


 

 

AdaCore Technologies for  
Space Systems Software 

Supporting Qualification for  
ECSS-E-ST-40C and  
ECSS-Q-ST-80C 

 

Benjamin M. Brosgol &  
Jean-Paul Blanquart 

 

Version 1.0 

November 2021 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

The AdaCore Technologies Series 

The AdaCore Technologies Series is a collection of books targeted to 
software developers in critical domains. Each book explains how the 
Ada and SPARK programming languages, together with AdaCore’s 
products, can reduce system life cycle costs and facilitate 
conformance with applicable software certification / qualification 
standards. Current titles in the series: 

• AdaCore Technologies for CENELEC EN 50128:2011  
by Jean-Louis Boulanger & Quentin Ochem 

• AdaCore Technologies for DO-178C / ED-12C 
by Frédéric Pothon & Quentin Ochem 

• AdaCore Technologies for Cyber Security 
by Roderick Chapman & Yannick Moy 

• AdaCore Technologies for FACE™ Software Developers 
by Benjamin M. Brosgol & Dudrey Smith 

• AdaCore Technologies for Space Systems Software  
by Benjamin M. Brosgol & Jean-Paul Blanquart 

AdaCore has also prepared a variety of texts introducing Ada and 
SPARK to developers familiar with other language technologies, 
including Embedded C, MISRA C, C++, and Java.  

All are available for download at https://www.adacore.com/books. 
      

https://www.adacore.com/books
mailto:info@adacore.com?subject=Request%20for%20AdaCore%20book


 

iii 

About the Authors 
Benjamin M. Brosgol 

Dr. Brosgol is a senior member of the technical staff 
at AdaCore. He has been involved with programming 
language design and implementation throughout his 
career, concentrating on languages and technologies 
for high-assurance systems. He was a Distinguished 
Reviewer during the original Ada development, a 
member of the language design team in the Ada 95 revision, and a member 
of the Expert Group for the Real-Time Specification for Java under the Java 
Community Process. He has published dozens of journal articles and 
delivered conference presentations on topics including the avionics soft-
ware standard DO-178C, the Ada and SPARK languages, real-time software 
technologies, object-oriented methodologies, and the FACE™ (Future 
Airborne Capabilities Environment) approach to software portability. 

Jean-Paul Blanquart 

Dr. Blanquart is a recognized authority on computer-
based systems safety and dependability, with a 
decades-long career that spans academic research 
(LAAS-CNRS, Toulouse, France) and the space 
industry (Airbus Defence and Space). He was a 
member of the ECSS Working Groups in charge of 
revision 1 of ECSS-Q-ST-80C and ECSS-Q-HB-80-03A 
(and also the dependability and safety standards 

ECSS-Q-ST-30C and ECSS-Q-ST-40C). He has been an active member of a 
French cross-domain Working Group on safety and safety standards since 
its creation in 2010. This Working Group gathers industrial safety experts 
and related tool providers from domains that include automotive, aviation, 
defense, nuclear, industrial processes, railway and space. 

 





 

v 

Foreword 
Software development presents daunting challenges when the resulting 
system needs to operate reliably, safely, and securely while meeting hard 
real-time deadlines on a memory-limited target platform. Correct program 
execution can literally 
be a matter of life and 
death, but such is the 
reality facing develop-
ers of space software 
systems. A project’s ability to produce high-assurance software in a cost-
effective manner depends on two factors: 

• Effective processes for managing the software and system life 
cycles, with well-defined activities for planning, controlling, and 
monitoring the work; and 

• Effective technologies (programming languages, development and 
verification tools, version control systems, etc.) to support the 
software life cycle processes. 

For safety-critical application domains, the first factor is typically 
anticipated by a regulatory authority in the form of certification / 
qualification standards. The ECSS software-related standards serve as an 
example, with the current set of documents based on decades of 
experience with space system development. In particular, the software 
engineering standard ECSS-E-ST-40C and the software product assurance 
standard ECSS-Q-ST-80C provide a framework in which software suppliers 
and customers can interact, with a clear statement and understanding of 
processes and responsibilities. 

Technologies, and more specifically the choice of programming language(s) 
and supporting toolsuites, directly affect the ease or difficulty of 
developing, verifying, and maintaining quality software. The state of the art 
in software engineering has made large strides over the years, with 
programming language / methodology advances in areas such as 

“Failure is not an option” 
Gene Kranz (NASA) in the film Apollo 13 



vi 

modularization and encapsulation. Nevertheless, the key messages have 
stayed constant:  

• The programming language should help prevent errors from being 
introduced in the first place; and 

• If errors are present, the language rules should detect them early 
in the software life cycle, when defects are easiest and least 
expensive to correct. 

These messages come through clearly in the Ada programming language, 
which was designed from the start to enforce sound software engineering 
principles, catching errors early and avoiding pitfalls such as buffer overrun 
that arise in other languages. Ada has evolved considerably since it first 
emerged in the mid-1980s, for example adding Object-Oriented Program-
ming support in Ada 95, but each new version has kept true to the original 
design philosophy. 

AdaCore’s Ada-based tools have been helping developers design, develop 
and maintain high-assurance software for over 25 years, in domains that 
include space systems, commercial and military avionics, air traffic control, 
train systems, automotive, and medical devices. This book summarizes 
AdaCore’s language and tool technologies and shows how they can help 
space software suppliers meet the requirements in ECSS-E-ST-40C and 
ECSS-Q-ST-80C. With effective processes as established by these standards, 
and effective technologies as supplied by AdaCore, software suppliers will 
be well equipped to meet the challenges of space software development.

Benjamin M. Brosgol 
AdaCore 
Bedford, Massachusetts USA 
November 2021

Jean-Paul Blanquart 
Airbus Defence and Space 
Toulouse, France 
November 2021

info@adacore.com 
www.adacore.com 

mailto:info@adacore.com
http://www.adacore.com/


 

vii 

Table of Contents 
About the Authors ................................................................................... iii 

Foreword .................................................................................................. v 

Table of Contents .................................................................................... vii 

1 Introduction .................................................................................. 11 

1.1 ECSS-E-ST-40C: Space engineering / Software ......................... 13 

1.2 ECSS-Q-ST-80C: Space product assurance / Software product 
assurance.................................................................................. 22 

1.3 ECSS Handbooks ....................................................................... 24 

2 Programming Languages for Space Software .............................. 27 

2.1 Ada ........................................................................................... 27 

2.1.1 Ada language overview................................................... 28 
2.1.2 Ada language background .............................................. 30 
2.1.3 Scalar ranges ................................................................... 31 
2.1.4 Contract-based programming ........................................ 32 
2.1.5 Programming in the large ............................................... 34 
2.1.6 Generic templates .......................................................... 34 
2.1.7 Object-Oriented Programming (OOP) ............................ 35 
2.1.8 Concurrent programming ............................................... 36 
2.1.9 Systems programming .................................................... 36 
2.1.10 Real-time programming .................................................. 36 
2.1.11 High-integrity systems .................................................... 37 
2.1.12 Enforcing a coding standard ........................................... 38 
2.1.13 Ada and the ECSS Standards ........................................... 39 

2.2 SPARK ....................................................................................... 40 

2.2.1 SPARK Basics ................................................................... 40 
2.2.2 Ease of Adoption: Levels of Adoption of Formal Methods
  ........................................................................................ 44 



viii 

2.2.3 Hybrid Verification ...........................................................46 
2.2.4 SPARK and the ECSS Standards .......................................48 

3 Tools for Space Software Development ....................................... 49 

3.1 AdaCore Tools and the Software Life Cycle ............................. 49 

3.2 QGen Toolsuite for Model-Based Engineering ........................ 51 

3.2.1 QGen Capabilities ............................................................52 
3.2.2 QGen and the ECSS standards .........................................53 

3.3 Static Verification: SPARK Pro .................................................. 53 

3.3.1 Powerful Static Verification .............................................54 
3.3.2 Minimal Run-Time Footprint ...........................................55 
3.3.3 CWE Compatibility ...........................................................55 
3.3.4 SPARK Pro and the ECSS Standards .................................57 

3.4 GNAT Pro Ada Development Environments ............................ 58 

3.4.1 GNAT Pro Enterprise ........................................................59 
3.4.2 GNAT Pro Assurance ........................................................60 
3.4.3 GNAT Pro Integrated Development Environments (IDEs)
  .........................................................................................61 
3.4.4 GNAT Pro and the ECSS Standards ..................................64 

3.5 GNAT Pro Ada Tools for Static Analysis and Target Emulation 66 

3.5.1 GNATcheck ......................................................................66 
3.5.2 GNATmetric .....................................................................67 
3.5.3 GNATstack .......................................................................68 
3.5.4 Time and Space Analysis ..................................................70 
3.5.5 Semantic Analysis Tools—Libadalang ..............................71 
3.5.6 GNATemulator .................................................................71 
3.5.7 GNAT Pro Ada Tools and the ECSS Standards .................72 

3.6 Static Verification: CodePeer ................................................... 73 

3.6.1 Early Error Detection .......................................................73 
3.6.2 CWE Compatibility ...........................................................74 
3.6.3 CodePeer and the ECSS Standards ..................................75 



Benjamin M. Brosgol & Jean-Paul Blanquart 

ix 

3.7 GNAT Dynamic Analysis Suite .................................................. 76 

3.7.1 GNATtest ......................................................................... 76 
3.7.2 GNATcoverage ................................................................ 77 
3.7.3 GNAT Dynamic Analysis Suite and the ECSS Standards .. 77 

3.8 Support and Expertise .............................................................. 78 

4 Compliance with ECSS-E-ST-40C ................................................... 81 

4.1 Software requirements and architecture engineering process 
{§5.4} ........................................................................................ 81 

4.1.1 Software architecture design {§5.4.3} ............................ 81 

4.2 Software design and implementation engineering process 
{§5.5} ........................................................................................ 85 

4.2.1 Design of software items {§5.5.2} .................................. 85 
4.2.2 Coding and testing {§5.5.3} ............................................ 88 
4.2.3 Integration {§5.5.4} ......................................................... 89 

4.3 Software validation process {§5.6} .......................................... 90 

4.3.1 Validation activities with respect to the technical 
specification {§5.6.3} ...................................................................... 90 
4.3.2 Validation activities with respect to the requirements 
baseline {§5.6.4} ............................................................................. 90 

4.4 Software delivery and acceptance process {§5.7} ................... 91 

4.4.1 Software acceptance {§5.7.3} ......................................... 91 

4.5 Software verification process {§5.8} ........................................ 92 

4.5.1 Verification activities {§5.8.3} ......................................... 92 

4.6 Software operation process {§5.9}........................................... 96 

4.6.1 Process implementation {§5.9.2} ................................... 96 
4.6.2 Software operation support {§5.9.4} .............................. 97 

4.7 Software maintenance process {§5.10} ................................... 97 

4.7.1 Process implementation {§5.10.2} ................................. 97 



x 

4.7.2 Modification implementation {§5.10.4} ..........................98 

5 Compliance with ECSS-Q-ST-80C .................................................. 99 

5.1 Software product assurance programme implementation {§5}
.................................................................................................. 99 

5.1.1 Software product assurance programme management 
{§5.2}  .........................................................................................99 
5.1.2 Tools and supporting environment {§5.6} .......................99 

5.2 Software process assurance {§6} ........................................... 101 

5.2.1 Requirements applicable to all software engineering 
processes {§6.2} ............................................................................101 
5.2.2 Requirements applicable to individual software 
engineering processes or activities {§6.3} .....................................103 

5.3 Software product quality assurance {§7} ............................... 107 

5.3.1 Product quality objectives and metrication {§7.1} ........107 
5.3.2 Product quality requirements {§7.2} .............................107 

6 Abbreviations ............................................................................. 109 

7 References .................................................................................. 111 

Index  .................................................................................................... 117 

 

 

 

 



Benjamin M. Brosgol & Jean-Paul Blanquart 

11 

1 Introduction 
Software for space applications must meet unique and 
formidable requirements. Hard real-time deadlines, a 
constrained target execution environment with limited storage 
capacity, and distributed functionality between ground and on-
board systems are some of the challenges, with little margin for 
error. The software needs to work correctly from the outset, 
without safety or security defects, and the source code needs to 
be amenable to maintenance over the system’s lifetime (which 
may extend over decades) as requirements evolve. 

To provide a common approach to addressing these challenges, 
the European Cooperation for Space Standardization (ECSS) was 
formed in the mid-1990s in a joint effort conducted by the 
European Space Agency (ESA), individual national space 
organizations, and industrial partners. As stated in [KG 95]: “The 
European Cooperation for Space Standardization (ECSS) is an 
initiative established to develop a coherent, single set of user-
friendly standards for use in all European space activities.” The 
resulting set of standards, available from the ECSS web portal 
[ECSS 20xx], addresses space activities as a whole and 
complement the relevant country-specific standards. 

The ECSS standards specify requirements that must be satisfied 
(although project-specific tailoring is allowed) and fall into three 
categories: space engineering (the -E series), project assurance 
(the -Q series), and project management (the -M series). This 
book focuses on two specific standards – ECSS-E-ST-40C (Space 
engineering / Software) and ECSS-Q-ST-80C1 (Space product 

 
1 All references to ECSS-Q-ST-80C in this book relate to the ECSS-Q-ST-
80C-Rev1 edition. 



AdaCore Technologies for Space Systems Software 

12 

assurance / Software product assurance) – and shows how the 
Ada and SPARK languages, together with AdaCore’s product and 
services offerings, can help space software suppliers comply 
with these standards.  

AdaCore has a long and successful history supporting 
developers of space software, and the company has proven 
experience and expertise in qualification under ECSS-E-ST-40C 
and ECSS-Q-ST-80C. Examples include: 

• The ZFP (Zero Footprint) minimal run-time library for 
Ada on LEON2 ELF, qualified at criticality category B, for 
the aerospace company AVIO [Ad 2019a]. 

• The Ravenscar SFP (Small Footprint) QUAL run-time 
library for Ada on LEON2 and LEON3 boards, pre-
qualified at criticality category B, for ESA [Ad 2019b]. 

The remainder of this chapter summarizes the ECSS-E-ST-40C 
and ECSS-Q-ST-80C standards.  

Chapter 2 describes the Ada and SPARK programming languages 
and relates their software engineering support to the relevant 
sections / requirements in the two standards.  

Analogously, Chapter 3 presents AdaCore’s various software 
development and verification toolsuites and relates their 
functionality to the relevant sections / requirements in the two 
standards. 

In the other direction, Chapter 4 surveys the individual 
requirements in ECSS-E-ST-40C and shows how a large number 
of them can be met by a software supplier through Ada, SPARK, 
and/or specific AdaCore products.  

Chapter 5 does likewise for the requirements in ECSS-Q-ST-80C.  



Benjamin M. Brosgol & Jean-Paul Blanquart 

13 

Chapters 6 contains a list of abbreviations/acronyms. 

Chapter 7 is a bibliography. 

Although this book is focused on specific ECSS standards, 
Chapters 2 and 3 explain how the Ada and SPARK languages / 
technologies benefit space software development in general 
and thus may also be applicable to software that has to comply 
with other regulatory standards. 

1.1 ECSS-E-ST-40C: Space engineering / Software 
As stated in ECSS-E-ST-40C [ECSS 2009], p. 12: 

This Standard covers all aspects of space software 
engineering including requirements definition, design, 
production, verification and validation, transfer, operations 
and maintenance. 

It defines the scope of the space software engineering 
processes and its interfaces with management and product 
assurance, which are addressed in the Management (-M) 
and Product assurance (-Q) branches of the ECSS System, 
and explains how they apply in the software engineering 
processes. 

ECSS-E-ST-40C specifies the requirements for the following 
software engineering processes: 

• Software related systems requirements process 

This process links the system and software levels and 
“establishes the functional and the performance 
requirements baseline (including the interface requirement 
specification) (RB) of the software development” 
[ECSS 2009], p. 26]. 



AdaCore Technologies for Space Systems Software 

14 

• Software management process 

This process “tailors the M standards for software-specific 
issues” and produces “a software development plan 
including the life cycle description, activities description, 
milestones and outputs, the techniques to be used, and the 
risks identification” [ECSS 2009, pp. 26, 27]. It covers the 
joint review process, interface management, and technical 
budget and margin management. 

• Software requirements and architecture engineering 
process 

This process comprises software requirements analysis 
(based on system requirements) and a resulting software 
architecture design. Activities associated with the latter 
include selection of a design method, selection of a 
computational model for real-time software, description of 
software behavior, development and documentation of the 
software interfaces, and definition of methods and tools for 
software intended for reuse. 

• Software design and implementation engineering 
process 

This process covers the detailed design of the software 
items (including an analysis of the dynamic model showing 
how issues such as storage leakage and corrupted shared 
data are avoided), coding, testing, and integration. 

• Software validation process 

Software validation entails “software product testing 
against both the technical specification and the 
requirements baseline” and “confirm[ing] that the technical 



Benjamin M. Brosgol & Jean-Paul Blanquart 

15 

specification and the requirements baseline functions and 
performances are correctly and completely implemented in 
the final product” [ECSS 2009, p. 28]. 

• Software delivery and acceptance process 

This process “prepares the software product for delivery 
and testing in its operational environment” [ECSS 2009, 
p. 28]. 

• Software verification process 

Software verification “confirm[s] that adequate 
specifications and inputs exist for every activity and that the 
outputs of the activities are correct and consistent with the 
specifications and inputs. This process is concurrent with all 
the previous processes.” [ECSS 2009, p. 28] 

• Software operation process 

This process involves the activities needed to ensure that 
the software remains operational for its users; these include 
“mainly the helpdesk and the link between the users, the 
developers or maintainers, and the customer” [ECSS 2009, 
p. 29] 

• Software maintenance process 

This process comprises the relevant activities “when the 
software product undergoes any modifications to code or 
associated documentation as a result of correcting an error, 
a problem or implementing an improvement or adaptation” 
[ECSS 2009, p. 30] 



AdaCore Technologies for Space Systems Software 

16 

The standard specifies the requirements associated with each of 
these processes and defines the expected output for each 
requirement. The expected output identifies three entities: 

• the relevant destination file,  
• the DRL (Document Requirements List) item(s) within 

that file where the requirement is addressed, and  
• the review that will assess whether the requirement is 

met. 

The files in question are the RB (Requirements Baseline), TS 
(Technical Specification), DDF (Design Definition File), DJF 
(Design Justification File), MGT (Management File), MF 
(Maintenance File), OP (Operational Plan), and PAF (Product 
Assurance File).  

The reviews are the SRR (System Requirements Review), PDR 
(Preliminary Design Review), CDR (Critical Design Review), QR 
(Qualification Review), AR (Acceptance Review), and ORR 
(Operational Readiness Review).  

Table 1-1, from Annex A of ECSS-E-ST-40C, shows the 
association between files, DRL items, and reviews. Shaded cells 
indicate requirements from ECSS-Q-ST-80C. 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

RB Software system 
specification (SSS) 

      

Interface require-
ments document 
(IRD) 

      



Benjamin M. Brosgol & Jean-Paul Blanquart 

17 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

Safety and depend-
ability analysis 
results for lower 
level suppliers 

      

TS Software require-
ments specification 
(SRS) 

      

Software interface 
control document 
(ICD) 

      

DDF Software design 
document (SDD) 

      

Software configu-
ration file (SCF) 

      

Software release 
document (SRelD) 

      

Software user 
manual (SUM) 

      

Software source 
code and media 
labels 

      

Software product 
and media labels 

      

Training material       
DJF Software verifica-

tion plan (SVerP) 
      

Software validation 
plan (SValP) 

      

Independent soft-
ware verification 
and validation plan 

      



AdaCore Technologies for Space Systems Software 

18 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

Software integra-
tion test plan 
(SUITP) 

      

Software unit test 
plan (SUITP) 

      

Software validation 
specification (SVS) 
with respect to TS 

      

Software validation 
specification (SVS) 
with respect to RB 

      

Acceptance test 
plan 

      

Software unit test 
report 

      

Software integra-
tion test report 

      

Software validation 
report with respect 
to TS 

      

Software validation 
report with respect 
to RB 

      

Acceptance test 
report 

      

Installation report       
Software verifica-
tion report (SVR) 

      

Independent 
software verifica-
tion and validation 
report 

      



Benjamin M. Brosgol & Jean-Paul Blanquart 

19 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

Software reuse file 
(SRF) 

      

Software problems 
reports and non-
conformance 
reports 

      

Joint review reports       
Justification of 
selection of opera-
tional ground 
equipment and 
support services 

      

MGT Software develop-
ment plan (SDP) 

      

Software review 
plan (SRevP) 

      

Software configura-
tion management 
plan 

      

Training plan       
Interface manage-
ment procedures 

      

Identification of 
NRB SW and 
members 

      

Procurement data       
MF Maintenance plan       

Maintenance 
records 

      



AdaCore Technologies for Space Systems Software 

20 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

SPR and NCR- 
Modification analy-
sis report- Problem 
analysis report- 
Modification docu-
mentation- Baseline 
for change- Joint 
review reports 

      

Migration plan and 
notification 

      

Retirement plan 
and notification 

      

OP Software operation 
support plan 

      

Operational testing 
results 

      

SPR and NCR- User’s 
request record- 
Post operation 
review report 

      

PAF Software product 
assurance plan 
(SPAP) 

      

Software product 
assurance require-
ments for suppliers 

      

Audit plan and 
schedule 

      

Review and inspec-
tion plans or 
procedures 

      



Benjamin M. Brosgol & Jean-Paul Blanquart 

21 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

Procedures and 
standards 

      

Modelling and 
design standards 

      

Coding standards 
and description of 
tools 

      

Software problem 
reporting procedure 

      

Software depend-
ability and safety 
analysis report- 
Criticality classific-
ation of software 
components 

      

Software product 
assurance report 

      

Software product 
assurance mile-
stone report 
(SPAMR) 

      

Statement of 
compliance with 
test plans and 
procedures 

      

Records of training 
and experience 

      

(Preliminary) alert 
information 

      



AdaCore Technologies for Space Systems Software 

22 

Table 1-1: ECSS-E-ST-40 and ECSS-Q-ST-80 
Document requirements list (DRL) 

File DRL item SRR PDR CDR QR AR ORR 

Results of pre-
award audits and 
assessments, and of 
procurement 
sources 

      

Software process 
assessment plan 

      

Software process 
assessment records 

      

Review and inspec-
tion reports 

      

Receiving inspec-
tion report 

      

Input to product 
assurance plan for 
systems operation 

      

 

1.2 ECSS-Q-ST-80C: Space product assurance / 
Software product assurance 

The ECSS-Q-ST-80C standard defines software product 
assurance requirements for the development and maintenance 
of space software systems, including non-deliverable software 
that affects the quality of the deliverable product. As stated in 
[ECSS 2017], p. 20: 

The objectives of software product assurance are to 
provide adequate confidence to the customer and to the 
supplier that the developed or procured/reused 
software satisfies its requirements throughout the 
system lifetime. In particular, that the software is 



Benjamin M. Brosgol & Jean-Paul Blanquart 

23 

developed to perform properly and safely in its 
operational environment, meeting the quality objectives 
agreed for the project. 

The requirements apply throughout the software lifecycle and 
cover a range of activities, including organizational responsi-
bilities, process assessment, development environment 
selection, and product verification. The specific set of require-
ments that need to be met can be tailored based on several 
factors: 

• Dependability and safety aspects, as determined by the 
software criticality category, 

• Software development constraints, for example the 
type of development (database vs. real-time), or 

• Product quality / business objectives as specified by the 
customer 

ECSS-Q-ST-80C defines requirements in the following areas: 

• Software product assurance programme implement-
ation 

This set of activities includes organizational aspects, product 
assurance management, risk management and critical item 
control, supplier selection and control, procurement, tools 
and supporting environment selection, and assessment and 
improvement process. 

• Software process assurance 

These activities comprise software life cycle management; 
requirements applicable to all software engineering 
processes (e.g., documentation, safety analysis, handling of 
critical software, configuration management, metrics, 



AdaCore Technologies for Space Systems Software 

24 

verification, reuse, and automatic code generation); and 
requirements applicable to individual software engineering 
processes or activities (e.g., requirements analysis, archi-
tecture and design, coding, testing and validation, delivery 
and acceptance, operations, and maintenance). 

• Software product quality assurance 

These activities comprise product quality objectives and 
metrication; product quality requirements; software 
intended for reuse; standard ground hardware and services 
for operational system; and firmware. 

As with ECSS-E-ST-40C, the expected output for each require-
ment identifies the destination file, the DRL items within that 
file, and the review(s) that assess compliance with the require-
ment. Table 1-1 above includes this information for the 
requirements in ECSS-Q-ST-80C. 

1.3 ECSS Handbooks 
Supplementing the normative standards in the -E, -Q, and -M 
series, ECSS has published a set of handbooks offering 
additional support, guidance and practical discussion about the 
standards and their requirements. They indicate how a 
customer (the organization acquiring the space software or 
system) will likely interpret the standards and thus how they 
will expect the supplier to comply. 

The handbooks associated with ECSS-E-ST-40C are ECSS-E-HB-
40A (Software engineering handbook) [ECSS 2013], which 
provides some general discussion and explanations, and ECSS-E-
HB-40-01A (Agile software development handbook) [ECSS 
2020]. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

25 

Several handbooks complement ECSS-Q-ST-80C, including: 

• ECSS-Q-HB-80-01A (Reuse of existing software) 

This handbook [ECSS 2011b] offers guidance on software 
reuse (including software tools) and also discusses the 
notion of Tool Qualification Level (TQL) based on D0-178C 
[RTCA 2011] and ISO 26262 [ISO 2018]. 

• ECSS-Q-HB-80-03A Rev.1 (Software dependability and 
safety) 

This handbook [ECSS 2017] focuses on analysis techniques 
such as Failure Mode and Effects Analysis (FMEA) and their 
application to software; i.e., how to analyze what happens 
in case of failure due to software. It covers topics such as 
defensive programming and prevention of failure 
propagation. 

• ECSS-Q-HB-80-04A (Software metrication program 
definition and implementation) 

This handbook [ECSS 2011a] offers recommendations on 
organizing and implementing a metrication program for 
space software projects. 

A description of how AdaCore’s technologies relate to the 
handbooks’ guidance will be provided in a future version of this 
book. 

Additionally, as the ECSS-E-ST-40 and ECSS-Q-ST-80 standards 
themselves evolve, this book will be updated to reflect the 
changes. 





Benjamin M. Brosgol & Jean-Paul Blanquart 

27 

2 Programming 
Languages for Space 
Software 

This chapter explains how space software developers can 
benefit from the Ada language and its formally analyzable 
SPARK subset. Unless explicitly stated otherwise, the Ada 
discussion applies to the current version of the language 
standard, Ada 2012. 

2.1 Ada 
The choice of programming language(s) is one of the funda-
mental decisions during software design. The source code is the 
artifact that is developed, verified, and maintained, and it is also 
the subject of much of the analysis / inspection required for 
certification / qualification against domain-specific standards.  
Although in principle almost any programming language can be 
used for software development, in practice the life-cycle costs 
for the high-assurance real-time software found in space 
systems are reduced when the chosen language has been 
explicitly designed for reliability, safety, security, and ease of 
maintenance of large, long-lived systems. 

Ada helps meet high-assurance requirements through its 
support for sound software engineering principles, compile-
time checks that guarantee type safety, and run-time checks for 
constraints such as array index bounds and scalar ranges. As will 
be explained below, the SPARK subset of Ada shares these 
benefits and adds an important advantage: the dynamic 



AdaCore Technologies for Space Systems Software 

28 

constraints are enforced through mathematics-based static 
analysis. This avoids run-time overhead for checks in production 
code while eliminating the risk that such a check could fail. 

2.1.1 Ada language overview 
Ada is multi-faceted. From one perspective it is a classical stack-
based general-purpose language (i.e., unlike languages like Java, 
it does not require garbage collection), and it is not tied to any 
specific development methodology. It offers: 

• a simple syntax designed for human readability;  
• structured control statements;  
• flexible data composition facilities;  
• strong type checking;  
• traditional features for code modularization (“sub-

programs”);  
• standard support for “programming in the large” and 

module reuse, including packages, Object-Oriented 
Programming, hierarchical package namespace (“child 
libraries”), and generic templates;  

• a mechanism for detecting and responding to excep-
tional run-time conditions (“exception handling”); and  

• high-level concurrency support (“tasking”) along with a 
deterministic subset (the Ravenscar profile) appropriate 
in applications that need to meet high-assurance 
certification / qualification requirements and/or small 
footprint constraints. 

The language standard also includes: 

• an extensive predefined environment with support for 
I/O, string handling, math functions, containers, and 
more;  



Benjamin M. Brosgol & Jean-Paul Blanquart 

29 

• a standard mechanism for interfacing with other 
programming languages (such as C and C++); and  

• specialized needs annexes for functionality in several 
domains (Systems Programming, Real-Time Systems, 
Distributed Systems, Numerics, Information Systems, 
and High-Integrity Systems). 

Source code portability was also a key goal for Ada. The 
challenge for a programming language is to define the 
semantics in a platform-independent manner but not sacrifice 
run-time efficiency. Ada achieves this in several ways.  

• Ada provides a high-level model for concurrency 
(tasking), memory management, and exception 
handling, with standard semantics across all platforms 
that can be mapped to the most efficient services 
provided by the target environment. 

• The developer can express the logical properties of a 
type (such as integer range, floating-point precision, 
and record fields/types) in a machine-independent 
fashion, which the compiler can then map to an 
efficient underlying representation.  

• The physical representation of data structures (layout, 
alignment, and addresses) is sometimes specified by 
system requirements. Ada allows this to be defined in 
the program logic but separated from target-
independent properties for ease of maintenance. 

• Platform-specific characteristics such as machine word 
size are encapsulated in an API, so that references to 
these values are through a standard syntax. Likewise, 
Ada defines a standard type Address and associated 
operations, again facilitating the portability of low-level 
code. 



AdaCore Technologies for Space Systems Software 

30 

2.1.2 Ada language background 
Ada was designed for large, long-lived applications – and 
embedded systems in particular – where reliability, 
maintainability, and efficiency are essential. Under sponsorship 
of the U.S. Department of Defense, the language was originally 
developed in the early 1980s (this version is generally known as 
Ada 83) by a team led by Jean Ichbiah at CII-Honeywell-Bull in 
France.  

Ada was revised and enhanced in an upward-compatible 
fashion in the early 1990s, under the leadership of Tucker Taft 
from Intermetrics in the U.S. The resulting language, Ada 95, 
was the first internationally standardized object-oriented 
language.  

Under the auspices of the International Organization for 
Standardization (ISO), a further (minor) revision was completed 
as an amendment to the standard; this version of the language 
is known as Ada 2005.  

Additional features (including support for contract-based 
programming in the form of subprogram pre- and 
postconditions and type invariants) were added in Ada 2012 
(see [ACAA 2016], [Ba 2014], or [Ba 2015] for information about 
Ada).  

A new version of the language standard is in progress and is 
expected to be completed in 2022. 

The name “Ada” is not an acronym; it was chosen in honor of 
Augusta Ada Lovelace (1815-1852), a mathematician who is 
sometimes regarded as the world’s first programmer because of 
her work with Charles Babbage. She was also the daughter of 
the poet Lord Byron. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

31 

The Ada language has a long and continuing worldwide usage in 
high-assurance / safety-critical / high-security domains, 
including military and commercial aircraft avionics, space 
systems, air traffic control, railroad systems, and other domains 
(such as automotive and medical) where software failures can 
have catastrophic consequences. With its embodiment of 
modern software engineering principles, Ada is especially 
appropriate for teaching in both introductory and advanced 
computer science courses, and it has been the subject of 
significant university research, especially in the area of real-time 
technologies. 

AdaCore has a long history and close connection with the Ada 
programming language. Company members worked on the 
original Ada 83 design and review and played key roles in the 
Ada 95 project as well as the subsequent revisions. The initial 
GNAT compiler was delivered at the time of the Ada 95 
language’s standardization, thus guaranteeing that users would 
have a quality implementation for transitioning to Ada 95 from 
Ada 83 or other languages. 

The following subsections provide additional detail on Ada 
language features. 

2.1.3 Scalar ranges  
Unlike languages based on C (such as C++, Java, and C#), Ada 
allows the programmer to simply and explicitly specify the 
range of values that are permitted for variables of scalar types 
(integer, floating-point, fixed-point, and enumeration types). 
The attempted assignment of an out-of-range value raises an 
exception (run-time error).  



AdaCore Technologies for Space Systems Software 

32 

The ability to specify range constraints makes the programmer’s 
intent explicit and makes it easier to detect a major source of 
coding and user input errors. It also provides useful information 
to static analysis tools and facilitates automated proofs of 
program properties. 

Figure 2-1 shows an example of an integer scalar range in the 
declaration of subtype Test_Score: 

subtype Test_Score is Integer range 1..100; 
 
My_Score : Test_Score 
N        : Integer; 
... 
My_Score := N; 
-- A run-time check verifies that N is within the  
-- range 1 through 100, inclusive 
-- If this check fails, a Constraint_Error exception  
-- is raised 

 
Figure 2-1: Integer Range in Ada 

 

2.1.4 Contract-based programming  
Ada 2012 allows extending a subprogram specification or a 
type/subtype declaration with a “contract” (a Boolean 
assertion). Subprogram contracts take the form of preconditions 
and postconditions. Through contracts, the developer can 
formalize the intended behavior of the application and verify 
this behavior by testing, static analysis, or formal proof. 

Figure 2-2 shows a skeletal example of contact-based 
programming; a Table object is a fixed-length container for 
distinct Float values. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

33 

package Table_Pkg is 
   type Table is private;  -- Encapsulated type 
 
   function Is_Full  (T    : in Table) return Boolean; 
 
   function Contains (T    : in Table; 
                      Item : in Float) return Boolean; 
 
   procedure Insert (T : in out Table; Item: in Float) 
     with Pre  => not Is_Full(T) and  
                  not Contains(T, Item), 
          Post => Contains(T, Item); 
 
   procedure Remove (T : in out Table; Item: in Float); 
     with Pre  => Contains(T, Item), 
          Post => not Contains(T, Item); 
   ... 
private 
   ... -- Full declaration of Table 
end Table_Pkg; 
 

Figure 2-2: Contract-Based Programing in Ada 

A compiler option controls whether the pre- and postconditions 
are checked at run time. If checks are enabled, a failure raises 
the Assertion_Error exception. 

Ada 2012 further allows type invariants and type / subtype 
predicates, which specify precisely what is and is not valid for 
any particular (sub)type, including composite types such as 
records and arrays. For example, the code fragment in Figure 
2-3 specifies that field Max_Angle in the Launching_Pad 
structure below is the maximal angle allowed, given the 
distance D to the center of the launching pad and the height H 
of the rocket. The compiler will insert the necessary run-time 
checks when a Launching_Pad object is created, to verify this 
predicate as well as the constraints on the individual fields: 



AdaCore Technologies for Space Systems Software 

34 

subtype Meter  is Float range 0.0 .. 200.0; 
subtype Radian is Float range 0.0 .. 2.0 * Pi; 
 
type Launching_Pad is 
   record 
      D, H      : Meter; 
      Max_Angle : Radian; 
   end record 
with  
   Predicate => Arctan (H, D) <= Max_Angle; 
 

Figure 2-3: Type Predicate in Ada 

 

2.1.5 Programming in the large  
The original Ada 83 design introduced the package construct, a 
feature that supports encapsulation (“information hiding”) and 
modularization, and which allows the developer to control the 
namespace that is accessible within a given compilation unit. 
Ada 95 introduced the concept of “child units,” which provides 
a hierarchical and extensible namespace for library units and 
thus eases the design and maintenance of very large systems.  

Ada 2005 extended the language’s modularization facilities by 
allowing mutual references between package specifications, 
thus making it easier to interface with languages such as Java. 

2.1.6 Generic templates  
A key to reusable components is a mechanism for 
parameterizing modules with respect to data types and other 
program entities. A typical example is a stack package for an 
arbitrary element type T where each element of the stack is of 
type T. Ada meets this requirement through a facility known as 
“generics”; since the parameterization occurs at compile time, 
run-time performance is not penalized. Ada generics are 



Benjamin M. Brosgol & Jean-Paul Blanquart 

35 

analogous to C++ templates but with considerably more 
compile-time checking. 

2.1.7 Object-Oriented Programming (OOP)  
Ada 83 was object-based, allowing the partitioning of a system 
into modules (packages) corresponding to abstract data types 
or abstract objects. Full OOP support was not provided since, 
first, it seemed not to be required in the real-time domain that 
was Ada’s primary target, and second, the apparent need for 
automatic garbage collection in an Object Oriented language 
would have interfered with predictable and efficient 
performance. 

However, large real-time systems often have components such 
as graphical user interfaces (GUIs) that do not have hard real-
time constraints and that can be most effectively developed 
using OOP features. In part for this reason, Ada 95 added 
comprehensive support for OOP, through its “tagged type” 
facility: classes, polymorphism, inheritance, and dynamic 
binding. These features do not require automatic garbage 
collection; instead, definitional features introduced by Ada 95 
allow the developer to supply type-specific storage reclamation 
operations (“finalization”).  

Ada 2005 brought additional OOP features, including Java-like 
interfaces and traditional X.P(...) notation for invoking 
operation P(...) on object X. 

Ada is methodologically neutral and does not impose a 
“distributed overhead” for OOP. If an application does not need 
OOP, then the OOP features do not have to be used, and there 
is no run-time penalty. 

See [Ba 2014] or [Ad 2016] for more details. 



AdaCore Technologies for Space Systems Software 

36 

2.1.8 Concurrent programming  
Ada supplies a structured, high-level facility for concurrency. 
The unit of concurrency is a program entity known as a “task.” 
Tasks can communicate implicitly via shared data or explicitly 
via a synchronous control mechanism known as the rendezvous. 
A shared data item can be defined abstractly as a “protected 
object” (a feature introduced in Ada 95), with operations 
executed under mutual exclusion when invoked from multiple 
tasks. Asynchronous task interactions are also supported, 
specifically timeouts and task termination. Such asynchronous 
behavior is deferred during certain operations, to prevent the 
possibility of leaving shared data in an inconsistent state. 
Mechanisms designed to help take advantage of multi-core 
architectures were introduced in Ada 2012. 

2.1.9 Systems programming 
Both in the “core” language and the Systems Programming 
Annex, Ada supplies the necessary features for low-level / 
hardware-specific processing. For example, the programmer can 
specify the bit layout for fields in a record, define alignment and 
size properties, place data at specific machine addresses, and 
express specialized code sequences in assembly language. 
Interrupt handlers can also be written in Ada, using the 
protected object facility. 

2.1.10 Real-time programming 
Ada’s tasking facility and the Real-Time Systems Annex support 
common idioms such as periodic or event-driven tasks, with 
features that can help avoid unbounded priority inversions. A 
protected object locking policy is defined that uses priority 
ceilings; this has an especially efficient implementation in Ada 
(mutexes are not required) since protected operations are not 



Benjamin M. Brosgol & Jean-Paul Blanquart 

37 

allowed to block. Ada 95 defined a standard task dispatching 
policy in which a task runs until blocked or preempted, and 
Ada 2005 introduced several others including Earliest Deadline 
First.  

2.1.11 High-integrity systems 
With its emphasis on sound software engineering principles, 
Ada supports the development of safety-critical and other high-
integrity applications, including those that need to be 
certified/qualified against software standards such as ECSS-E-
ST-40C and ECSS-Q-ST-80C for space systems, RTCA DO-178C for 
avionics, and CENELEC EN 50128 for rail systems. Similarly, Ada 
(and its SPARK subset) can help developers produce high 
Evaluation Assurance Level (EAL) code that meets security 
standards such as the Common Criteria [CCRA 20xx]. For 
example, strong typing means that data intended for one 
purpose will only be accessed via operations that are legal for 
that data item’s type, so errors such as treating pointers as 
integers (or vice versa) are prevented2. And Ada’s array bounds 
checking prevents buffer overrun vulnerabilities that are 
common in C and C++. 

The evolution of Ada has seen a continued increase in support 
for safety-critical and high-security applications. Ada 2005 
standardized the Ravenscar Profile [DB 2001], a collection of 
concurrency features that are powerful enough for real-time 
programming but simple enough to make safety certification 
practical. Ada 2012 introduced contract-based programming 
facilities, allowing the programmer to specify preconditions 

 
2 Low-level code sometimes needs to defeat the language’s type 
checking (for example treating a pointer as an integer), and that is 
allowed in Ada but with explicit syntax that reveals the programmer 
intent. 



AdaCore Technologies for Space Systems Software 

38 

and/or postconditions for subprograms, and invariants for 
encapsulated (private) types. These can serve both for run-time 
checking and as input to static analysis tools. 

2.1.12 Enforcing a coding standard 
Ada is a large language, suitable for general-purpose 
programming, but the full language may be inappropriate in a 
safety- or security-critical application. The generality and 
flexibility of some features – especially those with complex run-
time semantics – complicate analysis and could interfere with 
traceability / certification requirements or impose too large a 
memory footprint. A project will then need to define and 
enforce a coding standard that prohibits problematic features. 
Several techniques are available: 

• pragma Restrictions 

This standard Ada pragma allows the user to specify 
language features that the compiler will reject. Sample 
restrictions include dependence on specific packages or on 
language features such as exceptions. 

• pragma Profile 

This standard Ada pragma provides a common name for a 
collection of related Restrictions pragmas. The 
predefined pragma Profile(Ravenscar) is a shorthand 
for the various restrictions that comprise the Ravenscar 
tasking subset. 

• Static analysis tool (coding standard enforcer) 

Other restrictions on Ada features can be detected by 
AdaCore’s automated GNATcheck tool (see section 3.5.1) 
that is included with GNAT Pro Ada. The developer can 



Benjamin M. Brosgol & Jean-Paul Blanquart 

39 

configure this rule-based and tailorable tool to flag 
violations of the project’s coding standard, such as usage of 
specific prohibited types or subprograms defined in 
otherwise-permitted packages. 

2.1.13 Ada and the ECSS Standards 
ECSS-E-ST-40C covers software engineering practice, and ECSS-
Q-ST-80C covers software product assurance, and both of these 
areas are “sweet spots” that match Ada’s strengths. Chapters 4 
and 5 below relate specific clauses in these standards to 
individual features of the language; in summary, the use of Ada 
can help the software supplier meet the requirements from the 
following sections: 

• ECSS-E-ST-40C 
o §5.4 Software requirements and architecture 

engineering process 
 §5.4.3 Software architecture design 

o §5.5 Software design and implementation 
engineering process 
 §5.5.2 Design of software items 

o §5.8 Software verification process 
 §5.8.3 Verification activities 

o §5.10 Software maintenance process 
 §5.10.4 Modification implementation 

• ECSS-Q-ST-80C 
o §6.2 Requirements applicable to all software 

engineering processes 
 §6.2.3 Handling of critical software 

o §6.3 Requirements applicable to individual 
software engineering processes or activities 
 §6.3.4 Coding 

o §7.2 Product quality requirements 



AdaCore Technologies for Space Systems Software 

40 

 §7.2.2 Design and related 
documentation 

In brief, Ada is an internationally standardized language 
combining object-oriented programming features, well-
engineered concurrency facilities, real-time predictability and 
performance, and built-in reliability through both compile-time 
and run-time checks. With its support for producing software 
that is correct, maintainable, and efficient, the language is 
especially well suited for writing space applications. 

2.2 SPARK  
2.2.1 SPARK Basics 
SPARK3 ([MC 2015], [AA 2021]) is a software development 
technology (programming language and verification toolset) 
specifically oriented around applications demanding an ultra-
low defect level, in particular where safety and/or security are 
key requirements. SPARK Pro is the commercial-grade offering 
of the SPARK technology developed by AdaCore, Capgemini 
Engineering4, and Inria. As will be described below, the main 
component in the toolset is GNATprove, which performs formal 
verification on SPARK code. 

SPARK has an extensive industrial track record. Since its 
inception in the late 1980s it has been used worldwide in a wide 
variety of applications, including civil and military avionics, 
space satellite control, air traffic management / control, railway 
signaling, cryptographic software, medical devices, automotive 

 
3 Note that this language/technology is totally unrelated to the Apache 
SPARK analytics framework, or the SPARC CPU Instruction Set Archi-
tecture. 
4 Formerly Altran 



Benjamin M. Brosgol & Jean-Paul Blanquart 

41 

systems, and cross-domain solutions. SPARK 2014 is the most 
recent version of the technology. 

The SPARK language is a large subset of Ada 2012. It includes as 
much of the Ada language as is possible / practical to analyze 
formally, while eliminating sources of undefined and 
implementation-dependent behavior. SPARK includes Ada’s 
program structure support (packages, generics, child libraries), 
most data types, safe pointers, contract-based programming 
(subprogram pre- and postconditions, scalar ranges, 
type/subtype predicates), Object-Oriented Programming, and 
the Ravenscar subset of the tasking features. 

Principal exclusions are side effects in functions and 
expressions, problematic aliasing of names, exception handling, 
and most tasking features.  

Two major design goals of SPARK are the provision of 
unambiguous and formal semantics, which permit the 
soundness of static verification: i.e., the absence of “false 
negatives”. If the SPARK tools report that a program does not 
have a specific vulnerability, such as a reference to an 
uninitialized variable, then that conclusion can be trusted with 
mathematical certainty. Soundness builds confidence in the 
tools, provides evidence-based assurance, completely removes 
many classes of dangerous defects, and significantly simplifies 
subsequent verification effort (e.g., testing), owing to less 
rework. 

SPARK offers the flexibility of configuring the language on a per-
project basis. Restrictions can be fine-tuned based on the 
relevant coding standards or run-time environments. 



AdaCore Technologies for Space Systems Software 

42 

SPARK code can easily be combined with full Ada code or with 
C, so that new systems can be built on and reuse legacy 
codebases. Moreover, the same code base can have some 
sections in SPARK and others excluded from SPARK analysis 
(SPARK and non-SPARK code can also be mixed in the same 
package or subprogram). 

Software verification typically involves extensive testing, 
including unit tests and integration tests. Traditional testing 
methodologies are a major contributor to the high delivery 
costs for safety-critical software. Furthermore, testing can never 
be complete and thus may fail to detect errors. SPARK 
addresses this issue by using automated proof to demonstrate 
program integrity properties up to functional correctness at the 
subprogram level, either in combination with or as a 
replacement for unit testing. In the high proportion of cases 
where proofs can be discharged automatically, the cost of 
writing unit tests may be completely avoided. Moreover, 
verification by proofs covers all execution conditions and not 
just a sample. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

43 

Figure 2-4 shows an example of SPARK code. 

The “with” constructs, known as “aspects”, here define the 
Decrement procedure’s contracts: 

• Global: the only access to non-local data is to read the 
value of N 

• Depends: the value of X on return depends only on N 
and the value of X on entry 

• Pre: a Boolean condition that the procedure assumes 
on entry 

• Post: a Boolean condition that the subprogram 
guarantees on return 

In this example the SPARK tool can verify the Global and 
Depends contracts and can also prove several dynamic 
properties: no run-time errors will occur during execution of the 
Decrement procedure, and, if the Pre contract is met when 
the procedure is invoked then the Post contract will be 
satisfied on return. 

N : Positive := 100;  
-- N constrained to 1 .. Integer'Last 

procedure Decrement (X : in out Integer) 
   with Global => (Input => N), 
        Depends => (X => (X, N)), 
        Pre     => X >= Integer'First + N, 
        Post    => X = X'Old – N; 

procedure Decrement (X : in out Integer) is 
begin 
   X := X-N; 
end Decrement; 

Figure 2-4: SPARK Example with Contracts 



AdaCore Technologies for Space Systems Software 

44 

SPARK (and the SPARK proof tools) work with Ada 2012 syntax, 
but a SPARK program can also be expressed in Ada 95, with 
contracts captured as pragmas.  

2.2.2 Ease of Adoption: Levels of Adoption of Formal 
Methods 

Formal methods are not an “all or nothing” technique. It is 
possible and in fact advisable for an organization to introduce 
the methodology in a stepwise manner, with the ultimate level 
depending on the assurance requirements for the software. This 
approach is documented in [AT 2020], which details the levels 
of adoption, including the benefits and costs at each level, 
based on the practical experience of a major aerospace 
company in adopting formal methods incrementally; the 
development team did not have previous knowledge of formal 
methods. The levels are additive; all the checks at one level are 
also performed at the next higher level. 

2.2.2.1 Stone level: Valid SPARK 
As the first step, a project can implement as much of the code 
as is possible in the SPARK subset, run the SPARK analyzer on 
the codebase (or new code), and look at violations. For each 
violation, the developer can decide whether to convert the code 
to valid SPARK or exclude it from analysis. The benefits include 
easier maintenance for the SPARK modules (no aliasing, no side 
effects in functions) and project experience with the basic usage 
of formal methods. The costs include the effort that may be 
required to convert the code to SPARK (especially if there is 
heavy use of pointers). 

2.2.2.2 Bronze level: Initialization and correct data flow 
This level entails performing flow analysis on the SPARK code to 
verify intended data usage. The benefits include assurance of no 



Benjamin M. Brosgol & Jean-Paul Blanquart 

45 

reads of uninitialized variables, no interference between 
parameters and global objects, no unintended access to global 
variables, and no race conditions on accesses to shared data. 
The costs include a conservative analysis of arrays (since indices 
may be computed at run time) and potential “false alarms” that 
need to be inspected.  

2.2.2.3 Silver level: Absence of run-time errors 
At the Silver level, the SPARK proof tool performs flow analysis, 
locates all potential run-time checks (e.g., array indexing), and 
then attempts to prove that none will fail. If the proof succeeds, 
this brings all the benefits of the Bronze level plus the ability to 
safely compile the final executable without exception checks. 
Critical software should aim for at least this level. The cost is the 
additional effort needed to obtain provability. In some cases (if 
the programmer knows that an unprovable check will always 
succeed, for example because of hardware properties) it may be 
necessary to augment the code with pragmas to help the 
prover. 

2.2.2.4 Gold level: Proof of key integrity properties 
At the Gold level, the proof tool will verify properties such as 
maintenance of critical data invariants or safe transitions 
between program states. Subprogram pre- and postconditions 
and subtype predicates are especially useful here, as is “ghost” 
code that serves only for verification and is not part of the 
executable. A benefit is that the proofs can be used for safety 
case rationale, to replace certain kinds of testing. The cost is 
increased time for tool execution, and the possibility that some 
properties may be beyond the abilities of current provers. 



AdaCore Technologies for Space Systems Software 

46 

2.2.2.5 Platinum level: Full functional correctness 
At the Platinum level, the algorithmic code is proved to satisfy 
its formally specified functional requirements. This is still a 
challenge in practice for realistic programs but may be 
appropriate for small critical modules, especially for security-
critical systems at high Evaluation Assurance Levels where 
formal methods can provide the needed confidence. 

2.2.3 Hybrid Verification 
A typical scenario for hybrid verification is an in-progress project 
that is using traditional testing and has high-assurance 
requirements that can best be demonstrated through formal 
methods. The new code will be in SPARK; and the adoption level 
depends on the experience of the project team (typically Stone 
at the start, then progressing to Bronze or Silver). The existing 
codebase may be in Ada or other languages. To maximize the 
precision of the SPARK analysis, the subprograms that the 
SPARK code will be invoking should have relevant pre- and 
postconditions expressing the subprograms’ low-level 

function getascii return Interfaces.C.unsigned_char 
with Post => getascii'Result in 0..127; 
pragma Import (C, getascii); 
-- Interfaces.C.unsigned_char is a modular (unsigned)  
-- integer type, typically ranging from 0 through 255 
 
procedure Example is 
   N : Interfaces.C.unsigned_char range 0 .. 127; 
begin 
   N := getascii;  
  -- SPARK can prove that no range check is needed 
end Example; 

Figure 2-5: SPARK Code Invoking a Tested C Function 



Benjamin M. Brosgol & Jean-Paul Blanquart 

47 

requirements. If the non-SPARK code is not in Ada, then the pre- 
and postconditions should be included on the Ada subprogram 
specification corresponding to the imported function; Figure 2-5 
shows an example. 

The verification activity depends on whether the formally 
verified code invokes the tested code or vice versa. 

• The SPARK code calls a tested subprogram 

If the tested subprogram has a precondition, the SPARK 
code is checked at each call site to see if the precondition is 
met. Any call that the proof tool cannot verify for 
compliance with the precondition needs to be inspected to 
see why the precondition cannot be proved. It could be a 
problem with the precondition, a problem at the call site, or 
a limitation of the prover. 

The postcondition of the called subprogram can be assumed 
to be valid at the point following the return, although the 
validity needs to be established by testing. In the example 
shown in Figure 2-5, testing would need to establish that 
the getascii function only returns a result in the range 0 
through 127. 

• The SPARK code is invoked from tested code 

Testing would need to establish that, at each call, the 
precondition of the SPARK subprogram is met. Since the 
SPARK subprogram has been formally verified, at the point 
of return the subprogram’s postcondition is known to be 
satisfied. Testing of the non-SPARK code can take advantage 
of this fact, thereby reducing the testing effort. 



AdaCore Technologies for Space Systems Software 

48 

Hybrid verification can be performed within a single module; 
e.g., a package can specify different sections where SPARK 
analysis is or is not to be performed. 

2.2.4 SPARK and the ECSS Standards 
The qualities that make Ada an appropriate choice for space 
software also apply to SPARK (see section 2.1.13 above), and 
indeed the static determination that the code is free from run-
time errors (“Silver” level of SPARK adoption) can significantly 
reduce the effort in showing that the software meets its 
requirements. Additionally, SPARK directly addresses several 
criteria in ECSS-Q-ST-80C requirement 6.2.3.2a: “use of a ‘safe 
subset’ of programming language” and “use of formal design 
language for formal proof”. 

 



Benjamin M. Brosgol & Jean-Paul Blanquart 

49 

3 Tools for Space 
Software 
Development 

This chapter explains how suppliers of space software can 
benefit from AdaCore’s products. The advantages stem in 
general from reduced life cycle costs for developing and 
verifying high-assurance software. More specifically, in 
connection with space software qualification, several tools can 
help to show that an application complies with the 
requirements in ECSS-E-ST-40C and ECSS-Q-ST-80C.  

3.1 AdaCore Tools and the Software Life Cycle 
The software life cycle is often depicted as a “V” diagram, and 
Figure 3-1 shows how AdaCore’s major products fit into the 
various stages. Although the stages are rarely performed as a 
single sequential process – the phases typically involve feedback 
/ iteration, and requirements often evolve as a project unfolds – 
the “V” chart is useful in characterizing the various kinds of 
activities that occur. 

  



AdaCore Technologies for Space Systems Software 

50 

 

 

 

 

 

 

 

 

 

 

 

 

In summary: 

• The QGen model-based engineering environment (see 
page 51) applies during the Systems Requirements and 
High-Level Design phases. It is based around a 
qualifiable code generator from a safe subset of the 
Simulink® and Stateflow® modeling languages. 

• The SPARK Pro static analysis toolsuite (see page 53) 
applies during Detailed Design and Software 
Development. It includes a proof tool that verifies 
properties ranging from correct information flows to 
functional correctness. 

QGen 

SPARK Pro 

CodePeer 

GNAT Dynamic 
Analysis Suite 

GNAT Pro 

Figure 3-1: AdaCore Toolsuites and the “V” Software Life Cycle 



Benjamin M. Brosgol & Jean-Paul Blanquart 

51 

• The GNAT Pro Ada development environment (see page 
58) applies during Detailed Design, Software 
Development, and Unit Testing. It consists of gcc-based 
program build tools, an integrated and tailorable 
graphical user interface, a comprehensive set of static 
analysis tools, and a variety of supplemental libraries 
(including some for which qualification material is 
available with respect to ECSS-E-ST-40C and ECSS-Q-ST-
80C.) 

• The CodePeer advanced Ada static analysis tool (see 
page 73) applies during Software Development. It can 
be used retrospectively to detect vulnerabilities in 
existing codebases and/or during new projects to 
prevent errors from being introduced. 

• The GNAT Dynamic Analysis Suite (see page 76) applies 
during Software Development and Unit Testing. One of 
these tools, GNATcoverage, supports code coverage 
and reporting at various levels of program construct 
granularity. 

The following sections describe the tools in more detail and 
show how they can assist in developing and verifying space 
system software. 

3.2 QGen Toolsuite for Model-Based Engineering 
QGen is a qualifiable and tunable code generation and model 
verification toolsuite for a safe subset of the Simulink® and 
Stateflow® modeling languages. The selected feature set 
ensures code generation that is appropriate for critical systems, 
leaving out features that might result in unpredictable behavior 
or potentially unsafe source code. The qualifiable QGen code 
generator translates control-system models into source code in 
either the portable MISRA subset of C, or the SPARK subset of 



AdaCore Technologies for Space Systems Software 

52 

Ada. The generated code is suitable for formal analysis and for 
projects following software standards such as ECSS-E-ST-40C 
and ECSS-Q-ST-80C, DO-178C, ISO 26262, or EN 50128. 

3.2.1 QGen Capabilities 
The QGen tool suite additionally includes both static model 
verification and interactive model-level debugging of the 
generated code. The QGen model-level debugger provides a 
side-by-side view of the model and the generated code, 
allowing the developer to set breakpoints; to view, update and 
compare signal values; and to step through execution. The 
QGen debugger can be used to test both the generated code 
and any hand-written code, on the host or the final target.  It 
allows the user to perform a back-to-back comparison against 
expected values for a single Simulink® block or the model as a 
whole, while delving into the details of a particular subsystem 
whenever needed. By displaying the model together with the 
generated source code, the QGen debugger provides a 
productive bridge between control engineering and software 
engineering. 

The QGen automatic code generator is being qualified in 
compliance with the DO-178C / ED-12C standard at Tool 
Qualification Level 1 (TQL-1, corresponding roughly to a 
“development tool” in earlier editions of the DO-178 standard), 
with qualification anticipated in mid 2022. QGen at TQL-1 can 
reduce the effort needed to demonstrate compliance with some 
of the DO-178C objectives for the generated source code, 
streamlining the critical-system development and verification 
process. With QGen, the supported subset of the modeling 
language is clearly defined together with the expected structure 
of the generated code, and it is coupled with tests that verify 



Benjamin M. Brosgol & Jean-Paul Blanquart 

53 

the precise match between model simulation results and the 
run-time semantics of the generated target code. 

A technology such as QGen can increase developer productivity 
by automating the translation of system requirements into 
source code. The MISRA-C and SPARK code generated by QGen 
can be augmented with developer-supplied code as needed. 

3.2.2 QGen and the ECSS standards 
Model-based engineering can be useful in space software 
development, and QGen can help meet a number of 
requirements in ECSS-E-ST-40C and ECSS-Q-ST-80C. Details are 
provided in chapters 5 and 6; in summary, these are the 
relevant sections of the two standards: 

• ECSS-E-ST-40C 
o §5.4 Software requirements and architecture 

engineering process 
 §5.4.3 Software architecture design 

o §5.5 Software design and implementation 
engineering process 
 §5.5.2 Design of software items 

o §5.8 Software verification process 
 §5.8.3 Verification activities 

• ECSS-Q-ST-80C 
o §6.2 Requirements applicable to all software 

engineering processes 
 §6.2.8 Automatic code generation 

3.3 Static Verification: SPARK Pro 
SPARK Pro is an advanced static analysis toolsuite for the SPARK 
subset of Ada, bringing mathematics-based confidence to the 
verification of critical code. Built around the GNATprove formal 



AdaCore Technologies for Space Systems Software 

54 

analysis and proof tool, SPARK Pro combines speed, flexibility, 
depth and soundness, while minimizing the generation of “false 
alarms”. It can be used for new high-assurance code (including 
enhancements to or hardening of existing codebases at lower 
assurance levels, written in full Ada or other languages such as 
C) or projects where the existing high-assurance coding 
standard is sufficiently close to SPARK to ease transition. 

3.3.1 Powerful Static Verification  
The SPARK language supports a wide range of static verification 
techniques. At one end of the spectrum is basic data- and 
control-flow analysis, i.e., exhaustive detection of errors such as 
attempted reads of uninitialized variables, and ineffective 
assignments (where a variable is assigned a value that is never 
read). For more critical applications, dependency contracts can 
constrain the information flow allowed in an application. 
Violations of these contracts – potentially representing 
violations of safety or security policies – can then be detected 
even before the code is compiled. 

In addition, SPARK supports mathematical proof and can thus 
provide high confidence that the software meets a range of 
assurance requirements: from the absence of run-time 
exceptions, to the enforcement of safety or security properties, 
to compliance with a formal specification of the program’s 
required behavior. 

As described earlier (see page 44), the SPARK technology can be 
introduced incrementally into a project, based on the assurance 
requirements. Each level, from Bronze to Platinum, comes with 
associated benefits and costs. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

55 

3.3.2 Minimal Run-Time Footprint 
Developers of systems with security requirements are generally 
advised to “minimize the trusted computing base”, making it as 
small as possible so that high-assurance verification is feasible. 
However, adhering to this principle may be difficult if a 
Commercial Off-the-Shelf (COTS) library or operating system is 
used: how are these to be evaluated or verified without the 
close (and probably expensive) cooperation of the COTS 
vendor? 

For the most critical embedded systems, SPARK supports the so-
called “Bare-Metal” development style, where SPARK code is 
running directly on a target processor with little or no COTS 
libraries or operating system at all. SPARK is also designed to be 
compatible with GNAT Pro’s Light run-time library5. In a Bare-
Metal / light run-time development, every byte of object code 
can be traced to the application’s source code and accounted 
for. This can be particularly useful for systems that must 
undergo evaluation by a national technical authority or 
regulator. 

SPARK code can also run with a specialized run-time library on 
top of a real-time operating system (RTOS), or with a full Ada 
run-time library and a commercial desktop operating system. 
The choice is left to the system designer, not imposed by the 
language. 

3.3.3 CWE Compatibility 
SPARK Pro detects a number of dangerous software errors in 
The MITRE Corporation’s Common Weakness Enumeration, and 

 
5 This library supersedes the Zero FootPrint (ZFP) run-time library from 
earlier GNAT Pro releases 



AdaCore Technologies for Space Systems Software 

56 

the tool has been certified by the MITRE Corporation as a “CWE-
Compatible” product [Mi 20xx]. 

Table 3-1lists the CWE weaknesses detected by SPARK Pro: 

Table 3-1: SPARK Pro and the CWE 
CWE Weakness Description 

CWE 119, 120, 123, 124, 125,  
         126, 127, 129, 130, 131 

Buffer overflow/underflow 

CWE 136, 137 
Variant record field 
violation, Use of incorrect 
type in inheritance hierarchy 

CWE 188 Reliance on data layout 
CWE 190, 191 Numeric 

overflow/underflow 
CWE 193 Off-by-one error 
CWE 194 Unexpected sign extension 
CWE 197 Numeric truncation error 
CWE 252, 253 Unchecked or incorrectly 

checked return value 
CWE 366 Race Condition 
CWE 369 Division by zero 
CWE 456, 457 Use of uninitialized variable 
CWE 466, 468, 469 Pointer errors 
CWE 476 Null pointer dereference 
CWE 562 Return of stack variable 

address 
CWE 563 Unused or redundant 

assignment 
CWE 682 Range constraint violation 
CWE 786, 787, 788, 805 Buffer access errors 
CWE 820 Missing synchronization 

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/123.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/136.html
http://cwe.mitre.org/data/definitions/137.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/193.html
http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/253.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/468.html
http://cwe.mitre.org/data/definitions/469.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/562.html
http://cwe.mitre.org/data/definitions/563.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html
http://cwe.mitre.org/data/definitions/788.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/820.html


Benjamin M. Brosgol & Jean-Paul Blanquart 

57 

Table 3-1: SPARK Pro and the CWE 
CWE Weakness Description 

CWE 821 Incorrect synchronization 
CWE 822, 823, 824, 825 Pointer errors 
CWE 835 Infinite loop 

 

3.3.4 SPARK Pro and the ECSS Standards 
SPARK Pro can help a space software supplier in various ways. 
At a general level, the technology supports the development of 
analyzable and portable code: 

• The tool enforces a number of Ada restrictions that are 
appropriate for high-assurance software. For example, 
the use of tasking constructs outside the Ravenscar 
subset will be flagged. 

• The full Ada language has several implementation 
dependencies that can result in the same source 
program yielding different results when compiled by 
different compilers. For example, the evaluation order 
in expressions is not specified, and different orderings 
may produce different values if one of the terms has a 
side effect. (A complete discussion of this issue and its 
mitigation may be found in [Br 2021].) Such implement-
ation dependencies are either prohibited in SPARK and 
thus detected by SPARK Pro, or else they do not affect 
the computed result. In either case the use of SPARK 
Pro eases the effort in porting the code from one 
environment to another. 

More specifically, using the SPARK Pro technology can help the 
supplier meet ECSS-E-ST-40C and ECSS-Q-ST-80C requirements 
in a number of areas. These comprise the ones mentioned 

http://cwe.mitre.org/data/definitions/821.html
http://cwe.mitre.org/data/definitions/822.html
http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/825.html
http://cwe.mitre.org/data/definitions/835.html


AdaCore Technologies for Space Systems Software 

58 

earlier (see section 2.2.4) that relate to the SPARK language, 
together with the following: 

• ECSS-E-ST-40C 
o §5.6 Software validation process 

 §5.6.3 Validation activities with respect 
to the technical specification 

 §5.6.4 Validation activities with respect 
to the requirements baseline 

o §5.8 Software verification process 
 §5.8.3 Verification activities 

• ECSS-Q-ST-80C 
o §5.6 Tools and supporting environment 

 5.6.2 Development environment 
selection 

o §6.2 Requirements applicable to all software 
engineering processes 
 §6.2.3 Handling of critical software 

o §7.2 Product quality requirements 
 §7.2.3 Test and validation 

documentation 

Details are provided in chapters 4 and 5. 

3.4 GNAT Pro Ada Development Environments 
AdaCore’s GNAT Pro language toolsuite comes in several 
editions. This section summarizes the main features of the 
Enterprise and Assurance editions, as well as the graphical 
Integrated Development Environments (IDEs) that accompany 
GNAT Pro. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

59 

3.4.1 GNAT Pro Enterprise 
GNAT Pro Enterprise is a development environment for 
producing critical software systems where reliability, efficiency, 
and maintainability are essential. It is available for Ada, C, and 
C++. 

Based on the GNU GCC technology, the GNAT Pro Enterprise 
product line supports all versions of the Ada language, from Ada 
83 to Ada 2012, as well as features of the upcoming Ada 202x 
standard. Other editions of the GNAT Pro product handle 
multiple versions of C (from C89 through C18) and C++ (from 
C++98 through C++17). GNAT Pro Ada includes an Integrated 
Development Environment (GNAT Studio and/or GNATbench), a 
comprehensive toolsuite including a visual debugger, and a set 
of libraries and bindings. 

GNAT Pro Enterprise offers several features that make it 
especially appropriate for the development of high-assurance 
software: 

Run-Time Library Options  
GNAT Pro Ada Enterprise includes a variety of choices for the 
run-time library, based on the target platform. In addition to the 
Standard run-time, which is available for platforms that can 
support the full language capabilities, the product on some 
bare-metal or RTOS targets also includes restricted libraries that 
reduce the footprint and/or help simplify safety certification: 

• The Light Run-Time library offers a minimal application 
footprint while retaining compatibility with the SPARK 
subset and verification tools. It supports a non-tasking Ada 
subset suitable for certification / qualification and storage-
constrained embedded applications. It supersedes the ZFP 



AdaCore Technologies for Space Systems Software 

60 

(Zero FootPrint) (“Zero FootPrint”)  and Cert  run-time 
libraries from previous GNAT Pro releases. 

• The Light-Tasking run-time library augments the Light run-
time library with support for the Ravenscar tasking profile. 
It supersedes the Ravenscar-Cert and Ravenscar-SFP 
libraries from previous GNAT Pro releases. 

• The Embedded run-time library provides a subset of the 
Standard Ada run-time library suitable for target platforms 
lacking file I/O and networking support. It supersedes the 
Ravenscar-Full library from previous GNAT Pro releases. 

Details on these libraries may be found in the “Predefined GNAT 
Pro Run-Times” chapter of [Ad 2021} 

Adapted versions of the earlier ZFP and Ravenscar-Cert libraries 
have been qualified under ECSS-E-ST-40C and ECSS-Q-ST-80C at 
criticality category B. 

Enhanced Data Validity Checking 
Improper or absent data validity checking is a notorious source 
of security vulnerabilities in software systems. Ada has always 
offered range checks for scalar subtypes, but GNAT Pro goes 
further, offering enhanced validity checking that can protect a 
program against malicious or accidental memory corruption, 
failed I/O devices, and so on. This feature is particularly useful in 
combination with automatic Fuzz testing, since it offers strong 
defense for invalid data at the software boundary of a system. 

3.4.2 GNAT Pro Assurance 
GNAT Pro Assurance extends GNAT Pro Enterprise with 
specialized support, such as bug fixes and “known problems” 
analyses, on a specific version of the toolchain. This product 
edition is especially suitable for applications with long-lived 



Benjamin M. Brosgol & Jean-Paul Blanquart 

61 

maintenance cycles or assurance requirements, since critical 
updates to the compiler or other product components may 
become necessary years after the initial release.  

3.4.2.1 Sustained Branches 
Unique to GNAT Pro Assurance is a service known as a 
“sustained branch”: customized support and maintenance for a 
specific version of the product. A project on a sustained branch 
can monitor relevant known problems, analyze their impact 
and, if needed, update to a newer version of the product on the 
same development branch (i.e., not incorporating changes 
introduced in later versions of the product). 

Sustained branches are a practical solution to the problem of 
ensuring toolchain stability while allowing flexibility in case an 
upgrade is needed to correct a critical problem. 

3.4.2.2 Source to Object Traceability 
Source-to-object traceability is required in standards such as 
DO-178C, and a GNAT Pro compiler option can limit the use of 
language constructs that generate object code that is not 
directly traceable to the source code. As an add-on service, 
AdaCore can perform an analysis that demonstrates this 
traceability and justifies any remaining cases of non-traceable 
code. 

3.4.3 GNAT Pro Integrated Development 
Environments (IDEs) 

GNAT Pro includes several graphical IDEs for invoking the build 
tools and accompanying utilities and monitoring their outputs.  

3.4.3.1 GNAT Studio  
GNAT Studio (formerly named “GNAT Programming Studio” or 
“GPS”) is a powerful and simple-to-use IDE that streamlines 



AdaCore Technologies for Space Systems Software 

62 

software development from the initial coding stage through 
testing, debugging, system integration, and maintenance. GNAT 
Studio is designed to allow programmers to exploit the full 
capabilities of the GNAT Pro technology. 

Tools 
GNAT Studio’s extensive navigation and analysis tools can 
generate a variety of useful information including call graphs, 
source dependencies, project organization, and complexity 
metrics, giving the developer a thorough understanding of a 
program at multiple levels. It allows interfacing with third-party 
Version Control Systems, easing both development and 
maintenance. 

Robust, Flexible and Extensible  
Especially suited for large, complex systems, GNAT Studio can 
import existing projects from other Ada implementations while 
adhering to their file naming conventions and retaining the 
existing directory organization. Components written in C and 
C++ can also be handled through the IDE’s multi-language 
capabilities. GNAT Studio is highly extensible; additional tools 
can be plugged in through a simple scripting approach. It is also 
tailorable, allowing various aspects of the program’s 
appearance to be customized in the editor. 

Easy to Learn, Easy to Use  
GNAT Studio is intuitive to new users, thanks to its menu-driven 
interface with extensive online help (including documentation 
of all the menu selections) and “tool tips”. The Project Wizard 
makes it simple to get started, supplying default values for 
almost all project properties. For experienced users, GNAT 
Studio offers the necessary level of control for advanced 
purposes; e.g., the ability to run command scripts. Anything that 



Benjamin M. Brosgol & Jean-Paul Blanquart 

63 

can be done on the command line is achievable through the 
menu interface.  

Remote Programming  
Integrated into GNAT Studio, Remote Programming provides a 
secure and efficient way for programmers to access any number 
of remote servers on a wide variety of platforms while taking 
advantage of the power and familiarity of their local laptop 
computers or workstations.  

Support for Microsoft’s Language Server Protocol 
GNAT Studio’s source navigation engine is implemented 
through support for Microsoft’s Language Server Protocol (LSP), 
and it includes a server for this protocol for the Ada and SPARK 
languages. A language server based on the LSP encapsulates the 
language-specific knowledge that clients (such as editing tools) 
can access via standard requests and inter-process 
communication. An IDE that supports LSP can handle any 
language for which a language server is implemented and, in 
the other direction, a language server can be reused in any IDE 
that supports LSP, such as Visual Studio Code. 

3.4.3.2 GNATbench - GNATbench  
GNATbench is an Ada development plug-in for Eclipse and Wind 
River’s Workbench environment. The Workbench integration 
supports Ada development on a variety of VxWorks real-time 
operating systems. The Eclipse version is primarily for native 
applications, with some support for cross development. In both 
cases, the Ada tools are tightly integrated. 

3.4.3.3 GNATdashboard  
GNATdashboard serves as a one-stop control panel for 
monitoring and improving the quality of Ada software. It 
integrates and aggregates the results of AdaCore’s various static 



AdaCore Technologies for Space Systems Software 

64 

and dynamic analysis tools (GNATmetric, GNATcheck, 
GNATcoverage, CodePeer, and SPARK Pro, among others) within 
a common interface, helping quality assurance managers and 
project leaders understand or reduce their software’s technical 
debt, and eliminating the need for manual input. 

GNATdashboard fits naturally into a continuous integration 
environment, providing users with metrics on code complexity, 
code coverage, conformance to coding standards, and more. A 
developer can use GNATdashboard with GNATcheck, to monitor 
progress on meeting the coding standard constraints. 

3.4.4 GNAT Pro and the ECSS Standards 
GNAT Pro can help meet a number of requirements in ECSS-E-
ST-40C and ECSS-Q-ST-80C. Details are provided in chapters 4 
and 5; in summary, these are the relevant sections of the two 
standards: 

• ECSS-E-ST-40C 
o §5.4 Software requirements and architecture 

engineering process 
 §5.4.3 Software architecture design 

o §5.5 Software design and implementation 
engineering process 
 §5.5.3 Coding and testing 
 §5.5.4 Integration 

o §5.6 Software validation process 
 §5.6.2 Validation process 

implementation 
o §5.7 Software delivery and acceptance process 

 §5.7.3 Software acceptance 
o §5.8 Software verification process 

 §5.8.3 Verification activities 



Benjamin M. Brosgol & Jean-Paul Blanquart 

65 

o §5.10 Software maintenance process 
 §5.10.2 Process implementation 

• ECSS-Q-ST-80C 
o §5.2 Software product assurance programme 

management 
 §5.2.7 Quality requirements and quality 

models 
o §5.6 Tools and supporting environments 

 §5.6.1 Methods and tools 
 §5.6.2 Development environment 

selection 
o §6.2 Requirements applicable to all software 

engineering processes 
 §6.2.3 Handling of critical software 

o §6.3 Requirements applicable to individual 
processes or activities 
 §6.3.4 Coding 
 §6.3.8 Maintenance 

o §7.1 Product quality objectives and metrication 
 §7.1.3 Assurance objectives for product 

quality requirements 
 §7.1.5 Basic metrics 

AdaCore’s ZFP (Zero Footprint) minimal run-time library 
(superseded by the Light run-time in current GNAT Pro releases) 
on LEON2 ELF has been qualified at criticality category B 
[Ad 2019b], and the Ravenscar SFP (Small Footprint) QUAL run-
time library (superseded by the Light-Tasking run-time) on 
LEON2 and LEON3 boards have been qualified at criticality 
category B [Ad 2019b]. 
 



AdaCore Technologies for Space Systems Software 

66 

3.5 GNAT Pro Ada Tools for Static Analysis and 
Target Emulation 

This section describes a number of GNAT Pro Ada utilities for 
static analysis of Ada source code (GNATcheck, GNATmetric, 
GNATstack, libadalang) and one tool that supports host-based 
target emulation (GNATemulator). These tools help in general 
during development and verification and, as will be noted 
below, some are particularly useful in demonstrating 
compliance with ECSS standards.  

Several tools for testing and code coverage are available as a 
supplement to GNAT Pro (the GNAT Dynamic Analysis Suite) and 
are described below (see section 3.7). 

3.5.1 GNATcheck  
GNATcheck is a coding standard verification tool that is 
extensible and rule-based. It allows developers to completely 
define a coding standard as a set of rules, for example a subset 
of permitted language features. It checks whether a source 
program satisfies the resulting rules and thereby facilitates the 
demonstration of a system’s conformance with software safety 
standards.  

Space software developers can use GNATcheck to help 
demonstrate that their Ada code meets the restrictions 
imposed by a project-specific coding standard. 

Key features include: 

• An integrated Ada Restrictions mechanism for banning 
particular features from an application. This can be used to 
restrict features such as tasking, exceptions, dynamic 



Benjamin M. Brosgol & Jean-Paul Blanquart 

67 

allocation, fixed- or floating point, input/output, and 
unchecked conversions. 

• Restrictions specific to GNAT Pro, such as banning features 
that result in the generation of implicit loops or conditionals 
in the object code, or in the generation of elaboration code. 

• Additional Ada semantic rules requested by customers, such 
as enforcing a specific ordering of parameters, normalizing 
entity names, and prohibiting subprograms from having 
multiple returns. 

• A user-friendly interface for creating and applying a 
complete coding standard. 

• Generation of project-wide reports, including evidence of 
the level of conformance with a given coding standard. 

• Over 30 compile-time warnings from GNAT Pro that detect 
typical error situations, such as local variables being used 
before being initialized, incorrect assumptions about array 
lower bounds, infinite recursion, incorrect data alignment, 
and accidental hiding of names. 

• Style checks that allow developers to control indentation, 
casing, comment style, and nesting level. 

3.5.2 GNATmetric 
GNATmetric is a static analysis tool that calculates a set of 
commonly used industry metrics, thus allowing developers to 
estimate code complexity and better understand the structure 
of the source program. This information also facilitates 
satisfying the requirements of certain software development 
frameworks and is useful in conjunction with GNATcheck (for 



AdaCore Technologies for Space Systems Software 

68 

example, in reporting and limiting the maximum subprogram 
nesting depth). 

3.5.3 GNATstack 
GNATstack is a software analysis tool that enables Ada/C 
software development teams to accurately estimate the 
maximum size of the memory stack required for program 
execution. GNATstack will be useful to space software 
developers since a stack overflow in an application at a high-
criticality category could lead to a catastrophic failure.  

The GNATstack tool statically computes the maximum stack 
space required by each task in an application. The reported 
bounds can be used to reserve sufficient space, resulting in safe 
execution with respect to stack usage. The tool uses a 
conservative analysis based on compile-time analysis, 
augmented with user-supplied input to deal with complexities 
such as subprogram recursion, while avoiding unnecessarily 
pessimistic estimates. 

GNATstack exploits data generated by the compiler to compute 
worst-case stack requirements. It performs per-subprogram 
stack usage computation combined with control flow analysis. 

GNATstack can analyze object-oriented applications, 
automatically determining maximum stack usage on code that 
uses dynamic dispatching in Ada. A dispatching call challenges 
static analysis because the identity of the subprogram being 
invoked is not known until run time. GNATstack solves this 
problem by statically determining the subset of potential 
targets (primitive operations) for every dispatching call. This 
significantly reduces the analysis effort and yields precise stack 
usage bounds on complex Ada code. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

69 

GNATstack’s main output is the worst-case stack usage for every 
entry point, together with the paths that result in these stack 
sizes. The list of entry points can be automatically computed (all 
the tasks, including the environment task) or can be specified by 
the user (a list of entry points or all the subprograms matching a 
given regular expression). 

GNATstack can also detect and display a list of potential 
problems when computing stack requirements: 

• Indirect (including dispatching) calls. The tool will indicate 
the number of indirect calls made from any subprogram. 

• External calls. The tool displays all the subprograms that are 
reachable from any entry point for which there is no stack 
or call graph information. 

• Unbounded frames. The tool displays all the subprograms 
that are reachable from any entry point with an unbounded 
stack requirement. The required stack size depends on the 
arguments passed to the subprogram. Figure 3-2 shows an 
example: 

procedure P (N : Integer) is 
   S : String (1 .. N); 
begin 
   ... 
end P; 
 

Figure 3-2: Subprogram with Unbounded Stack Frame 

• Cycles. The tool can detect all the cycles (i.e., potential 
recursion) in the call graph. 



AdaCore Technologies for Space Systems Software 

70 

GNATstack allows the user to supply a text file with the missing 
information, such as the potential targets for indirect calls, the 
stack requirements for externals calls, and the maximal size for 
unbounded frames.  

3.5.4 Time and Space Analysis  
3.5.4.1 Timing Verification 
Suitably subsetted, Ada (and SPARK) are amenable to the static 
analysis of timing behavior. This kind of analysis is relevant for 
real-time systems, where worst-case execution time (WCET) 
must be known in order to guarantee that timing deadlines will 
always be met. Timing analysis is also of interest for secure 
systems, where the issue might be to show that programs do 
not leak information via so-called side-channels based on the 
observation of differences in execution time. 

AdaCore does not produce its own WCET tool, but there are 
several such tools on the market from partner companies, such 
as RapiTime from Rapita Systems Ltd. 

3.5.4.2 Memory Usage Verification 
Ada and SPARK can support the static analysis of worst-case 
memory consumption, so that a developer can show that a 
program will never run out of memory at execution time. 

In both SPARK and Ada, users can specify pragma Restrictions 
with the standard arguments No_Allocators and 
No_Implicit_Heap_Allocations. This will completely 
prevent heap usage, thus reducing memory usage analysis to a 
worst-case computation of stack usage for each task in a 
system. Stack size analysis is implemented directly in AdaCore’s 
GNATstack tool, as described above.  



Benjamin M. Brosgol & Jean-Paul Blanquart 

71 

3.5.5 Semantic Analysis Tools—Libadalang 
Libadalang is a reusable library that forms a high-performance 
semantic processing and transformation engine for Ada source 
code, with an API in Python as well as Ada. It is particularly 
suitable for writing lightweight and project-specific static 
analysis tools. Typical libadalang applications include: 

• Static analysis (property verification) 
• Code instrumentation 
• Design documentation tools 
• Metric testing or timing tools 
• Dependency tree analysis tools 
• Type dictionary generators 
• Coding standard enforcement tools 
• Language translators (e.g., to CORBA IDL) 
• Quality assessment tools 
• Source browsers and formatters 
• Syntax directed editors 

3.5.6 GNATemulator 
GNATemulator is an efficient and flexible tool that provides 
integrated, lightweight target emulation. 

Based on the QEMU technology, a generic and open-source 
machine emulator and virtualizer, GNATemulator allows 
software developers to compile code directly for their target 
architecture and run it on their host platform through an 
approach that translates from the target object code to native 
instructions on the host. This avoids the inconvenience and cost 
of managing an actual board while offering an efficient testing 
environment compatible with the final hardware. 



AdaCore Technologies for Space Systems Software 

72 

GNATemulator does not attempt to be a complete time-
accurate target board simulator, and thus it cannot be used for 
all aspects of testing. But it does provide an efficient and cost-
effective way to execute the target code very early in the 
development and verification processes. GNATemulator thus 
offers a practical compromise between a native environment 
that lacks target emulation capability, and a cross configuration 
where the final target hardware might not be available soon 
enough or in sufficient quantity. 

3.5.7 GNAT Pro Ada Tools and the ECSS Standards 
GNAT Pro can help meet a number of requirements in ECSS-E-
ST-40C and ECSS-Q-ST-80C. Details are provided in chapters 4 
and 5; in summary, these are the relevant sections of the two 
standards: 

• ECSS-E-ST-40C 
o §5.8 Software verification process 

 §5.8.3 Verification activities 
• ECSS-Q-ST-80C 

o §5.2 Software product assurance programme 
management 
 §5.2.7 Quality requirements and quality 

models 
o §5.6 Tools and supporting environments 

 §5.6.2 Development environment 
selection 

o §6.2 Requirements applicable to all software 
engineering processes 
 §6.2.3 Handling of critical software 

o §6.3 Requirements applicable to individual 
processes or activities 
 §6.3.4 Coding 



Benjamin M. Brosgol & Jean-Paul Blanquart 

73 

o §7.1 Product quality objectives and metrication 
 §7.1.3 Assurance objectives for product 

quality requirements 
 §7.1.5 Basic metrics 

 

3.6 Static Verification: CodePeer  
CodePeer is an Ada source code analyzer that detects run-time 
and logic errors that can cause safety and security 
vulnerabilities in a code base. CodePeer assesses potential bugs 
before program execution, serving as an automated peer 
reviewer. It can be used on existing codebases, thereby helping 
vulnerability analysis during a security assessment or system 
modernization, and when performing impact analysis when 
introducing changes. It can also be used on new projects, 
helping to find errors efficiently and early in the development 
life-cycle. Using control-flow, data-flow, and other advanced 
static analysis techniques, CodePeer detects errors that would 
otherwise only be found through labor-intensive debugging. 

CodePeer can be used from within the GNAT Pro development 
environment, or as part of a continuous integration regime. As a 
stand-alone tool, CodePeer can also be used with projects that 
do not use GNAT Pro for compilation. 

3.6.1 Early Error Detection  
CodePeer’s advanced static error detection finds bugs in code 
by analyzing every line of code, considering every possible input 
and every path through the program. CodePeer can be used 
very early in the development life cycle, to identify problems 
when defects are much less costly to repair. It can also be used 



AdaCore Technologies for Space Systems Software 

74 

retrospectively on existing code bases to detect latent 
vulnerabilities. 

3.6.2 CWE Compatibility 
CodePeer can detect a number of “Dangerous Software Errors” 
in the MITRE Corporation’s Common Weakness Enumeration, 
and the tool has been certified by The MITRE Corporation as a 
“CWE-Compatible” product [Mi 20xx].  

Table 3-2 lists the weaknesses detected by CodePeer: 

Table 3-2: CodePeer and the CWE 

CWE weakness Description 

CWE 120, 124, 125, 126,  
         127, 129, 130, 131 Buffer overflow/underflow 

CWE 136, 137 

Variant record field 
violation, Use of incorrect 
type in inheritance 
hierarchy 

CWE 190, 191 Numeric 
overflow/underflow 

CWE 362, 366 Race condition 
CWE 369 Division by zero 

CWE 457 Use of uninitialized 
variable 

CWE 476 Null pointer dereference 
CWE 561 Dead (unreachable) code 

CWE 563 Unused or redundant 
assignment 

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/136.html
http://cwe.mitre.org/data/definitions/137.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/561.html
http://cwe.mitre.org/data/definitions/563.html


Benjamin M. Brosgol & Jean-Paul Blanquart 

75 

Table 3-2: CodePeer and the CWE 

CWE weakness Description 

CWE 570 Expression is always false 
CWE 571 Expression is always true 
CWE 628 Incorrect arguments in call 
CWE 667 Improper locking 
CWE 682 Incorrect calculation 
CWE 820 Missing synchronization 
CWE 821 Incorrect synchronization 
CWE 835 Infinite loop 

 

3.6.3 CodePeer and the ECSS Standards 
CodePeer can help meet a number of requirements in ECSS-E-
ST-40C and ECSS-Q-ST-80C. Details are provided in chapters 4 
and 5; in summary, these are the relevant sections of the two 
standards: 

• ECSS-E-ST-40C 
o §5.5 Software design and implementation 

engineering process 
 §5.5.2 Design of software items 

o §5.6 Software validation process 
 §5.6.3 Validation activities with respect 

to the technical specification 
 §5.6.4 Validation activities with respect 

to the requirements baseline 
o §5.8 Software verification process 

 §5.8.3 Verification activities 

http://cwe.mitre.org/data/definitions/570.html
http://cwe.mitre.org/data/definitions/571.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/820.html
http://cwe.mitre.org/data/definitions/821.html
http://cwe.mitre.org/data/definitions/835.html


AdaCore Technologies for Space Systems Software 

76 

• ECSS-Q-ST-80C 
o §5.6. Tools and supporting environment 

 5.6.1 Methods and tools 
 §5.6.2 Development environment 

selection 
o §6.2 Requirements applicable to all software 

engineering processes 
 §6.2.3 Handling of critical software 

3.7 GNAT Dynamic Analysis Suite 
The GNAT Dynamic Analysis Suite comprises tools for test case 
generation, host-based processor emulation, and code coverage 
analysis and reporting. A fuzz testing tool is in progress, which 
will help developers identify security vulnerabilities by checking 
the software’s behavior in the presence of non-valid inputs. 

3.7.1 GNATtest  
The GNATtest tool helps create and maintain a complete unit 
testing infrastructure for projects of any size / complexity. It is 
based on the concept that each visible subprogram should have 
at least one corresponding unit test. GNATtest produces two 
outputs: 

• The complete harnessing code for executing all the unit 
tests under consideration. This code is generated 
completely automatically. 

• A set of separate test stubs for each subprogram to be 
tested. These test stubs are to be completed by the user. 

GNATtest handles Ada’s Object-Oriented Programming features 
and can help verify tagged type substitutability (the Liskov 
Substitution Principle), or “LSP”, which can be used to 
demonstrate the consistency of class hierarchies. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

77 

3.7.2 GNATcoverage  
GNATcoverage is a dynamic analysis tool that analyzes and 
reports program coverage. It computes its results from trace 
files that show which program constructs have been exercised 
by a given test campaign. With source code instrumentation, 
the tool produces these files by executing an alternative version 
of the program, built from source code instrumented to 
populate coverage-related data structures. Through an option 
to GNATcoverage, the user can specify the granularity of the 
analysis by choosing statement coverage, decision coverage, or 
Modified Condition / Decision Coverage (MC/DC). 

Source-based instrumentation brings several major benefits: 
efficiency of tool execution (much faster than alternative 
coverage strategies using binary traces and target emulation, 
especially on native platforms), compact-size source trace files 
independent of execution duration, and support for coverage of 
shared libraries. 

3.7.3 GNAT Dynamic Analysis Suite and the ECSS 
Standards 

The GNAT Dynamic Analysis Suite can help meet a number of 
requirements in ECSS-E-ST-40C and ECSS-Q-ST-80C. Details are 
provided in chapters 4 and 5; in summary, these are the 
relevant sections of the two standards: 

• ECSS-E-ST-40C 
o §5.5 Software design and implementation 

engineering process 
 §5.5.3 Coding and testing 
 §5.5.4 Integration 

o §5.6 Software validation process 



AdaCore Technologies for Space Systems Software 

78 

 §5.6.3 Validation activities with respect 
to the technical specification 

 §5.6.4 Validation activities with respect 
to the requirements baseline 

o §5.8 Software verification process 
 §5.8.3 Verification activities 

• ECSS-Q-ST-80C 
o §5.6 Tools and supporting environment 

 §5.6.1 Methods and tools 
o §6.2 Requirements applicable to all software 

engineering processes 
 §6.2.3 Handling of critical software 

o §6.3 Requirements applicable to individual 
software engineering processes or activities 
 §6.3.5 Testing and validation 

o §7.1 Product quality objectives and metrication 
 §7.1.5 Basic metrics 

 

3.8 Support and Expertise  
Every AdaCore product subscription comes with front-line 
support provided directly by the product developers 
themselves, who have deep expertise in the Ada language, 
domain-specific software certification / qualification standards, 
compilation technologies, embedded system technology, and 
static and dynamic verification. AdaCore’s development 
engineers have extensive experience supporting customers in 
critical areas including commercial and military avionics, space, 
air traffic management/control, railway, and automotive. 
Customers’ questions (requests for guidance on feature usage, 
suggestions for technology enhancements, or defect reports) 
are handled efficiently and effectively. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

79 

Beyond this bundled support, AdaCore also provides Ada 
language and tool training, on-site consulting on topics such as 
how to best deploy the technology, and mentoring assistance 
on start-up issues. On-demand tool development or ports to 
new platforms are also available. 

 





Benjamin M. Brosgol & Jean-Paul Blanquart 

81 

4 Compliance with ECSS-
E-ST-40C 

The ECSS-E-ST-40C standard is concerned with software 
engineering – the principles and techniques underlying the 
production of code that is reliable, safe, secure, readable, 
maintainable, portable and efficient. These are the goals that 
drove the design of the Ada language (and its SPARK subset), 
whose features assist in designing a modular and robust system 
architecture and in preventing or detecting errors such as type 
mismatches or buffer overruns that can arise in other 
languages.  

This chapter explains how Ada and SPARK, together with the 
relevant AdaCore development and verification tools, can help a 
space software supplier meet many of the requirements 
presented in ECSS-E-ST-40C. The section numbers in braces 
refer to the associated content in ECSS-E-ST-40C.   

4.1 Software requirements and architecture 
engineering process {§5.4} 

4.1.1 Software architecture design {§5.4.3} 
4.1.1.1 Transformation of software requirements into a 

software architecture {§5.4.3.1} 
• “The supplier shall transform the requirements for the 

software into an architecture that describes the top-
level structure; identifies the software components, 
ensuring that all the requirements for the software item 
are allocated to the software components and later 
refined to facilitate detailed design; covers as a 



AdaCore Technologies for Space Systems Software 

82 

minimum hierarchy, dependency, interfaces and 
operational usage for the software components; 
documents the process, data and control aspects of the 
product; describes the architecture static 
decomposition into software elements such as 
packages, classes or units; describes the dynamic 
architecture, which involves the identification of active 
objects such as threads, tasks and processes; describes 
the software behavior.” {§5.4.3.1a} 

o The Ada and SPARK languages directly support 
this requirement. Relevant features include 
packages, child libraries, subunits, private types, 
tasking, and object-oriented programming 
(tagged types). The GNATstub utility (included 
with GNAT Pro Ada) is useful here; it generates 
empty package bodies (“stubs”) from a 
software design’s top-level API (package specs). 

4.1.1.2 Software design method {§5.4.3.2} 
• “The supplier shall use a method (e.g., object oriented 

or functional) to produce the static and dynamic 
architecture including: software elements, their 
interfaces and; software elements relationships.” 
{§5.4.3.2a} 

o Ada and SPARK are methodology agnostic and 
fully support both object-oriented and 
functional styles. 

4.1.1.3 Selection of a computational model for real-time 
software {§5.4.3.3} 

• “The dynamic architecture design shall be described 
according to an analytical computational model.” 
{§5.4.3.3a} 



Benjamin M. Brosgol & Jean-Paul Blanquart 

83 

o The Ada and SPARK tasking facility supports a 
stylistic idiom that is amenable to Rate 
Monotonic Analysis, allowing static verification 
that real-time deadlines will be met. 

4.1.1.4 Description of software behavior {§5.4.3.4} 
• “The software design shall also describe the behaviour 

of the software, by means of description techniques 
using automata and scenarios.” {§5.4.3.4a} 

o The QGen tool supports model-based 
development where the software behavior is 
captured by Simulink® / Stateflow® models. 

4.1.1.5 Development and documentation of the software 
interfaces {§5.4.3.5} 

• “The supplier shall develop and document a software 
preliminary design for the interfaces external to the 
software item and between the software components 
of the software item.” {§5.4.3.5a} 

o The supplier can use the Ada / SPARK package 
facility to specify the interfaces, both external 
and internal. The contract-based programming 
features provide additional expressive power, 
allowing the specification of pre- and 
postconditions for the subprograms comprising 
an interface. 

4.1.1.6 Definition of methods and tools for software intended 
for reuse {§5.4.3.6} 

• “The supplier shall define procedures, methods and 
tools for reuse, and apply these to the software 
engineering processes to comply with the reusability 



AdaCore Technologies for Space Systems Software 

84 

requirements for the software development.” 
{§5.4.3.6a} 

o Ada and SPARK facilitate reuse via the separate 
compilation semantics (which allows “bottom-
up” development by reusing existing libraries) 
and the generic facility (which, for example, 
allows a module to be defined in a general and 
type-independent fashion and then instantiated 
with specific types as needed). The semantics 
for these features enforces safe reuse: 
 All checks that are performed within a 

single compilation unit are also 
enforced across separate compilation 
boundaries.  

 A post-compilation pre-link check 
detects and prevents “version skew” 
(building an executable where some 
compilation unit depends on an 
obsolescent version of another unit). 

 Unlike the situation with C++ templates, 
a type mismatch in an Ada generic 
instantiation is detected and prevented 
at compile time, ensuring consistency 
between the instantiation and the 
generic unit. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

85 

4.2 Software design and implementation 
engineering process {§5.5} 

4.2.1 Design of software items {§5.5.2} 
4.2.1.1 Detailed design of each software component {§5.5.2.1} 

• “The supplier shall develop a detailed design for each 
component of the software and document it.” 
{§5.5.2.1a} 

o Ada / SPARK features, including packages and 
child units, help meet this requirement. The 
contract-based programming feature (e.g., pre- 
and postconditions) allows the supplier to 
express low-level requirements as part of the 
software architecture, facilitating the low-level 
design of algorithms. 

• “Each software component shall be refined into lower 
levels containing software units that can be coded, 
compiled, and tested.” {§5.5.2.1b} 

o Relevant Ada / SPARK features include 
packages, child units, and subunits. 

4.2.1.2 Development and documentation of the software 
interfaces detailed design {§5.5.2.2}  

• “The supplier shall develop and document a detailed 
design for the interfaces external to the software items, 
between the software components, and between the 
software units, in order to allow coding without 
requiring further information.” {§5.5.2.2a} 

o Ada / SPARK features, including packages and 
child units, help meet this requirement. The 
contract-based programming feature (e.g., pre- 
and postconditions) allows the supplier to 
express low-level requirements as part of the 



AdaCore Technologies for Space Systems Software 

86 

interfaces, facilitating the implementation of 
algorithms. 

4.2.1.3 Production of the detailed design model {§5.5.2.3} 
• “The supplier shall produce the detailed design model 

of the software components defined during the 
software architectural design, including their static, 
dynamic and behavioural aspects.” {§5.5.2.3a} 

o Ada / SPARK features such as packages, child 
units, and contract-based programming help 
meet this requirement. If model-based 
engineering is used, AdaCore’s QGen tool 
supports the expression of the detailed design 
as Simulink® / Stateflow® models. 

4.2.1.4 Software detail design method {§5.5.2.4} 
• “The supplier shall use a design method (e.g. object 

oriented or functional method) to produce the detailed 
design including: software units, their interfaces, and; 
software units relationships.” {§5.5.2.4a} 

o Ada and SPARK are methodology agnostic and 
fully support both object-oriented and 
functional styles. 

4.2.1.5 Detailed design of real-time software {§5.5.2.5} 
• “The dynamic design model shall be compatible with 

the computational model selected during the software 
architectural design model” {§5.5.2.5a} 

o The Ada / SPARK tasking model allows a 
straightforward mapping from the architectural 
design (where the system comprises a 
collection of tasks that interact via protected 
shared resources) to the detailed design. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

87 

• “The supplier shall document and justify all timing and 
synchronization mechanisms” {§5.5.2.5b} 

o The Ada / SPARK tasking model supplies the 
necessary timing and synchronization support.  

• “The supplier shall document and justify all the design 
mutual exclusion mechanisms to manage access to the 
shared resources.” {§5.5.2.5c} 

o The Ada / SPARK tasking model supplies the 
necessary mutual exclusion mechanisms 
(protected objects, pragma Atomic). The 
CodePeer static analysis tool can detect 
potential race conditions with respect to the 
usage of shared resources. 

• “The supplier shall document and justify the use of 
dynamic allocation of resources.” {§5.5.2.5d} 

o Ada has a general and flexible mechanism for 
dynamic memory management, including the 
ability of the programmer to specify the 
semantics of allocation and deallocation within 
a storage pool. This can be used, for example, 
to define a fragmentation-free strategy for 
memory management with constant time for 
allocation and deallocation. The latest version 
of SPARK includes a facility for safe pointers. 

• “The supplier shall ensure protection against problems 
that can be induced by the use of dynamic allocation of 
resources, e.g. memory leaks.” {§5.5.2.5e} 

o Ada includes a variety of mechanisms that assist 
in preventing dynamic memory management 
issues. The 
No_Standard_Allocators_After_Elaboration 
argument to pragma Restrictions produces a 



AdaCore Technologies for Space Systems Software 

88 

run-time check that detects attempts to 
perform allocations from a standard storage 
pool after elaboration (initialization). Depending 
on the program structure, static analysis may be 
able to determine that this check will never fail.  

4.2.1.6 Utilization of description techniques for the software 
behaviour {§5.5.2.6}  

• “The behavioural design of the software units shall be 
described by means of techniques using automata and 
scenarios.” {§5.5.2.6a} 

o The QGen tool supports model-based 
development where the software behavior is 
captured by Simulink® / Stateflow® models. 

4.2.2 Coding and testing {§5.5.3} 
4.2.2.1 Development and documentation of the software units 

{§5.5.3.1} 
• “The supplier shall develop and document the 

following: the coding of each software unit; the build 
procedures to compile and link software units” 
{§5.5.3.1a} 

o The GNAT Pro project and gprbuild facility 
automate the build process and prevent 
“version skew”. 

4.2.2.2 Software unit testing {§5.5.3.2} 
• “The supplier shall develop and document the test 

procedures and data for testing each software unit” 
{§5.5.3.2a} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

89 

• “The supplier shall test each software unit ensuring that 
it satisfies its requirements and document the test 
results.” {§5.5.3.2b} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process. 

• “The unit test shall exercise: code using boundaries at 
n-1, n, n+1 including looping instructions while, for and 
tests that use comparisons; all the messages and error 
cases defined in the design document; the access of all 
global variables as specified in the design document; 
out of range values for input data, including values that 
can cause erroneous results in mathematical functions; 
the software at the limits of its requirements (stress 
testing).” {§5.5.3.2c} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process.  

4.2.3 Integration {§5.5.4} 
4.2.3.1 Software units and software component integration 

and testing {§5.5.4.2} 
• “The supplier shall integrate the software units and 

software components, and test them, as the aggregates 
are developed, in accordance with the integration plan, 
ensuring each aggregate satisfies the requirements of 
the software item and that the software item is 
integrated at the conclusion of the integration activity.” 
{§5.5.4.2a} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process, supplementing the 
GNAT Pro Ada compilation facilities. 



AdaCore Technologies for Space Systems Software 

90 

4.3 Software validation process {§5.6} 
4.3.1 Validation activities with respect to the 

technical specification {§5.6.3} 
4.3.1.1 Development and documentation of a software 

validation specification with respect to the technical 
specification {§5.6.3.1} 

• “The supplier shall develop and document, for each 
requirement of the software item in TS [Technical 
Specification] (including ICD [Interface Control 
Document]), a set of tests, test cases (inputs, outputs, 
test criteria) and test procedures ….” {§5.6.3.1a} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process. 

• “Validation shall be performed by test.” {§5.6.3.1b} 
o AdaCore’s GNATtest and GNATcoverage tools 

can assist in this process. 
• “If it can be justified that validation by test cannot be 

performed, validation shall be performed by either 
analysis, inspection or review of design” {§5.6.3.1c} 

o The CodePeer and/or SPARK Pro static analysis 
tools may be able to show that a run-time check 
will always succeed and that no test case will 
trigger a failure. 

4.3.2 Validation activities with respect to the 
requirements baseline {§5.6.4} 

4.3.2.1 Development and documentation of a software 
validation specification with respect to the 
requirements baseline {§5.6.4.1} 

• “The supplier shall develop and document, for each 
requirement of the software item in RB [Requirements 



Benjamin M. Brosgol & Jean-Paul Blanquart 

91 

Baseline] (including IRD [Interface Requirements 
Document]), a set of tests, test cases (inputs, outputs, 
test criteria) and test procedures ….” {§5.6.4.1a} 

o AdaCore’s GNATtest and GNATcoverage tools 
can assist in this process. 

• “Validation shall be performed by test.” {§5.6.4.1b} 
o AdaCore’s GNATtest and GNATcoverage tools 

can assist in this process. 
• “If it can be justified that validation by test cannot be 

performed, validation shall be performed by either 
analysis, inspection or review of design” {§5.6.4.1c} 

o The CodePeer and/or SPARK Pro static analysis 
tools may be able to show that a run-time check 
will always succeed and that no test case will 
trigger a failure. 

4.4 Software delivery and acceptance process 
{§5.7} 

4.4.1 Software acceptance {§5.7.3} 
4.4.1.1 Executable code generation and installation {§5.7.3.3} 

• “The acceptance shall include generation of the 
executable code from configuration managed source 
code components and its installation on the target 
environment.” {§5.7.3.3a} 

o The GNAT Pro project and gprbuild facility can 
assist in the build and installation process. 



AdaCore Technologies for Space Systems Software 

92 

4.5 Software verification process {§5.8} 
4.5.1 Verification activities {§5.8.3} 
4.5.1.1 Verification of code {§5.8.3.5} 

• “The supplier shall verify the software code ensuring 
that: 1. the code is externally consistent with the 
requirements and design of the software item; 2. there 
is internal consistency between software units; 3. the 
code is traceable to design and requirements, testable, 
correct, and in conformity to software requirements 
and coding standards; 4. the code that is not traced to 
the units is justified; 5. the code implements proper 
events sequences, consistent interfaces, correct data 
and control flow, completeness, appropriate allocation 
of timing and sizing budgets, and error handling; 6. the 
code implements safety, security, and other critical 
requirements correctly as shown by appropriate 
methods; 7. the effects of run-time errors are 
controlled; 8. there are no memory leaks; 9. numerical 
protection mechanisms are implemented.” {§5.8.3.5a} 

o Ada’s strong typing and interface checks help 
meet criterion 2. 

o For criterion 3, static analysis tools such as 
CodePeer and SPARK Pro can help verify 
correctness, and the GNATcheck utility included 
with GNAT Pro can enforce conformance with a 
coding standard. 

o For criterion 5, QGen can help ensure proper 
events sequences (based on the Simulink® / 
Stateflow® model that is input), and Ada’s 
strong typing and interface checks can help 
show consistent interfaces and correct data 
flow. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

93 

o Static analysis tools such as CodePeer and 
SPARK Pro, as well as the standard semantic 
checks performed by the GNAT Pro compiler, 
can help meet criterion 6. 

o Ada’s exception handling facility can help meet 
criterion 7. 

o Ada’s user-defined memory management 
facilities can help meet criterion 8. 

• “The supplier shall verify that the following code 
coverage is achieved: 

Code coverage 
versus criticality 
category 

A B C D 

Source code 
statement coverage 

100% 100% AM AM 

Source code 
decision coverage 

100% 100% AM AM 

Source code 
modified condition 
and decision 
coverage 

100% AM AM AM 

Note: ‘AM’ means that the value is agreed with the 
customer and measured as per ECSS-Q-ST-80C clause 
6.3.5.2.” {§5.8.3.5b} 

o GNATcoverage can help meet this requirement. 
• “Code coverage shall be measured by analysis of the 

results of the execution of tests.” {§5.8.3.5c} 
o GNATcoverage can help meet this requirement. 

• “In case the traceability between source code and 
object code cannot be verified (e.g. use of compiler 



AdaCore Technologies for Space Systems Software 

94 

optimization), the supplier shall perform additional 
code coverage analysis on object code level as follows: 

Code coverage VS. 
criticality category 

A B C D 

Object code coverage 100% N/A N/A N/A 

Note: N/A means not applicable.” {§5.8.3.5e} 

o GNATcoverage can help meet this requirement. 
o AdaCore can prepare an analysis of traceability 

between source and object code; the company 
has provided this to customers in connection 
with certification under the DO-178C standard 
for airborne software for the commercial 
aviation industry. 

• “The supplier shall verify source code robustness (e.g. 
resource sharing, division by zero, pointers, run-time 
errors). AIM: use static analysis for the errors that are 
difficult to detect at run-time.” {§5.8.3.5f} 

o Errors such as division by zero, null pointer 
dereferencing, array indices out of bounds, and 
many others are flagged at run-time by raising 
an exception. Effective practice is to keep these 
checks enabled during development and then, 
after verifying either statically or through 
sufficient testing that the run-time checks are 
not needed, disable the checks in the final code 
for maximal efficiency. 

o The CodePeer static analysis tool will detect 
such errors as well as many others, including 



Benjamin M. Brosgol & Jean-Paul Blanquart 

95 

suspicious constructs that, although legitimate 
Ada, are likely logic errors. 

o The SPARK Pro tool will enforce the SPARK 
subset and can be used to demonstrate absence 
of run-time errors. 

o The GNATstack tool computes the potential 
maximum stack usage for each task in a 
program. Combining the result with a separate 
analysis showing the maximal depth of 
recursion, the developer can allocate sufficient 
stack space for program execution and prevent 
stack overflow.  

4.5.1.2 Verification of software unit testing (plan and results) 
{§5.8.3.6} 

• “The supplier shall verify the unit tests 
results….”{§5.8.3.6a} 

o The GNATtest and GNATcoverage tools 
contribute to meeting this requirement. 

4.5.1.3 Schedulability analysis for real-time software 
{§5.8.3.11} 

• “As part of the verification of the software 
requirements and architectural design, the supplier 
shall use an analytical model (or use modelling and 
simulation, if it can be demonstrated that no analytical 
model exists) to perform a schedulability analysis and 
prove that the design is feasible.” {§5.8.3.11a} 

o The Ada tasking model, and the Ravenscar 
profile in particular, supports Rate-Monotonic 
Analysis. 



AdaCore Technologies for Space Systems Software 

96 

o The QGen tool supports model-based 
development (generating SPARK or MISRA-C 
code from Simulink® / Stateflow® models) 

4.5.1.4 Behaviour modelling verification {§5.8.3.13} 
• “As support to the verification of the software 

architectural design, the supplier shall verify the 
software behaviour using the behavioural view of the 
architecture produced in clause 5.4.3.4.” {§5.8.3.13b} 

o The QGen tool can help meet this requirement 
if the software behavior is captured by 
Simulink® / Stateflow® models. 

• “As support to the verification of the software detailed 
design, the supplier shall verify the software behaviour 
using the software behavioural design model produced 
in 5.5.2.3a. eo c., by means of the techniques defined in 
5.5.2.6.” {§5.8.3.13c} 

o The QGen tool can help meet this requirement 
if the software behavior is captured by 
Simulink® / Stateflow® models. 

4.6 Software operation process {§5.9} 
4.6.1 Process implementation {§5.9.2} 
4.6.1.1 Problem handling procedures definition {§5.9.2.3} 

• “The SOS [Software Operation Support] entry shall 
establish procedures for receiving, recording, resolving, 
tracking problems, and providing feedback.” {§5.9.2.3a} 

o In the event that a product problem is due to a 
defect in an AdaCore tool (e.g., a code 
generation bug), AdaCore has a rigorous QA 
process for responding to and resolving such 
issues. The “sustained branch” service, which is 



Benjamin M. Brosgol & Jean-Paul Blanquart 

97 

included with a GNAT Pro Assurance 
subscription, helps by ensuring that a specific 
version of the toolchain is maintained over the 
lifetime of the supplier’s project. 

4.6.2 Software operation support {§5.9.4} 
4.6.2.1 Problem handling {§5.9.4.2} 

• “Encountered problems shall be recorded and handled 
in accordance with the applicable procedures.” 
{§5.9.4.2a} 

o As described above in connection with clause 
5.9.2.3, AdaCore’s QA process and the 
“sustained branch” service can help meet this 
requirement when an issue arises that is due to 
an AdaCore tool. 

4.7 Software maintenance process {§5.10} 
4.7.1 Process implementation {§5.10.2} 
4.7.1.1 Long term maintenance for flight software {§5.10.2.2} 

• “If the spacecraft lifetime goes after the expected 
obsolescence date of the software engineering 
environment, then the maintainer shall propose 
solutions to be able to produce and upload 
modifications to the spacecraft up to its end of life.” 
{§5.10.2.2a} 

o AdaCore’s “sustained branch” service, which is 
included with a GNAT Pro Assurance 
subscription, in effect means that the 
compilation environment will not become 
obsolescent.   



AdaCore Technologies for Space Systems Software 

98 

4.7.2 Modification implementation {§5.10.4} 
4.7.2.1 Invoking of software engineering processes for 

modification implementation {§5.10.4.3} 
• “The maintainer shall apply the software engineering 

processes as specified in clauses 5.3 to 5.8 while 
implementing the modifications.” {§5.10.4.3a} 

o The Ada language has specific features that 
support the design of modular, maintainable 
software with high cohesion and low coupling. 
These include encapsulation (private types, 
separation of specification from 
implementation), hierarchical child libraries, 
and object-oriented programming (tagged 
types). By exploiting these features, the 
developer can localize the impact of 
maintenance changes. 

 



Benjamin M. Brosgol & Jean-Paul Blanquart 

99 

5 Compliance with ECSS-
Q-ST-80C 

The ECSS-Q-ST-80C standard defines software product 
assurance requirements for the development and maintenance 
of space software systems. This chapter explains how AdaCore’s 
products can help a supplier meet many of these requirements. 
The section numbers in braces refer to the relevant content in 
ECSS-Q-ST-80C. 

5.1 Software product assurance programme 
implementation {§5} 

5.1.1 Software product assurance programme 
management {§5.2} 

5.1.1.1 Quality requirements and quality models {§5.2.7} 
• “Quality models shall be used to specify the software 

quality requirements” {§5.2.7.1a} 
o The GNAT Pro Ada utility GNATmetric can be 

used to show quality metrics related to the 
source code structure. 

o The GNAT Pro Ada utility GNATdashboard can 
be used as a general tool to display software 
quality data. 

5.1.2 Tools and supporting environment {§5.6} 
5.1.2.1 Methods and tools {§5.6.1} 

• “Methods and tools to be used for all activities of the 
development cycle … shall be identified by the supplier 
and agreed by the customer” {§5.6.1.1a} 



AdaCore Technologies for Space Systems Software 

100 

o The GNAT Pro Ada environment and any 
supplemental tools that are selected (e.g., 
GNATcoverage, CodePeer, SPARK Pro, QGen) 
should be listed. 

• “The choice of development methods and tools shall be 
justified by demonstrating through testing or 
documented assessment that … the tools and methods 
are appropriate for the functional and operational 
characteristics of the product, and … the tools are 
available (in an appropriate hardware environment) 
throughout the development and maintenance lifetime 
of the product” {§5.6.1.2a} 

o AdaCore can make available a variety of 
documentation showing that the selected tools 
are “appropriate for the functional and 
operational characteristics of the product”, 
ranging from user manuals to qualification 
material relative to other high-assurance 
software standards such as DO-178C and 
EN 50128 [Cen 2011]. 

o AdaCore’s “sustained branch” service for its 
GNAT Pro Ada Assurance product (see section 
3.4.2.1 above) can guarantee that the toolchain 
is maintained throughout the product lifetime. 

5.1.2.2 Development environment selection {§5.6.2} 
• “The software development environment shall be 

selected according to the following criteria: 
1. availability; 2. compatibility; 3. performance; 
4. maintenance; 5. durability and technical consistency 
with the operational environment; 6. the assessment of 
the product with respect to requirements, including the 
criticality category; 7. the available support 



Benjamin M. Brosgol & Jean-Paul Blanquart 

101 

documentation; 8. the acceptance and warranty 
conditions; 9. the conditions of installation, preparation, 
training and use; 10. the maintenance conditions, 
including the possibilities of evolutions; 11. copyright 
and intellectual property rights constraints; 
12. dependence on one specific supplier” {§5.6.2.1a} 

o AdaCore tools directly satisfy these criteria. The 
availability of qualification material for specific 
tools (CodePeer, GNATcheck, GNATprove, 
GNATstack) contributes to criterion 6, and the 
“sustained branch” service for GNAT Pro Ada 
Assurance supports criterion 7. All AdaCore 
tools come with source code and flexible 
licensing, mitigating criterion 12 (dependence 
on AdaCore as the supplier). 

5.2 Software process assurance {§6} 
5.2.1 Requirements applicable to all software 

engineering processes {§6.2} 
5.2.1.1 Handling of critical software {§6.2.3} 

• “The supplier shall define, justify and apply measures to 
assure the dependability and safety of critical 
software…. These measures can include: … use of a ‘safe 
subset’ of programming language; use of formal design 
language for formal proof; 100% code branch coverage 
at unit testing level; … removing deactivated code or 
showing through a combination of analysis and testing 
that the means by which such code can be inadvertently 
executed are prevented, isolated, or eliminated.” 
{§6.2.3.2a} 

o Ada’s pragma Restrictions and pragma Profile, 
together with the GNAT Pro Ada utility  



AdaCore Technologies for Space Systems Software 

102 

GNATcheck, can enforce a coding standard for 
Ada (in effect a ‘safe subset’). See section 3.5.1 
above. 

o SPARK Pro uses proof technology that can 
demonstrate a program’s conformance with 
formally specified requirements. 

o GNATcoverage can report code coverage up to 
MC/DC at the source level and branch coverage 
at the object level. 

o CodePeer can detect unreachable code, 
including deactivated code.  

• “Software containing deactivated code shall be verified 
specifically to ensure that the deactivated code cannot 
be activated or that its accidental activation cannot 
harm the operation of the system.” {§6.2.6.5} 

o CodePeer can detect unreachable code, 
including deactivated code. 

5.2.1.2 Automatic code generation {§6.2.8} 
• “For the selection of tools for automatic code 

generation, the supplier shall evaluate the following 
aspects: … customization of the tools to comply with 
project standards; portability requirements for the 
generated code; ….” {§6.2.8.1a} 

o The QGen tool can be customized to generate 
specific output code, and the source code that 
it produces in SPARK or MISRA C is portable. 

• “The required level of verification and validation of the 
automatic generation tool shall be at least the same as 
the one required for the generated code, if the tool is 
used to skip verification or testing activities on the 
target code.” {§6.2.8.3a} 



Benjamin M. Brosgol & Jean-Paul Blanquart 

103 

o QGen is due to achieve DO-178C qualification at 
level TQL-1 (the highest / most rigorous Tool 
Qualification Level) in mid 2022. Since an error 
in the tool could result in faulty code in the 
executable object code, achieving TQL-1 
qualification basically entails demonstrating 
that the tool meets a set of objectives 
analogous to the ones that apply to software at 
level A, the highest assurance level (comparable 
to criticality category A).  

o With QGen qualified at TQL-1, the testing 
performed at the level of the Simulink® / 
Stateflow® models can be used to eliminate 
manual review of the generated source code, 
reduce or eliminate the need for a separate set 
of low-level requirements-based tests, and 
enable model coverage to substitute for low-
level code coverage metrics.  

5.2.2 Requirements applicable to individual software 
engineering processes or activities {§6.3} 

5.2.2.1 Coding {§6.3.4} 
• “Coding standards (including consistent naming 

conventions and adequate commentary rules) shall be 
specified and observed.” {§6.3.4.1a} 

o Ada’s Restrictions and Profile pragmas, together 
with AdaCore’s GNATcheck tool (see section 
3.5.1 above), can define and enforce a coding 
standard. 

• “The tools to be used in implementing and checking 
conformance with coding standards shall be identified 



AdaCore Technologies for Space Systems Software 

104 

in the product assurance plan before coding activities 
start.” {§6.3.4.2a} 

o GNATcheck is the relevant tool for this activity. 
• “The supplier shall define measurements, criteria and 

tools to ensure that the software code meets the 
quality requirements.” {§6.3.4.6a} 

o The GNATmetric tool (see section 3.5.2 above) 
can be used to report quality traits related to 
the source code structure. 

• “Synthesis of the code analysis results and corrective 
actions implemented shall be described in the software 
product assurance reports.” {§6.3.4.7a} 

o GNATdashboard (see section 3.4.3.3 above) can 
be used to synthesize and summarize code 
quality metrics. 

5.2.2.2 Testing and validation {§6.3.5} 
• “Testing shall be performed in accordance with a 

strategy for each testing level (i.e. unit, integration, 
validation against the technical specification, validation 
against the requirements baseline, acceptance), ….” 
{§6.3.5.1a} 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 
requirement. 

• “Based on the criticality of the software, test coverage 
goals for each testing level shall be agreed between the 
customer and the supplier and their achievement 
monitored by metrics…” {§6.3.5.2a) 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 
requirement. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

105 

• “Test coverage shall be checked with respect to the 
stated goals.” {§6.3.5.5a} 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 
requirement. 

• “The test coverage of configurable code shall be 
checked to ensure that the stated requirements are met 
in each tested configuration.” {§6.3.5.7a} 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 
requirement. 

• “Test tool development or acquisition … shall be 
planned for in the overall project plan.” {§6.3.5.24a} 

o The tools in AdaCore’s GNAT Dynamic Analysis 
Suite (GNATtest, GNATcoverage) are candidates 
for consideration in test tool acquisition. 

• “Software containing deactivated code shall be 
validated specifically to ensure that the deactivated 
code cannot be activated or that its accidental 
activation cannot harm the operation of the system.” 
{§6.3.5.30a} 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 
requirement by detecting non-covered code 
that is intended (and can be categorized) as 
deactivated.  

• “Software containing configurable code shall be 
validated specifically to ensure that unintended 
configuration cannot be activated at run time or 
included during code generation”. {§6.3.5.31a} 

o AdaCore’s GNAT Dynamic Analysis Suite 
(GNATtest, GNATcoverage) can help meet this 



AdaCore Technologies for Space Systems Software 

106 

requirement by detecting configurable code 
that, because of incorrect configuration 
settings, was unintentionally included during 
code generation. 

5.2.2.3 Maintenance {§6.3.8} 
• “The maintenance plans and procedures shall include 

the following as a minimum: scope of maintenance; 
identification of the first version of the software 
product for which maintenance is to be done; support 
organization; maintenance life cycle; maintenance 
activities; quality measures to be applied during the 
maintenance; maintenance records and reports.” 
{§6.3.8.4a} 

o The “sustained branch” service of AdaCore’s 
GNAT Pro Assurance product can help meet this 
requirement. 

• “Maintenance records shall be established for each 
software product….” {§6.3.8.7a} 

o AdaCore’s ticket system, which is part of the 
standard support in all product subscriptions, 
provides an audit trail for problem reports / 
resolution. 

o The “sustained branch” service includes special 
maintenance accommodations for dealing with 
problems that relate to software safety. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

107 

5.3 Software product quality assurance {§7} 
5.3.1 Product quality objectives and metrication 

{§7.1} 
5.3.1.1 Assurance activities for product quality requirements 

{§7.1.3} 
• “The supplier shall define assurance activities to ensure 

that the product meets the quality requirements as 
specified in the technical specification” {§7.1.3a} 

o Any of AdaCore’s tools could potentially 
contribute to meeting this requirement, 
depending on the nature of the metrics that 
have been defined, and the GNATdashboard 
tool can serve to integrate the metrics in a 
meaningful way. 

5.3.1.2 Basic metrics {§7.1.5} 
• “The following basic products metrics shall be used: size 

(code); complexity (design, code); fault density and 
failure intensity; test coverage; number of failures.” 
{§7.1.5a} 

o The GNATmetric, GNATtest, and GNATcoverage 
tools directly help to meet this requirement. 

5.3.2 Product quality requirements {§7.2} 
5.3.2.1 Design and related documentation {§7.2.2} 

• “The software shall be designed to facilitate testing.” 
{§7.2.2.2a} 

o The Ada language encourages and supports the 
use of sound software engineering principles 
such as modular design and structured 
programming, which makes the code easier to 
test. 



AdaCore Technologies for Space Systems Software 

108 

• “Software with a long planned lifetime shall be designed 
with minimum dependency on the operating system 
and the hardware in order to aid portability.” 
{§7.2.2.3a} 

o The Ada language has abstracted away the 
specifics of the underlying operating system and 
hardware through standard syntax and 
semantics for features such as concurrency, 
memory management, exception handling, and 
I/O. As a result, Ada programs can often be 
ported across different processor architectures 
and operating systems by simply recompiling, 
with minimal or no source code changes 
needed.  

5.3.2.2 Test and validation documentation {§7.2.3} 
• “For any requirements not covered by testing a 

verification report shall be drawn up documenting or 
referring to the verification activities performed.” 
{§7.2.3.6a} 

o In many cases where verification cannot be 
achieved by testing, SPARK Pro may be able to 
provide convincing alternative verification 
evidence (for example, a robustness demon-
stration by proof that an out-of-range or 
otherwise non-valid input will never be passed 
to the unit being verified). 



Benjamin M. Brosgol & Jean-Paul Blanquart 

109 

6 Abbreviations 
Abbreviation Expansion 

API Application Program Interface 
AR Acceptance Review 
CDR Critical Design Review 
DDF Design Definition File 
DJF Design Justification File 
DRD Document Requirements Definition 
DRL Document Requirements List 
EAL Evaluation Assurance Level 

ECSS 
European Cooperation for Space 
Standardization 

ESA European Space Agency 
GCC GNU Compiler Collection 
GUI Graphical User Interface 
IDE Integrated Development Environment 

LSP 
Language Server Protocol 
Liskov Substitution Principle 

MF Maintenance File 
MGT Management File 
OP Operational Plan 
ORR Operational Readiness Review 
PAF Product Assurance File 
PDR Preliminary Design Review 
QR Qualification Review 
RB Requirements Baseline 
RTOS Real-Time Operating Systems 
SRR System Requirements Review 
TQL Tool Qualification Level 
TS Technical Specification 





Benjamin M. Brosgol & Jean-Paul Blanquart 

111 

7 References 
Please note that the links below are valid at the time of writing 
but cannot be guaranteed for the future. 

[AA 2021] AdaCore and Altran UK Ltd, SPARK Reference 
Manual, 2021; 
https://docs.adacore.com/live/wave/spar
k2014/html/spark2014_rm/index.html 

[ACAA 2016] Ada Conformance Assessment Authority, 
Consolidated Ada 2012 Language Reference 
Manual; 
http://www.ada-
auth.org/standards/ada12_w_tc1.html 

[Ad 2016] AdaCore, High Integrity Object-Oriented 
Programming in Ada, Version 1.4, 2016; 
https://www.adacore.com/papers/high-
integrity-oop-in-ada 

[Ad 2019a] AdaCore (press release), AVIO Selects AdaCore’s 
GNAT Pro Assurance Toolsuite for European 
Space Agency Program; January 8, 2019. 
https://www.adacore.com/press/avio-
selects-adacores-gnat-pro-assurance-
toolsuite-for-european-space-agency-
program 



AdaCore Technologies for Space Systems Software 

112 

[Ad 2019b] AdaCore (press release), European Space 
Agency Selects AdaCore’s Qualified-Multitasking 
Solution for Spacecraft Software Development; 
September 24, 2019; 
https://www.adacore.com/press/european-
space-agency-selects-adacores-
qualified-multitasking-solution-for-
spacecraft-software-development 

[Ad 2021] AdaCore, GNAT User’s Guide Supplement for 
Cross Platforms, Version 23.0W, October 2021; 
https://docs.adacore.com/live/wave/gnat
_ugx/html/gnat_ugx/gnat_ugx.html 

[AT 2020] AdaCore and Thales, Implementation Guidance 
for the Adoption of SPARK, Release 1.2, July 24, 
2020; 
https://www.adacore.com/books/implement
ation-guidance-spark 

[Ba 2014] John Barnes, Programming in Ada 2012, 
Cambridge University Press, 2014. 

[Ba 2015] John Barnes, Safe and Secure Software: An 
Invitation to Ada 2012, AdaCore, 2015; 
https://www.adacore.com/books/safe-and-
secure-software 

[Br 2021] Benjamin M. Brosgol, “Making Software FACE™ 
Conformant and Fully Portable: Coding 
Guidance for Ada”, in Military Embedded 
Systems, March 2021. 

[Cen 2011] CENELEC, EN 50128:2011, Railway applications 
– Communications, signalling and processing 
systems – Software for railway control and 
protection systems, 2011. 



Benjamin M. Brosgol & Jean-Paul Blanquart 

113 

[CCRA 20xx] Common Criteria Recognition Arrangement, 
Common Criteria Portal, undated; 
https://www.commoncriteriaportal.org/ 

[DB 2001] Brian Dobbing and Alan Burns, The Ravenscar 
Tasking Profile for High Integrity Real-Time 
Programs; 
http://www.sigada.org/conf/sigada2001/p
rivate/SIGAda2001-CDROM/SIGAda1998-
Proceedings/dobbing.pdf 

[ECSS 20xx] European Cooperation for Space 
Standardization, Web portal, undated; 
https://www.ecss.nl 

[ECSS 2009] European Cooperation for Space 
Standardization, ECSS-E-ST-40C: Space 
engineering / Software; Noordwijk, The 
Netherlands; 6 March 2009. 

[ECSS 2011a] European Cooperation for Space 
Standardization, ECSS-HB-80-04A: Space 
product assurance / Software metrication 
programme definition and implementation; 
Noordwijk, The Netherlands; 30 March 2011. 

[ECSS 2011b] European Cooperation for Space 
Standardization, ECSS-Q-HB-80-01A: Space 
Product assurance / Reuse of existing software; 
Noordwijk, The Netherlands; 5 December 2011. 

[ECSS 2013] European Cooperation for Space 
Standardization, ECSS-E-HB-40A: Space 
engineering / Software engineering handbook; 
Noordwijk, The Netherlands; 11 December 
2013. 



AdaCore Technologies for Space Systems Software 

114 

[ECSS 2017a] European Cooperation for Space 
Standardization, ECSS-Q-ST-80C Rev. 1: Space 
product assurance / Software product 
assurance; Noordwijk, The Netherlands; 
15 February 2017. 

[ECSS 2017b] European Cooperation for Space 
Standardization, ECSS-HB-80-03A Rev.1: 
Space Product Assurance / Software 
dependability and safety; Noordwijk, The 
Netherlands; 30 November 2017.  

[ECSS 2020] European Cooperation for Space 
Standardization, ECSS-HB-40-01A: 
Space engineering / Agile software development 
handbook; Noordwijk, The Netherlands; 
7 April 2020. 

[ISO 2018] International Organization for Standardization, 
ISO 26262:2018 Road vehicles – Functional 
safety; 2018. 

[JGMM 2002] M. Jones, E. Gomez, A. Mantineo, U.K. 
Mortensen; “Introducing ECSS Software-
Engineering Standards within ESA – Practical 
approaches for space- and ground-segment 
software”, in ESA Bulletin 111; August 2002; 
http://www.esa.int/esapub/bulletin/bull
et111/chapter21_bul111.pdf 

[KG 95] W. Kriedte and Y. El Gammal; “A New Approach 
to European Space Standards”, in ESA Bulletin 
81, February 1995; 
https://www.esa.int/esapub/bulletin/bul
let81/krie81.htm 



Benjamin M. Brosgol & Jean-Paul Blanquart 

115 

[MC 2015] John W. McCormick and Peter C. Chapin, 
Building High Integrity Applications with SPARK, 
Cambridge University Press, 2015. 

[Mi 20xx] The MITRE Corp., CWE-Compatible Products and 
Services, undated; 
https://cwe.mitre.org/compatible/compat
ible.html 

[RTCA 2011] RTCA SC-205 / EUROCAE WG-12, Software 
Considerations in Airborne Systems and 
Equipment Certification, DO-178C / ED-12C; 
13 December 2011; 
https://my.rtca.org/NC__Product?id=a1B3
6000001IcjlEAC 





Benjamin M. Brosgol & Jean-Paul Blanquart 

117 

Index 
Ada language ............................ 27 

Abstract data types .............. 35 
Assertion_Error exception

 ........................................ 33 
Buffer overrun prevention ... 37 
Child units ...................... 34, 98 
Concurrent programming 

(tasks) .............................. 36 
Contract-based programming

 ............................ 30, 32, 37 
Dynamic memory 

management ................... 87 
Encapsulation ....................... 98 
Generic templates .......... 34, 84 
High-integrity systems ......... 37 
History and overview ........... 30 
Memory management ......... 93 
Object-Oriented Programming 

(OOP) ......................... 35, 98 
Overview .............................. 28 
Portability .................... 29, 108 
Postconditions ..................... 32 
pragma Profile 38, 101, 103 
pragma Restrictions ... 38, 

70, 87, 101, 103 
Preconditions ....................... 32 
Programming in the large .... 34 
Real-Time Systems Annex .... 36 
Scalar ranges ........................ 31 
Separate compilation ........... 84 
Support for ECSS standards . 39 
Systems Programming Annex

 ........................................ 36 

Type / subtype predicates ... 33 
Type invariants ..................... 33 
Usage ................................... 31 

AdaCore 
CodePeer ........... See CodePeer 
GNAT Pro Assurance See GNAT 

Pro Assurance 
GNAT Pro Enterprise .See GNAT 

Pro Enterprise 
GNAT Studio .. See GNAT Studio 
GNATbench ..... See GNATbench 
GNATcheck ...... See GNATcheck 
GNATcoverage .................... See 

GNATcoverage 
GNATdashboard ..................See 

GNATdashboard 
GNATemulator .................... See 

GNAtemulator 
GNATmetric ... See GNATmetric 
GNATprove...... See GNATprove 
GNATstack ........ See GNATstack 
GNATtest ............ See GNATtest 
GPS ................ See GNAT Studio 
QGen ......................... See QGen 
SPARK Pro ......... See SPARK Pro 
Support and expertise .......... 78 
Tools and the software life 

cycle ................................ 49 
 
Babbage, Charles ...................... 30 
Buffer overrun .......................... 37 
Byron, (Lord) George Gordon ... 30 

  



AdaCore Technologies for Space Systems Software 

118 

C language ................................ 31 
Buffer overrun...................... 37 
Interfacing from Ada ............ 29 

C# language .............................. 31 
C++ language....................... 31, 35 

Buffer overrun...................... 37 
Interfacing from Ada ............ 29 

Capgemini Engineering ............. 40 
Cert run-time library ................. 60 
CodePeer .... 51, 73, 90, 91, 92, 93, 

94, 101, 102 
Common Weakness 

Enumeration (CWE) errors 
detected .................... 55, 74 

Early error detection ............ 73 
Support for ECSS Standards . 75 

Coding standard 
Enforcement by GNATcheck 66 

Common Criteria ....................... 37 
Common Weakness Enumeration 

(CWE) errors detected by 
CodePeer.............................. 74 

Common Weakness Enumeration 
(CWE) errors detected by 
SPARK Pro ............................ 55 

CWE compatibility............... 55, 74 
 
Data Validation ......................... 60 
DO-178C ........... 37, 52, 61, 94, 100 
 
Eclipse support.... See GNATbench 
ECSS-E-HB-40-01A ..................... 24 
ECSS-E-HB-40A .......................... 24 
ECSS-E-ST-40C 

Software delivery and 
acceptance process ......... 15 

Software design and 
implementation 
engineering process ........ 14 

Software maintenance process
 ........................................ 15 

Software management process
 ........................................ 14 

Software operation process . 15 
Software related systems 

requirements process ..... 13 
Software requirements and 

architecture engineering 
process ............................ 14 

Software validation process . 14 
Software verification process

 ........................................ 15 
ECSS-Q-HB-80-01A .................... 25 
ECSS-Q-HB-80-03A Rev.1 .......... 25 
ECSS-Q-HB-80-04A .................... 25 
ECSS-Q-ST-80C 

Software process assurance. 23 
Software product assurance 

programme implementation
 ........................................ 23 

Software product quality 
assurance ........................ 24 

Embedded run-time library ...... 60 
EN 50128..................... 37, 52, 100 
Encapsulation (software 

engineering principle) .......... 34 
European Cooperation for Space 

Standardization .................... 11 
European Space Agency ............ 11 
 
Failure Mode and Effects Analysis 

(FMEA) ................................. 25 
Fuzz testing ......................... 60, 76 
 
GNAT Dynamic Analysis Suite .. 51, 

76, 104, 105 
Support for ECSS Standards . 77 

GNAT Pro Ada ............. 51, 58, 100 
Support for ECSS Standards . 64 



Benjamin M. Brosgol & Jean-Paul Blanquart 

119 

GNAT Pro Ada tools 
Support for ECSS Standards . 72 

GNAT Pro Assurance 97, 100, 101, 
106 
Sustained branch See Sustained 

branch 
Traceability analysis service See 

Traceability (Source to 
Object) 

GNAT Pro Enterprise 
Run-Time Library options ..... 59 

GNAT Studio........................ 59, 61 
GNATbench ......................... 59, 63 
GNATcheck...... 38, 66, 67, 92, 101, 

102, 103, 104 
Coding standard enforcement

 ........................................ 66 
GNATcoverage .. 51, 77, 88, 89, 90, 

91, 93, 94, 102, 104, 105, 107 
GNATdashboard ...63, 99, 104, 107 
GNATemulator .......................... 71 
GNATmetric .........67, 99, 104, 107 
GNATprove ................. 40, 53, 101 
GNATstack .................. 68, 95, 101 
GNATstub .................................. 82 
GNATtest... 76, 88, 89, 90, 91, 104, 

105, 107 
GNU GCC technology ................ 59 
gprbuild ............................... 88, 91 
 
Hybrid verification .................... 46 
 
Ichbiah, Jean ............................. 30 
Input Data 

validation ............................. 60 
Inria ........................................... 40 
Integrated Development 

Environments (IDEs) ............. 61 
ISO 26262 .................................. 52 
 

Java language ...................... 31, 35 
 
Language Server Protocol (LSP) 63 
LEON2 ................................. 12, 65 
LEON3 ................................. 12, 65 
Libadalang ................................. 71 
Light run-time library .... 55, 59, 65 
Light-Tasking run-time library .. 60, 

65 
Liskov Substitution Principle (LSP)

 ............................................. 76 
Lovelace, Augusta Ada .............. 30 
 
Memory 

Fragmentation avoidance- ... 87 
Garbage collection ......... 28, 35 
Storage leakage .................... 70 
Usage verification .......... 68, 70 

Metrication (software) 
ECSS-Q-HB-80-04A ............... 25 
GNATmetric ... See GNATmetric 

MISRA-C (generated by QGen) 51, 
96 

Model-based engineering .. 51, See 
QGen 

 
Programming language (role in 

software design) .................. 27 
 
QEMU ....................................... 71 
QGen ..... 50, 51, 83, 86, 88, 92, 96, 

102, 103 
Support for ECSS standards . 53 
TQL-1 qualification ....... 52, 103 

Qualification evidence (DO-178C)
 ........................................... 101 

 
Rapita Systems Ltd. ................... 70 
Rate-Monotonic Analysis .......... 95 



AdaCore Technologies for Space Systems Software 

120 

Ravenscar tasking profile ... 28, 37, 
60, 95 

Ravenscar-Cert run-time library 60 
Reuse (software) 

Ada and safe reuse ............... 84 
ECSS-Q-HB-80-01A ............... 25 

 
Simulink® .................................. 51 
SPARK ........................................ 40 

Absence of run-time 
exceptions ....................... 54 

Data and control flow analysis
 ........................................ 54 

Generated by QGen ............. 51 
Information flow analysis ..... 54 
Static verification support .... 54 
Support for ECSS standards . 48 
Usage ................................... 40 

SPARK adoption 
Bronze level ......................... 44 
Gold level ............................. 45 
Platinum level ...................... 46 
Silver level ............................ 45 
Stone level ........................... 44 

SPARK Pro ... 40, 50, 53, 90, 91, 92, 
93, 95, 102, 108 
Support for ECSS Standards . 57 

Specialized needs annexes (in Ada 
standard) .............................. 29 

Stateflow® ................................. 51 
Static Verification 

Soundness ............................ 41 
Sustained branch ..61, 96, 97, 100, 

101, 106 
 

Taft, Tucker ............................... 30 
Technical debt .......................... 64 
Timing Verification .................... 70 
Tool Qualification Level (TQL) ... 52 
Traceability (source to object 

code) .................................... 94 
Traceability (Source to Object) . 61 
 
Validation process (software) 

Definition in ECSS-E-ST-40C . 14 
Verification process (software) 

Definition in ECSS-E-ST-40C . 15 
Version skew (prevention in Ada)

 ....................................... 84, 88 
 
WCET Analysis ........................... 70 
Workbench (WindRiver 

development environment) . 63 
 
Zero Footprint (ZFP) run-time 

library ............................. 55, 60 

 


	AdaCore-Tech-Space-Cover.pdf
	AdaCoreTechnologiesForSpace-V1_0-6x9-FinalFinal.pdf
	About the Authors
	Foreword
	Table of Contents
	1 Introduction
	1.1 ECSS-E-ST-40C: Space engineering / Software
	1.2 ECSS-Q-ST-80C: Space product assurance / Software product assurance
	1.3 ECSS Handbooks

	2 Programming Languages for Space Software
	2.1 Ada
	2.1.1 Ada language overview
	2.1.2 Ada language background
	2.1.3 Scalar ranges
	2.1.4 Contract-based programming
	2.1.5 Programming in the large
	2.1.6 Generic templates
	2.1.7 Object-Oriented Programming (OOP)
	2.1.8 Concurrent programming
	2.1.9 Systems programming
	2.1.10 Real-time programming
	2.1.11 High-integrity systems
	2.1.12 Enforcing a coding standard
	2.1.13 Ada and the ECSS Standards

	2.2 SPARK
	2.2.1 SPARK Basics
	2.2.2 Ease of Adoption: Levels of Adoption of Formal Methods
	2.2.2.1 Stone level: Valid SPARK
	2.2.2.2 Bronze level: Initialization and correct data flow
	2.2.2.3 Silver level: Absence of run-time errors
	2.2.2.4 Gold level: Proof of key integrity properties
	2.2.2.5 Platinum level: Full functional correctness

	2.2.3 Hybrid Verification
	2.2.4 SPARK and the ECSS Standards


	3 Tools for Space Software Development
	3.1 AdaCore Tools and the Software Life Cycle
	3.2 QGen Toolsuite for Model-Based Engineering
	3.2.1 QGen Capabilities
	3.2.2 QGen and the ECSS standards

	3.3 Static Verification: SPARK Pro
	3.3.1 Powerful Static Verification
	3.3.2 Minimal Run-Time Footprint
	3.3.3 CWE Compatibility
	3.3.4 SPARK Pro and the ECSS Standards

	3.4 GNAT Pro Ada Development Environments
	3.4.1 GNAT Pro Enterprise
	Run-Time Library Options
	Enhanced Data Validity Checking

	3.4.2 GNAT Pro Assurance
	3.4.2.1 Sustained Branches
	3.4.2.2 Source to Object Traceability

	3.4.3 GNAT Pro Integrated Development Environments (IDEs)
	3.4.3.1 GNAT Studio
	Tools
	Robust, Flexible and Extensible
	Easy to Learn, Easy to Use
	Remote Programming
	Support for Microsoft’s Language Server Protocol
	3.4.3.2 GNATbench - GNATbench
	3.4.3.3 GNATdashboard

	3.4.4 GNAT Pro and the ECSS Standards

	3.5 GNAT Pro Ada Tools for Static Analysis and Target Emulation
	3.5.1 GNATcheck
	3.5.2 GNATmetric
	3.5.3 GNATstack
	3.5.4 Time and Space Analysis
	3.5.4.1 Timing Verification
	3.5.4.2 Memory Usage Verification

	3.5.5 Semantic Analysis Tools—Libadalang
	3.5.6 GNATemulator
	3.5.7 GNAT Pro Ada Tools and the ECSS Standards

	3.6 Static Verification: CodePeer
	3.6.1 Early Error Detection
	3.6.2 CWE Compatibility
	3.6.3 CodePeer and the ECSS Standards

	3.7 GNAT Dynamic Analysis Suite
	3.7.1 GNATtest
	3.7.2 GNATcoverage
	3.7.3 GNAT Dynamic Analysis Suite and the ECSS Standards

	3.8 Support and Expertise

	4 Compliance with ECSS-E-ST-40C
	4.1 Software requirements and architecture engineering process {§5.4}
	4.1.1 Software architecture design {§5.4.3}
	4.1.1.1 Transformation of software requirements into a software architecture {§5.4.3.1}
	4.1.1.2 Software design method {§5.4.3.2}
	4.1.1.3 Selection of a computational model for real-time software {§5.4.3.3}
	4.1.1.4 Description of software behavior {§5.4.3.4}
	4.1.1.5 Development and documentation of the software interfaces {§5.4.3.5}
	4.1.1.6 Definition of methods and tools for software intended for reuse {§5.4.3.6}


	4.2 Software design and implementation engineering process {§5.5}
	4.2.1 Design of software items {§5.5.2}
	4.2.1.1 Detailed design of each software component {§5.5.2.1}
	4.2.1.2 Development and documentation of the software interfaces detailed design {§5.5.2.2}
	4.2.1.3 Production of the detailed design model {§5.5.2.3}
	4.2.1.4 Software detail design method {§5.5.2.4}
	4.2.1.5 Detailed design of real-time software {§5.5.2.5}
	4.2.1.6 Utilization of description techniques for the software behaviour {§5.5.2.6}

	4.2.2 Coding and testing {§5.5.3}
	4.2.2.1 Development and documentation of the software units {§5.5.3.1}
	4.2.2.2 Software unit testing {§5.5.3.2}

	4.2.3 Integration {§5.5.4}
	4.2.3.1 Software units and software component integration and testing {§5.5.4.2}


	4.3 Software validation process {§5.6}
	4.3.1 Validation activities with respect to the technical specification {§5.6.3}
	4.3.1.1 Development and documentation of a software validation specification with respect to the technical specification {§5.6.3.1}

	4.3.2 Validation activities with respect to the requirements baseline {§5.6.4}
	4.3.2.1 Development and documentation of a software validation specification with respect to the requirements baseline {§5.6.4.1}


	4.4 Software delivery and acceptance process {§5.7}
	4.4.1 Software acceptance {§5.7.3}
	4.4.1.1 Executable code generation and installation {§5.7.3.3}


	4.5 Software verification process {§5.8}
	4.5.1 Verification activities {§5.8.3}
	4.5.1.1 Verification of code {§5.8.3.5}
	4.5.1.2 Verification of software unit testing (plan and results) {§5.8.3.6}
	4.5.1.3 Schedulability analysis for real-time software {§5.8.3.11}
	4.5.1.4 Behaviour modelling verification {§5.8.3.13}


	4.6 Software operation process {§5.9}
	4.6.1 Process implementation {§5.9.2}
	4.6.1.1 Problem handling procedures definition {§5.9.2.3}

	4.6.2 Software operation support {§5.9.4}
	4.6.2.1 Problem handling {§5.9.4.2}


	4.7 Software maintenance process {§5.10}
	4.7.1 Process implementation {§5.10.2}
	4.7.1.1 Long term maintenance for flight software {§5.10.2.2}

	4.7.2 Modification implementation {§5.10.4}
	4.7.2.1 Invoking of software engineering processes for modification implementation {§5.10.4.3}



	5 Compliance with ECSS-Q-ST-80C
	5.1 Software product assurance programme implementation {§5}
	5.1.1 Software product assurance programme management {§5.2}
	5.1.1.1 Quality requirements and quality models {§5.2.7}

	5.1.2 Tools and supporting environment {§5.6}
	5.1.2.1 Methods and tools {§5.6.1}
	5.1.2.2 Development environment selection {§5.6.2}


	5.2 Software process assurance {§6}
	5.2.1 Requirements applicable to all software engineering processes {§6.2}
	5.2.1.1 Handling of critical software {§6.2.3}
	5.2.1.2 Automatic code generation {§6.2.8}

	5.2.2 Requirements applicable to individual software engineering processes or activities {§6.3}
	5.2.2.1 Coding {§6.3.4}
	5.2.2.2 Testing and validation {§6.3.5}
	5.2.2.3 Maintenance {§6.3.8}


	5.3 Software product quality assurance {§7}
	5.3.1 Product quality objectives and metrication {§7.1}
	5.3.1.1 Assurance activities for product quality requirements {§7.1.3}
	5.3.1.2 Basic metrics {§7.1.5}

	5.3.2 Product quality requirements {§7.2}
	5.3.2.1 Design and related documentation {§7.2.2}
	5.3.2.2 Test and validation documentation {§7.2.3}



	6 Abbreviations
	7 References
	Index


