

AdaCore Technologies for

DO-178C / ED-12C

Version 1.1

Frédéric Pothon and Quentin Ochem

March 2017

iii

About the Authors

Frédéric Pothon

Frédéric Pothon is an independent consulting engineer with more than 25

years of experience in the development and certification of critical

software (DO-178/ED-12, Levels A, B, and C). He has led projects at

Turboméca and Airbus, where he was responsible for software

methodologies and quality engineering processes, and he founded the

company ACG-Solutions in 2007. Mr. Pothon is an expert in the

qualification and utilization of automatic code generation tools for model-

based development, and he served as co-chair of the Tool Qualification

subgroup during the DO-178C/ED-12C project. He was also a member

of the EUROCAE/RTCA group that produced DO-248B/ED-94B, which

provides supporting information for DO-178B/ED-12B. Mr. Pothon is

based in Montpellier, France.

Quentin Ochem

Quentin Ochem is the Lead of Business Development and Technical

Account Management at AdaCore, a role that entails expanding the

company's product reach in domains such as avionics, railroad, space, and

defense systems. Mr. Ochem has a software engineering background

and more than ten years of experience in the Ada programming

language, with a special focus on development and verification tools for

safety- and mission-critical systems. He has conducted customer training

on the Ada language, AdaCore tools, and the DO-178B and DO-178C

software certification standards, and has published numerous articles for

technical trade journals. Mr.Ochem is based in AdaCore's New York

office.

iv

v

Foreword

The guidance in the DO-178C / ED-12C standard and its associated

technology-specific supplements helps achieve confidence that airborne

software meets its requirements. Certifying that a system complies with

this guidance is a challenging task, especially for the verification

activities, but appropriate usage of qualified tools and specialized run-

time libraries can significantly simplify the effort. This document explains

how a number of technologies offered by AdaCore – tools, libraries, and

supplemental services – can help. It covers not only the “core” DO-178C /

ED-12C standard but also the technology supplements: Model-Based

Development and Verification (DO-331 / ED-218), Object-Oriented

Technology and Related Techniques (DO-332 / ED-217), and Formal

Methods (DO-333 / ED-216). The content is based on the authors’ many

years of practical experience with the certification of airborne software,

with the Ada and SPARK programming languages, and with the

technologies addressed by the DO-178C / ED-12C supplements.

The authors gratefully acknowledge the assistance of Ben Brosgol

(AdaCore) for his review of and contributions to the material presented in

this document.

Frédéric Pothon, ACG Solutions

Montpellier, France

March 2017

Quentin Ochem, AdaCore

New York, NY

March 2017

vi

vii

AdaCore Technologies for DO-178C / ED-12C

Contents
About the Authors .. iii

Foreword v

1. Introduction .. 11

2. The DO-178C/ED-12C Standards Suite 14

2.1. Overview... 14

2.2. Software Tool Qualification Considerations:

DO-330/ED-215 ... 16

2.3. Object Oriented Technology and Related Techniques

Supplement: DO-332 / ED-217 ... 17

2.4. Model-Based Development and Verification Supplement:

DO-331 / ED-218 .. 18

2.5. Formal Methods Supplement: DO-333 / ED-216 19

3. AdaCore Tools and Technologies Overview 22

3.1. Ada .. 22

3.1.1. Language Overview ... 23

3.2. SPARK .. 27

3.2.1. Flexibility... 28

3.2.2. Powerful Static Verification ... 28

3.2.3. Ease of Adoption ... 28

3.2.4. Reduced Cost and Improved Efficiency of Executable Object

Code (EOC) verification ... 29

3.3. GNAT Pro Assurance .. 29

3.3.1. Sustained Branches .. 30

3.3.2. Configurable Run-Time Library .. 30

3.3.3. Full Ada 83 to 2012 Implementation .. 30

3.3.4. Source to Object Traceability ... 30

viii

3.3.5. Safety-Critical Support and Expertise .. 31

3.4. CodePeer .. 31

3.4.1. Early Error Detection ... 31

3.4.2. Qualified for usage in Safety-Critical Industries 32

3.5. Basic Static Analysis tools .. 32

3.5.1. ASIS, GNAT2XML .. 32

3.5.2. GNATmetric .. 33

3.5.3. GNATcheck ... 33

3.5.4. GNATstack .. 34

3.6. Dynamic Analysis Tools .. 36

3.6.1. GNATtest ... 36

3.6.2. GNATemulator ... 37

3.6.3. GNATcoverage .. 37

3.7. Integrated Development Environments (IDEs) 38

3.7.1. GNAT Programming Studio (GPS) ... 38

3.7.2. Eclipse support - GNATbench ... 39

3.7.3. GNATdashboard ... 39

3.8. Model-Based Development: QGen ... 39

3.8.1. Support for Simulink® and Stateflow® models 40

3.8.2. Qualification material .. 40

3.8.3. Support for model static analysis .. 41

3.8.4. Support for Processor-in-the-Loop testing 41

4. Compliance with DO-178C / ED-12C Guidance: Analysis .. 42

4.1. Overview... 42

4.2. Use case #1a: Coding with Ada 2012 .. 45

4.2.1. Benefits of the Ada language .. 45

4.2.2. Using Ada during the design process .. 52

4.2.2.1 Component identification .. 53

4.2.2.2. Low-Level Requirements ... 55

ix

4.2.2.3. Implementation of Hardware/Software Interfaces 58

4.2.3. Integration of C components with Ada.. 62

4.2.4. Robustness / defensive programming ... 63

4.2.5. Defining and Verifying a Code Standard with GNATcheck

and GNAT2XML .. 67

4.2.6. Checking source code accuracy and consistency with

CodePeer .. 69

4.2.7. Checking worst case stack consumption with GNATstack 70

4.2.8. Compiling with the GNAT Pro compiler .. 71

4.2.9. Using GNATtest for low-level testing .. 72

4.2.10. Using GNATemulator for low-level and software / software

integration tests ... 76

4.2.11. Structural code coverage with GNATcoverage 78

4.2.12. Data and control coupling coverage with GNATcoverage 82

4.2.13. Demonstrating traceability of source to object code 84

4.3. Use case #1b: Coding with Ada using OOT features 86

4.3.1. Object orientation for the architecture ... 86

4.3.2. Coverage in the case of generics .. 87

4.3.3. Dealing with dynamic dispatching and substitutability 89

4.3.4. Dispatching as a new module coupling mechanism 98

4.3.5. Memory management issues ... 99

4.3.6. Exception handling .. 102

4.3.7. Overloading and type conversion vulnerabilities 105

4.3.8. Accounting for dispatching in performing resource analysis .. 106

4.4. Use case #2: Developing a design model and using a

qualified code generator (QGen) ... 108

4.4.1. Model development / verification and code generation 108

4.4.2. Contributions to model verification .. 110

4.4.3. Qualification credit on source code verification objectives 111

x

4.4.4. Qualification credit on Executable Object Code verification

objectives .. 112

4.4.5. Qualification credit on structural code coverage 115

4.5. Use case #3: Using SPARK and formal analysis 117

4.5.1. Using SPARK for design data development 117

4.5.2. Robustness and SPARK ... 119

4.5.3. Contributions to Low Level Requirement reviews 120

4.5.4. Contributions to architecture reviews ... 121

4.5.5. Contributions to source code reviews .. 122

4.5.6. Formal analysis as an alternative to low level testing 125

4.5.7. Low level verification by mixing test and proof

(“Hybrid verification”) .. 126

4.5.8. Alternatives to code coverage when using proofs 128

4.5.9. Property preservation between source code and

object code ... 129

4.6. Parameter Data Items .. 130

5. Summary of contributions to DO-178C/ED-12C objectives133

5.1 Overall summary: which objectives are met ... 133

5.2 Detailed summary: which activities are supported 135

Table A-1 Software Planning Process .. 136

Table A-2 Software Development Processes...................................... 138

Table A-4 Verification of Outputs of Software Design Process 139

Table A-5 Verification of Outputs of Software Coding &

 Integration Processes ... 139

Table A-6 Testing of Outputs of Integration Process 141

Table A-7 Verification of Verification Process Results 142

References ... 144

Frédéric Pothon & Quentin Ochem

11

1. Introduction

This document explains how to use AdaCore’s technologies – the

company’s tools, run-time libraries, and associated services – in

conjunction with the safety-related standards for airborne software: RTCA

DO-178C / EUROCAE ED-12C and its technology supplements and tool

qualification considerations. It describes how AdaCore’s technologies fit

into a project’s software life cycle processes, and how they can satisfy

various objectives of the standards.

Many of the advantages of AdaCore’s products stem from the underlying

Ada programming language, or from the SPARK Ada subset. As a result,

this document identifies how Ada and SPARK contribute toward the

development of reliable software. AdaCore personnel have played key

roles in the design and implementation of both of these languages.

Although DO-178C doesn’t prescribe any specific software life cycle, the

development and verification processes that it encompasses can be

represented as a variation of the traditional “V” cycle. As shown in Figure

1, AdaCore’s products and the Ada and SPARK languages contribute

principally to the bottom portions of the “V” – coding and integration and

their verification. The Table annotations in Figure 1 refer to the tables in

DO-178C / ED-12C and, when applicable, specific objectives in those

tables.

AdaCore Technologies for DO-178C / ED-12C

12

Figure 1: AdaCore Technologies and

DO-178C / ED-12C Life Cycle Processes

AdaCore also offers tools and technologies for projects using the C

language. Although C lacks the built-in checks as well as other

functionality that Ada provides, AdaCore’s Ada and C toolchains have

similar capabilities. And mixed-language applications can take

advantage of Ada’s interface checking that is performed during inter-

module communication.

AdaCore’s Ada and C compilers can help developers produce reliable

software, targeting embedded platforms with RTOSes as well as “bare

metal” configurations. These are available with long term support,

certifiable run-time libraries, and source-to-object traceability analyses

as required for DO-178C / ED-12C Level A. Supplementing the compilers

are a comprehensive set of tools including coding standard checkers, test

and coverage analyzers, and static analysis tools.

A number of these tools are qualifiable with respect to the DO-330 / ED-

215 recommendations (Tool Qualification Considerations). The use of

qualified tools can save considerable effort during development and/or

verification since the output of the tools does not need to be manually

checked. Qualification material, at the applicable Tool Qualification Level

(TQL), are available for specific AdaCore tools.

Supplementing the core DO-178C/ED-12C standard are three

supplements that address specific technologies:

High-Level
Requirements

Software
Design

Software Coding

HLR &
Integration

Testing

Low Level
Requirements

Testing

Table A-2: 1,2
Table A-3

Table A-2: 3,4,5
Table A-4

Table A-2: 6,7

Table A-6: 3, 4
Table A-7

Table A-6: 1, 2, 5
Table A-7

Table A-5

Development
Processes

Verification
Processes

QGen model
code generator

Ada and SPARK
languages

Ada and SPARK languages,
GNAT Compiler,
GNAT IDEs (GPS, GNATbench)

CodePeer, SPARK tools,
GNATcheck, GNATstack, GNATmetric,
GNATdashboard

GNATemulator,
GNATcoverage,
GNATtest

QGen model verifier
and debugger

Ada and SPARK
languages

Frédéric Pothon & Quentin Ochem

13

 DO-331/ED-218: Model-Based Development and Verification

 DO-332/ED-217: Object-Oriented Technology and Related

Techniques

 DO-333/ED-216: Formal Methods

AdaCore’s tools make it easier to comply with these supplements:

 QGen, a qualifiable code generator for model-based

development, accepts a safe subset of Simulink® and Stateflow®

models and generates SPARK and MISRA-C. Certification credit

for the use of a qualified code generator may be claimed on

most of the source code verification objectives and low-level

testing.

 Ada and SPARK provide specific features that help meet the

objectives of DO-332/ED-217, thus allowing developers to

specify a hierarchy of classes in a certified application.

 The SPARK language and technology directly support DO-

333/ED-216, allowing the use of formal proofs in place of low

level testing.

The technologies and associated options presented in this document are

known to be acceptable, and certification authorities have already

accepted most of them on actual projects. However, acceptance is project

dependent. An activity using a technique or method may be considered as

appropriate to satisfy one or several DO-178C / ED-12C objectives for

one project (determined by the development standards, the input

complexity, the target computer and system environment) but not

necessarily on another project. The effort and amount of justification to

gain approval may also differ from one auditor to another, depending of

their background. Whenever a new tool, method, or technique is

introduced, it’s important to open a discussion with AdaCore and the

designated authority to confirm its acceptability. The level of detail in the

process description provided in the project plans and standard is a key

factor in gaining acceptance.

AdaCore Technologies for DO-178C / ED-12C

14

2. The DO-178C/ED-12C

Standards Suite

2.1. Overview

“Every State has complete and exclusive sovereignty over the airspace

above its territory.” This general principle was codified in Article 1 of the

Convention on International Civil Aviation (the “Chicago Convention”) in

1944. To control the airspace, harmonized regulations have been

formulated to ensure that the aircraft are airworthy.

A type certificate is issued by a certification authority to signify the

airworthiness of an aircraft manufacturing design. The certificate reflects

a determination made by the regulating body that the aircraft is

manufactured according to an approved design, and that the design

complies with airworthiness requirements. To meet those requirements the

aircraft and each subassembly must also be approved. Typically,

requirements established by a regulating body refer to “Minimum

Operating Performance Standards” (MOPS) and a set of recognized

“Acceptable Means of Compliance” such as DO-178/ED-12 for software,

DO-160/ED-14 for environmental conditions and test procedures, and

DO-254/ED-80 for Complex Electronic Hardware.

DO-178C/ED-12C – Software Considerations in Airborne Systems and

Equipment Certification – was issued in December 2011, developed jointly

by RTCA, Inc., and EUROCAE. It is the primary document by which

certification authorities such as the FAA, EASA, and Transport Canada

approve all commercial software-based aerospace systems.

The DO-178C/ED-12C document suite includes:

 The core document, which is a revision of the previous release

(DO-178B/ED-12B). The changes are mostly clarifications, and

also address the use of “Parameter Data Items” (e.g.,

Configuration tables)

Frédéric Pothon & Quentin Ochem

15

 DO-278A/ED-109A, which is similar to DO-178C/ED-12C and

addresses ground-based software used in the domain of

CNS/ATM (Communication Navigation Surveillance/Air Traffic

Management)

 DO-248C/ED-94C (Supporting Information for DO-178C/ED-

12C and DO-278A/ED-109A), which explains the rationale

behind the guidance provided in the core documents

 Three technology-specific supplements

o DO-331/ED-218: Model Based Development and
Verification

o DO-332/ED-217: Object Oriented Technology and
Related Techniques

o DO-333/ED-216: Formal Methods

Each supplement adapts the core document guidance as

appropriate for its respective technology. These supplements are

not standalone documents but must be used in conjunction with

DO-178C/ED-12C or DO-278A/ED-109A

 The Tool Qualification Considerations document (DO-330/ED-

215), providing guidance for qualifying software tools

One of the main principles of these documents is to be “objective

oriented”. The guidance in each document consists of a set of objectives

that relate to the various software life-cycle processes (planning,

development, verification, configuration management, quality assurance,

certification liaison). The objectives that must be met for a particular

software component depend on the software level (also known as a Design

Assurance Level or DAL) of the component. The level in turn is based on the

potential effect of an anomaly in that software component on the

continued safe operation of the aircraft. Software levels range from E

(the lowest) where there is no effect, to A (the highest) where an anomaly

can cause the loss of the aircraft. A software component’s level is

established as part of the system life-cycle processes.

To gain software approval for a system, the applicant has to demonstrate

that the objectives relevant to the software level for each component

AdaCore Technologies for DO-178C / ED-12C

16

have been met. To achieve this goal, the development team specifies the

various software life-cycle activities (based on those recommended by

DO-178C/ED-12C and/or others), and its associated methods,

environment, and organization/management. In case the chosen methods

are addressed by one of the technology supplements, additional or

alternative objectives must also be satisfied. The technology supplements

may replace or add objectives and/or activities.

2.2. Software Tool Qualification Considerations:

 DO-330/ED-215

A software tool needs to be qualified when a process is automated,

eliminated, or reduced, but its outputs are not verified. The systematic

verification of the tool outputs is replaced by activities performed on the

tool itself: the “tool qualification”. The qualification effort depends on the

assurance level of the airborne software and the possible effect that an

error in the tool may have on this software. The resulting combination, the

Tool Qualification Level, is a 5 level scale, from TQL-5 (the lowest level,

applicable to software tools that cannot insert an error in the resulting

software, but might fail to detect an error) to TQL-1 (the highest,

applicable to software tools that can insert an error in software at

level A).

A tool is only qualified in the context of a specific project, for a specific

certification credit, expressed in term of objectives and activities.

Achieving qualification for a tool on a specific project does of course

greatly increase the likelihood of being able to qualify the tool on

another project. However, a different project may have different

processes or requirements, or develop software with different

environment constraints. As a result, the qualifiability of a tool needs to be

systematically assessed on a case-by-case basis.

Although many references are made in the literature about “qualified”

tools, strictly speaking this term should only be used in the context of a

specific project. Tools provided by tool vendors, independently of any

project, should be identified as “qualifiable” only. The tool qualification

document guidance (DO-330/ED-215) includes specific objectives that

can only be satisfied in the context of a given project environment.

Frédéric Pothon & Quentin Ochem

17

Throughout this document, the applicable tool qualification level is

identified together with the relevant objective or activity for which credit

may be sought. The qualification activities have been performed with

respect to DO-330/ED-215 at the applicable Tool Qualification Level.

Tool qualification material is available to customers as a supplement to

AdaCore’s GNAT Pro Assurance product.

2.3. Object Oriented Technology and Related

Techniques Supplement: DO-332 / ED-217

Although DO-332 / ED-217 is often referred as the “object oriented

supplement”, the “related techniques” mentioned in the title are equally

relevant and are addressed in detail. They may be used in conjunction

with Object-Oriented Technology (OOT) but are not necessarily related

to OO features. Such “related techniques” include virtualization,

genericity (also known as templates), exceptions, overloading, and

dynamic memory management.

Considering the breadth of features covered by DO-332/ED-217, at

least some of its guidance should be followed regardless of whether the

actual application is using object orientation. For example, type

conversion is probably present in most code bases regardless of which

language is being used.

The DO-332 / ED-217 supplement is much more code-centric than the

others, and only two objectives are added: one related to local type

consistency (dynamic dispatching) and another one related to dynamic

memory. All other guidance takes the form of additional activities for

existing DO-178C / ED-12C objectives.

Of particular relevance is the supplement’s Vulnerability Analysis annex.

Although not binding, it explains in detail what is behind these additional

activities. The following features in particular may need to be addressed

when Ada is used:

 Inheritance / local type consistency

 Parametric polymorphism (genericity)

 Overloading

AdaCore Technologies for DO-178C / ED-12C

18

 Type conversion

 Exception management

 Dynamic memory

 Component-based development

The Ada language, the precautions taken during the design and coding

processes, and the use of AdaCore tools combine to help address or

mitigate the vulnerabilities associated with these features.

2.4. Model-Based Development and Verification

Supplement: DO-331 / ED-218

A model is defined as “an abstract representation of a given set of

aspects of a system that is used for analysis, verification, simulation, code

generation, or any combination thereof”. The supplement identifies two

kinds of models: specification models that express the High-Level

Requirements, and design models expressing the software architecture

and/or Low-Level Requirements.

Model-based development covers a wide range of techniques for

representing the software requirements and/or architecture, most often

through a graphical notation. The source code itself is not considered as a

model. Well known examples include UML for software architecture,

SysSML for system representation, and Simulink® for control algorithms

and related requirements. DO-331 / ED-218 presents the objectives and

activities associated with the use of such techniques. The main added

value of the supplement is its guidance on how to use model simulation

and obtain certification credit.

Model-based development might not be appropriate for capturing the

complete set of system aspects. For example, while a large part of the

analog control code can be effectively modeled by Simulink®, it would

typically be easier to use traditional requirements definition methods

(most notably natural language) to express I/O, low level layers, or

complex logic.

Frédéric Pothon & Quentin Ochem

19

In the context of AdaCore’s technology, the focus is on design models that

can be used to express control algorithms or state machines, namely

Mathworks’ Simulink® and Stateflow® languages. These are typically used

to represent a subset of the software’s low-level requirements. The

correctness of these requirements can be verified in a simulation

environment. Model simulation is therefore an appropriate and efficient

technique to verify that the requirements expressed in the model are a

correct and complete implementation of the higher level of requirements.

This higher level is referred to as “requirements from which the model is

developed”.

Design models are translated into source code, for example C or Ada,

either manually or automatically. The way to convert the model into

source code – i.e., manually or through a code generator (qualified or

not) – is not addressed in the supplement. Additional information is

provided in the Tool Qualification Considerations standard (DO-330/ED-

215) concerning the use of a qualified code generator or the verification

of the outputs of a non-qualified code generator.

The AdaCore technology relevant to this supplement is QGen, a

qualifiable model-based toolsuite that includes a code generator (TQL-1)

for a safe subset of Simulink® and Stateflow® models, and a model

verification capability that can identify potential run-time errors and also

support proof of safety properties at the model level. The code

generator is tunable and can generate SPARK/Ada or MISRA-C. A model

debugger is also available for QGen, providing a synchronized view

across the model, the generated source code, and the compiled object

code.

2.5. Formal Methods Supplement: DO-333 /

ED-216

DO-333 / ED-216 provides guidance on the use of formal methods. A

formal method is defined as “a formal model combined with a formal

analysis”. A formal model should be precise, unambiguous and have a

mathematically defined syntax and semantics. The formal analysis should

be sound; i.e., if it is supposed to determine whether the formal model (for

example the software source code in a language such as SPARK) satisfies

AdaCore Technologies for DO-178C / ED-12C

20

a given property, then the analysis should never assert that the property

holds when in fact it does not.

A formal method may be used to satisfy DO-178C/ED-12C verification

objectives; formal analysis may therefore replace some reviews, analyses

and tests. Almost all verification objectives are potential candidates for

formal methods.

In DO-178C / ED-12C, the purpose of testing is to verify the Executable

Object Code (EOC) based on the requirements. The main innovation of

DO-333 / ED-216 is to allow the use of formal methods to replace some

categories of tests. In fact, with the exception of software / hardware

integration tests showing that the EOC is compatible with the target

computer, the other objectives of EOC verification may be satisfied by

formal analysis. This is a significant added value. However, employing

formal analysis to replace tests is a new concept in the avionics domain,

with somewhat limited experience in practice thus far (see [1] for further

information). Details from tool providers on the underlying models or

mathematical theories implemented in the tool are necessary to assess the

maturity of the method. Then substantiation and justification need to be

documented, typically in the PSAC, and provided to certification

authorities at an early stage for review.

AdaCore provides the SPARK technology as a formal method that can

eliminate or reduce the testing based on low-level requirements. Using

SPARK will also get full or partial credit for other objectives, such as

requirements and code accuracy and consistency, verifiability, etc. Its

usage is consistent with the example provided in Appendix B of DO-

333/ED-216, “FM.B.1.5.1 Unit Proof”. Certification credit for using formal

proofs is summarized in Figure 2:

Frédéric Pothon & Quentin Ochem

21

System Requirements

High Level

Requirements

Low Level

Requirements
Software Architecture

Source Code

Executable Object

Code

Compliance

Robustness

Property

Preservation

by Formal Proof

by Formal Proof

by Formal Proof

Software architecture is

compliant

Source Code is

accurate and consistent

Consistency

Verifiability

implied

Figure 2: SPARK contributions to verification objectives

AdaCore Technologies for DO-178C / ED-12C

22

3. AdaCore Tools and

Technologies Overview
3.1. Ada

Ada is a modern programming language designed for large, long-lived

applications – and embedded systems in particular – where reliability,

maintainability, and efficiency are essential. It was originally developed

in the early 1980s (this version is generally known as Ada 83) by a team

led by Jean Ichbiah at CII-Honeywell-Bull in France. The language was

revised and enhanced in an upward compatible fashion in the early

1990s, under the leadership of Tucker Taft from Intermetrics in the U.S.

The resulting language, Ada 95, was the first internationally standardized

(ISO) object-oriented language. Under the auspices of ISO, a further

(minor) revision was completed as an amendment to the standard; this

version of the language is known as Ada 2005. Additional features

(including support for contract-based programming in the form of

subprogram pre- and postconditions and type invariants) were added in

the most recent version of the language standard, Ada 2012 (see [2] [3]

[4] for information about Ada).

The name “Ada” is not an acronym; it was chosen in honor of Augusta

Ada Lovelace (1815-1852), a mathematician who is sometimes regarded

as the world’s first programmer because of her work with Charles

Babbage. She was also the daughter of the poet Lord Byron.

Ada is seeing significant usage worldwide in high-integrity / safety-

critical / high-security domains including commercial and military aircraft

avionics, air traffic control, railroad systems, and medical devices. With its

embodiment of modern software engineering principles Ada is an

excellent teaching language for both introductory and advanced

computer science courses, and it has been the subject of significant

university research especially in the area of real-time technologies.

AdaCore has a long history and close connection with the Ada

programming language. Company members worked on the original Ada

Frédéric Pothon & Quentin Ochem

23

83 design and review and played key roles in the Ada 95 project as well

as the subsequent revisions. The initial GNAT compiler was essential to the

growth of Ada 95; it was delivered at the time of the language’s

standardization, thus guaranteeing that users would have a quality

implementation for transitioning to Ada 95 from Ada 83 or other

languages.

3.1.1. Language Overview

Ada is multi-faceted. From one perspective it is a classical stack-based

general-purpose language, not tied to any specific development

methodology. It has a simple syntax, structured control statements,

flexible data composition facilities, strong type checking, traditional

features for code modularization (“subprograms”), and a mechanism for

detecting and responding to exceptional run-time conditions (“exception

handling”).

But it also includes much more:

Scalar ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada

allows the programmer to simply and explicitly specify the range of

values that are permitted for variables of scalar types (integer, floating-

point, fixed-point, and enumeration types). The attempted assignment of

an out-of-range value causes a run-time error. The ability to specify

range constraints makes programmer intent explicit and makes it easier to

detect a major source of coding and user input errors. It also provides

useful information to static analysis tools and facilitates automated proofs

of program properties.

Here’s an example of an integer scalar range:

Score : Integer range 1..100;

N : Integer;

...

Score := N;

-- A run-time check verifies that N is within the range 1..100

-- If this check fails, the Constraint_Error exception is

raised

AdaCore Technologies for DO-178C / ED-12C

24

Contract-based programming

Ada 2012 allows extending a subprogram specification or a

type/subtype declaration with a contract (a Boolean assertion).

Subprogram contracts take the form of preconditions and postconditions;

type contracts are used for invariants, and subtype contracts provide

generalized constraints (predicates). Through contracts the developer can

formalize the intended behavior of the application, and can verify this

behavior by testing, static analysis or formal proof.

Here’s a skeletal example that illustrates contact-based programming; a

Table object is a fixed-length container for distinct Float values.

package Table_Pkg is

 type Table is private; -- Encapsulated type

 procedure Insert (T : in out Table; Item: in Float)

 with Pre => not Is_Full(T) and not Contains(T, Item),

 Post => Contains(T, Item);

 procedure Remove (T : in out Table; Item: in Float);

 with Pre => Contains(T, Item),

 Post => not Contains(T, Item);

 function Is_Full (T : in Table) return Boolean;

 function Contains (T : in Table; Item: in Float) return

Boolean;

 ...

private

 ...

end Table_Pkg;

A compiler option controls whether the pre- and post-conditions are

checked at run time. If checks are enabled, a failure raises the

Assertion_Error exception.

Programming in the large

The original Ada 83 design introduced the package construct, a feature

that supports encapsulation (“information hiding”) and modularization,

and which allows the developer to control the namespace that is

accessible within a given compilation unit. Ada 95 introduced the concept

of “child units,” adding considerable flexibility and easing the design of

Frédéric Pothon & Quentin Ochem

25

very large systems. Ada 2005 extended the language’s modularization

facilities by allowing mutual references between package specifications,

thus making it easier to interface with languages such as Java.

Generic templates

A key to reusable components is a mechanism for parameterizing modules

with respect to data types and other program entities, for example a

stack package for an arbitrary element type. Ada meets this requirement

through a facility known as “generics”; since the parameterization is done

at compile time, run-time performance is not penalized.

Object-Oriented Programming (OOP)

Ada 83 was object-based, allowing the partitioning of a system into

modules corresponding to abstract data types or abstract objects. Full

OOP support was not provided since, first, it seemed not to be required

in the real-time domain that was Ada’s primary target, and, second, the

apparent need for automatic garbage collection in an OO language

would have interfered with predictable and efficient performance.

However, large real-time systems often have components such as GUIs

that do not have real-time constraints and that could be most effectively

developed using OOP features. In part for this reason, Ada 95 supplies

comprehensive support for OOP, through its “tagged type” facility:

classes, polymorphism, inheritance, and dynamic binding. Ada 95 does

not require automatic garbage collection but rather supplies definitional

features allowing the developer to supply type-specific storage

reclamation operations (“finalization”). Ada 2005 brought additional

OOP features including Java-like interfaces and traditional obj.op(...)

operation invocation notation.

Ada is methodologically neutral and does not impose a “distributed

overhead” for OOP. If an application does not need OOP, then the OOP

features do not have to be used, and there is no run-time penalty.

See [4] or [5] for more details.

Concurrent programming

Ada supplies a structured, high-level facility for concurrency. The unit of

concurrency is a program entity known as a “task.” Tasks can communicate

implicitly via shared data or explicitly via a synchronous control

AdaCore Technologies for DO-178C / ED-12C

26

mechanism known as the rendezvous. A shared data item can be defined

abstractly as a “protected object” (a feature introduced in Ada 95), with

operations executed under mutual exclusion when invoked from multiple

tasks. Asynchronous task interactions are also supported, specifically

timeouts and task termination. Such asynchronous behavior is deferred

during certain operations, to prevent the possibility of leaving shared

data in an inconsistent state. Mechanisms designed to help take

advantage of multi-core architectures were introduced in Ada 2012.

Systems programming

Both in the “core” language and the Systems Programming Annex, Ada

supplies the necessary features for hardware-specific processing. For

example, the programmer can specify the bit layout for fields in a

record, define alignment and size properties, place data at specific

machine addresses, and express specialized code sequences in assembly

language. Interrupt handlers can also be written in Ada, using the

protected type facility.

Real-time programming

Ada’s tasking facility and the Real-Time Systems Annex support common

idioms such as periodic or event-driven tasks, with features that can help

avoid unbounded priority inversions. A protected object locking policy is

defined that uses priority ceilings; this has an especially efficient

implementation in Ada (mutexes are not required) since protected

operations are not allowed to block. Ada 95 defined a task dispatching

policy that basically requires tasks to run until blocked or preempted, and

Ada 2005 introduced several others including Earliest Deadline First.

High-integrity systems

With its emphasis on sound software engineering principles Ada supports

the development of high-integrity applications, including those that need

to be certified against safety standards such DO-178B / ED-12B and

DO-178C / ED-12C for avionics, CENELEC EN 50128 for rail systems

and security standards such as the Common Criteria. For example, strong

typing means that data intended for one purpose will not be accessed via

inappropriate operations; errors such as treating pointers as integers (or

vice versa) are prevented. And Ada’s array bounds checking prevents

buffer overflow vulnerabilities that are common in C and C++.

Frédéric Pothon & Quentin Ochem

27

However, the full language may be inappropriate in a safety-critical

application, since the generality and flexibility could interfere with

traceability / certification requirements. Ada addresses this issue by

supplying a compiler directive, pragma Restrictions, that allows

constraining the language features to a well-defined subset (for example,

excluding dynamic OOP facilities).

The evolution of Ada has seen the continued increase in support for

safety-critical and high-security applications. Ada 2005 standardized the

Ravenscar Profile, a collection of concurrency features that are powerful

enough for real-time programming but simple enough to make

certification practical. Ada 2012 has introduced contract-based

programming facilities, allowing the programmer to specify preconditions

and/or postconditions for subprograms, and invariants for encapsulated

(private) types. These can serve both for run-time checking and as input to

static analysis tools.

In brief, Ada is an internationally standardized language combining

object-oriented programming features, well-engineered concurrency

facilities, real-time support, and built-in reliability through both compile-

time and run-time checks. As such it is an appropriate language for

addressing the real issues facing software developers today. Ada is used

throughout a number of major industries to design software that protects

businesses and lives.

3.2. SPARK

SPARK is a software development technology (programming language

and verification toolset) specifically designed for engineering ultra-low

defect level applications, for example where safety and/or security are

key requirements. SPARK Pro is AdaCore’s commercial-grade offering of

the SPARK technology. The main component in the toolset is GNATprove,

which performs formal verification on SPARK code.

SPARK has an extensive industrial track record. Since its inception in the

late 1980s it has been used worldwide in a range of industrial

applications such as civil and military avionics, air traffic management /

control, railway signaling, cryptographic software, and cross-domain

solutions. SPARK 2014 is the most recent version of the technology (see

[6]).

AdaCore Technologies for DO-178C / ED-12C

28

3.2.1. Flexibility

SPARK 2014 offers the flexibility of configuring the language on a per-

project basis. Restrictions can be fine-tuned based on the relevant coding

standards or run-time environments.

SPARK 2014 code can easily be combined with full Ada code or with C,

so that new systems can be built on and reuse legacy codebases.

3.2.2. Powerful Static Verification

The SPARK 2014 language supports a wide range of static verification

techniques. At one end of the spectrum is basic data and control flow

analysis, i.e., exhaustive detection of errors such as attempted reads of

uninitialized variables, and ineffective assignments (where a variable is

assigned a value that is never read). For more critical applications,

dependency contracts can constrain the information flow allowed in an

application. Violations of these contracts – potentially representing

violations of safety or security policies – can then be detected even

before the code is compiled.

In addition, the language supports mathematical proof and can thus

provide high confidence that the software meets a range of assurance

requirements: from the absence of run-time exceptions, to the enforcement

of safety or security properties, to compliance with a formal specification

of the program’s required behavior.

3.2.3. Ease of Adoption

The SPARK 2014 technology is easy to learn and can be smoothly

integrated into an organization’s existing development and verification

methodology and infrastructure.

Pre-2014 versions of the SPARK language used a special annotation

syntax for the various forms of contracts. In SPARK 2014 this has been

merged with the standard Ada 2012 contract syntax, which both

simplifies the learning process and also allows new paradigms of

software verification. Programmers familiar with writing executable

contracts for run-time assertion checking can use the same approach but

with additional flexibility: the contracts can be verified either dynamically

Frédéric Pothon & Quentin Ochem

29

through classical run-time testing methods or statically (i.e., pre-

compilation and pre-test) using automated tools.

SPARK supports “hybrid verification” that can mix testing with formal

proofs. For example an existing project in Ada and C can adopt SPARK

to implement new functionality for critical components. The SPARK units

can be analyzed statically to achieve the desired level of verification,

with testing performed at the interfaces between the SPARK units and the

modules in the other languages.

3.2.4. Reduced Cost and Improved Efficiency

of Executable Object Code (EOC) verification

Software verification typically involves extensive testing, including unit

tests and integration tests. Traditional testing methodologies are a major

contributor to the high delivery costs for safety-critical software.

Furthermore, they may fail to detect errors. SPARK 2014 addresses this

issue by allowing automated proof to be used to demonstrate functional

correctness at the subprogram level, either in combination with or as a

replacement for unit testing. In the high proportion of cases where proofs

can be discharged automatically the cost of writing unit tests is completely

avoided. Moreover, verification by proofs covers all execution conditions

and not just a sample.

3.3. GNAT Pro Assurance

GNAT Pro Assurance is an Ada and C development environment for

projects requiring specialized support, such as bug fixes and “known

problems” analyses, on a specific version of the toolchain. This product

line is especially suitable for applications with long maintenance cycles or

certification requirements, since critical updates to the compiler or other

product components may become necessary years after the initial

release. Such customized maintenance of a specific version of the product

is known as a “sustained branch”.

Based on the GNU GCC technology, GNAT Pro Assurance supports all

versions of the Ada language standard, from Ada 83 to Ada 2012, and

also handles multiple versions of C (C89, C99, and C11). It includes an

Integrated Development Environment (GNAT Programming Studio and/or

AdaCore Technologies for DO-178C / ED-12C

30

GNATbench), a comprehensive toolsuite including a visual debugger, and

a set of libraries and bindings.

3.3.1. Sustained Branches

Unique to GNAT Pro Assurance is a service known as a “sustained

branch”: customized support and maintenance for a specific version of the

product. A project on a sustained branch can monitor relevant known

problems, analyze their impact, and if needed update to a newer version

of the product on the same development branch (i.e., not incorporating

changes introduced in later versions of the product).

Sustained branches are a practical solution to the problem of ensuring

toolchain stability while allowing flexibility in case an upgrade is needed

to correct a critical problem.

3.3.2. Configurable Run-Time Library

GNAT Pro Assurance includes a configurable run-time capability, which

allows specifying support for Ada’s dynamic features in an a la carte

fashion ranging from none at all to full Ada. The units included in the

executable may be either a subset of the standard libraries provided

with GNAT Pro, or specially tailored to the application. This latter

capability is useful, for example, if one of the predefined profiles

implements almost all the dynamic functionality needed in an existing

system that has to meet new safety-critical requirements, and where the

costs of adapting the application without the additional run-time support

are considered prohibitive.

3.3.3. Full Ada 83 to 2012 Implementation

GNAT Pro provides a complete implementation of the Ada language

from Ada 83 to Ada 2012. Developers of safety-critical and high-

security systems can thus take advantage of features such as contract-

based programming.

3.3.4. Source to Object Traceability

A compiler option can limit the use of language constructs that generate

object code that is not directly traceable to the source code. As an add-

Frédéric Pothon & Quentin Ochem

31

on service, AdaCore can perform an analysis that demonstrates this

traceability and justifies any remaining cases of non-traceable code.

3.3.5. Safety-Critical Support and Expertise

At the heart of every AdaCore subscription are the support services that

AdaCore provides to its customers. AdaCore staff are recognized experts

on the Ada language, software certification standards in several domains,

compilation technologies, and static and dynamic verification. They have

extensive experience in supporting customers in avionics, railway, space,

energy, air traffic management/control, and military projects.

Every AdaCore product comes with front-line support provided directly

by these experts, who are also the developers of the technology. This

ensures that customers’ questions (requests for guidance on feature usage,

suggestions for technology enhancements, or defect reports) are handled

efficiently and effectively.

Beyond this bundled support, AdaCore also provides Ada language and

tool training as well as on-site consulting on topics such as how to best

deploy the technology, and assistance on start-up issues. On-demand tool

development or ports to new platforms are also available.

3.4. CodePeer

CodePeer is an Ada source code analyzer that detects run-time and logic

errors. It assesses potential bugs before program execution, serving as an

automated peer reviewer, helping to find errors efficiently and early in

the development life-cycle. It can also be used to perform impact analysis

when introducing changes to the existing code, as well as helping

vulnerability analysis. Using control-flow, data-flow, and other advanced

static analysis techniques, CodePeer detects errors that would otherwise

only be found through labor-intensive debugging.

3.4.1. Early Error Detection

CodePeer’s advanced static error detection finds bugs in programs

before programs are run. By mathematically analyzing every line of

code, considering every possible input, and every path through the

program, CodePeer can be used very early in the development life-cycle

AdaCore Technologies for DO-178C / ED-12C

32

to identify problems when defects are much less costly to repair. It can

also be used retrospectively on existing code bases, to detect latent

vulnerabilities.

CodePeer is a standalone tool that may be used with any Ada compiler

or fully integrated into the GNAT Pro development environment. It can

detect several of the “Top 25 Most Dangerous Software Errors” in the

Common Weakness Enumeration: CWE-120 (Classic Buffer Overflow),

CWE-131 (Incorrect Calculation of Buffer Size), and CWE-190 (Integer

Overflow or Wraparound). See [7] for more details.

3.4.2. Qualified for usage in Safety-Critical

Industries

CodePeer has been qualified as a Verification Tool under DO-178B/ED-

12B, automating a number of activities associated with that standard’s

objectives for software accuracy and consistency.

Qualification material for both DO-178B/ED-12B and DO-178C/ED-12C

is available as a product option.

3.5. Basic Static Analysis tools

3.5.1. ASIS, GNAT2XML

ASIS, the Ada Semantic Interface Specification, is a library that gives

applications access to the complete syntactic and semantic structure of an

Ada compilation unit. This library is typically used by tools that need to

perform some sort of static analysis on an Ada program.

ASIS is an international standard (ISO/IEC 15291:1995) and is designed

to be compiler independent. Thus a tool that processes the ASIS

representation of a program will work regardless of which ASIS

implementation has been used. ASIS-for-GNAT is AdaCore’s

implementation of the ASIS standard, for use with the GNAT Pro Ada

development environment and toolset.

AdaCore can assist customers in developing ASIS-based tools to meet

their specific needs, as well as develop such tools upon request.

Frédéric Pothon & Quentin Ochem

33

Typical ASIS-for-GNAT applications include:

 Static analysis (property verification)

 Code instrumentation

 Design and document generation tools

 Metric testing or timing Tools

 Dependency tree analysis tools

 Type dictionary generators

 Coding standard enforcement tools

 Language translators (e.g., to CORBA IDL)

 Quality assessment tools

 Source browsers and formatters

 Syntax directed editors

GNAT2XML provides the same information as ASIS, but allows users to

manipulate it through an XML tree.

3.5.2. GNATmetric

The GNATmetric tool analyzes source code to calculate a set of commonly

used industry metrics, thus allowing developers to estimate the size and

better understand the structure of the source code. This information also

facilitates satisfying the requirements of certain software development

frameworks.

3.5.3. GNATcheck

GNATcheck is a coding standard verification tool that is extensible and

rule-based. It allows developers to completely define a coding standard

as a set of rules, for example a subset of permitted language features. It

verifies a program’s conformance with the resulting rules and thereby

AdaCore Technologies for DO-178C / ED-12C

34

facilitates demonstration of a system’s compliance with certification

standards such as DO-178B / ED-12B and DO-178C / ED-12C.

Key features include:

 An integrated Ada Restrictions mechanism for banning specific

features from an application. This can be used to restrict features

such as tasking, exceptions, dynamic allocation, fixed- or floating

point, input/output and unchecked conversions.

 Restrictions specific to GNAT Pro, such as banning features that

result in the generation of implicit loops or conditionals in the

object code, or in the generation of elaboration code.

 Additional Ada semantic rules resulting from customer input, such

as ordering of parameters, normalized naming of entities, and

subprograms with multiple returns.

 Easy-to-use interface for creating and using a complete coding

standard.

 Generation of project-wide reports, including evidence of the

level of compliance with a given coding standard.

 Over 30 compile-time warnings from GNAT Pro that detect

typical error situations, such as local variables being used before

being initialized, incorrect assumptions about array lower bounds,

infinite recursion, incorrect data alignment, and accidental hiding

of names.

 Style checks that allow developers to control indentation, casing,

comment style, and nesting level.

3.5.4. GNATstack

GNATstack is a software analysis tool that enables Ada/C software

development teams to accurately predict the maximum size of the

memory stack required to execute an embedded software application.

The GNATstack tool statically predicts the maximum stack space required

by each task in an application. The computed bounds can be used to

Frédéric Pothon & Quentin Ochem

35

ensure that sufficient space is reserved, thus guaranteeing safe execution

with respect to stack usage. The tool uses a conservative analysis to deal

with complexities such as subprogram recursion, while avoiding

unnecessarily pessimistic estimates.

This static stack analysis tool exploits data generated by the compiler to

compute worst-case stack requirements. It performs per-subprogram stack

usage computation combined with control flow analysis.

GNATstack can analyze object-oriented applications, automatically

determining maximum stack usage on code that uses dynamic dispatching

in Ada. A dispatching call challenges static analysis because the identity

of the subprogram being invoked is not known until run time. GNATstack

solves this problem by statically determining the subset of potential

targets (primitive operations) for every dispatching call. This significantly

reduces the analysis effort and yields precise stack usage bounds on

complex Ada code.

This is a static analysis tool in the sense that its computation is based on

information known at compile time. When the tool indicates that the result

is accurate, the computed bound can never be exceeded.

On the other hand, there may be cases in which the results will not be

accurate (the tool will report such situations) because of some missing

information (such as the maximum depth of subprogram recursion, indirect

calls, etc.). The user can assist the tool by specifying missing call graph

and stack usage information.

GNATstack’s main output is the worst-case stack usage for every entry

point, together with the paths that result in these stack sizes. The list of

entry points can be automatically computed (all the tasks, including the

environment task) or can be specified by the user (a list of entry points or

all the subprograms matching a given regular expression).

GNATstack can also detect and display a list of potential problems when

computing stack requirements:

 Indirect (including dispatching) calls. The tool will indicate the

number of indirect calls made from any subprogram.

AdaCore Technologies for DO-178C / ED-12C

36

 External calls. The tool displays all the subprograms that are

reachable from any entry point for which there is no stack or call

graph information.

 Unbounded frames. The tool displays all the subprograms that

are reachable from any entry point with an unbounded stack

requirement. The required stack size depends on the arguments

passed to the subprogram. For example:

procedure P(N : Integer) is

 S : String (1..N);

begin

 ...

end P;

 Cycles. The tool can detect all the cycles (i.e., potential
recursion) in the call graph.

GNATstack allows the user to supply a text file with the missing

information, such as the potential targets for indirect calls, the stack

requirements for externals calls, and the maximal size for unbounded

frames.

3.6. Dynamic Analysis Tools

3.6.1. GNATtest
The GNATtest tool helps create and maintain a complete unit testing

infrastructure for complex projects. Based on AUnit, it captures the simple

idea that each visible subprogram should have at least one

corresponding unit test. GNATtest takes a project file as input, and

produces two outputs:

 The complete harnessing code for executing all the unit tests

under consideration. This code is generated completely

automatically.

 A set of separate test stubs for each subprogram to be tested.

These test stubs are to be completed by the user.

Frédéric Pothon & Quentin Ochem

37

GNATtest handles Ada’s Object-Oriented Programming features and can

be used to help verify tagged type substitutability (the Liskov Substitution

Principle) that can be used to demonstrate consistency of class hierarchies.

3.6.2. GNATemulator

GNATemulator is an efficient and flexible tool that provides integrated,

lightweight target emulation.

Based on the QEMU technology, a generic and open-source machine

emulator and virtualizer, GNATemulator allows software developers to

compile code directly for their target architecture and run it on their host

platform, through an approach that translates from the target object code

to native instructions on the host. This avoids the inconvenience and cost of

managing an actual board, while offering an efficient testing environment

compatible with the final hardware.

There are two basic types of emulators. The first can serve as a surrogate

for the final hardware during development for a wide range of

verification activities, particularly those that require time accuracy.

However, they tend to be extremely costly, and are often very slow. The

second, which includes GNATemulator, does not attempt to be a complete

time-accurate target board simulator, and thus it cannot be used for all

aspects of testing. But it does provide a very efficient and cost-effective

way to execute the target code very early in the development and

verification processes. GNATemulator thus offers a practical compromise

between a native environment that lacks target emulation capability, and

a cross configuration where the final target hardware might not be

available soon enough or in sufficient quantity.

3.6.3. GNATcoverage

GNATcoverage is a dynamic analysis tool that analyzes and reports

program coverage. GNATcoverage can perform coverage analysis at

both the object code level (instruction and branch coverage), and the

source code level for Ada or C (Statement, Decision, and Modified

Condition/Decision Coverage - MC/DC).

Unlike most other technologies, GNATcoverage is nonintrusive: it works

without requiring instrumentation of the application code. Instead, the

AdaCore Technologies for DO-178C / ED-12C

38

code runs directly on an instrumented execution platform, such as

GNATemulator, Valgrind on Linux, or on a real board monitored by a

probe.

See [8] for more details on the underlying technology.

3.7. Integrated Development Environments

(IDEs)

3.7.1. GNAT Programming Studio (GPS)

GPS is a powerful and simple-to-use IDE that streamlines software

development from the initial coding stage through testing, debugging,

system integration, and maintenance. GPS is designed to allow

programmers to get the most out of GNAT Pro technology.

Tools

GPS’s extensive navigation and analysis tools can generate a variety of

useful information including call graphs, source dependencies, project

organization, and complexity metrics, giving a thorough understanding of

a program at multiple levels. It allows interfacing with third-party Version

Control Systems, easing both development and maintenance.

Robust, Flexible and Extensible

Especially suited for large, complex systems, GPS can import existing

projects from other Ada implementations while adhering to their file

naming conventions and retaining the existing directory organization.

Through the multi-language capabilities of GPS, components written in C

and C++ can also be handled. GPS is highly extensible; additional tools

can be plugged in through a simple scripting approach. It is also

tailorable, allowing various aspects of the program’s appearance to be

customized in the editor.

Easy to learn, easy to use

GPS is intuitive to new users thanks to its menu-driven interface with

extensive online help (including documentation on all the menu selections)

and “tool tips”. The Project Wizard makes it simple to get started,

supplying default values for almost all of the project properties. For

experienced users, GPS offers the necessary level of control for

Frédéric Pothon & Quentin Ochem

39

advanced purposes; e.g., the ability to run command scripts. Anything that

can be done on the command line is achievable through the menu

interface.

Remote Programming

Integrated into GPS, Remote Programming provides a secure and

efficient way for programmers to access any number of remote servers on

a wide variety of platforms while taking advantage of the power and

familiarity of their local PC workstations.

3.7.2. Eclipse support - GNATbench

GNATbench is an Ada development plug-in for Eclipse and Wind River’s

Workbench environment. The Workbench integration supports Ada

development on a variety of VxWorks real-time operating systems. The

Eclipse version is primarily for native applications, with some support for

cross development. In both cases the Ada tools are tightly integrated.

3.7.3. GNATdashboard

GNATdashboard serves as a one-stop control panel for monitoring and

improving the quality of Ada software. It integrates and aggregates the

results of AdaCore’s various static and dynamic analysis tools

(GNATmetric, GNATcheck, GNATcoverage, CodePeer, SPARK Pro, among

others) within a common interface, helping quality assurance managers

and project leaders understand or reduce their software’s technical debt,

and eliminating the need for manual input.

GNATdashboard fits naturally into a continuous integration environment,

providing users with metrics on code complexity, code coverage,

conformance to coding standards, and more.

3.8. Model-Based Development: QGen
QGen is a qualifiable and tunable code generation and model

verification tool for a safe subset of Simulink® and Stateflow® models. It

reduces the development and verification costs for safety- critical

applications through qualifiable code generation, model verification, and

tight integration with AdaCore’s qualifiable simulation and structural

coverage analysis tools.

AdaCore Technologies for DO-178C / ED-12C

40

QGen addresses one core issue: how to decrease the verification costs on

the model and the code when applying model-based design and

automatic code generation with the Simulink® and Stateflow®

environments. QGen achieves this by

 Enforcing a safe subset of Simulink® blocks

 Providing high-performance and tunable code generation

 Performing static analysis for upfront detection of potential

errors, and

 Making available DO-178B/ED-12B and DO-178C/ED-12CC

qualification material for both the code generator and the model

verification tools. QGen can also integrate smoothly with

AdaCore’s qualifiable simulation and structural coverage analysis

tools.

3.8.1. Support for Simulink® and Stateflow®

models

QGen supports a wide range of features from the Simulink® and

Statefow® environments, including more than one hundred blocks,

Simulink® signals and parameters objects, and several Matlab®

operations. The supported feature set from the Simulink® and Stateflow®

environments has been carefully selected to ensure code generation that

is amenable to safety-critical systems. MISRA-C Simulink® constraints can

be optionally checked with QGen. Features that would imply

unpredictable behavior, or that would lead to the generation of unsafe

code, have been removed. The modelling standard enforced by QGen is

then suitable for DO-178/EN-12(B/C), CENELEC EN 50128 and ISO

26262 development out-of-the-box.

3.8.2. Qualification material

Qualification for QGen will demonstrate compliance with the DO-178C /

ED-12C standard at Tool Qualification Level 1 (TQL-1, equivalent to a

Development Tool in DO-178B / ED-12B), making QGen the only code

generator for Simulink® and Stateflow® models for which a TQL-1

Frédéric Pothon & Quentin Ochem

41

qualification kit is available. The QGen qualification kit will show

compliance with DO-330 / ED-215 (Tool Qualification Considerations)

and include a Tool Qualification Plan, a Tool Development Plan, a Tool

Verification Plan, a Tool Quality Assurance Plan and a Tool Configuration

Management Plan. It will also include detailed Tool Operational

Requirements, Tool Requirements, Test Cases and Test Execution Results,

together with a Tool Configuration Index and a Tool Accomplishment

Summary.

3.8.3. Support for model static analysis

QGen supports static verification that three kinds of defects are

prevented: run-time errors, logical errors, and safety violations. Run-time

errors, such as division by zero or integer overflow, may lead to

exceptions being raised during software execution. Logical errors, for

example a Simulink® “If” block condition that is always True, imply a

defect in the designed model. And safety properties, which can be

modeled using Simulink® Model Verification blocks, represent safety

requirements that are embedded in the design model. QGen is able to

statically verify all these properties and generate run-time checks as well

if configured to do so.

3.8.4. Support for Processor-in-the-Loop

testing

QGen can be integrated with AdaCore’s GNATemulator and

GNATcoverage tools to support streamlined Processor-In- the-Loop (PIL)

testing. The simulation of Simulink® models can be tested back-to-back

against the generated code, which is cross-compiled and deployed on a

GNATemulator installation on the user workstation. While conducting PIL

testing, GNATcoverage can also perform structural coverage analysis up

to MC/DC without any code instrumentation. Both GNATcoverage and

GNATemulator have already been qualified in an operational context.

AdaCore Technologies for DO-178C / ED-12C

42

4. Compliance with DO-
178C / ED-12C Guidance:
Analysis

4.1. Overview

DO-178C / ED-12C uses the term “requirement” to identify the expected

behavior of the system, the software, or a part thereof. The desired

functions are formulated at the system level as “system requirements” and

are refined and elaborated into “software requirements”. DO-178C /

ED-12C identifies several categories of software requirements.

The High-Level Requirements (HLR) define the expected behavior of the

complete software loaded on the target computer, independent of the

software architecture. The HLR are further refined into one or more lower

levels, specifying the expected behavior of each software subpart

(component) based on the architecture definition. The lowest level of

requirements (the LLR) and the architecture are translated into source

code, which finally is compiled to produce the Executable Object Code

(EOC).

Within this basic framework, the development process activities

(requirements definition, design, coding, and integration) should be

conducted so as to reduce the likelihood of introducing errors. Verification

process activities are designed to detect errors through multiple filters, by

assessing the same artifacts in different ways. This naturally applies to the

EOC, whose verification involves checking compliance with the

requirements at each level, using both normal and abnormal inputs. Such

verification is typically performed by testing. Finally, the EOC verification

must itself be verified.

While it is not a DO-178C / ED-12C concept, a “V” cycle is often used to

represent the complete software life cycle. A variation of the traditional

“V” cycle, oriented around the DO-178C / ED-12C processes, was shown

Frédéric Pothon & Quentin Ochem

43

earlier in Figure 1. As is seen in that figure, AdaCore tools mostly apply

towards the bottom stages of the “V” cycle:

 Design (architecture + LLR), coding and integration (EOC

generation), for the development activities.

 Design and source code review / analysis and LLR testing, for the

verification activities.

Additional support is provided for design activities in conjunction with the

three technology supplements (on model-based development, object-

oriented technology, and formal methods).

The core element of the AdaCore tool chain is a development

environment, including a compiler for Ada and C. Complementary tools

support several verification activities, such as GNATcheck for code

standard checking, CodePeer for static analysis, GNATstack for stack

checking, and GNATtest / GNATcoverage for testing and structural code

coverage analysis.

To show how AdaCore tools can be used in connection with the software

life cycle processes for a system that is to be assessed against DO-178C

/ ED-12C, several possible scenarios will be described:

 Use Case 1: Traditional development process, excluding or

including OOT

The development process produces requirements specified in text

(natural language) that are implemented in Ada source code. A

code standard defines a set of restrictions, which may or may not

include limitations on object-oriented features. Both cases need to

be considered:

o Use Case 1a: No use is made of object oriented

technology or related techniques

o Use Case 1b: Ada’s OOT features are used, and the

guidance in DO-332 / ED-217 is considered

AdaCore Technologies for DO-178C / ED-12C

44

 Use Case 2: Model-Based Development

The development process includes a design model, which is

automatically translated into MISRA-C or SPARK/Ada by a

qualified code generator such as provided in QGen. The

certification effort follows the additional guidance from the

Model-Based Development supplement (DO-331 / ED-218) and

the Tool Qualification Considerations standard (DO-330 / ED-

215), to obtain certification credit for using a qualified code

generator.

 Use Case 3: Formal Methods

The development uses a formal description of the low-level

requirements, namely SPARK / Ada 2012 contracts. A formal

analysis is performed, and credit is claimed on reducing the

testing. The certification effort follows the additional guidance

from the Formal Methods Supplement (DO-333 / ED-216).

In the tables that appear in this chapter, the references shown in

parentheses for the objectives identify the table, objective number, and

paragraph reference for the objective in the DO-178C / ED-12C

standard or the relevant technology supplement. For example, A-2[6]:

5.3.1.a refers to Table A-2, Objective 6, paragraph 5.3.1a.

Frédéric Pothon & Quentin Ochem

45

4.2. Use case #1a: Coding with Ada 2012

The adoption of Ada as the coding language brings a number of benefits

during design, coding, and testing, both from language features (as

summarized in the table below) and from the AdaCore ecosystem.

4.2.1. Benefits of the Ada language

Contributions

Objectives Software Coding (A-2[6]: 5.3.1.a)
Reviews and Analyses of Source Code:

- Verifiability (A-5[3]- 6.3.4.c)

- Accuracy and consistency (A-5[6]- 6.3.4.f)

Activities Software Coding (5.3.2.a)
Reviews and Analyses of Source Code (6.3.4)

Ada’s most significant contribution is towards the reliability of the written

code; the language is designed to promote readability and

maintainability, and to detect errors early in the software development

process. This section will summarize several Ada features that help meet

these goals.

Strong typing

The emphasis on early error detection and program clarity is perhaps

most clearly illustrated in the language’s “strong typing”. A type in Ada is

a semantic entity that can embody static (and possibly also dynamic)

constraints. For example:

type Ratio is digits 16 range -1.0 .. 1.0;

In the above example, Ratio is a floating-point type. Two constraints are

specified:

 digits specifies the minimum precision needed for objects of this

type, in terms of decimal digits. Here the compiler will likely

choose a 64-bit representation. If the target architecture only

AdaCore Technologies for DO-178C / ED-12C

46

supports 32-bit floating-point, the compiler will reject the

program.

 range defines the set of acceptable values. Here, only values

between -1.0 and 1.0 are acceptable; an attempt to assign a

value outside this range to a variable of type Ratio will raise a

run-time exception (Constraint_Error).

Strong typing means an absence of implicit conversions (implicit “casts”),

since such conversions can mask logical errors. For example:

type Miles is digits 16;

type Kilometers is digits 16;

...

Distance_1 : Miles;

Distance_2 : Kilometers;

...

Distance_1 := Distance_2; -- Illegal, rejected at compile time

Both Miles and Kilometers are 16-digit floating-point types (the

range constraint is optional in a floating-point type declaration) but they

are different types, and thus the assignment is illegal. Likewise, it is illegal

to combine Miles and Kilometers in an expression; Miles + Kilometers

would also be rejected by the compiler.

With strong typing the program’s data can be partitioned so that an

object of a given type can only be processed using operations that make

sense for that type. This helps prevent data mismatch errors.

Explicit conversions between related types are allowed, either

predefined (for example between any two numeric types) or supplied by

the programmer. Explicit conversions make the programmer’s intent clear.

For example:

Frédéric Pothon & Quentin Ochem

47

type Grade is range 0..100; -- a new integer type

Test_Grade : Grade;

N : Integer; -- predefined type

...

Test_Grade := N;

 -- Illegal (type mismatch), rejected at compile time

Test_Grade := Grade (N);

 -- Legal, with run-time constraint check that N is in 0..100

Dimensionality checking

One of the challenges to a language’s type model is the enforcement of

the proper use of units of measurement. For example dividing a distance

by a time should be allowed, yielding a velocity. But the error of dividing

a time by a distance where a velocity value is required should be

detected and reported as an error at compile time.

Although this issue could be addressed in theory by defining a separate

type for each unit of measurement, such an approach would require

defining functions (likely as overloaded operator symbols) for the

permitted operand combinations. This would be notationally cumbersome

and probably not used much in practice.

The GNAT Pro environment provides a solution through the

implementation-defined aspects Dimension_System which can be

applied to a type, and Dimension which can be applied to a subtype.

Uses of variables are checked at compile time for consistency based on

the Dimension aspect of their subtypes. The GNAT library includes a

package System.Dim.Mks that defines a type and its associated

subtypes that will be used for meters (Length), kilograms (Mass), seconds

(Time), and other units. The programmer can define a subtype such as

Velocity that corresponds to Length (in meters) divided by Time (in

seconds):

AdaCore Technologies for DO-178C / ED-12C

48

subtype Velocity is Mks_Type with

 Dimension => ("m/sec",

 Meter => 1,

 -- Values are exponents in the product of

 -- the units

 Second => -1,

 others => 0);

With such a declaration the following is permitted:

My_Distance : Length := 10 * m; -- m is 1.0 meter

My_Time : Time := 5.0 * h; -- h is 1.0 hour

 -- (3600.0 sec)

My_Velocity : Velocity := My_Distance / My_Time; -- OK

A Velocity value should be computed as a distance divided by a time.

The following will be detected as an error:

My_Distance : Length := 10 * m;

My_Time : Time := 5.0 * h;

My_Velocity : Velocity := My_Time / My_Distance; -- Illegal

GNAT Pro’s support for dimensionality checking is a useful adjunct to

Ada’s strong typing facilities.

Pointers

For compliance with DO-178C/ED-12C, the use of dynamic memory (and

pointers) should be kept to the bare minimum, and Ada helps support this

goal. Features such as arrays or by-reference parameter passing, which

require pointers or explicit references in other languages, are captured

by specific facilities in Ada. For example, Ada’s parameter passing

mechanism reflects the direction of data flow (in, out, or in out) rather

than the implementation technique. Some data types always require by-

copy (for example scalars), and some types always require by-reference

(for example tagged types, in OOP). For all other types the compiler will

choose whether it is more efficient to use by-reference (via a hidden

pointer or reference) or by-copy. Since the developer does not have to

explicitly manipulate pointers to obtain by-reference passing, many

common errors are avoided. Here’s an example:

Frédéric Pothon & Quentin Ochem

49

type Rec is

 record

 A, B : Integer;

 end record;

My_Rec : Rec;

procedure Update (R : in out Rec);

...

Update (My_Rec);

The above procedure takes a Rec object as an in out parameter. In the

invocation Update (My_Rec), the compiler may choose to pass My_Rec

either by reference or by copy based on efficiency considerations. In

other languages the programmer would need to use pointers to obtain

by-reference passing if the actual parameter needs to be modified by

the called subprogram.

When pointers are absolutely required, Ada’s approach is to supply a

type-safe and high-level mechanism (known as “access types”) to obtain

the needed functionality while also providing low-level facilities that are

potentially unsafe but whose usage is always explicitly indicated in the

source text (thus alerting the human reader). To illustrate this, here’s a C

code fragment that performs pointer arithmetic:

int *ptr = malloc (sizeof (int));

ptr++;

This may or may not be safe; after the increment, ptr points to a location

immediately beyond the storage for the allocated int.

As part of its C interfacing facilities Ada supports such pointer arithmetic,

indeed with algorithmic code that is similar to the C notation, but the

dependence on a potentially unsafe operation is explicit:

AdaCore Technologies for DO-178C / ED-12C

50

with Interfaces.C.Pointers;

procedure Pointer_Arith is

 type Int_Array is

 array (Positive range <>) of aliased Integer;

 package P is

 new Interfaces.C.Pointers(Positive, Integer,

 Int_Array, Integer'First);

 -- This generic instantiation defines the access type

 -- Pointer and its associated operations

 use type P.Pointer;

 -- For notational convenience in invoking "+"

 Ref : P.Pointer := new Integer;

begin

 Ref := Ref+1;

 -- Increments Ref by the size (number of storage elements)

 -- of an Integer

end Pointer_Arith;

This syntax, though verbose, makes potentially unsafe operations much

more visible, hence easier to identify and review.

Arrays

The array (an indexable sequence of elements) is a fundamental and

efficient data structuring mechanism, but a major vulnerability unless

attempted accesses to data outside the bounds of the array are

prevented. Ada avoids this vulnerability since array operations such as

indexing are checked to ensure that they are within the specified bounds.

In addition to indexing, Ada provides various array operations

(assignment, comparison, slicing, catenation, etc.) which allow manipulating

arrays in an explicit and safe manner.

Ada’s arrays are “fixed size”; once an array object is created, its bounds

are established and cannot change. This simplifies the storage

management (arrays in Ada can go on the stack and do not require

hidden pointers). Additional flexibility (for example bounded-size arrays

whose length can vary up to a specified maximum limit, or unbounded

arrays of arbitrary length) is obtained through the Ada predefined

library.

Frédéric Pothon & Quentin Ochem

51

Here’s an example:

type Int_Array is array(Positive range <>) of Integer;

-- Different objecTs of type Int_Array can have different

-- bounds

A : Int_Array (1 .. 8);

B : Int_Array (2 .. 12);

I : Integer;

...

A := (others => 0);

B := (2 .. 7 => 0, others => 1);

...

if A (1 .. 3) = B (6 .. 8) then

 Put_Line ("Slices are equal");

end if;

Get (I); -- Read in an integer

A (I) := 100; -- Run-time check that I is in range

The above code creates two arrays, A with 8 elements indexed from 1 to

8, and B with 11 elements indexed from 2 to 12. A is assigned all zeroes,

and B is assigned 0 in its first 6 elements and 1 in the rest. Contiguous

sequences (slices) of the two arrays are compared for equality. All of this

is done through standard language syntax as opposed to explicit loops

or library calls.

The code at the end of the example illustrates Ada’s index checking. If I

is not in the index range of array A (i.e., between 1 and 8 inclusive) then

a run-time exception (Constraint_Error) is raised.

Other Ada features

Many other features contribute to Ada’s support for reliable and

maintainable embedded software. Some were described briefly in

Section 3.1.1. Others include the Ravenscar Profile, a deterministic tasking

subset that is simple enough for certification but rich enough to program

real-time embedded systems; and Ada’s low-level facilities, which allow

the programmer to specify target-specific representations for data types

(including the bit layout of fields in a record, and the values for

AdaCore Technologies for DO-178C / ED-12C

52

enumeration elements). Further information on features that contribute to

safe software may be found in [3].

In summary, Ada’s benefits stem from its expressive power, allowing the

developer to specify the needed functionality or to constrain the feature

usage to a deterministic subset, together with its support for reliability

and readability. A variety of errors, including some of the most frequent

and harmful vulnerabilities, are detected in Ada either at compilation

time or through dynamic checks automatically added by the compiler.

Such checks can be either retained (for example during a testing

campaign) or removed (for example at production time, after verification

has provided confidence that they are not needed).

Additional Ada features will be described and highlighted in other

sections of this document.

4.2.2. Using Ada during the design process

Contributions

Objectives Software Design Process (A-2[3,4]: 5.2.1.a)
Reviews and Analyses of Source Code: Compliance with
architecture (A-5[2]: 6.3.4.b), traceability (A-5[5]:6.3.4.e)
Reviews and Analyses of LLR: Compatibility with target (A-
5[3]: 6.3.2.c)
Reviews and Analyses of architecture: Compatibility with
target (A-4[10]: 6.3.3.c)

Activities Software Design Activities (5.2.2.a, 5.2.2.d)
Software Development Process Traceability (5.5.c)
Reviews and Analyses of Source Code (6.3.4)
Reviews and Analyses of LLR: Compatibility with target
(6.3.2)
Reviews and Analyses of architecture: Compatibility with
target (6.3.3)

An application’s design – that, its low-level requirements and software

architecture – may be specified in many ways, combining text and

graphics at various levels of formality. The main principle is to keep the

design at a higher level of abstraction than the code: in particular

avoiding expression of requirements as code or pseudo-code.

Frédéric Pothon & Quentin Ochem

53

Requirements are properties to be verified by the code and are not the

code itself. Thus the general advice is to avoid using a programming

language as the medium for expressing – even in part – the software

design.

Ada, however, presents an exception to this advice. The language

provides extensive facilities for capturing a program unit’s specification (its

“what”) separately from the implementation (its “how”). An Ada package

and an Ada subprogram each consists of a specification (the interface)

and a body (the implementation) and a similar separation of interface

from implementation is found in generic units, tasks, and encapsulated

types.

A unit’s specification establishes the constraints on its usage, that is, the

permitted relationships between that unit and other parts of the program.

These are the unit’s architectural properties, in contrast to its

implementation. It thus makes sense for a significant part of the Ada

specifications to be developed during the design process. An interesting

effect is that the design elements defined as Ada specifications are easy

to verify, sometimes simply by compiling the code and showing that the

interface usages are correct.

The separation of specification and implementation means that an Ada

specification can have an implementation written in a different language,

for example C. Although this may lose some of Ada’s benefits, it illustrates

the flexibility and relevance of the approach.

4.2.2.1 Component identification

Regardless of the method used for architecting the software as a

hierarchical set of components, Ada may be directly used to identify the

software components and define their interfaces. This is typically done via

package specifications and subprogram specifications.

A few comments on the term “interface” may be helpful. (We are not

referring to the OOP language feature here.) Informally, a component’s

interface is the collection of its properties that establish whether any given

usage of the component is correct. These properties arise at several

levels. As an example, for a procedure that sorts an array of floating

point values its interface may be regarded as comprising the following:

AdaCore Technologies for DO-178C / ED-12C

54

 Syntactic interface: the procedure’s name and its formal

parameters (their names, parameter passing modes, and types).

 Information flow interface: how, if at all, non-local data are

accessed by the procedure (read, written, or both)

 Semantic (functional) interface: the function performed by the

procedure – what does it mean to sort an array, independent of

the algorithm – which is a low-level requirement for the

procedure

Other low-level constraints may also be considered as part of the

interface, such as a time or space constraint.

The syntactic interface in Ada is a simple subprogram specification:

type Float_Array is array (Integer range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

This will also suffice for information flow if Sort does not access non-local

data. If Sort does access non-local data then the uses can be specified

informally by comments:

type Float_Array is array (Positive range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

-- Inputs: None

-- Outputs

-- p_GLOBAL.Status : p_GLOBAL.T_Status;

They can also be captured more formally as aspects of the procedure

specification if the SPARK subset of Ada is used, as will be explained

below.

The LLR (including the semantic interface) are developed in parallel and

may be specified separately from or together with the component’s

specification. They can be defined in natural language, as comments, or

Frédéric Pothon & Quentin Ochem

55

using contracts (pre- and/or postconditions) as illustrated in the next

subsection.

4.2.2.2. Low-Level Requirements

A simple example of a low-level requirement, for the Sort procedure

defined above, is the following:

The component shall order the array from the smallest value to

highest one

In Ada, we can capture this requirement as a postcondition aspect of the

procedure:

type Some_Array is array (Positive range <>) of Integer;

procedure Sort (My_Array : in out Some_Array)

with Post =>

 (for all I in My_Array'First .. My_Array'Last-1 =>

 My_Array (I) <= My_Array (I+1));

The with Post construct defines the postcondition for the procedure; i.e.,

the condition that is asserted to be True when the procedure returns. Here

it expresses, in Ada syntax, the low-level requirement that the procedure

sort the array in ascending order: for each index I into the array, from

the first position through the next-to-last, the value of the element at

position I+1 is at least as large as the element at position I. In the

degenerate case where the array is either empty or contains a single

element (i.e., when the range of I is empty) the “for all” condition is

considered to be True.

It’s clear that the postcondition expression says nothing about how the

procedure is implemented. It’s not pseudo-code for an algorithm but

rather a property of the procedure that will need to be verified. It’s the

formalization of a requirement that happens to use Ada syntax.

Moreover, a postcondition can refer to the values of variables and/or

global data, both at the point of call and the point of return, and a

function postcondition can refer to the value being returned by the

function.

AdaCore Technologies for DO-178C / ED-12C

56

A subprogram can also have a precondition (a Boolean expression), which

is a requirement that the caller needs to satisfy and that is assumed to be

True by the called subprogram. For example, a procedure that inserts an

element into a bounded-length data structure would have a precondition

asserting that the data structure is not full.

Preconditions and postconditions, and related features such as type

invariants, are referred to collectively as contract-based

programming and were introduced in the Ada 2012 version of the

language. Based on the assertion policy (as specified by a pragma), the

contracts can be checked at run-time, raising an exception on failure.

They also support (but do not require) formal analysis, since the Ada

syntax is the same as is used in SPARK 2014. In SPARK the contracts are

subject to additional restrictions (for example they must conform to the

SPARK language subset). The contracts are then considered to be low-

level requirements and verification cases at the same time, used by the

SPARK proof technology for formal verification, for example to

demonstrate that if a subprogram satisfies its precondition then on return

it will satisfy its postcondition.

In summary, functional contracts (such as pre- and postconditions) serve

three purposes:

 As conditions to be formally proved by SPARK technology,

 As run-time conditions to be evaluated/checked using standard

Ada semantics, and

 As comments to the human reader (if checks are not enabled and

formal methods are not used) in an unambiguous notation (i.e.,

using Ada syntax rather than natural language)

When used for defining the software’s architecture, Ada specifications

can obviously express concepts such as modules (packages), groups of

modules (package hierarchies), subprograms, class inheritance hierarchies,

etc. Additional interface properties can be expressed using SPARK

aspects, for example a subprogram’s data and flow dependencies.

Here’s an example which, for simplicity and purposes of illustration, uses

visible variables in a package specification to represent a data structure

for a last-in first-out stack:

Frédéric Pothon & Quentin Ochem

57

package Stack_Pkg is

 Max_Length : constant := 100;

 subtype Element_Type is Integer;

 Length : Natural range 0.. Max_Length := 0;

 Stack : array (1..Max_Length) of Element_Type);

 procedure Push (Item : in Element_Type)

 with Global => (In_Out => (Length, Stack)),

 Depends => (Length => Length,

 Stack => (Stack, Length, Item)),

 Pre => Length < Max_Length,

 Post => Length = Length'Old+1;

 ...

end Stack_Pkg;

The Global aspect captures the data dependency: Push will reference

and assign to the global variables Length and Stack.

The Depends aspect captures the flow dependency: the new value of

Length depends on its old value, and the new value of Stack depends

on the values of Stack, Length, and Item. These dependencies can be

verified by the SPARK tools (assuming that the subprogram body is

written in the SPARK subset). The pre- and postconditions reflect some of

the functional properties of the procedure, and the postcondition

illustrates the 'Old attribute for referencing the point-of-call value of a

variable.

A more realistic version of this example would hide the representation in

the private part or body of the package. The contracts would then be

expressed differently, for example with the Global and Depends

referring to the abstract state of the package rather than visible

variables.

Some low-level requirements might not be expressible using the aspect

mechanism (for example timing constraints). A convenient approach during

architecture definition is to separately specify those components whose

requirements can be defined using contracts, from those that cannot.

AdaCore Technologies for DO-178C / ED-12C

58

4.2.2.3. Implementation of Hardware/Software Interfaces

Ada’s type system makes it straightforward to implement

hardware/software interfaces, while also detecting target

incompatibilities at compile time. Such interfaces may be defined as part

of the coding process, but performing this activity during the design

process has a number of benefits. It may avoid duplication of effort and

also helps prevent errors from being introduced during the translation

from design to code. It also allows early error detection through

compilation checks.

Package Interfaces

Applications sometimes need to use types that correspond exactly to the

native numeric data representations supported on the target machine, for

example 16- or 32-bit signed and unsigned integers. Such types are

defined in package Interfaces, which is part of the standard Ada library.

The exact set of types depends on the target but typically includes

integer types such as Unsigned_16, Unsigned_32, Integer_16, and

Integer_32, as well as several floating-point types. The unsigned integer

types are especially useful for hardware / software interfacing since they

support bitwise operations including shift and rotate functions.

Specifying data representation

Embedded systems often need to deal with external data having a

specific representation, and Ada has a variety of features to help meet

this requirement. For example, the following can be defined:

 the values of the elements in an enumeration type,

 the layout of a record (size and position of each field, possibly

with fields overlaid), and

 the address, size, and/or alignment of a data object.

The compiler will check that the specified representation is consistent with

the target hardware.

For example, Figure 3 shows the required layout (on a “little-endian”

machine) for a data object consisting of an unsigned 16-bit integer (Num),

Frédéric Pothon & Quentin Ochem

59

a 4-bit enumeration value (Urgency) that is either Low, Medium, or High,

with the respective values 2, 5, and 10), and a Boolean flag (F).

Figure 3: Data Layout

As with other entities, Ada separates the type’s “interface” (its logical

structure as a record type with named fields) from its “implementation”

(its physical representation / layout including size, alignment, and exact

position of each field). The representation can be specified through a

combination of aspects and representation clauses. Defining the

Bit_Order and the Scalar_Storage_Order explicitly means that the

code will work correctly on both little-endian and big-endian hardware.

type Urgency_Type is (Low, Medium, High);

for Urgency_Type use (Low => 2, Medium => 5, High => 10);

for Urgency_Type'Size use 4; -- Number of bits

AdaCore Technologies for DO-178C / ED-12C

60

type Message is

 record

 Num : Interfaces.Unsigned_16;

 Urgency : Urgency_Type;

 F : Boolean;

 end record

with

 Bit_Order => System.Low_Order_First,

 Scalar_Storage_Order => System.Low_Order_First, -- GNAT-

specifc aspect

 Size => 32, -- Bits

 Alignment => 4; -- Storage units

for Message use -- Representation clause

 record

 Num at 0 range 0..15;

 Urgency at 2 range 0..3;

 F at 3 range 2..2;

 end record;

The “at” syntax in the record representation clause specifies the offset (in

storage units) to the storage unit where the field begins, and the bit

positions that are occupied. A field can overlap multiple storage units.

When the program specifies these kinds of representational details, it’s

typical for the application to read a “raw” value from an external source,

and in such cases it is important to ensure that such data values are valid.

In the above example, the Urgency field needs to have one of the

values 2, 5, or 10. Any other value has to be detected by the program

logic, and Ada’s 'Valid attribute can perform that check. The following

example illustrates a typical style:

M : Message;

...

Device.Read (M); -- Reads a value into M

if not M.Urgency'Valid then

 ... -- Report non-valid input value

else

 ... -- Normal processing

end if;

Frédéric Pothon & Quentin Ochem

61

The 'Valid attribute can be applied to data objects from numeric and

enumeration types. It is useful when the permitted values for the object

are a proper subset of the full value set supported by the object’s

representation.

Numeric types

Another feature related to hardware/software interfaces is Ada’s

numeric type facility (integer, floating-point, fixed-point). The

programmer can specify the type’s essential properties, such as range

and precision, in a machine-independent fashion; these will be mapped to

an efficient data representation, with any incompatibilities detected at

compile time. As an example:

type Nanoseconds is range 0 .. 20_000_000_000;

V : Nanoseconds;

The above code requires integers up to 20 billion to be represented. This

would only be accepted on a 64-bit machine, and the compiler would

reject the program if the target lacks such support. This can even be made

explicit as part of the type declaration:

type Nanoseconds is range 0 .. 20_000_000_000

with Size => 64;

V : Nanoseconds;

The compiler will check that 64 bits are sufficient, and that it can be

implemented on the target computer.

Similar constraints can be expressed for floating-point types:

type Temperature is digits 14;

V : Temperature;

AdaCore Technologies for DO-178C / ED-12C

62

At least 14 digits of decimal precision are required in the representation

of Temperature values. The program would be accepted if the target has

a 64-bit floating point unit, and would be rejected otherwise.

4.2.3. Integration of C components with Ada

Contributions

Objectives Software Coding (A-2[6]: 5.3.1.a)
Software Integration (A-2[7]: 5.4.1.a)

Activities Software Coding (5.3.2.a)
Software integration (5.4.2.a)

C is widely used for embedded development, including safety-critical

systems. Even where Ada is the main language for a system, components

written in C are very commonly included, either from legacy libraries or

third party software. (Languages such as Java and C++ are used much

less frequently. This is due in part to their semantic complexity and the

difficulty of demonstrating compliance with certification standards, for

example for the C++ standard library or the Java Garbage Collector.)

Friendly cooperation between Ada and C is supported in several ways

by AdaCore tools and the Ada language.

 Most of the tools provided by AdaCore (compiler, debugger,

development environments, etc.) can support systems written

entirely in Ada, in a mixture of Ada and C, and entirely in C.

 Specific interfacing tools are available to automatically generate

bindings between Ada and C, either creating Ada specification

from a C header file (g++ -fdump-ada-spec) or a C header file

from an Ada specification (gcc -gnatceg). These binding

generators make it straightforward to integrate C components in

an Ada application or vice versa.

 The Ada language directly supports interfacing Ada with other

languages, most notably C (and also Fortran and COBOL). One

of the standard libraries is a package Interfaces.C that

defines Ada types corresponding to the C basic types (int, char,

Frédéric Pothon & Quentin Ochem

63

etc.) and implementation advice in the Ada Language Reference

Manual explains how to import C functions and global data to be

used in Ada code, and in the other direction, how to export Ada

subprograms and global data so that they can be used in C.

 The GNAT Pro compiler uses the same back end technology for

both Ada and C, facilitating interoperability.

 A project using a C codebase can incrementally introduce Ada or

SPARK. Technologies allowing SPARK to specify a component

implemented in C, or compiling SPARK into C code, are under

development [9]. This allows progressive adoption of higher-tier

languages without losing the investment made in existing

components.

4.2.4. Robustness / defensive programming

Contributions

Objectives Software Coding (A-2[6]: 5.3.1.a)
Reviews and Analyses of Source Code: Accuracy and
consistency (A-5[6]: 6.3.4.f)

Activities Software Coding (5.3.2.b – standards)
Software Coding (5.3.2.c – inadequate/incorrect inputs)
Reviews and Analyses of Source Code (6.3.4)
Robustness Test Cases (6.4.2.2)

Robustness means ensuring correct software behavior in the presence of

abnormal input, and (as per DO-178C / ED-12C) such behavior should

be defined in the software requirements. There is no fundamental

difference between requirements concerning abnormal input (robustness

requirements) and those concerning normal input (functional requirements).

One approach to meeting robustness requirements is through defensive

programming techniques; that is, code that detects incorrect input and

performs the appropriate actions. However, this has two undesirable side

effects.

AdaCore Technologies for DO-178C / ED-12C

64

 “Correct behavior in case of incorrect input” is sometimes difficult

to define, resulting in code that cannot be verified by

requirements based tests. Additional test cases based on the code

itself (called “structural testing”) are not acceptable from a DO-

178C / ED-12C perspective, since they are not appropriate for

revealing errors.

 Unexercised defensive code complicates structural coverage

analysis. It can’t be classified as “extraneous” (since it does meet

a requirement), but neither can it be considered as “deactivated”

(since it is intended to be executed when the input is abnormal).

As with any other non-exercised code, justification should be

provided for defensive code, and this may entail difficult

discussions with certification authorities.

An alternative approach is to ensure that no invalid input is ever supplied

(in other words, to make each caller responsible for ensuring that the input

is valid, rather than having the callee deal with potential violations). This

can be done through the use of Ada 2012 contracts. Here’s an example,

a procedure that interchanges two elements in an array:

type Float_Array is array (1..100) of Float;

procedure Swap (FA : in out Float_Array;

 I1, I2 : in Integer);

-- I1 and I2 have to be indices into the array,

-- i.e., in FA'Range

procedure Swap (FA : in Float_Array;

 I1, I2 : in Integer) is

 Temp : Float;

begin

 if I1 in FA'Range and then I2 in FA'Range then

 Temp := FA (I1);

 FA (I1) := FA (I2);

 FA (I2) := Temp;

 end if;

end Swap;

The above example illustrates the ambiguity of the requirements for

defensive code. What does it mean to invoke Swap when one or both

Frédéric Pothon & Quentin Ochem

65

indices are out of range? Not doing anything (which is the effect of the

above code) is a possible answer, but this should be identified as a

derived requirement (since it is an additional behavior of the component).

Other possibilities:

 Raise an exception

 Report the error through an additional out parameter to the

procedure, or as a status value returned (if the subprogram were

expressed as a function rather than a procedure)

 Map an out-of-bounds low value to FA'First, and an out-of-

bounds high value to FA'Last

Even if one of these options is chosen as the required behavior, there are

both efficiency questions (why should the procedure spend execution time

checking for a condition that is expected to be met) and methodological

issues with such defensive code.

The responsibility should really be on the caller to avoid invoking the

procedure if any of the actual parameters has an incorrect value. A

comment in the code states that the indexes should be in range, but Ada

2012 allows formalizing this comment in an automatically verifiable way:

type Float_Array is array (Positive range <>) of Float;

procedure Swap (FA : in out Float_Array; I1, I2 : Integer)

 with Pre => I1 in FA'Range and then I2 in FA'Range

procedure Swap (FA : in Float_Array; I1, I2 : Integer) is

 Temp : Float;

begin

 Temp := FA (I1);

 FA (I1) := FA (I2);

 FA (I2) := Temp;

end Swap;

The comment has been replaced by a precondition, which is part of the

procedure specification. Assuming proper verification at each call site,

defensive code in the implementation of the procedure is not needed. The

requirement is now to check that the values passed at each call meet the

AdaCore Technologies for DO-178C / ED-12C

66

precondition, and to take appropriate action if not. This action may differ

from call to call, and may involve further preconditions to be defined

higher up in the call chain.

Enforcement of these preconditions may be accomplished through several

possible activities:

 Code reviews using the Ada contracts as constraints. This is least

formal technique, but the explicit specification of the

preconditions in Ada contract syntax (versus comments) helps

improve the thoroughness of the review and avoids the potential

ambiguity of requirements expressed in natural language.

 Enabling dynamic checks during testing, and removing them in the

final executable object code. Run-time checks are generated for

pre- and postconditions if the program specifies

pragma Assertion_Policy (Check) and the code is compiled

with the compiler switch -gnata. A violation of a pre- or

postcondition will then raise the Assertion_Error exception.

After testing and related verification activities achieve sufficient

assurance that no violations will occur, the checking code can be

removed (either by pragma Asserion_Policy(Ignore) or by

compiling without -gnata).

 Enabling dynamic checks during testing, and keeping them in the

final executable object code. In this case, the software

requirements should define the expected behavior in case a pre-

or postcondition is violated, for example to reset the application

to a known safe state as soon as an inconsistency is detected.

 Static analysis or formal proof. The CodePeer technology takes

preconditions into account as part of its analysis. The tool can

statically verify (or else report otherwise) that (1) the

precondition is strong enough to guarantee the absence of run-

time errors in the subprogram, and (2) every call satisfies the

precondition. In order to gain DO-178C / ED-12C credit,

CodePeer needs to be qualified at level TQL-5 for the

corresponding activity. Analogously for the SPARK tools, for code

that adheres to the SPARK language subset.

Frédéric Pothon & Quentin Ochem

67

The methods and activities adopted to address the robustness issue should

be described in the software plans and, when applicable, in the software

development standards (requirements and/or code standards).

Note that pre- or postcondition contracts do not in themselves implement

robustness requirements. Instead they help to formalize and verify such

requirements (through static analysis, formal proof, or testing). The

robustness code is the code that is developed, if any, to make sure that

these contracts are respected.

4.2.5. Defining and Verifying a Code Standard

with GNATcheck and GNAT2XML

Contributions

Objectives Software Planning Process (A-1[5]: 4.1.e)
Software Coding (A-2[6]: 5.3.1.a)
Reviews and Analyses of Source Code (A-5[4]: 6.3.4.d)

Activities Software Planning Process Activities (4.2.b)
Software Development Standards (4.5.b, 4.5.c)
Software Coding (5.3.2.b)
Reviews and Analyses of Source Code (6.3.4)

Defining a Software Code Standard serves at least two purposes:

 It helps to make the application source code consistent, more

verifiable, and more easily maintainable. While these qualities

do not have a direct safety benefit, adherence to a code

standard will improve the efficiency of the source code

verification activities.

 It can prevent the use of language features that complicate

software product verification or introduce potential safety issues.

A common example is the deallocation of dynamically allocated

objects, which can lead to dangling references if used incorrectly.

Verification that a program is not susceptible to such errors would

AdaCore Technologies for DO-178C / ED-12C

68

require thorough and complex analysis, and as a result it’s typical

for a code standard to prohibit deallocation.

GNATcheck provides an extensive set of user-selectable rules to verify

compliance with various Ada coding standard requirements. These

includes style convention enforcement (casing, indentation, etc.), detection

of features that are susceptible to misuse (floating-point equality, goto

statements), static complexity checks (block nesting, cyclomatic complexity)

and detection of features with complex run-time semantics (tasking,

dynamic memory).

Since a code standard may include qualitative rules, or rules that are not

handled by GNATcheck, verifying that the source code complies with the

standard is not always fully automatable. However, there are two ways

to extend automated verification:

 GNATcheck’s rules are extended on a regular basis in response

to customer input, and the tool’s enforcement of the new rules is

eligible for qualification. Even in the absence of tool qualification,

the tool can still save time during verification by detecting rule

violations.

 Users can define their own rules as well, in particular using the

GNAT2XML tool. GNAT2XML transforms an Ada syntax tree into

an XML file, making it very easy for a third party to develop a

checker based on XML technologies such as XPath.

One issue that comes up with a code standard is how to apply it

retrospectively to an existing code base. The first time a compliance

checking tool is run, it would not be uncommon to find hundreds or even

thousands of deviations. Fixing them all is not only a cumbersome and

tedious task, but as a manual activity it’s also a potential for introducing

new errors into the code. As a result, it is often more practical to focus on

those deviations that are directly linked to safety, rather than trying to

update the entire application. Then for newly written code the compliance

checker can verify that no new deviations are introduced. Deviation

identification may be monitored (e.g. with SonarQube or SQUORE) and

viewed with AdaCore’s GNATdashboard tool. This approach can provide

an analysis over time, for example showing the progress of removal of

certain categories of deviations that were present in a given baseline.

Frédéric Pothon & Quentin Ochem

69

Another practicality with code standards is that some rules might need to

admit deviations in specific contexts when justified (for example the goto

statement might be acceptable to implement state transitions in code that

simulates a finite-state machine, and be forbidden elsewhere).

GNATcheck allows adding local check exemptions, around a statement or

a piece of code. Such exemptions and their justification would then

appear in the tool’s report.

TQL-5 qualification material is available for GNATcheck.

4.2.6. Checking source code accuracy and

consistency with CodePeer

Contributions

Objectives Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

Activities Reviews and Analyses of Source Code (6.3.4)

“Accuracy and consistency” is a rather broad objective in DO-178C / ED-

12C, identifying a range of development errors that need to be

prevented. Satisfying this objective requires a combination of reviews,

analyses and tests, and tools may be used for some of these activities.

CodePeer specifically targets issues that correspond to Ada exceptions,

such as scalar overflow, range constraint violations, and array indexing

errors. It also detects other errors including reads of uninitialized

variables, useless assignments, and data corruption due to race conditions.

CodePeer handles all versions of the Ada language standard, from Ada

83 through Ada 2012, without any restrictions or additional annotation.

Since CodePeer’s conservative analysis may flag constructs that in fact

are correct, the tool’s output report needs to be manually reviewed so

that such “false alarms” can be discarded. This issue is common to all

sound static analysis tools; i.e., if a tool detects all instances of a given

potential error, then it will sometimes diagnose correct code as containing

an error.

TQL-5 qualification material is available for CodePeer.

AdaCore Technologies for DO-178C / ED-12C

70

4.2.7. Checking worst case stack

consumption with GNATstack

Contributions

Objectives Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

Activities Reviews and Analyses of Source Code (6.3.4)

Stack usage is one of the items listed in the “source code accuracy and

consistency” objective; i.e., ensuring that the application has sufficient

stack memory reserved during program execution. Verification is often

achieved by running test cases and measuring the actual stack space

used. This approach may provide a false sense of confidence, however,

since there is no evidence that the worst case usage has been addressed.

A more precise analysis method is to statically determine the actual stack

consumption, looking at the memory statically allocated by the compiler

together with the stack usage implied by the subprogram call graphs. The

GNATstack tool can perform this analysis for Ada and C, determining the

maximum amount of memory needed for each task stack.

In many cases, however, not everything can be statically computed;

examples are recursive calls, dynamically sized stack frames, and system

calls. In such cases, the user can provide a worst-case estimate as input to

GNATstack’s computation.

TQL-5 qualification material is available for GNATstack.

Frédéric Pothon & Quentin Ochem

71

4.2.8. Compiling with the GNAT Pro compiler

Contributions

Objectives Integration Process (A-2[7]: 5.4.1.a)
Reviews and Analyses of Integration (A-5[7]: 6.3.5.a)

Activities Integration Process (5.4.2.a, 5.4.2.b, 5.4.2.d)
Reviews and Analyses of Integration (6.3.5)
Software Development Environment (4.4.1.f)

GNAT Pro is a gcc-based Ada and C compilation toolsuite that is widely

used by developers of high assurance software, in particular in a DO-

178C / ED-12C context. It is available on a broad range of platforms,

both native and cross. Embedded targets include various RTOSes for

certified applications (such as VxWorks 653, VxWorks 6 Cert, Lynx178,

PikeOS) as well as bare metal configurations, for a wide range of

processors (such as PowerPC and ARM).

The Ada language helps reduce the risk of introducing errors during

software development (see [7]). This is achieved through a combination of

specific programming constructs together with static and dynamic checks.

As a result, Ada code standards tend to be shorter and simpler than C

code standards, since many issues are taken care of by default. The

GNAT Pro compiler and linker provide detailed error and warning

diagnostics, making it easy to correct potential problems early in the

development process.

As with all AdaCore tools, the list of known problems in the compiler is

kept up to date and is available to all subscribers to the technology. A

safety analysis of the list entries is also available, helping developers

assess potential impact and decide on appropriate actions. Possible

actions are code workarounds or a choice of a different set of compiler

code generation options.

For certain Ada language features the GNAT Pro compiler may generate

object code that is not directly traceable to source code. This non-

traceable code can be verified using a traceability analysis as described

in Section 4.2.13.

AdaCore Technologies for DO-178C / ED-12C

72

4.2.9. Using GNATtest for low-level testing

Contributions

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d)
Review and Analyses of Test procedures (A-7[1]: 6.4.5.b)
and results (A-7[2]: 6.4.5.c)

Activities Normal Range Test Cases (6.4.2.1)
Robustness Test Cases (6.4.2.2)
Review and Analyses of Test procedures and results (6.4.5)
Software Verification Process Traceability (6.5.b, 6.5.c)

The software architecture is developed during the design process,

identifying components and sometimes subcomponents. The behavior of

each terminal component is defined through a set of low-level

requirements. Typically, low-level testing consists in

1. Developing test cases from the low-level requirements,

2. Implementing the test cases into test procedures,

3. Exercising the test procedures separately on one or more

components, and

4. Verifying the test results

GNATtest may be used to develop the test data. Test cases and

procedures are produced in the Ada language. The general approach is

for GNATtest to generate an Ada test harness around the component

under test, leaving the tester to complete test skeletons based on the

predefined test cases, with actual inputs and expected results. Since the

test generation in carried out in a systematic way, it’s very easy to

identify where tests are missing (they will be reported as non-

implemented).

The tool works iteratively. If it’s called a second time on a set of files that

have changed, it will identify the changes automatically, preserving

existing tests and generating new tests for newly added subprograms.

Frédéric Pothon & Quentin Ochem

73

A component under test may call external components. One possible

approach is to integrate the components incrementally. This has the

benefit of preserving the actual calls, but it may be difficult to accurately

manage the component interfaces. Another approach is to replace some

of the called subprograms with dummy versions (stubs). GNATtest support

both approaches, and can generate stub skeletons if needed.

The functionality just described is common to most test tools. A novel and

useful feature of GNATtest is its ability to develop the test cases during

the design process. (Note that independence between design and test

cases is not required. Independence is required between code

development and test case derivation, to satisfy the independence criteria

of objectives A6-3 and 4 for software level A and B).

Approach 1: Test cases are not specified in Ada specifications

A traditional approach can be followed by GNATtest – that is to say,

tests cases are described outside of the Ada specification, but linked to a

particular function. When working this way, GNATtest will generate one

test per subprogram; for example :

function Sqrt (X : Float) return Float;

This will generate one unique test procedure skeleton.

Approach 2: Test cases are developed during the design process

In this approach, Ada package specifications are considered as an output

of the design process (see Section 4.2.2). More than one test per

subprogram may be developed. Here’s a simple example:

AdaCore Technologies for DO-178C / ED-12C

74

function Sqrt (X : Float) return Float

with Pre => X >= 0.0,

 Post => Sqrt'Result >= 0.0,

 Test_Case =>

 (Name => "test case 1",

 Mode => Nominal,

 Requires => X = 16.0,

 Ensures => Sqrt'Result = 4.0),

 Test_Case =>

 (Name => "test case 2",

 Mode => Robustness,

 Requires => X < 0.0,

 Ensures => raise Constraint_Error

 with "Non-negative value needed");

As part of the specification for the Sqrt function, the GNAT-specific

aspect Test_Case is used to define two test cases. The one named “test

case 1” is identified as Nominal, which means that the argument supplied

as Requires should satisfy the function’s precondition, and the argument

supplied as Ensures should satisfy the function’s postcondition. The test

case named “test case 2” is specified as Robustness, so the pre- and

postconditions are ignored. As with all test cases, these are based on the

function’s requirements.

When generating the test harness, GNATtest provides a skeleton of the

test procedures, and the user has to plug in the input values (from the

Requires argument) and the expected results (from the Ensures

argument) for all test cases defined in the Ada package specification.

GNATtest will insert specific checks to verify that, within “test case 1”, all

calls made to Sqrt have X equal to 16.0, and each value returned is

equal to 4.0. This not only verifies that the test succeeded, but also

confirms that the test conducted is indeed the intended test. As a result,

GNATtest verifies that the test procedures comply with the test cases, that

they are complete (all test cases have been implemented and exercised),

and that the test results are as expected.

In addition, the traceability between test case, test procedures and test

results is direct, and does not require production of further trace data.

Frédéric Pothon & Quentin Ochem

75

Approach 3: Test case are developed separately from the design

process

The two test cases developed in Approach 2 are not sufficient to fully

verify the Sqrt function. To comply with DO-178C / ED-12C Table A-6

Objectives 3 and 4, the activities presented in §6.4.2 (Requirements-

Based Test Selection) for normal and robustness cases are applicable. It is

not generally practical to include all the test cases in the Ada package

specification.

Another consideration is the criterion of independence between code and

test case development. Thus Approach 2 is applicable only if the Ada

package specification is developed during the design process (and not

during the coding process).

An alternative approach is to develop the test data separately from the

Ada package specifications, while some “meta” test cases (or test case

“classes”) are still defined and used by GNATtest to develop the test

harness. Here’s an example:

function Sqrt (X : Float) return Float

with Test_Case =>

 (Name => "test case 1",

 Mode => Nominal,

 Requires => X > 0.0,

 Ensures => Sqrt'Result > 0.0),

 Test_Case =>

 (Name => "test case 2",

 Mode => Nominal,

 Requires => X = 0.0,

 Ensures => Sqrt'Result = 0.0),

 Test_Case =>

 (Name => "test case 3",

 Mode => Robustness,

 Requires => X < 0.0,

 Ensures => raise Constraint_Error

 with "Non-negative value needed");

In this approach, three “meta” test cases are identified, defining the

expected high-level characteristics of the function. For each “meta” test

case, at least one actual test case will be developed. In this example, at

AdaCore Technologies for DO-178C / ED-12C

76

least three test cases need to be defined, corresponding to an actual

parameter that is positive, zero, or negative, with the respective

expected results of positive, zero, and raising an exception.

As in Approach 2, the skeleton generated by GNATtest must be

completed by the user, but in that case the data produced are the actual

test cases (and cannot be considered as test procedures). For example,

based on the range of the input, the user should define tests for boundary

values, for the value 1, or any representative data (equivalent classes).

As previously, GNATtest will insert specific checks for the 3 “meta” test

cases. Then GNATtest will verify that at least one test case for each

“meta” test case has been implemented, and that the results are correct.

Note that in this approach, the test procedures become the internal files

generated by GNATtest. Therefore, as it will be difficult to verify the

correctness of these files, GNATtest qualification is needed in order to

satisfy objective A7-1 “test procedures are correct”.

4.2.10. Using GNATemulator for low-level and

software / software integration tests

Contributions

Objectives Software testing (A-6[1,2,3,4]: 6.4.a, 6.4.b, 6.4.c, 6.4.d)

Activities Test environment (6.4.1)
Software Integration testing (6.4.3.b)
Low Level testing (6.4.3.c)
Structural coverage analysis (6.4.4.2.a)

As stated in DO-178C/ED-12C §6.4.1:

“More than one test environment may be needed to satisfy the

objectives for software testing.... Certification credit may be

given for testing done using a target computer emulator or a host

computer simulator”.

But an integrated target computer environment is still necessary to satisfy

the verification objective (A6-5) that the executable object code is

Frédéric Pothon & Quentin Ochem

77

compatible with the target computer. These tests, referred to as

“Hardware / Software integration tests”, are necessary since some errors

might only be detected in this environment. As stated in DO-330 / ED-

215, FAQ D.3, qualification of a target emulator or simulator may be

required if they are used to execute the Hardware / Software

integration tests.

Although GNATemulator might thus not be applicable in the scope of

Hardware / Software integration tests, it is allowed for all other tests

(see DO-330 / ED-215 FAQ D.3). Two approaches may be used:

 To perform some tests (that may be part of low-level testing

and/or Software / Software integration testing) on

GNATemulator, and to claim credit on this environment for

satisfying the objectives concerning the Executable Object Code’s

compliance with its requirements

 To use GNATemulator to prototype and gain confidence in tests

prior to re-running the tests on the actual target computer

environment.

In any event GNATemulator helps considerably in the early detection of

errors in both the software and the test procedures. GNATemulator works

in much the same fashion as a “Just In Time” (JIT) compiler: it analyzes the

target instructions as it encounters them and translates them on the fly (if

not done previously) into host instructions, for example an x86. This makes

it particularly suitable for low-level testing, at least for those tests that do

not depend on actual timing on the target.

GNATemulator also provides an easy way to interact with emulated

devices and drivers on the host. Reads and writes to emulated memory

can trigger interactions with such code, through the GNATbus interface.

GNATemulator can be used with the GNATcoverage tool for structural

coverage analysis. As long as the test environment with GNATemulator is

acceptable for analyzing the structural coverage, there is no need to

exercise the tests twice (as is typically done when the analysis is

performed on instrumented code).

AdaCore Technologies for DO-178C / ED-12C

78

4.2.11. Structural code coverage with

GNATcoverage

Contributions

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c)

Activities Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

The structural coverage analysis objectives of DO-178C / ED-12C serve

to verify the thoroughness of the requirements-based tests and to help

detect unintended functionality. The scope of this analysis depends on the

Development Assurance Level:

 Statement coverage for Level C,

 Statement and Decision coverage for level B, and

 Statement, Decision and Modified Condition / Decision Coverage

(MC/DC) at level A.

These three criteria will be explained through a simple (and artificial)

example, to determine whether a command should be issued to open the

aircraft doors:

Closed_Doors : Integer;

Open_Ordered, Plane_Landed : Boolean;

...

if Closed_Doors > 0 and then Open_Ordered and then

Plane_Landed then

 Open_Doors;

end if;

Note: the Ada short-circuit form “and then” is equivalent to the C shortcut

boolean operator “&&”.

This code fragment consists of two statements:

 The enclosing “if” statement

Frédéric Pothon & Quentin Ochem

79

 The enclosed “Open_Doors;” statement, which will be executed if

the decision in the “if” statement is True

The “if” statement in turn contains a single decision:

Closed_Doors > 0 and then Open_Ordered and then Plane_Landed

and this decision contains three conditions:

 Close_Doors > 0

 Open_Ordered

 Plane_Landed

At the statement level, both statements need to be executed during

requirements-based tests. This criterion may be achieved with only one

test, with all three conditions True.

It’s important to realize that this piece of code is the implementation of

one or several requirements, and a single test with all three conditions

True will almost certainly fail to satisfy the requirement coverage

criterion. Further, this single test is probably not sufficient to detect

implementation errors: the purpose of testing is to detect errors, not to

achieve structural code coverage. Structural coverage analysis is mainly a

test completeness activity.

At the decision level, each decision must be exercised both with a True

and False outcome. In the example above, this may be achieved with only

two tests; one test with all three conditions True, and a second test with at

least one False.

The third level is called MC/DC, for Modified Condition / Decision

Coverage. The goal is to assess that each condition within a decision has

an impact, independently of other conditions, on the decision outcome.

The motivation for MC/DC is most easily appreciated if we first look at

what would be required for full coverage of each possible combination of

truth values for the constituent conditions. This would require eight tests,

represented in the following table:

AdaCore Technologies for DO-178C / ED-12C

80

Closed_Doors > 0 Open_Ordered Plane_Landed Result

True True True True

True True False False

True False True False

True False False False

False True True False

False True False False

False False True False

False False False False

In the general case, 2n cases would be needed for a decision with n

conditions, and this would be impractical for all but small values of n. The

MC/DC criterion is achieved by selecting combinations demonstrating that

each condition contributes to the outcome of the decision.

With MC/DC, each condition in the decision must be exercised with both

True and False values, and each condition must be shown to

independently affect the result. That is, each condition must be exercised

by two tests, one with that condition True and the other with the condition

False, such that:

 The result of the decision is different in the two tests, and

 For each other condition, the condition is either True in both tests

or False in both tests

Here the MC/DC criteria may be achieved with four tests: one test with

all three conditions True, and each other test changing the value of one

condition to False:

 Closed_Doors
> 0

Open_Ordered Plane_Landed Result

Baseline True True True True

Test 1 False True True False

Test 2 True False True False

Test 3 True True False False

Frédéric Pothon & Quentin Ochem

81

Each condition thus has two associated tests, the one marked as baseline,

and the one with an italicized False in that condition’s column. These two

tests show how that condition independently affects the outcome: The

given condition is True in the baseline and False in the other, each other

condition has the same value in both tests, and the outcome of the two

tests is different.

In the general case, the MC/DC criterion for a decision with n conditions

requires n+1 tests, instead of 2n. For more information about MC/DC, see

[10].

GNATcoverage handles all three levels of structural code coverage. It

reports this both for Ada and C source code. Moreover, the

GNATcoverage technology does not require source code instrumentation.

Most code coverage technologies instrument the code (either at source or

object level) to insert logging commands between statements and

decisions to track execution. This requires performing the test twice, one

execution for verification of compliance with the requirements, and a

second (with instrumented code) for structural coverage analysis.

GNATcoverage is based on the instrumentation of the execution platform,

so there is no modification of the code being tested. GNATcoverage can

operate with several execution environments:

 On an emulation platform (e.g. GNATemulator) that can generate

a binary execution trace,

 On a native platforms with a virtualization layer (such as

Valgrind or DynamoRIO) that can generate a binary execution

traces, or

 On actual hardware with a probe supporting real-time tracing

(such as a Nexus interface) that can retrieve binary execution

information.

Selection of one of these approaches is based on hardware constraints

and on test environment capabilities. For example, hardware may or may

not have real-time tracing available.

Although the coverage data generated by an execution trace is in terms

of the object code (instruction or branch coverage), this is not sufficient to

AdaCore Technologies for DO-178C / ED-12C

82

determine whether MC/DC has been achieved. GNATcoverage handles

this issue by using static information generated by the compiler (either for

Ada or for C) that conveys the relationship between the source code and

the binary.

TQL-5 qualification material is available for GNATcoverage.

4.2.12. Data and control coupling coverage

with GNATcoverage

Contributions

Objectives Test Coverage Analysis (A-7[8]: 6.4.4.d)

Activities Structural Coverage Analysis (6.4.4.2.c)

DO-178C / ED-12C objective A7-8 states:

“Test coverage of software structure (data coupling and control

coupling) is achieved”.

This is part of overall structural coverage analysis. Although structural

coverage activities (statement, decision, or MC/DC) can be carried out at

various times, it is often performed during low-level testing. This allows

precise control and monitoring of test inputs and code execution. If code

coverage data is retrieved during low-level testing, structural coverage

analysis can assess the completeness of the low-level tests.

In addition, the completeness of the integration tests needs to be verified.

For that purpose the integration tests have to be shown to exercise the

interactions between components that are otherwise tested independently.

This is done through data and control coupling coverage activities. Each

data and control coupling relationship must be exercised at least once

during integration tests.

Data and control coupling are the interfaces between components, as

defined in the architecture. More specifically, data coupling concerns the

data objects that are passed between modules. These may be global

variables, subprogram parameters, or any other data passing

mechanisms. Control coupling concerns the influence on control flow. Inter-

Frédéric Pothon & Quentin Ochem

83

module subprogram calls are obvious cases of control coupling (they

initiate a control flow sequence) but subtler cases such as a global

variable influencing a condition can be also considered as control

coupling. For example, if module Alpha has something like:

if G then

 Do_Something;

else

 Do_Something_Else;

end if;

and in a module Beta:

G := False;

Then this is really an example of control coupling, and not data coupling.

Using a global variable to effect this control flow is considered an

implementation choice.

In the software engineering literature, the term “coupling” generally has

negative connotations since high coupling can interfere with a module’s

maintainability and reusability. In DO-178C / ED-12C there is no such

negative connotation; coupling simply indicates a relationship between

two modules. That relationship needs to be defined in the software

architecture and verified by requirements-based integration tests.

One strategy to verify coverage of data and control coupling is to

perform statement coverage analysis during integration testing.

GNATcoverage may be used in this way to detect incomplete execution

of such data and control flows. This may require coding constraints, such

as limited use of global data, or additional verification for such data:

 Parameter passing and subprogram calls: Statement coverage

ensures that all subprograms are called at least once

 Global data: Statement coverage ensures that all uses

(read/write) of global data are exercised at least once.

AdaCore Technologies for DO-178C / ED-12C

84

4.2.13. Demonstrating traceability of source to

object code

Contributions

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c)

Activities Structural Coverage Analysis (6.4.4.2.b)

For DAL A software, DO-178C/ED-12C objective A7-9 requires

identifying if code not visible at the source code level is added by the

compiler, linker, or other means; if so, it is necessary to verify such code

for correctness. Compiler-added code typically takes the form of extra

branches or loops that are explicit in the object code but not at the source

level. One example in Ada is the implicit checking that is often required

by the language semantics.

A statement like:

A : Integer range 1..10;

B : Integer;

...

A := B;

may be compiled into the following pseudo-object code:

if B >= 1 or else B <= 10 then

 A := B;

else

 raise Constraint_Error;

end if;

This assumes that checks are retained at run-time. However, even with

checks disabled, a compiler for either Ada or C may still need to

generate non-traceable code to implement some language constructs. An

Ada example is array slice assignment, which results in loops at the object

code level on typical target hardware:

Frédéric Pothon & Quentin Ochem

85

A, B : String (1..100)

...

A (1..50) := B (11..60);

AdaCore has verified the correctness of non-traceable code for GNAT

Pro Ada and GNAT Pro C, based on representative samples of source

code. Samples were chosen for the language features permitted by

common code standards. Object code was generated for each sample,

and any additional (non-traceable) code was identified. For each non-

traceable feature, additional requirements and tests were provided to

verify that the behavior of the resulting code was indeed as required.

Traceability analyses for GNAT Pro Ada and GNAT Pro C are available.

These analyses take into account the specific compiler version, compiler

options, and code standard that are used, to ensure that the code

samples chosen are representative. If some specific language features,

options, or compiler versions are not suitable for the analysis, appropriate

adaptations are made.

AdaCore Technologies for DO-178C / ED-12C

86

4.3. Use case #1b: Coding with Ada using OOT

features
This use case is based on use case #1, taking advantage of Ada and the

AdaCore ecosystem, but with a design that uses Object-Oriented

Technologies. As a result, the following “vulnerabilities” identified in the

technology supplement DO-332 / ED-217 need to be addressed:

 Local type consistency

 Dynamic memory management

 Parametric polymorphism (genericity)

 Overloading

 Type conversion

 Exception management

 Component-based development

4.3.1. Object orientation for the architecture

Contributions

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a)

Activities Software Design Process Activities (OO.5.2.2.h)
Software Development Process Traceability (OO.5.5.d)

Vulnerabilities Traceability (OO.D.2.1)

Object orientation is a design methodology, a way to compose a system

where the focus is on the kinds of entities that the system deals with, and

their interrelationships. Choosing an object-oriented design will thus have

a significant impact on the architecture, which is expressed in terms of

classes and their methods (or primitive operations in Ada). This

architecture can be modeled in many ways, for example with UML class

diagrams.

Frédéric Pothon & Quentin Ochem

87

The use of OOT can affect traceability between low-level requirements

and code. Without object orientation, traceability is generally between a

set of requirements and one module, one function or one piece of code. In

an object-oriented design, as defined in DO-332 / ED-217, §O.O.5.5:

“All functionality is implemented in methods; therefore,

traceability is from requirements to the methods and attributes

that implement the requirements”.

4.3.2. Coverage in the case of generics

Contributions

Objectives Test Coverage Analysis (A-7[4,5]: 6.4.4.b, 6.4.4.c)

Activities Requirement coverage analysis (6.4.4.1)
Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

Vulnerabilities Parametric Polymorphism (OO.D.1.2)
Structural Coverage (OO.D.2.2)

Genericity is one of the “related techniques” (not part of OOT) that is

covered by DO-332 / ED-217. A generic unit is a template for a piece

of code that can be instantiated with different parameters, including

types and subprograms. A complication with respect to certification is that

the same generic unit may have different instantiations that behave

differently. Consider, for example, a simple generic Ada function that can

be instantiated with an integer type to perform some basic computation:

generic

 type Int_Type is range <>;

function Add_Saturated (Left, Right, Max : Int_Type) return

Int_Type

 with Pre => Max>0;

AdaCore Technologies for DO-178C / ED-12C

88

function Add_Saturated (Left, Right, Max : Int_Type) return

Int_Type is

 Temp : Int_Type;

begin

 Temp := Left + Right;

 if Temp > Max then

 return Max;

 elsif Temp < -Max then

 return -Max;

 else

 return Temp;

 end if;

end Add_Saturated;

Then consider two separate instantiations:

with Add_Saturated;

procedure Test_Gen is

 function Add_1 is new Add_Saturated (Integer);

 type Small_Int is range -10 .. 10;

 function Add_2 is new Add_Saturated (Small_Int);

 N1 : Integer;

 N2 : Small_Int;

begin

 N1 := Add_1 (6, 6, 10); -- Correctly yields 10

 N2 := Add_2 (6, 6, 10); -- Raises Constraint_Error

end Test_Gen;

Calling Add_1 (6, 6, 10) will yield 10 as a result. Calling Add_2 (6,

6, 10) will raise Constraint_Error on the first addition, since the sum

Left+Right will be equal to 12 and therefore violate the range

constraint for Small_Int.

Different instantiations of the same generic unit can thus exhibit different

behaviors. As a result, DO-332 / ED-217 specifies that each generic

instance must be tested (and covered).

Frédéric Pothon & Quentin Ochem

89

GNATtest will generate a test harness taking this requirement into

account. In particular, it will generate a separate testing setup for each

instance, while keeping a generic test procedure for all of them.

GNATcoverage can separately report the coverage of each generic

instance, based on the “-S instance” switch.

With respect to traceability, the code of a generic instantiation is

traceable to the source. Indeed, at the point of instantiation, the effect is

as though the generic template were expanded in place, with formal

parameters replaced by the actuals. (This expansion is not at the level of

source text, but rather is based on a program representation where all

names have been semantically resolved.) As a result, using a generic

doesn’t add any non-traceable code. Code is traced from the generic

template to the object code, once per instance.

4.3.3. Dealing with dynamic dispatching and

substitutability

Contributions

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a)
Local Type Consistency Verification Objective (OO.A-
7[OO 10]: OO.6.7.1)

Activities Software Design Process Activities (OO.5.2.2.i)
Local Type Consistency Verification Activity (OO.6.7.2)

Vulnerabilities Inheritance (OO.D.1.1)

One of the major features of OOT is dynamic dispatching (also called

“dynamic binding”), which adds considerable expressive power but also

presents challenges to verification. With dynamic dispatching, the

subprogram to be invoked on a reference to a target object is not known

statically but rather is resolved at run time based on which class the

target object belongs to. This differs from a call through an access-to-

subprogram value in the sense that, with dynamic dispatching, the

potential destination subprograms are constrained to a specific class

hierarchy as determined by the type of the reference to the target object

(the “controlling parameter”, in Ada terms).

AdaCore Technologies for DO-178C / ED-12C

90

In Ada, a subprogram that can be invoked through dynamic dispatching –

this is known as a “primitive subprogram” – can never be removed by a

subclass; it is either inherited or overridden. Thus on a call that is

dynamically dispatched, although it is not known at compile time which

subclass’s version of the subprogram will be invoked, some subclass’s

implementation of the subprogram will indeed be called. Ada is not

susceptible to “no such method” errors that can arise with dynamic

dispatching in some other languages.

Understanding Substitutability

From a safety point of view, not knowing the specific target of a given

call introduces significant issues for verifiability. DO-332 / ED-217 states

that if an inheritance hierarchy is constructed so that each subclass

specializes its superclass (i.e., wherever a superclass instance is permitted

a subclass instance may be substituted) then dynamic dispatching is

acceptable. This substitutability property for a class inheritance hierarchy

is known as the “Liskov Substitution Principle” (LSP).

If a hierarchy complies with LSP, then testing and other verification can be

conducted based on properties defined at the class level, which will then

need to be respected by each subclass. As we shall see, this has

implications on the pre- and postconditions that are allowed when a

dispatching subprogram is overridden.

Here is a specific – although simplified – example: an aircraft type with a

subprogram that is supposed to open the doors.

package Aircraft_Pkg is

 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)

 with Pre'Class => Self.On_Ground,

 Post'Class => Self.Doors_Opened;

 ...

private

 ...

end Aircraft_Pkg;

Frédéric Pothon & Quentin Ochem

91

The contracts for the pre- and postconditions reflect the low-level

requirements:

 the aircraft has to be on the ground prior to having its doors

opened, and

 the doors are opened as a result of the call.

The Aircraft type could be used as follows:

procedure Landing_Procedure (My_Aircraft : Aircraft'Class) is

begin

 ...

 while not My_Aircraft.On_Ground loop

 ...

 end loop;

 -- Here if My_Aircraft is on the ground

 My_Aircraft.Open_Doors; -- Dispatching call

 My_Aircraft.Let_Passengers_Out;

 ...

end Landing_Procedure;

We’re first waiting until the aircraft is actually on the ground, then open

the doors, then as the doors are opened we let passengers out.

All types in the Aircraft inheritance hierarchy have to comply with the

Aircraft contracts. That is, for any type in the Aircraft'Class hierarchy,

the Open_Doors subprogram for that type can require at most the

On_Ground precondition and nothing stronger. If a stronger precondition

were imposed, then a dynamically dispatching call of Open_Doors could

fail if the actual parameter were of this (non-substitutable) type. The

extra precondition would not necessarily be known to clients of the root

type Aircraft.

Analogously for the postcondition, any type in the Aircraft'Class

hierarchy has to guarantee at least the Doors_Opened property, since

this will be assumed by callers of Open_Doors.

In short, the substitutability property can be summarized as follows:

AdaCore Technologies for DO-178C / ED-12C

92

If a type hierarchy is to be substitutable, then a dispatching

subprogram for a derived type can weaken but not strengthen

the precondition of the overridden subprogram for its parent

type, and can strengthen but not weaken the postcondition.

The class-wide Pre'Class and Post'Class aspects are inherited (unless

overridden) and have other semantics that directly support this

substitutability property. The specific (non-class-wide) aspects Pre and

Post are not inherited and should only be used if the hierarchy does not

support substitutability.

Let’s now define a Jet:

type Jet is new Aircraft with ...

overriding

procedure Open_Doors (Self : Jet)

with Pre => Self.On_Ground and Self.Engines_Off,

 Post'Class => Self.Doors_Opened and not Self.Pressurized;

Suppose that Landing_Procedure is invoked on an object of type Jet:

J : Aircraft'Class := Jet'(...);

...

Landing_Procedure (J);

In the call My_Aircraft.Open_Doors, first the precondition for

Open_Doors for Aircraft will be evaluated (since the actual parameter

is of the class-wide type Aircraft'Class. That’s not a problem, since the

caller sees this precondition. However, then the specific precondition for

Open_Doors for Jet is evaluated, and there is a problem with the

additional constraint – requiring the engines to be off. The Jet type

could have been defined long after the Landing_Procedure

subprogram was written, so the design of the Landing_Procedure code

would not have taken the added precondition into account. As a result,

the Open_Doors procedure could be invoked when the engines were still

running, violating the requirement. (With run-time assertion checking

enabled, an exception would be raised.) The type Jet is not substitutable

for the type Aircraft on invocations of Open_Doors.

Frédéric Pothon & Quentin Ochem

93

The non-substitutabiity is reflected in the use of the specific aspect Pre

rather than the class-wide aspect Pre'Class. In a type hierarchy rooted

at type T where Pre'Class is specified at each level for a subprogram

Proc, the effective precondition for a dispatching call X.Proc where X is

of the type T'Class is simply the precondition specified for Proc for the

root type T (which is the only precondition known to the caller). In the Jet

example, if Pre'Class had been used, a dispatching call to Open_Doors

would not check the Engines_Off condition.

In short, if a subclass is to be substitutable then it may weaken but not

strengthen a subprogram’s precondition, and it should use Pre'Class

rather than Pre. If a subclass needs to strengthen a precondition then it is

not substitutable and should use Pre rather than Pre'Class.

The postcondition for Open_Doors for Jet does not have this problem. It

adds an additional guarantee: pressurization is off after the opening of

the doors. That’s OK; it doesn’t contradict the expectations of the

Landing_Procedure subprogram, it just adds an additional guarantee.

The Jet type illustrated non-substitutability due to precondition

strengthening. Non-substitutability can also arise for postconditions, as

illustrated in a slight variation of the Aircraft type:

package Aircraft_Pkg is

 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)

 with Pre'Class => Self.On_Ground,

 Post => Self.Doors_Opened; -- Specific, not

class-wide

 ...

private

 ...

end Aircraft_Pkg;

Here’s a possible declaration for a hot air balloon:

AdaCore Technologies for DO-178C / ED-12C

94

type Hot_Air_Balloon is new Aircraft with ...

overriding

procedure Open_Doors (Self : Hot_Air_Balloon)

with Pre'Class => Self.On_Ground or Self.Tethered,

 Post => Self.Doors_Unlocked;

In this case, the precondition is relaxed (we’re assuming a short tether).

This is acceptable, since the landing procedure will still check the stronger

precondition and wait for the aircraft to be on the ground; the class-wide

precondition of the root type is checked on a dispatching call. (The

weaker precondition would be checked on a call such as B.Open_Doors

where B is either of the specific type Hot_Air_Balloon or the class-

wide type Hot_Air_Balloon'Class.)

However, a Hot_Air_Balloon is less automated than a Jet: the doors

don’t open automatically, they just unlock. The Landing_Procedure

subprogram assumes the postcondition for Aircraft (that the doors are

opened), but this is not guaranteed for a Hot_Air_Balloon, so

passengers might be pushed out while the doors are unlocked but still

closed. The new postcondition is breaking the requirement by weakening

its parent type’s postcondition, and this is not acceptable. Thus the

Hot_Air_Balloon type is not substitutable for Aircraft.

Substitutability defects may be evidence of a number of problems; for

example, the hierarchy of classes or requirements may be incorrect, or the

classes may be modeling properties inappropriately. Overall, this

indicates design issues to be addressed when specifying the low-level

requirements and/or architecture.

A natural question is how to detect substitutability defects (or achieve

confidence that such defects are not present) in the application. DO-332

/ ED-217 provides three approaches: pessimistic testing, local substitution

tests, or formal proofs.

Verifying substitutability by pessimistic testing

Pessimistic testing is conceptually the easiest to understand. The idea is to

test at each point of dispatch all possible types that could be substituted.

In the Landing_Procedure example, assuming that our system is

Frédéric Pothon & Quentin Ochem

95

managing both jets and hot air balloons, this would mean two sets of

tests: one for the Jet type, and one for Hot_Air_Balloon. This is working

around the difficulty of not knowing statically the potential target of a

call: we just test all possible scenarios.

This is particularly appropriate with “flat” hierarchies, which may be

broad but not deep. An example is an OOP design pattern for an

abstract root type (such as a container data structure) with concrete

specializations corresponding to different representational choices. In this

case, regular requirement-based testing is equivalent to pessimistic

testing. However, the complexity of additional testing can quickly become

unmanageable as the depth of the class hierarchy increases.

Verifying substitutability through requirement-based testing

In this case verification of substitutability is done on top of regular testing.

In the above examples the Aircraft, Jet and Hot_Air_Balloon
requirements are all associated with specific requirement-based tests.

Substitutability can be demonstrated by running top level tests with

instances of other types of the class. In other words, tests developed

based on requirements of Aircraft must pass with instances of Jet and

Hot_Air_Balloon. This is enough to demonstrate substitutability,

effectively testing the substitution. This may require more or fewer tests

depending on OOP usage. In particular, for large class hierarchies,

testing at the class level is much more cost-effective than testing every

possible target of every possible dispatching call in the actual code.

The GNATtest tool supports generation of the appropriate test

framework for substitution testing; see the GNATtest option --validate-

type-extensions.

Verifying substitutability through formal proof

In conjunction with DO-333 / ED-216 (Formal Methods supplement), and

assuming that requirements can be expressed in the form of pre- and

postconditions, the consistency between an overriding subprogram and its

parent type’s version can be verified through formal proof. This can be

done in particular with the SPARK language. There are two criteria for

substitutability:

AdaCore Technologies for DO-178C / ED-12C

96

 The precondition of a subprogram for a type must imply the

precondition of each overriding subprogram in the class

hierarchy.

 The postcondition of any overriding subprogram for a type must

imply the postcondition of the corresponding subprogram for

each ancestor type in the hierarchy

These preconditions and postconditions – or requirements – must also be

verified, through either requirement-based testing or formal proofs.

The SPARK tool can verify consistency of classes of types, and in

particular consistency of pre- and postconditions as described above. To

enable such verification, these must be declared as class-wide contracts

as in the initial example of the Aircraft type above.

Differences between local and global substitutability

DO-332 / ED-217 does not require classes to be globally substitutable,

but only locally; that is, only around actual dispatching points. For

example, the following code is not globally substitutable, but is locally

substitutable at the dispatching calls:

package Aircraft_Pkg is

 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)

 with Pre'Class => Self.On_Ground,

 Post'Class => Self.Doors_Opened;

 procedure Take_Off (Self : Aircraft)

 with Pre'Class => Self.On_Ground and not

 Self.Doors_Opened,

 Post'Class => not Self.On_Ground;

 ...

private

 ...

end Aircraft_Pkg;

Frédéric Pothon & Quentin Ochem

97

package Aircraft_Pkg.Jet_Pkg is

 type Jet is new Aircraft with ...

 overriding

 procedure Open_Doors (Self : Jet)

 with Pre => Self.On_Ground and Self.Engines_Off,

 -- Not substitutable

 Post'Class => not Self.Pressurized;

 overriding

 procedure Take_Off (Self : Aircraft)

 -- Inherit Aircraft's precondition

 with Post'Class => not Self.On_Ground and

 Self.Speed >= 100.0;

 ...

private

 ...

end Aircraft_Pkg.Jet_Pkg;

...

X, Y : Aircraft'Class := Jet'(...)

...

X.Take_Off;

Y.Take_Off;

The Jet type is not globally substitutable for Aircraft, since the

precondition on Open_Doors for Jet is stronger than the precondition on

Open_Doors for Aircraft. But Jet is locally substitutable in the above

fragment:

 The invocations X.Take_Off and Y.Take_Off dispatch to Jet,

but Jet is substitutable for Aircraft here:

o The precondition for Take_Off(Aircraft) is inherited

by Jet, and

o The postcondition for Take_Off(Aircraft) is

strengthened by Jet

AdaCore Technologies for DO-178C / ED-12C

98

Whether it is easier to demonstrate local versus global suitability for a

given class depends on the architecture and the ease of identification of

actual dispatch destinations and substitutability. DO-332 / ED-217 allows

the applicant to decide on whichever means is the most appropriate.

4.3.4. Dispatching as a new module coupling

mechanism

Contributions

Objectives Test Coverage Analysis (A-7[8]: 6.4.4.d)

Activities Structural Coverage Analysis (6.4.4.2.c)

Vulnerabilities Structural Coverage (OO.D.2.2)

With procedural programming, modules can be interfaced, or coupled,

through parameter passing, subprogram calls or global variables (data

and control coupling). Object orientation introduces a new way in which

two modules may interface with each other: by extension / type

derivation. Following-up on previous examples:

procedure Control_Flight (Plane : Aircraft'Class) is

begin

 ...

 -- Dispatching call, may call Take_Off from instances

 -- defined in other modules, creating coupling

 -- relationship with those modules

 Plane.Take_Off;

 ...

end Control_Flight;

Aircraft of different types may be defined in separate modules. A

connection between these modules and the rest of the application may be

made by dispatching from this call. All objectives that apply to control

and data coupling now apply to type derivation coupling, in particular

Frédéric Pothon & Quentin Ochem

99

the coverage objectives. Whether or not testing with all possible

derivations in the system is used (i.e., pessimistic testing) depends of the

strategy chosen for substitutability demonstration.

4.3.5. Memory management issues

Contributions

Objectives Software Design Process Objectives (A-2[3,4]: 5.2.1.a)
Reviews and Analyses of Software Architecture (OO.A-
4[8]: OO.6.3.3.a)
Dynamic Memory Management Verification Objective
(OO.A-7[OO10]: OO.6.8.1)

Activities Software Design Process Activities (OO.5.2.2.j)
Dynamic Memory Management Verification Activities
(OO.6.8.2)
Reviews and Analyses of Software Architecture
(OO.6.3.3)

Vulnerabilities Dynamic Memory Management (OO.D.1.6)

In addition to local type consistency, which was described in the

preceding section, DO-332 / ED-217 also introduced another new

verification objective: robustness of dynamic memory management. This

objective encompasses not only explicit use of dynamic memory, through

either automatic means (“garbage collection”) or application-provided

allocation / deallocation, but also implicit uses through higher level data

structures such as object collections of various kinds. DO-332 / ED-217

identifies a number of criteria that need to be met by any memory

management scheme:

 The allocator returns a reference to a valid piece of memory, not

otherwise in use

 If enough space is available, allocations will not fail due to

memory fragmentation

 An allocation cannot fail because of insufficient reclamation of

inaccessible memory

AdaCore Technologies for DO-178C / ED-12C

100

 The total amount of memory needed by the application is

available (that is, the application will not fail because of

insufficient memory)

 An object is only deallocated after it is no longer used

 If the memory management system moves objects to avoid

fragmentation, inconsistent references are prevented

 Allocations and deallocations complete in bounded time

Meeting these criteria may be the responsibility of the run-time memory

management library (referred to as the “memory management

infrastructure”, or MMI in DO-332 / ED-217) or the application code

(AC). Table OO.D.1.6.3 in DO-332 / ED-217 presents several different

memory management techniques that can be used. For each technique the

table identifies whether the MMI or the AC is responsible for meeting

each criterion.

Dynamic memory is identified as a specific issue in object orientation

because, in many languages, it is very difficult or even impossible to use

object-oriented paradigms without dynamic memory management. This is

in particularly true for referenced-based languages such as Java.

Although dynamic memory is also helpful when OOP is used in Ada,

simple architectures may allow creating (and subsequently dispatching on)

stack-resident or library-level objects, without needing dynamic memory.

This can be done if such objects are of a class-wide type. The main

constraint is that each object has to be initialized at declaration, and its

specific type cannot change later. For example, the following code

provides a function returning an object of a type in the Aircraft class

hierarchy, depending on a parameter:

type Aircraft is abstract tagged ...

type Jet is new Aircraft with ...

type Hot_Air_Balloon is new Aircraft with ...

...

Frédéric Pothon & Quentin Ochem

101

function Create (T : Integer) return Aircraft'Class is

begin

 if T = 1 then

 return Jet'(<initialization of a Jet>);

 elsif T = 2 then

 return Hot_Air_Balloon'(…);

 -- initialization of a Hot_Air_Balloon

 else

 raise <some exception>;

 end if;

end Create;

Objects of the class-wide type Aircraft'Class can be created as local

or global variables:

N : Integer := Get_Integer; -- Dynamically computed

P : Aircraft'Class := Create (N);

...

P.Take_Off;

Here, P is allocated on the stack and may be either a Jet or a

Hot_Air_Balloon. The call to P.Take_Off will dispatch accordingly.

For notational convenience it may be useful to reference objects of a

class-wide type through access values (pointers), since that makes it easier

to compose data structures, but to prevent dynamic allocation. This can be

achieved in Ada:

type Aircraft is abstract tagged ...

type Jet is new Aircraft with ...

type Hot_Air_Balloon is new Aircraft with ...

type Aircraft_Ref is access all Aircraft'Class;

for Aircraft_Ref'Storage_Size use 0;

 -- No dynamic allocations

...

AdaCore Technologies for DO-178C / ED-12C

102

Jet_1, Jet_2 : aliased Jet := ...;

Balloon_1, Balloon_2, Balloon_3 : aliased Hot_Air_Balloon :=

...;

type Aircraft_Pool_Type is array(Positive range <>) of

Aircraft_Ref;

Pool : Aircraft_Pool_Type := (Jet_2'Access,

 Balloon_3'Access,

 Jet_1'Access);

...

for P of Pool loop

 P.Take_Off; -- Dispatches

end loop;

These examples show how object orientation can be used in Ada without

dynamic memory. More complicated designs, however, would probably

need some form of dynamic memory and thus need to comply with the

criteria listed above.

4.3.6. Exception handling

Contributions

Objectives Software Design Process Objectives (A-2[4]: 5.2.1.a)
Reviews and Analyses of Software Architecture (OO.A-
4[8]: OO.6.3.3.a)

Activities Software Design Process Activities (OO.5.2.2.k)
Reviews and Analyses of Software Architecture
(OO.6.3.3)

Vulnerabilities Exception Management (OO.D.1.5)

An exception identifies a condition that is detected by the executing

program (often implicitly by the generated code) and causes an

interruption of the normal control flow and a transfer to a handler. The

condition is typically an error of some sort, for example an out-of-bounds

index.

Exceptions are useful in certain scenarios:

Frédéric Pothon & Quentin Ochem

103

 When a program deals with externally provided data (operator

input, sensor readings), the exception mechanism is a convenient

way to express validity checks. A handler can perform

appropriate diagnostic / recovery actions.

 When an emergency shutdown is needed for a system

component, a “last chance handler” can take the appropriate

measures.

However, the general exception mechanism complicates certification for

several reasons:

 Typically, verification should have detected and prevented the

exception from occurring in the final code. That is, exceptions

often correspond to violations of preconditions, and such

violations should not occur in verified code.

 Since the normal control flow has been abandoned, the program

may be in an instable state (for example with aggregate data

structures not fully updated) and writing an appropriate handler

can be difficult

DO-332 / ED-217 specifies that exception handling needs to be taken

into account at the architecture level, but doesn’t provide many more

details. It also lists vulnerabilities to consider; for example, an exception

might not be handled properly and as a result the program could be left

in an inconsistent state.

The GNAT Pro compiler supplies several strategies concerning exceptions.

 Checks can be globally deactivated. By default, execution of

certain constructs (an out-of-range assignment for example)

generates a run-time check. This can be removed through the -

p option for the compiler. This should only be done after verifying

that such checks cannot fail.

 If exceptions are kept but are meant to trigger an application

shutdown, they can be connected to a “last chance handler”. This

allows the application to perform the needed finalization, such as

AdaCore Technologies for DO-178C / ED-12C

104

diagnostics and logging, after which it is terminated and possibly

rebooted.

 Exceptions can also be locally handled; this is achieved by

specifying

pragma Restrictions (No_Exception_Propagation). This

GNAT-specific restriction ensures that an exception is only raised

when its handler is statically in the same subprogram. Exception

handling can then be implemented (conceptually) by a simple

branch to its handler. Such a policy is much easier to manage in a

safe way than general exception propagation. Local handling is

useful in situations where the software requirements specify a

particular termination behavior for a subprogram under

conditions that are best detected by raising an exception. An

example is a “saturated add” procedure that takes two positive

integers and delivers a positive integer result and an overflow

status: the integer result will be the actual sum if no overflow

occurred, and the maximum positive value if an overflow

occurred.

type Overflow_Status is (No_Overflow, Overflow);

procedure Saturated_Add (I1, I2 : in Positive;

 Result : out Positive;

 Status : out Overflow_Status)

is

begin

 Result := I1+I2;

 Status := No_Overflow;

exception

 when Constraint_Error =>

 Result := Integer'Last;

 Status := Overflow;

end Saturated_Add;

SPARK addresses the exception handling issue by ensuring that

exceptions are never raised:

 The SPARK tools can be used to demonstrate the absence of run-

time exceptions.

Frédéric Pothon & Quentin Ochem

105

 Handlers are not permitted.

 Raise statements are permitted but must be proved to never

execute.

4.3.7. Overloading and type conversion

vulnerabilities

Contributions

Objectives Reviews and Analyses of Source Code (OO.A-5[6]:
OO.6.3.4.f)

Activities Reviews and Analyses of Source Code (OO.6.3.4)

Vulnerabilities Overloading (OO.D.1.3)
Type Conversion (OO.D.1.4)

Many languages allow subprogram overloading (use of the same name

for different subprograms, with a call resolved based on the types of the

actual parameters and possibly also the return type for a function) and

implicit type conversions. This combination can lead to readability and/or

maintainability issues. For example, the application may have two

functions with the same name and the same number of parameters, only

distinguished by their type. In C++ this could be:

int f (int x);

int f (float x);

...

int r = f (100);

Knowing which function f() will be called is not immediately obvious.

Furthermore, if the original version of the program contained only the

declaration of f() with a float parameter, and the declaration of f()

with an int parameter was added during maintenance, then the

recompilation of f(100) would silently change the effect of the program

to invoke the new version of f().

AdaCore Technologies for DO-178C / ED-12C

106

Compiler warnings or static analysis tools are required to identify such

cases and warn the user that a possibly unintended call may be made.

Such problems are much less frequent in Ada, since the language does not

allow these sorts of implicit conversions. If a call is ambiguous, this is

detected and the developer will need to specify the intent. Here is an

example:

type Miles is new Integer;

type Kilometers is new Integer;

function F (Distance : Miles) return Integer;

function F (Distance : Kilometers) return Integer;

R : Integer := F (100); -- Ambiguous

The above code is illegal in Ada due to the ambiguity: the literal 100

could be interpreted as either a Miles or a Kilometers value. A

construct called “type qualification” can be used to make the type explicit

and the call unambiguous:

R1 : Integer := F (Miles'(100));

R2 : Integer := F (Kilometers'(100));

With its restrictions on implicit conversions and its provision of an explicit

facility for making subprogram calls unambiguous, Ada supports the

necessary verification activity to mitigate the vulnerabilities in question.

4.3.8. Accounting for dispatching in

performing resource analysis

Contributions

Objectives Reviews and Analyses of Source Code (OO.A-5[6]:
OO.6.3.4.f)

Activities Reviews and Analyses of Source Code (OO.6.3.4)

Vulnerabilities Resource analysis (OO.D.2.4)

Frédéric Pothon & Quentin Ochem

107

One of the difficulties in resource analysis (worst case execution time,

maximal stack usage, etc.) is how to take into account that the target of a

dispatching call is unknown. This can be addressed by including resource

consumption limits as part of the call requirements. E.g., each overriding

version of a given subprogram must complete within a particular relative

deadline, or use at most a particular amount of stack space. The usual

substitutability rules would then apply; in effect such resource consumption

requirements are a form of postcondition.

The GNATstack tool would provide a more pessimistic approach to worst-

case stack computation, and use the maximum value required over all

possible targets in its computation.

AdaCore Technologies for DO-178C / ED-12C

108

4.4. Use case #2: Developing a design model and

using a qualified code generator (QGen)

This use case entails developing the lower level of architecture and

requirements in the form of Simulink® and/or Stateflow® models during

the design process, based on a higher level of requirements. This

representation is considered a “design model” in DO-331 / ED-218 (the

Model-Based Development and Verification Supplement). A design model

may be translated directly into source code. In this use case, QGen is

used as a qualified code generator, to automatically generate source

code in SPARK or MISRA-C from the design model.

4.4.1. Model development / verification and

code generation

 Contributions

Objectives Software Design (MB.A-2[3,4,5, MB9, MB10]: MB.5.2.1)
Software Coding (A-2[6]: 5.3.1.a)

Activities Software Design (MB.5.2.2)
Software Coding (5.3.2.d – Autocode)

To apply this use case, a Simulink® and/or StateFlow® design model is

developed. One of the main benefits of this approach is the ability to

detect potential errors early by verifying the model through model

simulation.

Although most of activities around the development and the verification of

the model are outside the scope of AdaCore solutions, QGen can be used

to help identify certain kinds of errors in the model (see below).

Source code can be generated from the model manually, by a non-

qualified code generator, or by a qualified code generator. Each

approach has benefits and drawbacks:

Manual code generation

 Advantages

Frédéric Pothon & Quentin Ochem

109

o No need to develop or buy a tool

o Any source code language may be used

o Flexibility in defining source code format

o Problems may be repaired at source code level

o No constraints in model development

 Disadvantages

o Workload in source code development and verification

o High impact of model modifications

Automated code generation with non-qualified tool

 Advantages

o Almost no source code development workload, except

libraries (if any)

o Problems may be repaired at source code level

o No need to qualify the code generator

 Disadvantages

o Need to buy or develop a code generator

o All source code verification activities need to be

performed, automatically or manually

o Constraints in model development for tool compliance

o Limited choice of source code language and format

Use of a qualified code generator

 Advantages

o No source code development workload, except libraries

(if any)

AdaCore Technologies for DO-178C / ED-12C

110

o Significantly reduced effort in verification activities for

source code, low-level testing and structural coverage

analysis

 Disadvantages

o Need to buy or develop a qualified code generator

o Constraints in model development for tool compliance

o Changing the source code entails modifying the model

o Limited choice of source code language and format

AdaCore’s solution for this use case is the QGen tool, which automates the

generation of SPARK / Ada or MISRA-C source code from a safe subset

of Simulink® and Stateflow® blocks. This discussion assumes using the

qualified version of QGen.

The use of a qualified code generator facilitates a very efficient life

cycle, reducing the effort for a number of verification activities. The next

sections describe a possible strategy to gain credit for QGen in the areas

of source code verification (Table A-5, objectives 1-6), low-level testing

(A-6, objectives 3-4) and structural coverage analysis (A-7, objectives 5-

7).

4.4.2. Contributions to model verification

Contributions

Objectives Reviews and Analyses of Low-Level Requirements (A-4[2]:
6.3.2.b)
Reviews and Analyses of Software Architecture (A-4[9]:
6.3.3.b)

Activities Reviews and Analyses of Low-Level Requirements (6.3.2)
Reviews and Analyses of Software Architecture (6.3.3)

QGen uses the same code analysis as CodePeer. Thus a variety of

accuracy and consistency objectives that are typically verified at source

code level (such as freedom from scalar overflows, out-of-range array

Frédéric Pothon & Quentin Ochem

111

indexes, and uses of uninitialized variables) can be verified at the model

level, ensuring model consistency.

Through qualification, the analysis performed on the model by QGen

provides the necessary confidence that no additional errors have been

inserted in the source code.

4.4.3. Qualification credit on source code

verification objectives

Contributions

Objectives Reviews and Analyses of Source Code (MB.A-
5[1,2,3,4,5,6]: MB.6.3.4.a, MB.6.3.4.b, MB.6.3.4.c,
MB.6.3.4.d, MB.6.3.4.e, MB.6.3.4.f)

Activities Reviews and Analyses of Source Code (6.3.4)

QGen qualification guarantees that “what is in the model is in the code”.

To justify this claim, qualification includes (among other things) the

following activities

 developing accurate tool requirements,

 defining the exact source code to be produced for each model

element, and

 verifying that the code produced for each allowed model

element and combination complies with the tool requirements.

Since tool qualification provides confidence that the generated source

code is complete and correct (as a faithful translation of the model), the

verification activities on the source code are significantly reduced. For

example the following objectives are met by tool qualification, so their

associated activities do not need to be performed:

 source code complies with the requirements (the model),

 source code complies with the software architecture (expressed in

the model),

AdaCore Technologies for DO-178C / ED-12C

112

 source code is verifiable

 source code conforms to standards expressed in the qualification

kit,

 source code is traceable to low level requirements (the model),

i.e., all low-level requirements have been implemented in source

code (DO-178C / ED-12C §6.3.4.e)

The elimination of these activities applies both at the initial stage (the first

time code is generated from the model) and subsequently at each

iteration (after the model has been updated for whatever reason).

As previously noted, the DO-178C / ED-12C objective for “Accuracy and

consistency of source code” lists a number of development errors that

need to be prevented. Some of these, such as unused variables and reads

of uninitialized variables, are addressed through tool qualification.

Others are not linked to the translation of requirements into source code,

but rather relate to the integration phase. Examples include target

computer capabilities such as Worst Case Execution Time, memory usage,

stack usage, and arithmetic calculation resolution. These items just need to

be addressed independently of the code generation method. Note that

use case #1 addresses some of these aspects (e.g., stack size).

4.4.4. Qualification credit on Executable

Object Code verification objectives

Contributions

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

Activities Requirement-Based Testing Methods (6.4.3)
Requirement-Based Test Selection (6.4.2, 6.4.2.1, 6.4.2.2)
Software Verification Process Traceability (6.5)

DO-178C / ED-12C requires verifying that the executable object code

complies with all levels of requirements. This is typically accomplished

through testing. Since the design model expresses the low-level

Frédéric Pothon & Quentin Ochem

113

requirements, it is necessary to demonstrate that the executable object

code complies with the requirements reflected in the model.

There are several possible approaches, without developing the low-level

testing based on requirements contained in the model itself. Each has

benefits and drawbacks. The choice depends on the modeling standard

(and whether/how it restricts model complexity), the nature of the

requirements from which the model was developed, and the capabilities

of the test environment. Early discussion with the certification authorities is

encouraged. There are two main approaches:

 Tool qualification credit, as defined in DO-330 / ED-215, FAQ

§D.8 scenario 3: “Satisfaction of low-level requirements-based

test objectives through qualification of the ACG (Automatic Code

Generator) and verification of a set of representative input files”

The Tool Operational Verification and Validation activity that is

part of the qualification process offers an equivalent to low-level

requirements-based testing. It involves taking a representative set

of input files (models) based on the modeling standard, invoking

the ACG to produce source code, generating the executable

object code (EOC) through the same build environment (compiler,

linker) that is used for the airborne software, and verifying

compliance of the EOC with the representative input files through

testing that satisfies objectives 1, 2, and 4 in Table A-7 of DO-

178C / ED-12C.

Tool Operational Verification and Validation is project

dependent, and the activities need to be conducted in the tool

operational environment (DO-330 / ED-215 §6.2.2c). These

activities may be performed either by AdaCore or the QGen

user depending on the context.

A key point in this approach is the choice of the model samples.

To demonstrate that they are representative, the samples must

include all allowed elements (based on the modeling standard),

and combinations of such elements representative of what will

occur in the airborne software. Further, the source code

generated from these samples must include all possible source

code constructs that may be generated by the ACG.

AdaCore Technologies for DO-178C / ED-12C

114

The rules in the modeling standard must be sufficiently restrictive

to make this effort manageable, but general enough to express

the required functionality. QGen’s selection of a safe subset of

Simulink® and Stateflow® elements helps strike an appropriate

balance.

 Requirement coverage analysis based on high-level testing

As noted above, DO-178C / ED-12C requires verifying that the

EOC complies with all levels of requirements. But the standard

also recognizes that if a test developed for a higher-level

requirement satisfies the objectives (including structural coverage)

for a low-level requirement, it is not necessary to duplicate the

test in low-level testing (DO-178C/ED-12C §6.4 Note).

The ability to have the same test serve at multiple levels is

independent of the formalism for developing the requirements

and the method for generating the code. But it is especially

applicable in model-based development and verification.

o A design model is generally verified using model

simulation. As required by DO-331 / ED-218, simulation

cases are developed based on the “requirements from

which the model is developed” and thus at a higher level

(typically the high-level requirements) than those defined

in the design model.

o In order to detect possible unintended elements in the

design model, “Model Coverage Analysis” is required.

This analysis consists in identifying the model elements not

exercised during the verification (simulation or tests) and

is performed based on the “requirements from which the

model is developed”.

o The criteria for Model Coverage Analysis are not

completely defined in DO-331 / ED-218. But if these

include the same criteria as those for requirements

coverage analysis, then the verification cases developed

based on the “requirements from which the model is

developed” also cover the requirements defined in the

Frédéric Pothon & Quentin Ochem

115

design model. It is then not necessary to duplicate the

tests, as long as structural coverage analysis is also

achieved.

In order for this method to be accepted, the simulation cases

should be converted into test procedures and run on the

executable object code (see DO-331 / ED-218 FAQ #16). To

perform this re-execution, the code generated by QGen and

compiled with a cross-compiler may be included in the form of an

S-Function in the Simulink® model. Then the outputs from the model

and the S-function may be compared, confirming (or not) that the

binary code is equivalent to the model behavior.

4.4.5. Qualification credit on structural code

coverage

Contributions

Objectives Test Coverage Analysis (A-7[5]: 6.4.4.c)

Activities Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

Model coverage analysis activities may satisfy structural code coverage

analysis objectives under appropriate conditions. As defined in DO-331 /

ED-218 FAQ #11 these conditions include the following:

 The applicable structural code coverage analysis criteria apply

to model coverage analysis, for the level of the software being

developed; for example, MC/DC for level A.

 Qualification of the code generation tool chain with respect to the

objectives for which certification credit is sought shows that the

applicable coverage properties for the model are preserved for

the code. (The QGen qualification material demonstrates

equivalence between model-level coverage and source-level

coverage. As a result, credit for source code coverage is

obtained from model coverage without the need for any

additional activity beyond qualification.)

AdaCore Technologies for DO-178C / ED-12C

116

 Any libraries used by code generated from the Design Model

are verified according to DO-178C / ED-12C Section 6

(Software Verification Process), including structural code

coverage analysis based on the software level.

Frédéric Pothon & Quentin Ochem

117

4.5. Use case #3: Using SPARK and formal

analysis

This use case is also a variant of use case #1, since the source code is

developed in Ada. It thus benefits from Ada’s advantages and the

AdaCore ecosystem. The difference here is that the contracts, in the

SPARK subset of Ada, are used to develop the low-level requirements.

These contracts are amenable to formal analysis by GNATProve, which

can verify consistency with the implementation.

4.5.1. Using SPARK for design data development

Contributions

Objectives Software Design (A-2[3,4]: 5.2.1.a, 5.2.1.b)
Software Reviews and analyses – Requirement
formalization correctness (FM.A-5[FM12]: FM.6.3.i)
Considerations for formal methods (FM.A-5[FM13]:
FM.6.2.1.a, FM.6.2.1.b, FM.6.2.1.c)

Activities Software Development Standards (4.5)
Software Design (5.2.2.a, 5.2.2.b)
Software Reviews and analyses – Requirement
formalization correctness (FM.6.3.i)
Considerations for formal methods (FM.6.2.1)

The Ada language in itself is already a significant step forward in terms

of software development reliability. However, as a general-purpose

language it contains features whose semantics is not completely specified

(for example, order of evaluation in expressions) or which complicate

static analysis (such as pointers). Large applications may need the latter,

for example to define and manipulate complex data structures, to

implement low-level functionality, or to interface with other languages.

However, sound design principles should isolate such uses in well-

identified modules, outside a safe core whose semantics is deterministic

and which is amenable to static analysis. This core can be developed with

AdaCore Technologies for DO-178C / ED-12C

118

much more stringent coding rules, such as those enforced in the SPARK

language.

SPARK is an Ada subset with deterministic semantics, whose features are

amenable to static analysis based on formal methods. For example, it

excludes pointers, exception handling, side effects in functions, and

aliasing (two variables referring to the same object at the same time),

and guarantees that variables are only read after they have been

initialized. Note that a SPARK program has the same run-time semantics

as Ada. It is compiled with a standard Ada compiler, and can be

combined with code written in full Ada.

SPARK is also a superset of the Ada language in terms of statically

verified specifications. A variety of pragmas and aspects can be used to

define properties (contracts) such as data coupling, type invariants, and

subprogram pre- and postconditions. These are interpreted by the SPARK

analysis tool and do not have any effect at run-time (and thus they can

be ignored by the compiler, although dynamic verification is allowed for

some) but they can formally document the code and allow further static

analysis and formal proof.

Even without taking advantage of SPARK’s support for formal methods,

coding in SPARK (or using SPARK as the basis of a code standard) helps

make the software more maintainable and reliable. SPARK’s contracts use

the same syntax as Ada, and as just noted, a number of checks that a

SPARK analysis tool could enforce statically can be enabled as run-time

checks using standard Ada semantics, allowing traditional testing-based

verification.

SPARK programs can be verified to have safety and secutity properties

at various levels. At minimum, SPARK analysis can demonstrate absence of

run-time errors/exceptions (such as buffer overrun and integer overflow)

and ensure that variables are assigned to before they are read. In the

extreme, SPARK can show that an implementation complies with a formal

specification of its requirements, and this may be appropriate for some

critical kernel modules. Since subprogram pre- and postcondition contracts

often express low-level requirements, some testing of the low-level

requirements may be replaced by formal proofs as described in the DO-

333 / ED-216 Formal Methods supplement to DO-178C / ED-12C.

Frédéric Pothon & Quentin Ochem

119

In summary, SPARK enhances Ada’s benefits in reducing programming

errors, increasing the quality and effectiveness of code reviews, and

improving the overall verifiability of the code. It facilitates advanced

static analysis and formal proof. At the start of a new development,

considering SPARK for at least part of the application kernel can greatly

decrease defects found late in the process. And when adding functionality

to an existing project, SPARK can likewise bring major benefits since it

allows interfacing with other languages and supports combining formal

methods with traditional testing-based verification.

As part of the DO-178C / ED-12C processes, a manual review of the

requirements translated into SPARK contracts needs to be conducted.

Although SPARK can ensure that contracts are correctly and consistently

implemented by the source code, the language and its analysis tools

cannot verify that the requirements themselves are correct.

Another issue that needs to be taken into account is the justification of the

formal method itself. It should provide a precise and unambiguous

notation, and it needs to be sound (i.e., if it is supposed to identify a

particular property in the source code, such as no reads of uninitialized

variables, then it has to detect all such instances). The qualification

material for the formal analysis tool would typically address this issue.

Moreover, any assumptions concerning the formal method must be

identified and justified.

4.5.2. Robustness and SPARK

Contributions

Objectives Software Design (A-2[3,4,5]: 5.2.1.a, 5.2.1.b)

Activities Software Design (5.2.2.f)

As discussed in Section 4.2.4, robustness is concerned with ensuring correct

software behavior under abnormal input conditions. Abnormal input can

come from two sources:

 External: invalid data from the operational environment (for

example due to an operator input error or a hardware failure),

or

AdaCore Technologies for DO-178C / ED-12C

120

 Internal: a defect in the software logic.

Behavior in the external case needs to be considered during requirements

development, and from the SPARK perspective (where these requirements

are captured as pre- or postconditions) there is no fundamental

difference between a regular requirement and a robustness requirement.

The proof performed by SPARK takes into account the entire potential

input space, whether normal or abnormal.

The internal case, where faulty code passes an invalid value to a

subprogram, can be detected by SPARK (GNATprove) if the validity

requirement is part of the subprogram’s precondition. That is, GNATprove

will report its inability to prove that the subprogram invocation satisfies

the precondition.

4.5.3. Contributions to Low Level

Requirement reviews

Contributions

Objectives Reviews and Analyses of Low-Level Requirements (FM.A-
4[2,4,5]: FM.6.3.2.b, FM.6.3.2.d, FM.6.3.2.e)
Reviews and analyses of formal analysis cases, procedures
and results (FM.A-5[FM10,FM11]: FM.6.3.6.a, FM.6.3.6.b,
FM 6.3.6.c)

Activities Reviews and Analyses of Low-Level Requirements
(FM.6.3.2)
Reviews and analyses of formal analysis cases, procedures
and results (FM.6.3.6.)

Using SPARK to define low-level requirements (LLRs) simplifies the

verification process. Since the LLRs are expressed in a formal language

(Ada 2012 or SPARK contracts), by definition they are accurate,

unambiguous, and verifiable: expressed as Boolean expressions that can

be either tested or formally proven.

SPARK also makes it easier to define a software design standard, which

can use the same terms and concepts as a code standard, and can be

checked with similar tools.

Frédéric Pothon & Quentin Ochem

121

4.5.4. Contributions to architecture reviews

Contributions

Objectives Reviews and Analyses of Software Architecture (FM.A-
4[9,11,12]: FM.6.3.3.b, FM.6.3.3.d, FM.6.3.3.e)

Activities Software Development Standards (4.5)
Reviews and Analyses of Software Architecture (FM.6.3.3)

According to DO-333 / ED-216, the reviews and analyses of the

software architecture “detect and report errors that may have been

introduced during the development of the software architecture”. SPARK

helps meet several of the associated objectives:

 Consistency. SPARK’s flow analysis contracts can specify various

relationships between the software components, including a

component’s data dependencies and how its outputs depend on

its inputs. The SPARK analysis tool (GNATprove) can then verify

the correctness of these contracts / relationships, assuming TQL-5

qualification, and the consistency of the architecture. For

example:

type Probe_Type is

 record

 ...

 end record;

Probes : array (1 .. 10) of Probe_Type;

procedure Calibrate_Probe (Index : Integer;

 Min, Max : Integer)

 with Globals =>

 (In_Out => Probes),

 Depends =>

 (Probes => (Probes, Index, Min, Max));

The Calibrate_Probe procedure will use the global variable

Probes in in out mode (it can read from and write to the

variable) and will compute its new value using the old value of

Probes (at the point of call) together with the parameters Index,

AdaCore Technologies for DO-178C / ED-12C

122

Min and Max. SPARK will verify that the only global variable

used is Probes, and that this variable and the parameters

specified in the Depends aspect (and no other variables) are

used to compute the value.

 Verifiability. As a formal notation with tool support, SPARK can

help ensure that the architecture is verifiable. One example is the

protection against one component sending invalid input to

another. As noted earlier, this is part of the robustness

requirement that is met by SPARK’s pre- and postconditions.

Keeping these contracts active even in the final executable object

code will protect a component from sending or receiving invalid

input, and will detect any misuse.

 Conformance with standards. An architecture standard can be

defined in part using similar formalisms as a code standard, thus

allowing the use of similar tools for verification.

4.5.5. Contributions to source code reviews

Contributions

Objectives Reviews and Analyses of Source Code (FM.A-5[1,2,3,6]:
FM.6.3.4.a, FM.6.3.4.b, FM.6.3.4.c, FM.6.3.4.f)

Activities Software Development Standards (4.5)
Reviews and Analyses of Source Code (FM.6.3.4)

The SPARK analysis tool (GNATprove) can verify that the source code

complies with its low-level requirements (LLRs) defined as SPARK contracts.

This can satisfy the source code verification objectives, depending on the

part of the design data formally defined:

 Compliance with the LLRs: code is proven against the LLRs

 Compliance with the architecture: code is proven against the

architectural properties defined at the specification level

 Verifiability: if the code is verified by SPARK, it is verifiable. No

specific activity is needed here.

Frédéric Pothon & Quentin Ochem

123

 Traceability: traceability is implicit, from the LLRs defined in the

specification to the implementation

The SPARK tool achieves proof in a local context; it’s doing a “unit proof”.

The postcondition of a subprogram will be proven according to its code

and its precondition, which makes the SPARK approach scalable. For

example, consider the following function:

type My_Array is array(Positive range <>) of Integer;

function Search (Arr : My_Array;

 Start : Positive;

 Value : Integer)

 return Integer

with Pre =>

 Start in Arr'Range,

 Post =>

 (if Search'Result = -1 then

 (for all I in Start .. Arr'Last => Arr (I) /= Value)

 else Arr(Search'Result) = Value);

The code inside the body might start with:

function Search (Arr : My_Array;

 Start : Positive;

 Value : Integer)

 return Integer is

begin

 if Arr (Start) = Value then

 return Start;

 end if;

 ...

Because of the precondition, the SPARK analysis tool can deduce that the

array indexing will not raise an exception.

Here’s another piece of code, responsible for replacing all occurrences of

one value by the other:

AdaCore Technologies for DO-178C / ED-12C

124

procedure Replace (Arr : in out My_Array;

 X, Y : in Integer)

with Pre => Arr'Length /= 0 and X /= Y,

 Post => (for all I in Arr'Range =>

 (if Arr'Old (I) = X then Arr (I) = Y));

procedure Replace (Arr : in out My_Array; X, Y : Integer) is

 Ind : Integer := Arr'First;

begin

 loop

 Ind := Search (Arr, Ind, X);

 exit when Ind = -1;

 Arr (Ind) := Y;

 exit when Ind = Arr'Last;

 end loop;

end Replace;

When Search is invoked, the only things that the prover knows are its

pre- and postconditions. It will attempt to show that the precondition is

satisfied, and will assume that the postcondition is True. Whether or not

Search is proven doesn’t matter at this stage. If it can’t be proven with

the SPARK tools, we may decide to verify it through other means, such as

testing.

The SPARK analysis tools can demonstrate absence of run-time errors,

absence of reads of uninitialized variables, absence of unused

assignments, and other properties. Additional contracts may sometimes be

needed for assistance (e.g., assertions), but overall SPARK’s restricted

feature set and advanced proof technology automate contract proofs

with very few cases needing to be manually dismissed. This almost

entirely replaces manual reviews and analyses.

The analysis performed by SPARK is usually very tedious to conduct by

manual review. As an example, here’s a simple piece of code:

Frédéric Pothon & Quentin Ochem

125

subtype Some_Int is Integer range ...;

Arr : array (Integer range <>) of Some_Int := ...;

Index, X, Y, Z : Integer;

...

Arr (Index) := (X * Y) / Z;

Exhaustive analysis of all potential sources of errors requires verifying

that:

 X is initialized

 Y is initialized

 Z is initialized

 Index is initialized and is in Arr'Range

 (X * Y) does not overflow

 Z is not equal to zero

 (X * Y) / Z is within Some_Int

The SPARK tools will check each of these conditions, and report any that

might not hold.

4.5.6. Formal analysis as an alternative to low

level testing

Contributions

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

Activities Low Level testing (6.4.3.c)

The purpose of testing in DO-178C / ED-12C is to check that the

executable object code complies with its requirements. Thus it’s not the

source code but the binary code that is tested, and within an environment

representative of the final target. As a consequence, the compiler itself is

AdaCore Technologies for DO-178C / ED-12C

126

not part of the trusted chain. Since its outputs are verified, it can be

assumed to be correct within the exact conditions of the certified

application.

Various activities in DO-178C / ED-12C increase the confidence in the

compilation step, such as selecting an appropriate set of options,

assessing the effect of its known problems and limitations, and (at

software level A) verifying the correctness of non-traceable code

patterns.

DO-333 / ED-216 explains how certain classes of testing can be

replaced by formal analysis (“proof”). When low level requirements are

expressed as formal properties of the code, it’s possible to formally

verify that the source code completely implements the requirements. Using

this technique, however, requires additional activities to demonstrate

absence of unintended function. Further, and more significantly, with

formal analysis it’s the source code that is checked against requirements,

not the object code. As a result, additional activities are required to

demonstrate correct behavior of the object code. This is the so-called

“property preservation”, discussed later.

Overall, formal analysis can offer better error detection through its

exhaustive checks. But if credit is sought for executable object code

verification, Tool Qualification Criterion 2 in DO-178C / ED-12C §12.2.2

applies to the formal analysis tool: the analysis tool’s output is being used

“to justify the elimination or reduction of verification process(es) other than

that automated by the tool”. In consequence, GNATprove is qualified at

TQL-4 to be usable at all software levels.

4.5.7. Low level verification by mixing test

and proof (“Hybrid verification”)

Contributions

Objectives Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

Activities Low Level testing (6.4.3.c)

Frédéric Pothon & Quentin Ochem

127

It is not always possible for the SPARK proof tool to prove all the

contracts in an application. When this is due to limited capabilities in the

proof technology, manually provided assistance may be a solution.

However, some assertions and contracts might not be provable at all. This

could be due to several factors:

 The specification is in SPARK but the actual implementation is in a

different language (such as C).

 The contract or implementation uses Ada features outside of the

SPARK subset.

 Some constructs might not be amenable to formal proof, even if

correct, because a piece of code is too complex.

 Some final proof step may be hard to reach, requiring an effort

that is excessive compared to some other verification technique.

For all of these reasons, a combination of proof and testing may be

appropriate to fully verify the software. The basic principle is that SPARK

proofs are local. They’re performed assuming that each called

subprogram fulfills its contracts: if its precondition is satisfied and the

subprogram returns, then its postcondition will hold. If this correctness is

demonstrated by formal proof, then the whole program is proven to

comply with all contracts. However, correctness may also be

demonstrated by testing. In this case, the dual semantics of contracts,

dynamic and static, is key. The pre- and postconditions can be enabled as

run-time checks to verify the expected output of the test procedures.

An efficient approach during the design process is to define an

architecture that distinguishes between those components verified by

formal proofs and those verified by testing. Mixing the two techniques is

sometimes referred to as “hybrid verification”.

AdaCore Technologies for DO-178C / ED-12C

128

4.5.8. Alternatives to code coverage when

using proofs

Contributions

Objectives Principles of Coverage Analysis when using Formal Methods
(FM.A-7[FM5-8]: FM.6.7.1.c)

Activities Requirement-Based Coverage Analysis (FM.6.7.1.2,
FM.6.7.1.3, FM.6.7.1.4, FM.6.7.1.5)

Structural code coverage is a test-based activity for verifying the

exhaustivity of the testing, the completeness of the requirements, and the

absence of unintended function (extraneous code, including dead code).

With formal proofs, a different set of activities is needed to meet similar

objectives. DO-333 / ED-216 lists four activities to be performed:

 Complete coverage of each requirement. This objective is to

verify that each assumption made during the analysis is verified.

In SPARK, these assumptions are easily identifiable. These are

typically assertions in the code that cannot be proven

automatically, for example because they are too complex or

involve interfacing with non-SPARK code. These assumptions can

be verified not with proofs but with alternative means such as

testing and reviews.

 Completeness of the set of requirements. In particular, for each

input condition its corresponding output condition has been

specified, and vice versa. This can be achieved, for example, by

specifying dependency relationships between input and output

(the SPARK aspect Depends) or by partitioning the input space

(the SPARK aspect Contract_Case).

 Detection of unintended dataflow relationships. The SPARK

aspect Depends will verify that each output is computed from its

specified set of inputs.

 Detection of extraneous code. If the requirements are complete

and all output variables (and their dependencies) are specified in

Frédéric Pothon & Quentin Ochem

129

these requirements, then any extraneous code should be dead

and have no unintended effect. A manual review of the code will

help achieve confidence that no such code is present.

4.5.9. Property preservation between source

code and object code

Contributions

Objectives Verification of Property Preservation Between Source and
Executable Object Code (FM.A-7[FM9]: FM.6.7.f)

Activities Verification of Property Preservation Between Source and
Executable Object Code (FM.6.7.f -1)

When part of the executable object code (EOC) verification is performed

using formal proof instead of testing, the source code is verified against

the requirements, but the compiler is out of the loop. As a result,

additional activities need to be performed to confirm proper translation

of the source code to object code.

This is an open topic, and several approaches are possible to achieve

credit for preservation of properties. One possibility is to perform an

analysis of the compiler’s processing similar to the source-code-to-object-

code traceability study that addresses DO-178C / ED-12C §6.4.4.2.b.

However, in addition to analyzing and justifying instances of non-

traceability, the behavior of traceable code also needs to be considered

/ verified.

An alternative solution is to rely on the fact that SPARK functional

contracts are executable Ada expressions. These are the actual

properties that need to be preserved between source code and EOC.

One way to demonstrate property preservation is to run the tests based

on a higher level of requirements (such as Software / Software

integration testing) once, with contract checks activated. If no contract

failure occurs, we can conclude that the expected behavior has been

properly translated by the compiler. This gives sufficient confidence in the

code generation chain.

AdaCore Technologies for DO-178C / ED-12C

130

Running tests to verify this activity may seem to defeat the purpose of

replacing testing by proof. However, this should not be considered as

requirement-based testing (which is indeed replaced by proof). This

“property preservation” verification is a confirmation of the formal

analysis by executing the EOC with contract checking enabled.

4.6. Parameter Data Items

Contributions

Objectives Software requirements process (A-2[1]: 5.1.1.a)
Software integration process (A-2[7]: 5.4.1.a)
Verification of Parameter Data Items (A-5[8,9]: 6.6)

Activities Software requirements process (5.1.2.j)
Software Integration process (5.4.2.a)
Verification of Parameter Data Items (6.6.a), (6.6.b)

The term “Parameter Data Item” (PDI) in DO-178C / ED-12C refers to a

set of parameters that influences the behavior of the software without

modifying the Executable Object Code. The verification of a parameter

data item can be conducted separately from the verification of the

Executable Object Code.

PDI development implies the production of three kinds of data:

 The “structure and attributes”: These define the characteristics of

each item, such as its type, range, or set of allowed values. In

order to ensure the data item correctness and consistency, a set

of consistency rules should also be defined. For example, if one

item defines the number of temperature sensors, and other items

define the characteristics of each sensor, there is an obvious

relationship between these items.

 The specification of an instance of a PDI: The defined set of

values for each item for an applicable configuration

 The PDI file that implements an instance of a PDI directly usable

by the processing unit of the target computer (e.g. a binary file)

An efficient way to develop such artifacts is to use Ada and/or SPARK.

Frédéric Pothon & Quentin Ochem

131

The structure and attributes can be defined in one or more package

specifications. Each item is defined with its type, defining range and set of

allowed values. Predicates can be used to define relationships between

parameters. The example below combines a classical approach using

strong typing and type ranges, with a dynamic predicate to describe

relationships between components of the structure. The intent is to specify

the accepted range of temperatures for a given sensor.

type Sensor is

 record

 Min_Temp : Float range -40.0 .. 60.0;

 Max_Temp : Float range -20.0 .. 80.0;

 end record

with Dynamic_Predicate => Sensor.Min_Temp < Sensor.Max_Temp;

Each PDI instance needs to satisfy the constraints expressed in the

Dynamic_Predicate aspect. These constraints are based on a higher-

level specification, such as customer-supplied requirements, a system

configuration description, or an installation file. Generating the PDI file

for an instance consists in using GNAT Pro to compile/link the Ada source

code for the PDI, producing a binary file.

Verifying the correctness of a PDI instance (compliance with structure and

attributes) can be automated by compiler checks. This means that

inconsistencies will be detected at load time. For example,

S1 : Sensor := (Min_Temp => -30.0, Max_Temp => 50.0);

S2 : Sensor := (Min_Temp => -50.0, Max_Temp => 50.0);

S3 : Sensor := (Min_Temp => 40.0, Max_Temp => 30.0);

S1 will be accepted, S2 will not (Min_Temp is out of range), S3 will not

(Min_Temp is above Max_Temp). (The Dynamic_Predicate check can

also be enabled as a run-time check, via pragma

Assertion_Policy(Check) and the -gnata switch to the GNAT

compiler.) If all PDIs are defined in this manner, completeness of

verification is ensured.

The only remaining activity is to check that the PDI instance value complies

with the system configuration.

AdaCore Technologies for DO-178C / ED-12C

132

Frédéric Pothon & Quentin Ochem

133

5. Summary of contributions

to DO-178C/ED-12C

objectives

5.1 Overall summary: which objectives are met
The following table summarizes how the Ada and SPARK languages and

AdaCore’s tools help meet the objectives in DO-178C / ED-12C and the

technology supplements. The numbers refer to the specific objectives in the

core document or the relevant supplement.

Table A-3 and Tables A-8 through A-10 are not included since they are

independent of AdaCore’s technologies.

AdaCore Technologies for DO-178C / ED-12C

134

Overall Summary

Which DO-178C objectives are met by AdaCore’s Technologies

Frédéric Pothon & Quentin Ochem

135

5.2 Detailed summary: which activities are

supported
In the tables below, the references in the Activities column are to sections

in DO-178C / ED-12C or to one of the technology supplements. The

references in the Use case columns are to sections in this document.

Since AdaCore’s tools mostly contribute to the bottom stages of the ”V”

cycle (design, coding, integration and related verification activities),

verification of High-Level Requirements (and thus Table A-3) are outside

the scope of AdaCore solutions.

Likewise, the objectives in Table A-8 (Configuration Management), A-9

(Quality Assurance) and A-10 (Certification Liaison Process) are

independent of AdaCore’s technologies; they are the responsibility of the

user.

AdaCore Technologies for DO-178C / ED-12C

136

Table A-1 Software Planning Process

Frédéric Pothon & Quentin Ochem

137

AdaCore Technologies for DO-178C / ED-12C

138

Table A-2 S oftware De velopme nt Proce sse s

AdaCore tools mostly contribute to the bottom s tages of the traditional ”V ” cy cle (design, coding, integration, and the rel ated verification activities).

Frédéric Pothon & Quentin Ochem

139

Table A-4 Verification of Outputs of S oftware De sign Proce ss

Table A-5 Verification of Outputs of S oftware Coding & Inte gration Proce sse s

AdaCore Technologies for DO-178C / ED-12C

140

Frédéric Pothon & Quentin Ochem

141

Table A-6 Te sting of Outputs of Integrat ion Process

AdaCore Technologies for DO-178C / ED-12C

142

Table A-7 Verification of Verification Process Results

Frédéric Pothon & Quentin Ochem

143

AdaCore Technologies for DO-178C / ED-12C

144

References

[1] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels,

Benjamin Monate, “Testing or Formal Verification: DO-178C

Alternatives and Industrial Experience”, IEEE Software, 2013.

[2] ISO/IEC, Ada Language Reference Manual, 2012.

Available at www.adaic.org/ada-resources/standards/ada12/

[3] John Barnes and Ben Brosgol, Safe and Secure Software, an

invitation to Ada 2012, AdaCore, 2015.

Available at www.adacore.com/knowledge/technical-

papers/safe-and-secure-software-an-invitation-to-ada-2012/

[4] John Barnes, Programming in Ada 2012, Cambridge University

Press, 2014

[5] AdaCore, High-Integrity Object-Oriented Programming in Ada,

2013. Available at www.adacore.com/knowledge/technical-

papers/high-integrity-oop-in-ada/

[6] John W. McCormick and Peter C. Chapin, Building High Integrity

Applications with SPARK, Cambridge University Press, 2015

[7] Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, Source

Code Security Analysis Tool Functional Specification, NIST, 2011.

[8] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton,

Olivier Hainque, Thomas Quinot, Object and Source Coverage for

Critical Applications with the COUVERTURE Open Analysis

Framework, ERTS, 2010

[9] Johannes Kanig, Quentin Ochem, Cyrille Comar, Bringing SPARK

to C developers, ERTS, 2016

[10] Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, Leanna K.

Rierson; A Practical Tutorial on Modified Condition / Decision

Coverage; NASA / TM-2001-210876; May 2001.

Frédéric Pothon & Quentin Ochem

145

Index

A

Ada language

Arrays, 50

Assertion_Error exception, 24,

66

Buffer overflow prevention, 26

C interfacing, 49, 62

Concurrent programming (tasks), 25

Contract-based programming, 24,

27, 56

Contributions to DO-178C/ED-12C

activities, 45

Dynamic dispatching, 90

Dynamic_Predicate aspect, 131

Generic templates, 25

Hardware/software interfaces, 58

History and overview, 22

Low-level facilities, 51

Numeric types, 61

Object-Oriented Programming

(OOP), 25

'Old attribute (in a postcondition),

57

OOT vulnerabilities, 18, 86

Overloading example, 106

package Interfaces, 58

package Interfaces.C, 62

Parameter passing, 48

Pointers (access types), 48

Post aspect, 92

Post'Class aspect, 92

Postconditions, 24, 55

pragma Assertion_Policy, 66,

131

pragma Restrictions, 27, 104

Pre aspect, 92

Pre'Class aspect, 92

Preconditions, 24, 56

Programming in the large, 24

Real-Time Systems Annex, 26

Representation clauses, 59

Scalar ranges, 23

Scalar_Storage_Order aspect,

59

Storage_Size attribute (to

prevent dynamic allocation), 101

Strong typing, 45

Systems Programming Annex, 26

Traceability analyses (source to

object), 85

Usage, 22

Usage during the design process, 52

Usage for component identification,

53

Usage for defining interfaces, 53

'Valid attribute, 60

AdaCore

Ada and C integration, 62

Ada history, 22

ASIS-for-GNAT. See ASIS-for-GNAT

CodePeer. See CodePeer

GNAT Pro Assurance. See GNAT Pro

Assurance

GNAT Pro compiler, 63

GNAT Programming Studio. See

GNAT Programming Studio (GPS)

GNAT2XML. See GNAT2XML

GNATbench. See GNATbench

GNATcheck. See GNATcheck

GNATcoverage. See GNATcoverage

GNATdashboard. See

GNATdashboard

GNATemulator. See GNAtemulator

GNATmetric. See GNATmetric

GNATprove. See GNATprove

GNATstack. See GNATstack

GNATtest. See GNATtest

SPARK Pro. See SPARK Pro

Support and expertise, 31

Sustained branch. See Sustained

branch

ASIS (Ada Semantic Interface

Specification), 32

ASIS-for-GNAT, 32

AUnit, 36

AdaCore Technologies for DO-178C / ED-12C

146

B

Babbage, Charles, 22

Buffer overflow, 26, 32

C

C language, 12

Buffer overflow, 26

Example: pointer arithmetic, 49

Integration with Ada, 62

Supported by GNAT Pro, 29, 71

Traceability analyses (source to

object), 85

C++ language, 62

Buffer overflow, 26

Overloading example, 105

CENELEC EN 50128, 26, 40

Chicago Convention, 14

COBOL language

Interfacing with Ada, 62

Code standard, 43

Enforcement by GNAT2XML, 67

Enforcement by GNATcheck, 33, 67

CodePeer, 31, 43, 66

Checking source code accuracy and

consistency, 69

Common Weakness Enumeration

(CWE) errors detected, 32

Early error detection, 31

Qualified as Verification Tool (DO-

178B/ED-12B), 32

Support for all versions of Ada, 69

TQL-5 qualification, 66, 69

Common Criteria, 26

Common Weakness Enumeration (CWE)

errors detected by CodePeer, 32

Component-based development (OOT

and related techniques vulnerability),

86

Contract-based programming, 56

Control coupling, 82

Dynamic dispatching, 98

D

Data coupling, 82

Dynamic dispatching, 98

Decision coverage, 37, 78

Design Assurance Level, 15

DO-178C/ED-12C

High-Level Requirements. See High-

Level Requirements (HLR)

Low-Level Requirements. See Low-

Level Requirements (LLR)

Parameter Data Items, 130

QGen and TQL-1, 40

Source code accuracy and

consistency, 69

Structural coverage analysis, 78

Verification, 20

DO-248C/ED-94C: Supporting

Information for DO-178C/ED-12C

and DO-278A/ED-109A, 15

DO-278A/ED-109A: Software Integrity

Assurance Considerations for

Communication, Navigation,

Surveillance and Air Traffic

Management (CNS/ATM) Systems,

15

DO-330/ED-215: Tool Qualification

Considerations, 12, 16

QGen qualification, 41, 44, 111

DO-331/ED-218: Model-Based

Development and Verification, 13, 18,

44, 108

Model coverage analysis, 114

Model simulation, 114

DO-332/ED-217: Object-Oriented

Technology and Related Techniques,

13, 17, 86

Vulnerability Analysis annex, 17

DO-333/ED-216: Formal Methods, 13,

19, 44, 95

Code coverage activities, 128

Dynamic dispatching (OOT), 89

Module coupling, 98

Resource analysis, 106

Dynamic memory management (OOT

vulnerability), 86, 99

DynamoRIO, 81

Frédéric Pothon & Quentin Ochem

147

E

Eclipse support. See GNATbench

Exception management (OOT and

related techniques vulnerability), 86,

102

Executable Object Code (EOC), 20, 42

F

Formal methods

Code coverage, 128

Justification of usage, 119

Replacement for testing, 20, 125

Verifying substitutability (OOT), 95

Fortran language

Interfacing with Ada, 62

G

Garbage collection, 25, 62, 99

Generic templates

Coverage analysis, 87

OOT and related techniques

vulnerability, 86

Traceability, 89

GNAT Pro

Compiler, 71

Dimension_System aspect, 47

Dimensionality checking, 47

Exception handling strategies, 103

Test_Case aspect, 74

GNAT Pro Assurance, 17, 29

Configurable Run-Time Library, 30

Safety analysis of known problems

list, 71

Sustained branch. See Sustained

branch

Traceability analysis service. See

Traceability (Source to Object)

GNAT Programming Studio (GPS), 29,

38

GNAT2XML, 33, 68

GNATbench, 30, 39

GNATbus, 77

GNATcheck, 33, 43, 68

Code standard enforcement, 33

TQL-5 qualification, 69

GNATcoverage, 37, 41, 43

Support for data and control

coupling coverage, 82

Support for generic templates, 89

Support for structural code

coverage, 78

TQL-5 qualification, 82

GNATdashboard, 39, 68

GNATemulator, 37, 41, 81

Support for low-level and software

/ software integration tests, 76

GNATmetric, 33

GNATprove, 27, 117, 120, 121, 122

TQL-4 qualification, 126

GNATstack, 34, 43, 70, 107

TQL-5 qualification, 70

GNATtest, 36, 43

Support for generic templates, 89

Support for low-level testing, 72

Support for substitutability testing

(OOT), 95

GNU GCC technology, 29

H

High-Level Requirements (HLR), 42

Hybrid verification, 29, 126

I

Ichbiah, Jean, 22

Incorrect calculation of buffer size, 32

Integer overflow or wraparound, 32

Integrated Development Environments

(IDEs), 38

ISO 26262, 40

J

Java language, 25, 62, 100

L

Liskov Substitution Principle (LSP), 37,

90

AdaCore Technologies for DO-178C / ED-12C

148

Local type consistency (OOT

vulnerbility), 86

Lovelace, Augusta Ada, 22

Low-Level Requirements (LLR), 42, 56

Expressed as Ada or SPARK

contracts, 120

Formal methods and source code

compliance, 126

Lynx178 (supported by GNAT Pro), 71

M

Memory management. See Dynamic

memory management (OOT

vulnerability)

MISRA-C

Generated by QGen, 19, 40, 44,

108

Model-Based Development

Usage with AdaCore tools, 44

Modified Condition/Decision Coverage

(MC/DC), 37, 78

N

Nexus interface, 81

O

Object-Oriented Technology

Dynamic dispatching. See Dynamic

dispatching (OOT)

Software architecture definition, 86

Substitutability. See Substitutability

(OOT)

Traceability, 87

Usage with AdaCore tools, 43

Verifying substitutability, 94, 95

Vulnerabilities, 86

Options. See Switches

Overloading (OOT and related

techniques vulnerability), 86, 105

P

Parameter Data Items, 130

Pessimistic testing (OOT, 94

PikeOS (supported by GNAT Pro), 71

Property preservation between source

code and object code, 129

Q

QEMU, 37

QGen, 13, 19, 39, 108

Executable Object Code verification,

112

Model debugger, 19

Qualification activities, 113

Qualification benefits, 111

Qualification material, 40

Structural code coverage, 115

Support for model static analysis, 41

Support for model verification, 110

Support for Processor-in-the-Loop

testing, 41

R

Ravenscar Profile, 27, 51

Robustness / defensive programming,

63

Ada contracts, 64

SPARK, 119

S

S-Function (Simulink®), 115

Simulink®, 13, 18, 19, 39, 108, 114

Software level. See Design Assurance

Level

Software life cycle, 11, 42

SonarQube, 68

Soundness (formal analysis property),

19, 119

SPARK, 20, 27, 44

Absence of run-time exceptions, 28,

118, 124

Architecture review support, 121

Buffer overrun prevention, 118

Code compliance with formal

specification, 118

Code coverage, 128

Contract_Case aspect, 128

Frédéric Pothon & Quentin Ochem

149

Contract-based programming, 56

Data and control flow analysis, 28

Depends aspect, 57, 128

Design data development, 117

Generated by QGen, 19, 44, 108

Global aspect, 57

Information flow analysis, 28

Integer overflow prevention, 118

Integration with C, 63

Language restrictions, 118

Postconditions, 120, 123

Preconditions, 120, 123

Prohibition of exceptions, 104

Property preservation between

source code and object code,

129

Robustness, 119

Source code review support, 122

Static verification support, 28

Support for Low Level Requirement

reviews, 120

Testing replaced by formal proofs,

118

Uninitialized-variable read

prevention, 118, 124

Unused-assignment prevention, 124

Usage, 27

Verifying substitutability (OOT), 95

SPARK Pro, 27

SQUORE, 68

Stateflow®, 13, 19, 39, 108, 114

Statement coverage, 37, 78

Structural testing, 64

Substitutability (OOT), 89, 90

Local versus global, 96

Sustained branch, 29, 30

Switches

-fdump-ada-spec (g++), 62

-gnata (gcc), 66, 131

-gnatceg (gcc), 62

--validate-type-extensions

(gnattest), 95

SysSML, 18

T

Table A-1 Software Planning Process,

67, 136

Table A-2 Software Development

Processes, 45, 52, 62, 63, 67, 71,

86, 89, 99, 102, 108, 117, 119,

130, 138

Table A-4 Verification of Outputs of

Software Design Process, 52, 110,

139

Table A-5 Verification of Outputs of

Software Coding & Integration

Processes, 45, 52, 63, 67, 69, 70,

71, 130, 140

Table A-6 Testing of Outputs of

Integration Process, 72, 76, 112,

125, 126, 141

Table A-7 Verification of Verification

Process Results, 72, 78, 82, 84, 87,

98, 99, 115, 142

Table FM.A-4 Verification of Outputs of

Software Design Process, 120, 121

Table FM.A-5 Verification of Outputs of

Software Coding & Integration

Processes, 117, 122

Table FM.A-7 Verification of

Verification Process Results, 128,

129

Table MB.A-2 Software Development

Processes, 108

Table MB.A-5 Verification of Outputs of

Software Coding & Integration

Processes, 111

Table OO.A-4 Verification of Outputs

of Software Design Process, 99, 102

Table OO.A-5 Verification of Outputs

of Software Coding & Integration

Processes, 105, 106

Table OO.A-7 Verification of

Verification Process Results, 89

Taft, Tucker, 22

Testing

Pessimistic testing (OOT), 94

Replacement by formal proofs, 125

Requirement-based testing (OOT),

95

AdaCore Technologies for DO-178C / ED-12C

150

Tool Qualification Level (TQL), 16

Traceability (Source to Object), 30, 71,

84

Type certificate (for airworthiness), 14

Type conversion (OOT and related

techniques vulnerability), 86, 105

U

UML, 18, 86

Use case #1a: Coding with Ada 2012,

45

Use case #1b: Coding with Ada using

OOT features, 86

Use case #2: Developing a design

model and using a qualified code

generator (QGen), 108

Use case #3: Using SPARK and formal

analysis, 117

V

V software life cycle, 42

Valgrind, 38, 81

VxWorks 6 Cert (supported by GNAT

Pro), 71

VxWorks 653 (supported by GNAT

Pro), 71

W

Workbench (WindRiver development

environment), 39

	Cover.pdf
	AdaCoreTechnologiesForDO178C.pdf

