replacing all occurrences of 

one value by the other: 
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procedure Replace (Arr  : in out My_Array;  

                   X, Y : in Integer) 

with Pre  => Arr'Length /= 0 and X /= Y, 

     Post => (for all I in Arr'Range => 

                 (if Arr'Old (I) = X then Arr (I) = Y)); 

 

procedure Replace (Arr : in out My_Array; X, Y : Integer) is 

   Ind : Integer := Arr'First; 

begin 

   loop 

      Ind := Search (Arr, Ind, X); 

      exit when Ind = -1; 

      Arr (Ind) := Y; 

      exit when Ind = Arr'Last; 

   end loop; 

end Replace; 

 

When Search is invoked, the only things that the prover knows are its 

pre- and postconditions. It will attempt to show that the precondition is 

satisfied, and will assume that the postcondition is True. Whether or not 

Search is proven doesn’t matter at this stage. If it can’t be proven with 

the SPARK tools, we may decide to verify it through other means, such as 

testing. 

The SPARK analysis tools can demonstrate absence of run-time errors, 

absence of reads of uninitialized variables, absence of unused 

assignments, and other properties. Additional contracts may sometimes be 

needed for assistance (e.g., assertions), but overall SPARK’s restricted 

feature set and advanced proof technology automate contract proofs 

with very few cases needing to be manually dismissed. This almost 

entirely replaces manual reviews and analyses. 

The analysis performed by SPARK is usually very tedious to conduct by 

manual review. As an example, here’s a simple piece of code: 
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subtype Some_Int is Integer range ...; 

Arr : array (Integer range <>) of Some_Int := ...; 

 

Index, X, Y, Z : Integer; 

... 

Arr (Index) := (X * Y) / Z; 

 

Exhaustive analysis of all potential sources of errors requires verifying 

that: 

 X is initialized 

 Y is initialized 

 Z is initialized 

 Index is initialized and is in Arr'Range 

 (X * Y) does not overflow 

 Z is not equal to zero 

 (X * Y) / Z is within Some_Int 

The SPARK tools will check each of these conditions, and report any that 

might not hold. 

4.5.6. Formal analysis as an alternative to low 

level testing 
 

Contributions 

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d) 

Activities Low Level testing (6.4.3.c) 

 

The purpose of testing in DO-178C / ED-12C is to check that the 

executable object code complies with its requirements. Thus it’s not the 

source code but the binary code that is tested, and within an environment 

representative of the final target. As a consequence, the compiler itself is 
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not part of the trusted chain. Since its outputs are verified, it can be 

assumed to be correct within the exact conditions of the certified 

application. 

Various activities in DO-178C / ED-12C increase the confidence in the 

compilation step, such as selecting an appropriate set of options, 

assessing the effect of its known problems and limitations, and (at 

software level A) verifying the correctness of non-traceable code 

patterns. 

DO-333 / ED-216 explains how certain classes of testing can be 

replaced by formal analysis (“proof”). When low level requirements are 

expressed as formal properties of the code, it’s possible to formally 

verify that the source code completely implements the requirements. Using 

this technique, however, requires additional activities to demonstrate 

absence of unintended function. Further, and more significantly, with 

formal analysis it’s the source code that is checked against requirements, 

not the object code. As a result, additional activities are required to 

demonstrate correct behavior of the object code. This is the so-called 

“property preservation”, discussed later. 

Overall, formal analysis can offer better error detection through its 

exhaustive checks. But if credit is sought for executable object code 

verification, Tool Qualification Criterion 2 in DO-178C / ED-12C §12.2.2 

applies to the formal analysis tool: the analysis tool’s output is being used 

“to justify the elimination or reduction of verification process(es) other than 

that automated by the tool”. In consequence, GNATprove is qualified at 

TQL-4 to be usable at all software levels. 

4.5.7. Low level verification by mixing test 

and proof (“Hybrid verification”) 
 

Contributions 

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d) 

Activities Low Level testing (6.4.3.c) 
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It is not always possible for the SPARK proof tool to prove all the 

contracts in an application. When this is due to limited capabilities in the 

proof technology, manually provided assistance may be a solution. 

However, some assertions and contracts might not be provable at all. This 

could be due to several factors: 

 The specification is in SPARK but the actual implementation is in a 

different language (such as C). 

 The contract or implementation uses Ada features outside of the 

SPARK subset. 

 Some constructs might not be amenable to formal proof, even if 

correct, because a piece of code is too complex. 

 Some final proof step may be hard to reach, requiring an effort 

that is excessive compared to some other verification technique. 

For all of these reasons, a combination of proof and testing may be 

appropriate to fully verify the software. The basic principle is that SPARK 

proofs are local. They’re performed assuming that each called 

subprogram fulfills its contracts: if its precondition is satisfied and the 

subprogram returns, then its postcondition will hold. If this correctness is 

demonstrated by formal proof, then the whole program is proven to 

comply with all contracts. However, correctness may also be 

demonstrated by testing. In this case, the dual semantics of contracts, 

dynamic and static, is key. The pre- and postconditions can be enabled as 

run-time checks to verify the expected output of the test procedures. 

An efficient approach during the design process is to define an 

architecture that distinguishes between those components verified by 

formal proofs and those verified by testing. Mixing the two techniques is 

sometimes referred to as “hybrid verification”. 
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4.5.8. Alternatives to code coverage when 

using proofs 
 

Contributions 

Objectives Principles of Coverage Analysis when using Formal Methods 
(FM.A-7[FM5-8]: FM.6.7.1.c) 

Activities Requirement-Based Coverage Analysis (FM.6.7.1.2, 
FM.6.7.1.3, FM.6.7.1.4, FM.6.7.1.5) 

 

Structural code coverage is a test-based activity for verifying the 

exhaustivity of the testing, the completeness of the requirements, and the 

absence of unintended function (extraneous code, including dead code). 

With formal proofs, a different set of activities is needed to meet similar 

objectives. DO-333 / ED-216 lists four activities to be performed: 

 Complete coverage of each requirement. This objective is to 

verify that each assumption made during the analysis is verified. 

In SPARK, these assumptions are easily identifiable. These are 

typically assertions in the code that cannot be proven 

automatically, for example because they are too complex or 

involve interfacing with non-SPARK code. These assumptions can 

be verified not with proofs but with alternative means such as 

testing and reviews. 

 Completeness of the set of requirements. In particular, for each 

input condition its corresponding output condition has been 

specified, and vice versa. This can be achieved, for example, by 

specifying dependency relationships between input and output 

(the SPARK aspect Depends) or by partitioning the input space 

(the SPARK aspect Contract_Case). 

 Detection of unintended dataflow relationships. The SPARK 

aspect Depends will verify that each output is computed from its 

specified set of inputs. 

 Detection of extraneous code. If the requirements are complete 

and all output variables (and their dependencies) are specified in 
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these requirements, then any extraneous code should be dead 

and have no unintended effect. A manual review of the code will 

help achieve confidence that no such code is present. 

 

4.5.9. Property preservation between source 

code and object code 
 

Contributions 

Objectives Verification of Property Preservation Between Source and 
Executable Object Code (FM.A-7[FM9]: FM.6.7.f) 

Activities Verification of Property Preservation Between Source and 
Executable Object Code (FM.6.7.f -1) 

 

When part of the executable object code (EOC) verification is performed 

using formal proof instead of testing, the source code is verified against 

the requirements, but the compiler is out of the loop. As a result, 

additional activities need to be performed to confirm proper translation 

of the source code to object code. 

This is an open topic, and several approaches are possible to achieve 

credit for preservation of properties. One possibility is to perform an 

analysis of the compiler’s processing similar to the source-code-to-object-

code traceability study that addresses DO-178C / ED-12C §6.4.4.2.b. 

However, in addition to analyzing and justifying instances of non-

traceability, the behavior of traceable code also needs to be considered 

/ verified. 

An alternative solution is to rely on the fact that SPARK functional 

contracts are executable Ada expressions. These are the actual 

properties that need to be preserved between source code and EOC. 

One way to demonstrate property preservation is to run the tests based 

on a higher level of requirements (such as Software / Software 

integration testing) once, with contract checks activated. If no contract 

failure occurs, we can conclude that the expected behavior has been 

properly translated by the compiler. This gives sufficient confidence in the 

code generation chain. 



AdaCore Technologies for DO-178C / ED-12C 

130 

Running tests to verify this activity may seem to defeat the purpose of 

replacing testing by proof. However, this should not be considered as 

requirement-based testing (which is indeed replaced by proof). This 

“property preservation” verification is a confirmation of the formal 

analysis by executing the EOC with contract checking enabled. 

4.6. Parameter Data Items 
 

Contributions 

Objectives Software requirements process (A-2[1]: 5.1.1.a) 
Software integration process (A-2[7]: 5.4.1.a) 
Verification of Parameter Data Items (A-5[8,9]: 6.6) 

Activities Software requirements process (5.1.2.j) 
Software Integration process (5.4.2.a) 
Verification of Parameter Data Items (6.6.a), (6.6.b) 

 

The term “Parameter Data Item” (PDI) in DO-178C / ED-12C refers to a 

set of parameters that influences the behavior of the software without 

modifying the Executable Object Code. The verification of a parameter 

data item can be conducted separately from the verification of the 

Executable Object Code. 

PDI development implies the production of three kinds of data: 

 The “structure and attributes”: These define the characteristics of 

each item, such as its type, range, or set of allowed values. In 

order to ensure the data item correctness and consistency, a set 

of consistency rules should also be defined. For example, if one 

item defines the number of temperature sensors, and other items 

define the characteristics of each sensor, there is an obvious 

relationship between these items. 

 The specification of an instance of a PDI: The defined set of 

values for each item for an applicable configuration 

 The PDI file that implements an instance of a PDI directly usable 

by the processing unit of the target computer (e.g. a binary file) 

An efficient way to develop such artifacts is to use Ada and/or SPARK. 
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The structure and attributes can be defined in one or more package 

specifications. Each item is defined with its type, defining range and set of 

allowed values. Predicates can be used to define relationships between 

parameters. The example below combines a classical approach using 

strong typing and type ranges, with a dynamic predicate to describe 

relationships between components of the structure. The intent is to specify 

the accepted range of temperatures for a given sensor. 

type Sensor is 

   record 

      Min_Temp : Float range -40.0 .. 60.0; 

      Max_Temp : Float range -20.0 .. 80.0; 

   end record 

with Dynamic_Predicate => Sensor.Min_Temp < Sensor.Max_Temp; 

 

Each PDI instance needs to satisfy the constraints expressed in the 

Dynamic_Predicate aspect. These constraints are based on a higher-

level specification, such as customer-supplied requirements, a system 

configuration description, or an installation file. Generating the PDI file 

for an instance consists in using GNAT Pro to compile/link the Ada source 

code for the PDI, producing a binary file. 

Verifying the correctness of a PDI instance (compliance with structure and 

attributes) can be automated by compiler checks. This means that 

inconsistencies will be detected at load time. For example, 

S1 : Sensor := (Min_Temp => -30.0, Max_Temp => 50.0); 

S2 : Sensor := (Min_Temp => -50.0, Max_Temp => 50.0); 

S3 : Sensor := (Min_Temp =>  40.0, Max_Temp => 30.0); 

 

S1 will be accepted, S2 will not (Min_Temp is out of range), S3 will not 

(Min_Temp is above Max_Temp). (The Dynamic_Predicate check can 

also be enabled as a run-time check, via pragma 

Assertion_Policy(Check) and the -gnata switch to the GNAT 

compiler.) If all PDIs are defined in this manner, completeness of 

verification is ensured. 

The only remaining activity is to check that the PDI instance value complies 

with the system configuration. 
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5. Summary of contributions 

to DO-178C/ED-12C 

objectives 

5.1 Overall summary: which objectives are met 
The following table summarizes how the Ada and SPARK languages and 

AdaCore’s tools help meet the objectives in DO-178C / ED-12C and the 

technology supplements. The numbers refer to the specific objectives in the 

core document or the relevant supplement. 

Table A-3 and Tables A-8 through A-10 are not included since they are 

independent of AdaCore’s technologies. 
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Overall Summary 

Which DO-178C objectives are met by AdaCore’s Technologies   
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5.2 Detailed summary: which activities are 

supported 
In the tables below, the references in the Activities column are to sections 

in DO-178C / ED-12C or to one of the technology supplements. The 

references in the Use case columns are to sections in this document. 

Since AdaCore’s tools mostly contribute to the bottom stages of the ”V” 

cycle (design, coding, integration and related verification activities), 

verification of High-Level Requirements (and thus Table A-3) are outside 

the scope of AdaCore solutions. 

Likewise, the objectives in Table A-8 (Configuration Management), A-9 

(Quality Assurance) and A-10 (Certification Liaison Process) are 

independent of AdaCore’s technologies; they are the responsibility of the 

user. 
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Table A-1 Software Planning Process  
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Table A-2 S oftware De velopme nt Proce sse s 

AdaCore  tools mostly contribute to the bottom s tages of the  traditional ”V ” cy cle (design, coding, integration, and the rel ated verification activities).  
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Table A-4 Verification of Outputs of S oftware De sign Proce ss 

 

 

Table A-5 Verification of Outputs of S oftware Coding &  Inte gration Proce sse s 
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Table A-6 Te sting of Outputs of Integrat ion Process  
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Table A-7 Verification of Verification Process Results 

 



Frédéric Pothon & Quentin Ochem 

143 

 



AdaCore Technologies for DO-178C / ED-12C 

144 

References 
 

[1] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, 

Benjamin Monate, “Testing or Formal Verification: DO-178C 

Alternatives and Industrial Experience”, IEEE Software, 2013. 

[2] ISO/IEC, Ada Language Reference Manual, 2012. 

Available at www.adaic.org/ada-resources/standards/ada12/ 

[3] John Barnes and Ben Brosgol, Safe and Secure Software, an 

invitation to Ada 2012, AdaCore, 2015. 

Available at www.adacore.com/knowledge/technical-

papers/safe-and-secure-software-an-invitation-to-ada-2012/ 

[4] John Barnes, Programming in Ada 2012, Cambridge University 

Press, 2014 

[5] AdaCore, High-Integrity Object-Oriented Programming in Ada, 

2013. Available at www.adacore.com/knowledge/technical-

papers/high-integrity-oop-in-ada/ 

[6] John W. McCormick and Peter C. Chapin, Building High Integrity 

Applications with SPARK, Cambridge University Press, 2015 

[7] Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, Source 

Code Security Analysis Tool Functional Specification, NIST, 2011.  

[8] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton, 

Olivier Hainque, Thomas Quinot, Object and Source Coverage for 

Critical Applications with the COUVERTURE Open Analysis 

Framework, ERTS, 2010 

[9] Johannes Kanig, Quentin Ochem, Cyrille Comar, Bringing SPARK 

to C developers, ERTS, 2016 

[10] Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, Leanna K. 

Rierson; A Practical Tutorial on Modified Condition / Decision 

Coverage; NASA / TM-2001-210876; May 2001.



Frédéric Pothon & Quentin Ochem 

145 

Index 

A 

Ada language 

Arrays, 50 

Assertion_Error exception, 24, 

66 

Buffer overflow prevention, 26 

C interfacing, 49, 62 

Concurrent programming (tasks), 25 

Contract-based programming, 24, 

27, 56 

Contributions to DO-178C/ED-12C 

activities, 45 

Dynamic dispatching, 90 

Dynamic_Predicate aspect, 131 

Generic templates, 25 

Hardware/software interfaces, 58 

History and overview, 22 

Low-level facilities, 51 

Numeric types, 61 

Object-Oriented Programming 

(OOP), 25 

'Old attribute (in a postcondition), 

57 

OOT vulnerabilities, 18, 86 

Overloading example, 106 

package Interfaces, 58 

package Interfaces.C, 62 

Parameter passing, 48 

Pointers (access types), 48 

Post aspect, 92 

Post'Class aspect, 92 

Postconditions, 24, 55 

pragma Assertion_Policy, 66, 

131 

pragma Restrictions, 27, 104 

Pre aspect, 92 

Pre'Class aspect, 92 

Preconditions, 24, 56 

Programming in the large, 24 

Real-Time Systems Annex, 26 

Representation clauses, 59 

Scalar ranges, 23 

Scalar_Storage_Order aspect, 

59 

Storage_Size attribute (to 

prevent dynamic allocation), 101 

Strong typing, 45 

Systems Programming Annex, 26 

Traceability analyses (source to 

object), 85 

Usage, 22 

Usage during the design process, 52 

Usage for component identification, 

53 

Usage for defining interfaces, 53 

'Valid attribute, 60 

AdaCore 

Ada and C integration, 62 

Ada history, 22 

ASIS-for-GNAT. See ASIS-for-GNAT 

CodePeer. See CodePeer 

GNAT Pro Assurance. See GNAT Pro 

Assurance 

GNAT Pro compiler, 63 

GNAT Programming Studio. See 

GNAT Programming Studio (GPS) 

GNAT2XML. See GNAT2XML 

GNATbench. See GNATbench 

GNATcheck. See GNATcheck 

GNATcoverage. See GNATcoverage 

GNATdashboard. See 

GNATdashboard 

GNATemulator. See GNAtemulator 

GNATmetric. See GNATmetric 

GNATprove. See GNATprove 

GNATstack. See GNATstack 

GNATtest. See GNATtest 

SPARK Pro. See SPARK Pro 

Support and expertise, 31 

Sustained branch. See Sustained 

branch 

ASIS (Ada Semantic Interface 

Specification), 32 

ASIS-for-GNAT, 32 

AUnit, 36 



AdaCore Technologies for DO-178C / ED-12C 

146 

B 

Babbage, Charles, 22 

Buffer overflow, 26, 32 

C 

C language, 12 

Buffer overflow, 26 

Example: pointer arithmetic, 49 

Integration with Ada, 62 

Supported by GNAT Pro, 29, 71 

Traceability analyses (source to 

object), 85 

C++ language, 62 

Buffer overflow, 26 

Overloading example, 105 

CENELEC EN 50128, 26, 40 

Chicago Convention, 14 

COBOL language 

Interfacing with Ada, 62 

Code standard, 43 

Enforcement by GNAT2XML, 67 

Enforcement by GNATcheck, 33, 67 

CodePeer, 31, 43, 66 

Checking source code accuracy and 

consistency, 69 

Common Weakness Enumeration 

(CWE) errors detected, 32 

Early error detection, 31 

Qualified as Verification Tool (DO-

178B/ED-12B), 32 

Support for all versions of Ada, 69 

TQL-5 qualification, 66, 69 

Common Criteria, 26 

Common Weakness Enumeration (CWE) 

errors detected by CodePeer, 32 

Component-based development (OOT 

and related techniques vulnerability), 

86 

Contract-based programming, 56 

Control coupling, 82 

Dynamic dispatching, 98 

D 

Data coupling, 82 

Dynamic dispatching, 98 

Decision coverage, 37, 78 

Design Assurance Level, 15 

DO-178C/ED-12C 

High-Level Requirements. See High-

Level Requirements (HLR) 

Low-Level Requirements. See Low-

Level Requirements (LLR) 

Parameter Data Items, 130 

QGen and TQL-1, 40 

Source code accuracy and 

consistency, 69 

Structural coverage analysis, 78 

Verification, 20 

DO-248C/ED-94C: Supporting 

Information for DO-178C/ED-12C 

and DO-278A/ED-109A, 15 

DO-278A/ED-109A: Software Integrity 

Assurance Considerations for 

Communication, Navigation, 

Surveillance and Air Traffic 

Management (CNS/ATM) Systems, 

15 

DO-330/ED-215: Tool Qualification 

Considerations, 12, 16 

QGen qualification, 41, 44, 111 

DO-331/ED-218: Model-Based 

Development and Verification, 13, 18, 

44, 108 

Model coverage analysis, 114 

Model simulation, 114 

DO-332/ED-217: Object-Oriented 

Technology and Related Techniques, 

13, 17, 86 

Vulnerability Analysis annex, 17 

DO-333/ED-216: Formal Methods, 13, 

19, 44, 95 

Code coverage activities, 128 

Dynamic dispatching (OOT), 89 

Module coupling, 98 

Resource analysis, 106 

Dynamic memory management (OOT 

vulnerability), 86, 99 

DynamoRIO, 81 



Frédéric Pothon & Quentin Ochem 

147 

E 

Eclipse support. See GNATbench 

Exception management (OOT and 

related techniques vulnerability), 86, 

102 

Executable Object Code (EOC), 20, 42 

F 

Formal methods 

Code coverage, 128 

Justification of usage, 119 

Replacement for testing, 20, 125 

Verifying substitutability (OOT), 95 

Fortran language 

Interfacing with Ada, 62 

G 

Garbage collection, 25, 62, 99 

Generic templates 

Coverage analysis, 87 

OOT and related techniques 

vulnerability, 86 

Traceability, 89 

GNAT Pro 

Compiler, 71 

Dimension_System aspect, 47 

Dimensionality checking, 47 

Exception handling strategies, 103 

Test_Case aspect, 74 

GNAT Pro Assurance, 17, 29 

Configurable Run-Time Library, 30 

Safety analysis of known problems 

list, 71 

Sustained branch. See Sustained 

branch 

Traceability analysis service. See 

Traceability (Source to Object) 

GNAT Programming Studio (GPS), 29, 

38 

GNAT2XML, 33, 68 

GNATbench, 30, 39 

GNATbus, 77 

GNATcheck, 33, 43, 68 

Code standard enforcement, 33 

TQL-5 qualification, 69 

GNATcoverage, 37, 41, 43 

Support for data and control 

coupling coverage, 82 

Support for generic templates, 89 

Support for structural code 

coverage, 78 

TQL-5 qualification, 82 

GNATdashboard, 39, 68 

GNATemulator, 37, 41, 81 

Support for low-level and software 

/ software integration tests, 76 

GNATmetric, 33 

GNATprove, 27, 117, 120, 121, 122 

TQL-4 qualification, 126 

GNATstack, 34, 43, 70, 107 

TQL-5 qualification, 70 

GNATtest, 36, 43 

Support for generic templates, 89 

Support for low-level testing, 72 

Support for substitutability testing 

(OOT), 95 

GNU GCC technology, 29 

H 

High-Level Requirements (HLR), 42 

Hybrid verification, 29, 126 

I 

Ichbiah, Jean, 22 

Incorrect calculation of buffer size, 32 

Integer overflow or wraparound, 32 

Integrated Development Environments 

(IDEs), 38 

ISO 26262, 40 

J 

Java language, 25, 62, 100 

L 

Liskov Substitution Principle (LSP), 37, 

90 



AdaCore Technologies for DO-178C / ED-12C 

148 

Local type consistency (OOT 

vulnerbility), 86 

Lovelace, Augusta Ada, 22 

Low-Level Requirements (LLR), 42, 56 

Expressed as Ada or SPARK 

contracts, 120 

Formal methods and source code 

compliance, 126 

Lynx178 (supported by GNAT Pro), 71 

M 

Memory management. See Dynamic 

memory management (OOT 

vulnerability) 

MISRA-C 

Generated by QGen, 19, 40, 44, 

108 

Model-Based Development 

Usage with AdaCore tools, 44 

Modified Condition/Decision Coverage 

(MC/DC), 37, 78 

N 

Nexus interface, 81 

O 

Object-Oriented Technology 

Dynamic dispatching. See Dynamic 

dispatching (OOT) 

Software architecture definition, 86 

Substitutability. See Substitutability 

(OOT) 

Traceability, 87 

Usage with AdaCore tools, 43 

Verifying substitutability, 94, 95 

Vulnerabilities, 86 

Options. See Switches 

Overloading (OOT and related 

techniques vulnerability), 86, 105 

P 

Parameter Data Items, 130 

Pessimistic testing (OOT, 94 

PikeOS (supported by GNAT Pro), 71 

Property preservation between source 

code and object code, 129 

Q 

QEMU, 37 

QGen, 13, 19, 39, 108 

Executable Object Code verification, 

112 

Model debugger, 19 

Qualification activities, 113 

Qualification benefits, 111 

Qualification material, 40 

Structural code coverage, 115 

Support for model static analysis, 41 

Support for model verification, 110 

Support for Processor-in-the-Loop 

testing, 41 

R 

Ravenscar Profile, 27, 51 

Robustness / defensive programming, 

63 

Ada contracts, 64 

SPARK, 119 

S 

S-Function (Simulink®), 115 

Simulink®, 13, 18, 19, 39, 108, 114 

Software level. See Design Assurance 

Level 

Software life cycle, 11, 42 

SonarQube, 68 

Soundness (formal analysis property), 

19, 119 

SPARK, 20, 27, 44 

Absence of run-time exceptions, 28, 

118, 124 

Architecture review support, 121 

Buffer overrun prevention, 118 

Code compliance with formal 

specification, 118 

Code coverage, 128 

Contract_Case aspect, 128 



Frédéric Pothon & Quentin Ochem 

149 

Contract-based programming, 56 

Data and control flow analysis, 28 

Depends aspect, 57, 128 

Design data development, 117 

Generated by QGen, 19, 44, 108 

Global aspect, 57 

Information flow analysis, 28 

Integer overflow prevention, 118 

Integration with C, 63 

Language restrictions, 118 

Postconditions, 120, 123 

Preconditions, 120, 123 

Prohibition of exceptions, 104 

Property preservation between 

source code and object code, 

129 

Robustness, 119 

Source code review support, 122 

Static verification support, 28 

Support for Low Level Requirement 

reviews, 120 

Testing replaced by formal proofs, 

118 

Uninitialized-variable read 

prevention, 118, 124 

Unused-assignment prevention, 124 

Usage, 27 

Verifying substitutability (OOT), 95 

SPARK Pro, 27 

SQUORE, 68 

Stateflow®, 13, 19, 39, 108, 114 

Statement coverage, 37, 78 

Structural testing, 64 

Substitutability (OOT), 89, 90 

Local versus global, 96 

Sustained branch, 29, 30 

Switches 

-fdump-ada-spec (g++), 62 

-gnata (gcc), 66, 131 

-gnatceg (gcc), 62 

--validate-type-extensions 

(gnattest), 95 

SysSML, 18 

T 

Table A-1 Software Planning Process, 

67, 136 

Table A-2 Software Development 

Processes, 45, 52, 62, 63, 67, 71, 

86, 89, 99, 102, 108, 117, 119, 

130, 138 

Table A-4 Verification of Outputs of 

Software Design Process, 52, 110, 

139 

Table A-5 Verification of Outputs of 

Software Coding & Integration 

Processes, 45, 52, 63, 67, 69, 70, 

71, 130, 140 

Table A-6 Testing of Outputs of 

Integration Process, 72, 76, 112, 

125, 126, 141 

Table A-7 Verification of Verification 

Process Results, 72, 78, 82, 84, 87, 

98, 99, 115, 142 

Table FM.A-4 Verification of Outputs of 

Software Design Process, 120, 121 

Table FM.A-5 Verification of Outputs of 

Software Coding & Integration 

Processes, 117, 122 

Table FM.A-7 Verification of 

Verification Process Results, 128, 

129 

Table MB.A-2 Software Development 

Processes, 108 

Table MB.A-5 Verification of Outputs of 

Software Coding & Integration 

Processes, 111 

Table OO.A-4 Verification of Outputs 

of Software Design Process, 99, 102 

Table OO.A-5 Verification of Outputs 

of Software Coding & Integration 

Processes, 105, 106 

Table OO.A-7 Verification of 

Verification Process Results, 89 

Taft, Tucker, 22 

Testing 

Pessimistic testing (OOT), 94 

Replacement by formal proofs, 125 

Requirement-based testing (OOT), 

95 



AdaCore Technologies for DO-178C / ED-12C 

150 

Tool Qualification Level (TQL), 16 

Traceability (Source to Object), 30, 71, 

84 

Type certificate (for airworthiness), 14 

Type conversion (OOT and related 

techniques vulnerability), 86, 105 

U 

UML, 18, 86 

Use case #1a: Coding with Ada 2012, 

45 

Use case #1b: Coding with Ada using 

OOT features, 86 

Use case #2: Developing a design 

model and using a qualified code 

generator (QGen), 108 

Use case #3: Using SPARK and formal 

analysis, 117 

V 

V software life cycle, 42 

Valgrind, 38, 81 

VxWorks 6 Cert (supported by GNAT 

Pro), 71 

VxWorks 653 (supported by GNAT 

Pro), 71 

W 

Workbench (WindRiver development 

environment), 39 

 


	Cover.pdf
	AdaCoreTechnologiesForDO178C.pdf

