

 i

AdaCore Technologies for

Cyber Security

Roderick Chapman and Yannick Moy
Version 1.0

May 2018

iii

About the Authors

Roderick Chapman

Dr. Roderick Chapman is an independent consulting engineer with more
than 20 years of experience in the development and certification of
critical software. Following graduation from the University of York in the
U.K., Rod joined Praxis (now Altran UK), and contributed to many of the
company’s keynote projects, rising to the role of principal engineer for
software process and design. He also led the programming language and
verification research group at Praxis, leading the technical development,
training, sales and marketing of the SPARK product line. Rod is a regular
speaker at international conferences, and he is widely recognized as a
leading authority on high integrity software development, programming
language design, and software verification tools. In February 2015, Rod
was appointed Honorary Visiting Professor in the Department of
Computer Science at the University of York.

Yannick Moy

Dr. Yannick Moy is a Senior Software Engineer at AdaCore and co-
director of the ProofInUse joint laboratory with INRIA (France). At
AdaCore, he works on the software source code analyzers CodePeer and
SPARK Pro, which are tools that are focused on detecting bugs or
verifying safety/security properties. Yannick has led the development of
the SPARK 2014 technology, which he has presented in articles, at
conferences, in courses and in blogs (blog.adacore.com). Yannick
previously worked on source code analyzers at PolySpace (now The
MathWorks) and at the Université Paris-Sud.

v

Foreword

Building secure software is a challenging task. It seems that almost every
week we read the news about yet another computer system that has
failed in some way in the face of malicious or accidental misuse. “Cyber
Security” is a wide-ranging field, spanning human factors, hardware
design, sociology, and legal issues, in addition to software engineering.
This book summarizes the contribution that the Ada and SPARK languages
and AdaCore’s tools can make to this final area—how to develop and
verify correct and secure software.

Unlike AdaCore’s previous guides to airborne and rail system software,
this book does not follow the structure or requirements of a particular
standard—in part because there is no widely used security standard that
is required in practice. Instead it offers a more general treatment of the
problem, but also includes an analysis of how AdaCore’s technologies
help address the weaknesses identified in the MITRE Corporation’s
Common Weakness Enumeration (CWE). The content is based on the
authors’ many years of practical experience in the development of
high-end secure systems, the design of the Ada and SPARK programming
languages, and research into program verification tools.

The book is intended for readers who are involved with software at any
level (developers, project managers, procurement personnel) and who
would like to learn how currently available technology can help address
some of the most serious challenges associated with software and security.
Our goal is to provide useful guidance both to those who are using other
languages and are interested in the benefits that Ada offers, and to
existing Ada users who might be confronted with new security
requirements.

Please contact us if you have questions about any particular kind of
software vulnerability, or how Ada, SPARK and their associated
development and verification tools can help.

vi

The authors gratefully acknowledge the assistance of Ben Brosgol
(AdaCore) for his review of and contributions to the material presented in
this document.

Roderick Chapman
Protean Code Limited
Bath, U.K.
May 2018

Yannick Moy
AdaCore
Paris, France
May 2018

info@adacore.com
www.adacore.com

 7

AdaCore Technologies for Cyber Security

Contents
About the Authors .. iii

Foreword .. v

1. Introduction ... 9

2. The Challenge of Secure Software ... 13

2.1. Why is it so hard? .. 13

2.2. Standards and Guidance... 16

2.3. The Market, Lemons, and Regulators ... 17

2.4. A Manifesto for Secure Software... 18

3. Languages, Tools and Technologies Overview 25

3.1. Ada ... 25

3.2. SPARK .. 31

3.3. GNAT Pro Enterprise... 33

3.4. GNAT Pro Assurance ... 34

3.5. Static Verification - Basic Tools ... 35

3.6. Static Verification - CodePeer .. 40

3.7. Static Verification - SPARK Pro ... 41

3.8. Dynamic Analysis Tools ... 42

3.9. Integrated Development Environments (IDEs) 44

4. Security Vulnerabilities and Their Mitigation 47

4.1. Data Validation ... 47

4.2. Native Code Injection ... 50

4.3. Denial of Service ... 51

4.4. Information Leak .. 53

4.5. Improper use of API .. 55

4.6. Weak or No Crypto.. 57

AdaCore Technologies for Cyber Security

8

4.7. Failure to erase sensitive data .. 59

4.8. Authentication and Authorization .. 60

5. Industrial Scenario Examples .. 63

5.1. Overview ... 63

5.2. Scenario 1: Identifying and repairing security vulnerabilities in
existing Ada codebases ... 63

5.3. Scenario 2: Ada software development practices for increasing
security ... 65

5.4. Scenario 3: Secure Design through SPARK 67

5.5. Scenario 4: Support for Mixed Criticality Systems 68

5.6. Scenario 5: Introducing Ada in a C project 69

6. Summing Up ... 71

A. CWE Mapping ... 73

B. Handling SQL Injection in Ada and SPARK 79

References .. 85

Index .. 89

 9

1. Introduction
It seems that every week’s news brings a story about yet another high-
profile failure of a computer system owing to a security issue. These
problems have a significant impact on the public, businesses and
government alike, affecting the reputation and share price of major
organizations. In the most critical industry sectors, company directors face
liability and governance concerns in an increasingly litigated environment.

In general, the “security” of computer systems can be characterized as a
weakest-link scenario where attackers need only find and exploit a single
weakness in any part of a system, including its hardware, software,
operational environment, people, or operating procedures. Many attacks
rely on social engineering, insiders, human factors, accidental misuse, and
so on. These issues are important aspects of secure system design, but are
not the focus of this document. Readers are referred to Ross Anderson’s
Security Engineering book [1], the US CERT website [2], or the recently
established Cyber Security Body of Knowledge (CyBOK) project [3] for
an overview of these wider issues.

Instead, this document focuses on a common attack vector—that of
insufficiently secure software—and what can be done about it. More
specifically, this book concentrates on the contribution that the Ada and
SPARK languages and their associated tools can make. Ada was
designed from the outset to support the needs of “high assurance”
systems; its strengths in this area are now becoming more widely
recognized as the operational environment has become more malicious,
and hence less tolerant of defective software. From the outset, Ada was
designed to emphasize readability, understanding, and verification.
Many pernicious defects that plague other languages are absent from
Ada. For example:

• Ada’s syntax prevents several problems, including confusion of
assignment and comparison, the “dangling else” problem, and the
unintentional use of the null statement.

• Ada does not require the explicit use of “pointers” for low-level
programming, parameter passing, or the use of array types. As

AdaCore Technologies for Cyber Security

10

such, a huge number of “pointer-related” defects are entirely
avoided.

• Ada’s strong typing prevents a host of issues, including assignment
of incompatible values to one another, confusion over “promotion”
of types, and so on.

• Ada has high-level features for concurrent programming, freeing
the programmer from low-level use of “locks” or semaphores and
threads.

SPARK, a formally analyzable subset of Ada, inherits all of Ada’s
strengths and offers additional advantages for high-assurance software.
These include the ability to mathematically prove program properties
such as the correct uses of data, the absence of run-time errors, and even
functional correctness with respect to a formally specified set of
requirements.

Reader’s Guide
Chapter 2 is recommended for all readers. It covers why producing
secure software is such a challenge, and thus motivates our technical
approach.

Chapter 3 covers the Ada and SPARK languages and then goes on to
describe AdaCore’s tools, with a focus on how they can support an
evidence-based assurance case for security. Readers already familiar
with Ada can probably skip section 3.1, while those familiar with
AdaCore’s tools as well can go straight on to chapter 4.

Chapter 4 presents a selection of common “vulnerabilities” in software,
and describes how Ada and AdaCore’s tools can address these issues.
This selection is a very small subset of all such issues, but have been
chosen since they present an opportunity to discuss areas where Ada and
SPARK have a particular contribution to make.

Chapter 5 presents a number of industrial scenarios, from purely
retrospective analysis of legacy systems, to new developments, to systems
that involve mixed criticality and development technologies. These are
intended as illustrations of real-world situations; suggestions for
additional examples are welcome and will be considered for inclusion in
future editions of this book.

Roderick Chapman and Yannick Moy

11

Chapter 6 forms something of a “call to arms” for software developers.

Finally, two appendices cover the specifics of mapping Ada language
and tool capabilities to the CWE enumeration, and a worked example of
how the pernicious “SQL Injection” style of vulnerability can be handled
with great panache in Ada and SPARK.

 13

2. The Challenge of Secure
Software
This chapter considers why building and operating secure computer
systems appears to be so difficult, as evidenced by the frequency and
magnitude of attacks reported in the media. Having set out the “bad
news”, this chapter closes with some principles that can be applied and
justify AdaCore’s position and technical approach.

2.1. Why is it so hard?
Security is a system-level property that is commonly defined as the
protection of assets against threats that may compromise confidentiality,
integrity, or availability. Thus, security means protection against
unauthorized access to, corruption of, and denial of access to the assets.
In a cyber system, software plays a key role in whether and how these
requirements are met, and it does this in two ways:

• Providing the relevant security functionality (for example,
cryptographic functions), and

• For the rest of the software, avoiding vulnerabilities that, if triggered,
could violate the confidentiality, integrity and/or availability
requirements.

In short, security entails demonstrating, with a level of confidence
commensurate with the value of the assets, that the security functions do
what they are supposed to do, and the rest of the system cannot do
anything to place the assets at risk.

The development of secure software sets particular challenges that place
it beyond a mere “quality control” problem, though. The following sub-
sections expand on these challenges to set the scene and justify a rational
technical approach.

AdaCore Technologies for Cyber Security

14

The Malicious Environment
AdaCore customers have always been involved with building ultra-
reliable safety-critical systems. In this world, the engineers usually have
strict control of the software’s operational environment, or the environment
may be assumed to be benign or well-behaved in some way.

This is no longer the case. Software is often connected to open networks
where benign behavior cannot be assumed. In short, software must be
built to withstand and continue to operate correctly in an overtly malicious
environment.

Ross Anderson and Roger Needham coined the phrase “Programming
Satan’s Computer” to characterize this challenge. Satan’s computer
doesn’t fail randomly either—it fails intelligently, in the worst-possible way,
at the worst-possible time, and it can fail in ways that you don’t even know
about (yet...).

Asymmetry of Capability
It gets worse. The “bad guys” (attackers, malicious actors) are smarter
than you, have more money than you, and more time than you.
Furthermore, their capabilities don’t grow in some linear, predictable
fashion. A public “leak” of a government’s arsenal of hacking tools can
put nation-state level capability within reach of anyone at all in a matter
of days, and these capabilities become commoditized very rapidly.

Asymmetry of Effort
The software developer is responsible for preventing every possible
defect that might lead to any sort of security exploit or failure of the
system. An attacker, on the other hand, has to find just one defect to
mount a successful attack.

Asymmetry of Knowledge
Computer security (and, in particular, its sub-genre cryptography) is a
strange discipline, since the total knowledge of the field is far greater
than what is published in the scientific literature. In short, various groups
(including “attackers”, and certain notable government agencies) know
things that typical developers don’t. Examples include the RSA
cryptosystem in the early 1970’s, Differential Power Analysis pre-1999,

Roderick Chapman and Yannick Moy

15

and (until very recently) the so-called “Spectre” and “Meltdown”
problems in modern CPUs.

This sets the software developer with a particular challenge: to defend
software against attacks that the developer doesn’t even know about.

Asymmetry of Impact
In software, it is very difficult to predict the relationship between a
particular defect (or class of defects) and its potential impact on the
system’s behavior, the system’s customers/users, or the developing
organization’s business. The impact of security issues can range from
negligible to those that destroy the reputation and share-price of a
company overnight. Given that attacks exist that developers don’t know
about, trying to decide whether a particular defect is “high impact” (and
therefore worthy of being fixed) can be almost impossible.

The Limits of Test
In the 1972 Turing Award lecture, Edsger Dijkstra famously pointed out
that “program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence.”

Given an arbitrarily intelligent and motivated attacker, developers of
secure systems must assume that systems will be attacked with input data
and in states that have never been tested. For any non-trivial software
system, any claim of security solely based on “lots of testing” must be
regarded with extreme skepticism. Even a well-organized and
independent Penetration Testing activity offers no guarantee of finding
“all the bugs”.

The Limits of Talent
Some projects like to claim that their software quality is OK “because we
only hire really good people...” or something like that. Such claims do not
stand up to the most cursory inspection. Data from the Personal Software
Process / Team Software Process (PSP/TSP) group at the US Software
Engineering Institute show that even the best performing programmers
inject around 20 defects per 1000 logical lines of code in their work.
Truly critical systems might aim for 0.2 defect per kloc delivered to the
customer—a factor of 100 times better, or equivalent to those

AdaCore Technologies for Cyber Security

16

programmers preventing or finding and fixing 99 out of every 100
defects.

It is also obvious to note that this approach does not scale with team
size—projects need technologies and disciplines that allow all developers
to produce work of the required quality, instead of relying on a few
“hero programmers” to save the day (or the project, or the company...)

The “First Release” Problem
There is lots of advice that tells us to “patch” our software regularly to
make sure we’ve got the latest (and presumably least-buggy) version.
This is reasonable advice, but can be something of a challenge to
implement with appropriate levels of authentication and confidentiality,
particularly for small embedded devices.

For a developer, the ability to “patch” should not be an excuse to ship
defective software to the customer, thinking that it can be patched later if
defects are reported. The problem is that some defects are of such
dramatic impact, and the damage is done so fast, that there is no time or
opportunity for any corrective action. As an example, consider the flight
control software for an aerodynamically unstable fighter aircraft. A
developer approaching the test pilot before first flight and saying “Don’t
worry about the bugs, we’ll ship you a patch...” would soon be looking for
a new career.

While “improve and patch” is a reasonable model for many software
vendors, some software just has to be fit-for-purpose at the point of its
first release. Additionally, a demonstration of fitness for purpose might
need to be submitted to an independent authority or regulator. This
problem requires a fundamental shift in engineering mind-set: one that is
embodied in Ada itself and many of AdaCore’s key technologies.

2.2. Standards and Guidance

“The nice thing about standards is that you have so
many to choose from.”

– Andrew S Tanenbaum

Roderick Chapman and Yannick Moy

17

Given the perceived scale and threat from “Cyber Security”, it is no
surprise that a great deal has been written about the problem, and what
to do about it.

The European Cyber Security Organisation has published an “Overview
of existing Cybersecurity standards and certification schemes” [4]. The
document (which is just a survey) is nearly 200 pages, and lists something
like 107 different guidance documents and/or standards for system
development, and goes on to cite nine schemes for certification of
professional skills.

Even within a particular application domain or industry sector, there can
still be an overwhelming volume of guidance and “standards” that
appear to apply. Standards also vary widely in terms of the vigor with
which they are enforced (from effectively mandatory to entirely optional)
and their technical demands (from highly specific and onerous to general
and lax).

There have also been some higher-level attempts to look at the problem
which merit some attention. Examples include the US National Academy of
Sciences report “Software for Dependable Systems: Sufficient Evidence?”
[5] and the US National Institute for Standards and Technology (NIST)
report “Dramatically Reducing Software Vulnerabilities” [6]. The NIST
report identifies five approaches that have the potential to make a
dramatic impact on software quality, including the use of formal methods,
which (as will be shown later) aligns closely with AdaCore’s capabilities
and technologies.

2.3. The Market, Lemons, and Regulators
For many years, there was hope that “the market” would self-correct and
produce a rational approach to the development of secure software. This
has not happened. Firstly, the development of “secure” software has been
seen as something of a specialist “niche”, but development disciplines and
approaches have been dominated by the larger market for “not so
secure” software where time-to-market and “features” take precedence
over quality. Secondly, for a buyer of software it is almost impossible to
tell if some specific product is any more or less secure than any other
product, since proprietary software is often cloaked in secrecy (“security
by obscurity”) and restricted by prohibitive licensing terms. Economists call

AdaCore Technologies for Cyber Security

18

this “A market for Lemons” after similar observations were made about
the market for used cars.

In a significant change of stance, the UK’s National Cyber Security
Strategy 2016-2021 (NCSS) explicitly notes:

“But the combination of market forces and government encouragement
has not been sufficient in itself to secure our long-term interests in
cyberspace at the pace required. Too many networks, including in
critical sectors, are still insecure. The market is not valuing, and
therefore not managing, cyber risk correctly.” [7 section 4.13]

The NCSS goes on to promise more active “intervention” in critical areas.
It is not yet clear what form these interventions will take, but the challenge
is clear: system and software developers must be ready to improve,
justify and defend their practices before their national regulator (or
worse, their insurer or a court of law) decides to step in.

2.4. A Manifesto for Secure Software
Although this picture may seem bleak, progress is possible.

AdaCore is primarily involved with the design of software development
and verification tools, but these are not the sole route to improvement.
Great engineering involves an interplay between technologies (tool,
languages etc.), people (their skills, disciplines, attitudes), and engineering
processes.

These three elements impact one another—for example, the introduction
of a new static verification tool on a project might mean that later code
review processes can be modified, and that engineers change their
disciplines and “coding style” as they learn how to get best results from
the tool.

This section lays out some basic principles for high-integrity software
engineering that could be applied to any project, regardless of the
standards, industry, or regulatory environment that might apply.
Chapter 3 goes into more details, showing how AdaCore’s languages and
tool technologies contribute to meeting these goals.

Roderick Chapman and Yannick Moy

19

Requirements
Arguably the most important aspect of producing secure and reliable
software, and also perhaps the most difficult to achieve, is to specify a
complete, consistent, and unambiguous set of requirements that the
software must meet, and to do so without overly constraining the solution.
The requirements should specify the “what”, but not the “how”, and should
be expressed in a way that facilitates verifying whether they are met.
Software standards such as DO-178C (airborne software) and CENELEC
EN 50128 (railway control and protection systems) recognize the critical
role of the requirements specification in the software life cycle. Typically
derived from overall system requirements, software requirements are
most easily visualized as comprising several tiers:

• High-level requirements that relate to overall functionality,
performance, capacity /response time, interface issues, usability,
and safety and/or security. These requirements drive the design
of the software architecture.

• Low-level requirements that emerge from the software design.
These requirements are defined for each component and in
particular establish what each code module (subprogram, in Ada
parlance) assumes when it is invoked and what it promises to
deliver when it returns.

A language such as Ada or SPARK can serve to specify requirements at
both levels, in particular through the various forms of contracts (pre- and
postconditions, type invariants). The developer can thus directly embed
requirements in the source code and verify compliance either statically
with SPARK proofs or dynamically with Ada run-time checks. SPARK also
has the advantage of an unambiguous notation that can formalize
requirements such as the information flow between components, key
integrity properties for security and/or safety, and the detailed semantics
of what a subprogram computes.

Security requirements should be formulated at the outset; issues such as
the usage environment (standalone with trusted operations personnel
versus networked and accessible from unvetted parties) have an obvious
effect on the design and the relevant assurance level. The security-related
interactions between the system and its environment need to be defined,
the threats identified, and countermeasures specified. (An example of

AdaCore Technologies for Cyber Security

20

how security-related issues are being assessed in the commercial avionics
industry may be found in DO-326, Airworthiness Security Process
Specification.)

Security-related requirements established at the system level flow down
through the software life cycle into high-level requirements (for example
the strength of a cryptography function) and ultimately into low-level
requirements and then source code. The chosen programming language(s)
and tools have a significant effect on the ease or difficulty of
demonstrating that the resulting code in fact correctly implements the
requirements. As will be explained throughout this book, the Ada and
SPARK languages together with AdaCore's development and verification
tools offer particular advantages.

Architecture
A system’s architecture entails its high-level design as components with
well-defined interfaces and interrelationships. A good architecture
provides a solid framework with effective modularization and robustness
in the presence of future enhancements and requirements changes.
Architecture covers issues such as redundancy, the provision of fail-safe
states or modes, mitigation of security concerns by physical means (e.g.
hardware design), and the separation of critical from non-critical
components. The last of these also allows the most critical software
components to be as small as possible, which helps to control cost.

At a more technical level, strong architecture and separation means that
the most appropriate languages, tools and technologies can be used
where they are best suited. For example, in the MULTOS CA system,
developed by Praxis in the UK [8], the security kernel of the system was
implemented and verified using the SPARK toolset, while the GUI was
implemented in C++, based on a deliberate and strict separation of
security concerns.

Evidence-based Assurance
The fitness-for-purpose of a system should be justified by a logical
argument which is supported by evidence from a wide range of sources.
The evidence might be based on analysis of design artefacts, observation
including all forms of testing, metrics, and both direct and indirect
evidence of process compliance.

Roderick Chapman and Yannick Moy

21

Verification-Driven Development
Given a need for evidence, a development approach should be chosen
that generates the evidence as a natural by-product. This can be
summarized as “Security should be built in, not bolted on.” This idea can
be seen as a generalization of “Test-Driven Development” to cover all the
forms of verification activity that are available.

In line with the Agile manifesto, verification tasks should be automated as
far as possible, and embodied in a continuous integration pipeline.

Analysis over Observation

“Talk is Cheap...Show me the Code.”
 – Linus Torvalds

Verification activities can be categorized as “static” or “dynamic.”

Static Verification (also known as “Static Analysis”) concentrates on
analysis of development artefacts (e.g. designs, models, source code)
without actually running the system. Static analyses can be performed by
humans (for example, personal and peer review), or automated by
machines (for example, use of a tool like CodePeer or SPARK Pro.)

Dynamic Verification constitutes all activities that involve observation of
the system, in either a simulated or real-world environment, so covers all
forms of “testing.”

As noted earlier, testing of security-critical systems has severe limitations.
In short, the results are only as good as the test data that have been
exercised, and that will always a tiny fraction of the possible system
states and inputs. Further, it must be assumed that attackers will find
“tests” that the system’s developers haven’t tried.

In theory, a static verification activity should yield results that are true for
all possible states and inputs, and therefore offers a qualitatively different
level of assurance from testing alone. This tool property is referred to as
“Soundness”, meaning that the results of a static verification really are
trustworthy. The concept is best illustrated with a simple example. Imagine
submitting a program’s source code to a tool, asking the question “Are
there any defects?” (for example, reads of uninitialized variables) and
receiving a report in response. If the tool is Sound, then these are the

AdaCore Technologies for Cyber Security

22

only such defects; if the tool is Unsound then the code may have defects
that were not reported. Phrased differently: if a Sound tool reports that
the program has no defects, then this conclusion can be trusted. If an
Unsound tool reports that the program has no defects, then it is still
possible that unreported defects are present.

The Sound tool offers a more desirable result than the Unsound tool, since
it provides a higher degree of confidence and requires less testing and
re-work later.

For these reasons, a verification approach that emphasizes the use of
sound, automated and static verification is recommended.

But...as always, there is no “free lunch.” It turns out that Soundness in static
verification is rather difficult to achieve, for the reasons set out in the next
sub-section. And all tools, whether Sound or Unsound, run the risk of
generating “false alarms”: reporting a potential defect that in fact is not
a problem. An ideal tool that is both Sound (reporting all defects) and
precise (not reporting any non-defects) is not achievable; in practice a
trade-off must be maintained. For example, first applying an Unsound
but precise tool to analyze legacy code and correct the reported defects,
and then using a Sound tool to identify the remaining defects.

Unambiguous Notation
To analyze the meaning (and therefore the presence or absence of
important defects) of a program successfully, a tool needs to know exactly
what a program means. This seems obvious, but turns out to be rather
difficult to achieve with most of the popular and practical programming
languages.

The problem is ambiguity in programming languages—there are features
or scenarios where the meaning of a program is said to be undefined or
unspecified by the definition of the language. This is easy for a compiler
to resolve—it just chooses one of a range of options and carries on—but
is something of a disaster for static verification tools. If a verification tool
has to “guess” the meaning of an undefined behavior in a program, then
the results can be Unsound.

Roderick Chapman and Yannick Moy

23

AdaCore’s approach is to achieve Soundness in static verification as far
as is possible, and with respect to a reasonable and practical set of
assumptions.

In the interest of run-time performance the Ada language has provision
for unspecified behavior and compiler-dependent choices. For example,
the order of evaluation of sub-expressions inside an expression is
unspecified, which can lead to different results depending on the order
chosen if these sub-expressions have side-effects. In particular, the
association of additions in an expression A + B + C is compiler
dependent, which can lead to different results depending on the order
chosen if one of these choices leads to an integer overflow. For each of
these, the CodePeer static analyzer makes and documents its choices, so
that they are as close as possible to the choices made in general, and in
particular in the GNAT compiler. But it cannot guarantee that these
coincide with the choices made by a specific compiler version with a
specific host and target configuration, so these choices should be
inspected if they could be relevant for the static analysis.

The SPARK language and toolset set a high-water mark in this regard.
Soundness is achieved through a combination of language subsetting,
additional language rules, and analyses. SPARK can also be thought of as
a fully Formal language owing to its unambiguous semantics.

 25

3. Languages, Tools and
Technologies Overview
This chapter summarizes the Ada and SPARK languages, as well as
AdaCore’s tools and technologies, and highlights their contributions to
system security.

3.1. Ada
Ada is a modern programming language designed for large, long-lived
applications – and embedded systems in particular – where reliability,
maintainability, and efficiency are essential. It was originally developed
in the early 1980s (this version is generally known as Ada 83) by a team
led by Jean Ichbiah at CII-Honeywell-Bull in France. The language was
revised and enhanced in an upward-compatible fashion in the early
1990s, under the leadership of Tucker Taft from Intermetrics in the U.S.
The resulting language, Ada 95, was the first internationally standardized
(ISO) object-oriented language. Under the auspices of ISO, a further
(minor) revision was completed as an amendment to the standard; this
version of the language is known as Ada 2005. Additional features
(including support for contract-based programming in the form of
subprogram pre- and postconditions and type invariants) were added in
the most recent version of the language standard, Ada 2012 (see
[9,10,11] for information about Ada).

The name “Ada” is not an acronym; it was chosen in honor of Augusta
Ada Lovelace (1815-1852), a mathematician who is sometimes regarded
as the world’s first programmer because of her work with Charles
Babbage. She was also the daughter of the poet Lord Byron.

Ada is seeing significant usage worldwide in high-integrity / safety-
critical / high-security domains including commercial and military aircraft
avionics, air traffic control, space applications, railroad systems, and
medical devices. With its embodiment of modern software engineering
principles Ada is an excellent teaching language for both introductory
and advanced computer science courses, and it has been the subject of

AdaCore Technologies for Cyber Security

26

significant university research especially in the area of real-time
technologies.

AdaCore has a long history and close connection with the Ada
programming language. Company members worked on the original
Ada 83 design and review and played key roles in the Ada 95 project
as well as the subsequent revisions. The initial GNAT compiler was
essential to the growth of Ada 95; it was delivered at the time of the
language’s standardization, thus guaranteeing that users would have a
quality implementation for transitioning to Ada 95 from Ada 83 or other
languages.

Language Overview
Ada is multi-faceted. From one perspective it is a classical stack-based
general-purpose language, not tied to any specific development
methodology. It has a simple syntax, structured control statements,
flexible data composition facilities, strong type checking, traditional
features for code modularization (“subprograms”), and a mechanism for
detecting and responding to exceptional run-time conditions (“exception
handling”).

But it also includes much more:

Scalar ranges
Unlike languages based on C (such as C++, Java, and C#), Ada allows
the programmer to simply and explicitly specify the range of values that
are permitted for variables of scalar types (integer, floating-point, fixed-
point, and enumeration types). The attempted assignment of an out-of-
range value causes a run-time error. The ability to specify range
constraints makes programmer intent explicit and makes it easier to
detect a major source of coding and user input errors. It also provides
useful information to static analysis tools and facilitates automated proofs
of program properties.

Here’s an example of an integer scalar range:

Roderick Chapman and Yannick Moy

27

Score : Integer range 1..100;
N : Integer;
...
Score := N;
-- A run-time check verifies that N is within the range 1..100
-- If this check fails, a Constraint_Error exception is raised

Contract-based programming
Ada 2012 allows extending a subprogram specification or a
type/subtype declaration with a contract (a Boolean assertion).
Subprogram contracts take the form of preconditions and postconditions.
Through contracts the developer can formalize the intended behavior of
the application, and can verify this behavior by testing, static analysis or
formal proof.

Here’s a skeletal example that illustrates contact-based programming; a
Table object is a fixed-length container for distinct Float values.

package Table_Pkg is
 type Table is private; -- Encapsulated type

 function Is_Full (T : in Table) return Boolean;
 function Contains (T : in Table;
 Item : in Float) return Boolean;

 procedure Insert (T : in out Table; Item: in Float)
 with Pre => not Is_Full(T) and not Contains(T, Item),
 Post => Contains(T, Item);

 procedure Remove (T : in out Table; Item: out Float);
 with Pre => Contains(T, Item),
 Post => not Contains(T, Item);
 ...
private
 ... -- Full declaration of Table
end Table_Pkg;

AdaCore Technologies for Cyber Security

28

A compiler option controls whether the pre- and post-conditions are
checked at run time. If checks are enabled, a failure raises the
Assertion_Error exception.

Ada 2012 goes further still, allowing type invariants and subtype
predicates to specify precisely what is and isn’t valid for any particular
(sub)type, including composite types such as records and arrays. For
example, one can easily specify that field Max_A in the Launching_Pad
structure below is the maximal value of angle allowed given the distance
D to the center of the launching pad and the height H of the rocket, with
the guarantee that automatic run-time checks will be inserted by the
compiler to verify this predicate as well as constraints on the individual
fields:

type Launching_Pad is record
 D, H : Length;
 Max_A : Angle;
end record
 with Predicate => Angle (Arctan (H, D)) <= Max_A;

Programming in the large

The original Ada 83 design introduced the package construct, a feature
that supports encapsulation (“information hiding”) and modularization,
and which allows the developer to control the namespace that is
accessible within a given compilation unit. Ada 95 introduced the concept
of “child units,” adding considerable flexibility and easing the design of
very large systems. Ada 2005 extended the language’s modularization
facilities by allowing mutual references between package specifications,
thus making it easier to interface with languages such as Java.

Generic templates
A key to reusable components is a mechanism for parameterizing modules
with respect to data types and other program entities, for example a
stack package for an arbitrary element type. Ada meets this requirement
through a facility known as “generics”; since the parameterization is done
at compile time, run-time performance is not penalized.

Roderick Chapman and Yannick Moy

29

Object-Oriented Programming (OOP)
Ada 83 was object-based, allowing the partitioning of a system into
modules (packages) corresponding to abstract data types or abstract
objects. Full OOP support was not provided since, first, it seemed not to
be required in the real-time domain that was Ada’s primary target, and,
second, the apparent need for automatic garbage collection in an OO
language would have interfered with predictable and efficient
performance.

However, large real-time systems often have components such as GUIs
that do not have real-time constraints and that could be most effectively
developed using OOP features. In part for this reason, Ada 95 added
comprehensive support for OOP, through its “tagged type” facility:
classes, polymorphism, inheritance, and dynamic binding. These features
do not require automatic garbage collection; instead, definitional
features introduced by Ada 95 allow the developer to supply type-
specific storage reclamation operations (“finalization”). Ada 2005
brought additional OOP features including Java-like interfaces and
traditional obj.op(...) operation invocation notation.

Ada is methodologically neutral and does not impose a “distributed
overhead” for OOP. If an application does not need OOP, then the OOP
features do not have to be used, and there is no run-time penalty.

See [11] or [12] for more details.

Concurrent programming
Ada supplies a structured, high-level facility for concurrency. The unit of
concurrency is a program entity known as a “task.” Tasks can communicate
implicitly via shared data or explicitly via a synchronous control
mechanism known as the rendezvous. A shared data item can be defined
abstractly as a “protected object” (a feature introduced in Ada 95), with
operations executed under mutual exclusion when invoked from multiple
tasks. Asynchronous task interactions are also supported, specifically
timeouts and task termination. Such asynchronous behavior is deferred
during certain operations, to prevent the possibility of leaving shared
data in an inconsistent state. Mechanisms designed to help take
advantage of multi-core architectures were introduced in Ada 2012.

AdaCore Technologies for Cyber Security

30

Systems programming
Both in the “core” language and the Systems Programming Annex, Ada
supplies the necessary features for hardware-specific processing. For
example, the programmer can specify the bit layout for fields in a
record, define alignment and size properties, place data at specific
machine addresses, and express specialized code sequences in assembly
language. Interrupt handlers can also be written in Ada, using the
protected type facility.

Real-time programming
Ada’s tasking facility and the Real-Time Systems Annex support common
idioms such as periodic or event-driven tasks, with features that can help
avoid unbounded priority inversions. A protected object locking policy is
defined that uses priority ceilings; this has an especially efficient
implementation in Ada (mutexes are not required) since protected
operations are not allowed to block. Ada 95 defined a task dispatching
policy that basically requires tasks to run until blocked or preempted, and
Ada 2005 introduced several others including Earliest Deadline First.

High-integrity systems
With its emphasis on sound software engineering principles Ada supports
the development of high-integrity applications, including those that need
to be certified against safety standards such DO-178C for avionics,
CENELEC EN 50128 for rail systems and security standards such as the
Common Criteria. For example, strong typing means that data intended
for one purpose will not be accessed via inappropriate operations; errors
such as treating pointers as integers (or vice versa) are prevented. And
Ada’s array bounds checking prevents buffer overflow vulnerabilities that
are common in C and C++.

However, the full language may be inappropriate in a safety- or
security-critical application, since the generality and flexibility of some
features – especially those with complex run-time semantics – complicates
analysis and could interfere with traceability / certification requirements.
Ada addresses this issue by supplying a compiler directive, pragma
Restrictions, that allows constraining the language features to a well-
defined subset (for example, excluding dynamic OOP facilities).

Roderick Chapman and Yannick Moy

31

The evolution of Ada has seen the continued increase in support for
safety-critical and high-security applications. Ada 2005 standardized the
Ravenscar Profile, a collection of concurrency features that are powerful
enough for real-time programming but simple enough to make
certification practical. Ada 2012 has introduced contract-based
programming facilities, allowing the programmer to specify preconditions
and/or postconditions for subprograms, and invariants for encapsulated
(private) types. These can serve both for run-time checking and as input to
static analysis tools.

In brief, Ada is an internationally standardized language combining
object-oriented programming features, well-engineered concurrency
facilities, real-time support, and built-in reliability through both compile-
time and run-time checks. As such it is an appropriate language for
addressing the real issues facing software developers today. Ada is used
throughout a number of major industries to design software that protects
businesses and lives.

3.2. SPARK
SPARK1 is a software development technology (programming language
and verification toolset) specifically designed for engineering ultra-low
defect level applications, for example where safety and/or security are
key requirements. SPARK Pro is the commercial-grade offering of the
SPARK technology developed by AdaCore and Altran. The main
component in the toolset is GNATprove, which performs formal
verification on SPARK code.

SPARK has an extensive industrial track record. Since its inception in the
late 1980s it has been used worldwide in a range of industrial
applications such as civil and military avionics, air traffic management /
control, railway signaling, cryptographic software, and cross-domain
solutions. SPARK 2014 is the most recent version of the technology (see
[13]).

1 Note that our SPARK is totally unrelated to the Apache SPARK analytics
framework, or the SPARC CPU Instruction Set Architecture.

AdaCore Technologies for Cyber Security

32

Formality and Soundness
Two major design goals of SPARK are the provision of an unambiguous
and formal semantics, which therefore permits the soundness of static
verification. These goals have always been at the heart of SPARK’s
design. Soundness builds trust in the tools, supports evidence-based
assurance, completely removes many classes of dangerous defects, and
allows subsequent verification activities (e.g. testing) to be cheaper
(owing to less rework) or eliminated entirely.

Flexibility
SPARK 2014 offers the flexibility of configuring the language on a per-
project basis. Restrictions can be fine-tuned based on the relevant coding
standards or run-time environments.

SPARK 2014 code can easily be combined with full Ada code or with C,
so that new systems can be built on and reuse legacy codebases.

Ease of Adoption
The SPARK 2014 technology is easy to learn and can be smoothly
integrated into an organization’s existing development and verification
methodology and infrastructure.

Pre-2014 versions of the SPARK language used a special annotation
syntax for the various forms of contracts. In SPARK 2014 this has been
merged with the standard Ada 2012 contract syntax, which both
simplifies the learning process and also allows new paradigms of
software verification. Programmers familiar with writing executable
contracts for run-time assertion checking can use the same approach but
with additional flexibility: the contracts can be verified either dynamically
through classical run-time testing methods or statically (i.e., pre-
compilation and pre-test) using automated tools.

SPARK supports “hybrid verification” that can mix testing with formal
proofs. For example an existing project in Ada and C can adopt SPARK
to implement new functionality for critical components. The SPARK units
can be analyzed statically to achieve the desired level of verification,
with testing performed at the interfaces between the SPARK units and the
modules in the other languages.

Roderick Chapman and Yannick Moy

33

Reduced Test Effort and Cost
Software verification typically involves extensive testing, including unit
tests and integration tests. Traditional testing methodologies are a major
contributor to the high delivery costs for safety-critical software.
Furthermore, they may fail to detect errors. SPARK 2014 addresses this
issue by allowing automated proof to be used to demonstrate functional
correctness at the subprogram level, either in combination with or as a
replacement for unit testing. In the high proportion of cases where proofs
can be discharged automatically the cost of writing unit tests is completely
avoided. Moreover, verification by proofs covers all execution conditions
and not just a sample.

3.3. GNAT Pro Enterprise
GNAT Pro Enterprise is an Ada and C development environment for
producing critical software systems where reliability, efficiency and
maintainability are essential.

Based on the GNU GCC technology, GNAT Pro Enterprise supports all
versions of the Ada language standard, from Ada 83 to Ada 2012, and
also handles multiple versions of C (C89, C99, and C11). It includes an
Integrated Development Environment (GNAT Programming Studio and/or
GNATbench), a comprehensive toolsuite including a visual debugger, and
a set of libraries and bindings.

GNAT Pro Enterprise offers several features that make it ideal for the
development of secure systems. These include:

Configurable Run-Time Library
GNAT Pro Enterprise includes a configurable run-time capability, which
allows specifying support for Ada’s dynamic features in an a la carte
fashion ranging from none at all to full Ada. The units included in the
executable may be either a subset of the standard libraries provided
with GNAT Pro, or specially tailored to the application. For the most
critical applications and “bare metal” systems, the Zero FootPrint (ZFP) run
time offers a truly minimal application footprint (rivalling that of C) while
retaining compatibility with the SPARK subset and verification tools.

AdaCore Technologies for Cyber Security

34

Full Ada 83 to 2012 Implementation
GNAT Pro provides a complete implementation of all versions of the Ada
language standard, from Ada 83 to Ada 2012. Developers of safety-
critical and high-security systems can thus take advantage of features
such as contract-based programming.

Enhanced Data Validity Checking
Improper or absent data validity checking is a pernicious source of
security vulnerabilities in software systems. Ada has always offered
range checks for scalar subtypes, but GNAT Pro goes further, offering
enhanced validity checking that can protect a program against malicious
or accidental memory corruption, failed I/O devices, and so on. This
feature is particularly useful in combination with automatic Fuzz Testing,
since its offers strong defense for invalid data at the software boundary of
a system.

Support and Expertise
At the heart of every AdaCore subscription are the support services that
AdaCore provides to its customers. AdaCore staff are recognized experts
on the Ada language, software certification standards in several domains,
compilation technologies, and static and dynamic verification. They have
extensive experience in supporting customers in avionics, railway, space,
energy, air traffic management/control, and military projects.

Every AdaCore product comes with front-line support provided directly
by these experts, who are also the developers of the technology. This
ensures that customers’ questions (requests for guidance on feature usage,
suggestions for technology enhancements, or defect reports) are handled
efficiently and effectively.

Beyond this bundled support, AdaCore also provides Ada language and
tool training as well as on-site consulting on topics such as how to best
deploy the technology, and assistance on start-up issues. On-demand tool
development or ports to new platforms are also available.

3.4. GNAT Pro Assurance
GNAT Pro Assurance adds specialized support, such as bug fixes and
“known problems” analyses, on a specific version of the toolchain. This

Roderick Chapman and Yannick Moy

35

product line is especially suitable for applications with long-lived
maintenance cycles or assurance requirements, since critical updates to the
compiler or other product components may become necessary years after
the initial release.

Sustained Branches
Unique to GNAT Pro Assurance is a service known as a “sustained
branch”: customized support and maintenance for a specific version of the
product. A project on a sustained branch can monitor relevant known
problems, analyze their impact, and if needed update to a newer version
of the product on the same development branch (i.e., not incorporating
changes introduced in later versions of the product).

Sustained branches are a practical solution to the problem of ensuring
toolchain stability while allowing flexibility in case an upgrade is needed
to correct a critical problem.

Source to Object Traceability
A compiler option can limit the use of language constructs that generate
object code that is not directly traceable to the source code. As an add-
on service, AdaCore can perform an analysis that demonstrates this
traceability and justifies any remaining cases of non-traceable code.

3.5. Static Verification - Basic Tools

GNATmetric
The GNATmetric tool analyzes source code to calculate a set of commonly
used industry metrics, thus allowing developers to estimate the size and
better understand the structure of the source code. This information also
facilitates satisfying the requirements of certain software development
frameworks.

GNATcheck
GNATcheck is a coding standard verification tool that is extensible and
rule-based. It allows developers to completely define a coding standard
as a set of rules, for example a subset of permitted language features. It
verifies a program’s conformance with the resulting rules and thereby
facilitates demonstration of a system’s compliance with certification
standards.

AdaCore Technologies for Cyber Security

36

Key features include:

• An integrated Ada Restrictions mechanism for banning specific
features from an application. This can be used to restrict features such
as tasking, exceptions, dynamic allocation, fixed- or floating point,
input/output and unchecked conversions.

• Restrictions specific to GNAT Pro, such as banning features that result
in the generation of implicit loops or conditionals in the object code,
or in the generation of elaboration code.

• Additional Ada semantic rules resulting from customer input, such as
ordering of parameters, normalized naming of entities, and
subprograms with multiple returns.

• Easy-to-use interface for creating and using a complete coding
standard.

• Generation of project-wide reports, including evidence of the level of
compliance with a given coding standard.

• Over 30 compile-time warnings from GNAT Pro that detect typical
error situations, such as local variables being used before being
initialized, incorrect assumptions about array lower bounds, infinite
recursion, incorrect data alignment, and accidental hiding of names.

• Style checks that allow developers to control indentation, casing,
comment style, and nesting level.

GNATstack
GNATstack is a software analysis tool that enables Ada/C software
development teams to accurately predict the maximum size of the
memory stack required for program execution.

The GNATstack tool statically computes the maximum stack space
required by each task in an application. The reported bounds can be
used to ensure that sufficient space is reserved, thus guaranteeing safe
execution with respect to stack usage. The tool uses a conservative
analysis (and user-supplied input) to deal with complexities such as
subprogram recursion, while avoiding unnecessarily pessimistic estimates.

Roderick Chapman and Yannick Moy

37

GNATstack exploits data generated by the compiler to compute worst-
case stack requirements. It performs per-subprogram stack usage
computation combined with control flow analysis.

GNATstack can analyze object-oriented applications, automatically
determining maximum stack usage on code that uses dynamic dispatching
in Ada. A dispatching call challenges static analysis because the identity
of the subprogram being invoked is not known until run time. GNATstack
solves this problem by statically determining the subset of potential
targets (primitive operations) for every dispatching call. This significantly
reduces the analysis effort and yields precise stack usage bounds on
complex Ada code.

This is a static analysis tool in the sense that its computation is based on
information known at compile time. When the tool indicates that the result
is accurate, the computed bound can never be exceeded.

On the other hand, there may be cases in which the results will not be
accurate (the tool will report such situations) because of some missing
information (such as the maximum depth of subprogram recursion, indirect
calls, etc.). The user can assist the tool by specifying missing call graph
and stack usage information.

GNATstack’s main output is the worst-case stack usage for every entry
point, together with the paths that result in these stack sizes. The list of
entry points can be automatically computed (all the tasks, including the
environment task) or can be specified by the user (a list of entry points or
all the subprograms matching a given regular expression).

GNATstack can also detect and display a list of potential problems when
computing stack requirements:

• Indirect (including dispatching) calls. The tool will indicate the number
of indirect calls made from any subprogram.

• External calls. The tool displays all the subprograms that are
reachable from any entry point for which there is no stack or call
graph information.

• Unbounded frames. The tool displays all the subprograms that are
reachable from any entry point with an unbounded stack requirement.

AdaCore Technologies for Cyber Security

38

The required stack size depends on the arguments passed to the
subprogram. For example:

procedure P (N : Integer) is
 S : String (1 .. N);
begin
 ...
end P;

• Cycles. The tool can detect all the cycles (i.e., potential recursion)
in the call graph.

GNATstack allows the user to supply a text file with the missing
information, such as the potential targets for indirect calls, the stack
requirements for externals calls, and the maximal size for unbounded
frames.

Timing Verification
Suitably subsetted, Ada (and SPARK) are also amenable to the static
analysis of timing behavior. This kind of analysis is relevant for real-time
systems, where worst-case execution time (WCET) must be known in order
to guarantee that timing deadlines will always be met. Timing analysis is
also of interest for secure systems, where the issue might be to show that
programs do not leak information via so-called side-channels based on
the observation of differences in execution time.

AdaCore does not produce its own WCET tool, but there are several such
tools on the market from partner companies, such as RapiTime from
Rapita Systems Ltd.

Memory Usage Verification
Ada and SPARK can support the static analysis of worst-case memory
consumption, so that a developer can show that a program will never run
out of memory at execution time.

SPARK can be compiled with no heap data structure at run time, so
memory usage analysis reduces to a worst-case analysis of stack usage

Roderick Chapman and Yannick Moy

39

for each task in a system. This is implemented directly in AdaCore’s
GNATstack tool, as described above.

Semantic Analysis Tools—Libadalang
Libadalang is a reusable library that forms a high-performance semantic
processing and transformation engine for Ada source code. In some ways
it is similar to ASIS (see below), but exposes its API in Java and Python as
well as Ada. It is particularly suitable for writing lightweight and project-
specific static analysis tools.

An example of a potential Libadalang application is the enforcement of
a particular naming convention—perhaps a rule for the naming of types
that contain security-critical data. This is outside the scope of general-
purpose tools like GNATcheck or CodePeer but is simple to express in
Libadalang.

Semantic Analysis Tools—ASIS and GNAT2XML
ASIS, the Ada Semantic Interface Specification, is a library that gives
applications access to the complete syntactic and semantic structure of an
Ada compilation unit. This library is typically used by tools that need to
perform some sort of static analysis on an Ada program.

ASIS is an international standard (ISO/IEC 15291:1995) and is designed
to be compiler independent. Thus, a tool that processes the ASIS
representation of a program will work regardless of which ASIS
implementation has been used. ASIS-for-GNAT is AdaCore’s
implementation of the ASIS standard, for use with the GNAT Pro Ada
development environment and toolset.

AdaCore can assist customers in developing ASIS-based tools to meet
their specific needs, as well as develop such tools upon request.

Typical ASIS-for-GNAT applications include:

• Static analysis (property verification)

• Code instrumentation

• Design and document generation tools

AdaCore Technologies for Cyber Security

40

• Metric testing or timing Tools

• Dependency tree analysis tools

• Type dictionary generators

• Coding standard enforcement tools

• Language translators (e.g., to CORBA IDL)

• Quality assessment tools

• Source browsers and formatters

• Syntax directed editors

GNAT2XML provides the same information as ASIS but allows users to
manipulate it through an XML tree.

3.6. Static Verification - CodePeer
CodePeer is an Ada source code analyzer that detects run-time and logic
errors. CodePeer assesses potential bugs before program execution,
serving as an automated peer reviewer, helping to find errors efficiently
and early in the development life-cycle. It can also be used to perform
impact analysis when introducing changes to the existing code, as well as
helping vulnerability analysis. Using control-flow, data-flow, and other
advanced static analysis techniques, CodePeer detects errors that would
otherwise only be found through labor-intensive debugging.

CodePeer can analyze programs written in full Ada (including all the
features of Ada 2012) and does not rely on a particular language subset
having been used. It is therefore suitable for analysis and assurance of
existing code bases, and maintaining discipline for new and modified
code.

As a stand-alone tool, CodePeer can also be used with projects that do
not use GNAT Pro for compilation.

Roderick Chapman and Yannick Moy

41

Early Error Detection
CodePeer’s advanced static error detection finds bugs in code by
mathematically analyzing every line of code, considering every possible
input and every path through the program. CodePeer can be used very
early in the development life cycle to identify problems when defects are
much less costly to repair. It can also be used retrospectively on existing
code bases, to detect latent vulnerabilities.

CodePeer can be used from within the GNAT Pro development
environment, or as part of a continuous integration regime. It can detect
several of the “Top 25 Most Dangerous Software Errors” in the Common
Weakness Enumeration: CWE-120 (Classic Buffer Overflow), CWE-131
(Incorrect Calculation of Buffer Size), and CWE-190 (Integer Overflow or
Wraparound). See [14] for more details.

CodePeer has been certified by the MITRE Corporation as a “CWE-
Compatible” product [15].

3.7. Static Verification - SPARK Pro
SPARK Pro offers the ultimate toolset for high-integrity development.
Through the discipline of the language subset, the SPARK Pro tools are
able to offer verification that combines speed, flexibility, depth and
soundness. Adoption of the language subset means that SPARK Pro is best
suited for new high-assurance code (including situations where the existing
code is at a lower assurance level and is written in full Ada or other
languages such as C) or projects where the existing high-assurance coding
standard is sufficiently close to SPARK to ease transition.

Powerful Static Verification
The SPARK language supports a wide range of static verification
techniques. At one end of the spectrum is basic data- and control-flow
analysis, i.e., exhaustive detection of errors such as attempted reads of
uninitialized variables, and ineffective assignments (where a variable is
assigned a value that is never read). For more critical applications,
dependency contracts can constrain the information flow allowed in an
application. Violations of these contracts – potentially representing
violations of safety or security policies – can then be detected even
before the code is compiled.

AdaCore Technologies for Cyber Security

42

In addition, SPARK supports mathematical proof and can thus provide
high confidence that the software meets a range of assurance
requirements: from the absence of run-time exceptions, to the enforcement
of safety or security properties, to compliance with a formal specification
of the program’s required behavior.

Minimal Run-Time Footprint
For the most secure systems (for example, embedded cryptographic
devices), a developer has to worry about and justify the presence of all
the code in a delivered system. Guidance talks of “minimizing the trusted
computing base”, which really means just making the delivered system as
small as possible. There is also the problem of Commercial Off-the-Shelf
(COTS) components: if a system uses a COTS library or operating system,
then how are these to be evaluated or verified without the close (and
probably expensive) cooperation of the COTS vendor?

For the most critical embedded systems, SPARK supports the so-called
“Bare-Metal” development style, where SPARK code is running directly on
a CPU with little or no COTS libraries or operating system at all. SPARK is
also designed to be compatible with GNAT Pro’s Zero FootPrint (ZFP) run-
time library. In a Bare-Metal/ZFP development, every byte of object
code can be traced to the application’s source code, and accounted for.
This can be particularly useful for systems that must withstand evaluation
by a national technical authority or regulator.

SPARK code can also run on top of a full Ada run-time library and a
commercial desktop operating system or anything in-between, but the
choice is left to the system designer, not imposed by the language.

3.8. Dynamic Analysis Tools

GNATtest
The GNATtest tool helps create and maintain a complete unit testing
infrastructure for complex projects. Based on AUnit, it captures the simple
idea that each visible subprogram should have at least one
corresponding unit test. GNATtest takes a project file as input, and
produces two outputs:

Roderick Chapman and Yannick Moy

43

• The complete harnessing code for executing all the unit tests under
consideration. This code is generated completely automatically.

• A set of separate test stubs for each subprogram to be tested. These
test stubs are to be completed by the user.

GNATtest handles Ada’s Object-Oriented Programming features and can
help verify tagged type substitutability (the Liskov Substitution Principle),
which can be used to demonstrate consistency of class hierarchies.

GNATemulator
GNATemulator is an efficient and flexible tool that provides integrated,
lightweight target emulation.

Based on the QEMU technology, a generic and open-source machine
emulator and virtualizer, GNATemulator allows software developers to
compile code directly for their target architecture and run it on their host
platform, through an approach that translates from the target object code
to native instructions on the host. This avoids the inconvenience and cost of
managing an actual board, while offering an efficient testing environment
compatible with the final hardware.

There are two basic types of emulators. The first can serve as a surrogate
for the final hardware during development for a wide range of
verification activities, particularly those that require time accuracy.
However, they tend to be extremely costly, and are often very slow. The
second, which includes GNATemulator, does not attempt to be a complete
time-accurate target board simulator, and thus it cannot be used for all
aspects of testing. But it does provide a very efficient and cost-effective
way to execute the target code very early in the development and
verification processes. GNATemulator thus offers a practical compromise
between a native environment that lacks target emulation capability, and
a cross configuration where the final target hardware might not be
available soon enough or in sufficient quantity.

GNATcoverage
GNATcoverage is a dynamic analysis tool that analyzes and reports
program coverage. GNATcoverage can perform coverage analysis at
both the object code level (instruction and branch coverage), and the

AdaCore Technologies for Cyber Security

44

source code level for Ada or C (Statement, Decision, and Modified
Condition/Decision Coverage - MC/DC).

Unlike most other technologies, GNATcoverage is nonintrusive: it works
without requiring instrumentation of the application code. Instead, the
code runs directly on an instrumented execution platform, such as
GNATemulator, Valgrind on Linux, or on a real board monitored by a
probe.

See [16] for more details on the underlying technology.

3.9. Integrated Development
Environments (IDEs)

GNAT Programming Studio (GPS)
GPS is a powerful and simple-to-use IDE that streamlines software
development from the initial coding stage through testing, debugging,
system integration, and maintenance. GPS is designed to allow
programmers to exploit the full capabilities of the GNAT Pro technology.

Tools
GPS’s extensive navigation and analysis tools can generate a variety of
useful information including call graphs, source dependencies, project
organization, and complexity metrics, giving the developer a thorough
understanding of a program at multiple levels. It allows interfacing with
third-party Version Control Systems, easing both development and
maintenance.

Robust, Flexible and Extensible
Especially suited for large, complex systems, GPS can import existing
projects from other Ada implementations while adhering to their file
naming conventions and retaining the existing directory organization.
Through the multi-language capabilities of GPS, components written in C
and C++ can also be handled. GPS is highly extensible; additional tools
can be plugged in through a simple scripting approach. It is also
tailorable, allowing various aspects of the program’s appearance to be
customized in the editor.

Roderick Chapman and Yannick Moy

45

Easy to Learn, Easy to Use
GPS is intuitive to new users thanks to its menu-driven interface with
extensive online help (including documentation of all the menu selections)
and “tool tips”. The Project Wizard makes it simple to get started,
supplying default values for almost all of the project properties. For
experienced users, GPS offers the necessary level of control for
advanced purposes; e.g., the ability to run command scripts. Anything that
can be done on the command line is achievable through the menu
interface.

Remote Programming
Integrated into GPS, Remote Programming provides a secure and
efficient way for programmers to access any number of remote servers on
a wide variety of platforms while taking advantage of the power and
familiarity of their local PC workstations.

Eclipse support - GNATbench
GNATbench is an Ada development plug-in for Eclipse and Wind River’s
Workbench environment. The Workbench integration supports Ada
development on a variety of VxWorks real-time operating systems. The
Eclipse version is primarily for native applications, with some support for
cross development. In both cases the Ada tools are tightly integrated.

GNATdashboard
GNATdashboard serves as a one-stop control panel for monitoring and
improving the quality of Ada software. It integrates and aggregates the
results of AdaCore’s various static and dynamic analysis tools
(GNATmetric, GNATcheck, GNATcoverage, CodePeer, SPARK Pro, among
others) within a common interface, helping quality assurance managers
and project leaders understand or reduce their software’s technical debt,
and eliminating the need for manual input.

GNATdashboard fits naturally into a continuous integration environment,
providing users with metrics on code complexity, code coverage,
conformance to coding standards, and more.

 47

4. Security Vulnerabilities
and Their Mitigation
This chapter considers a number of specific and high-profile software
vulnerabilities, inspired by the CWE/SANS “Top 25 Most Dangerous
Software Errors” [17], and discusses how each can be prevented or
mitigated using Ada, SPARK, and AdaCore’s tools.

Some vulnerabilities are universal in that all software should be free of all
occurrences—buffer overflow would be a good example, since all
programs should be free of all buffer overflows, regardless of the
particular application’s requirements or operational domain.

Many vulnerabilities are in some way application specific in that they may
or may not be a problem, depending on the application’s particular
security requirements and operational environment.

Related CWE identifiers are given in each sub-section. A more detailed
list of other CWEs that are handled by Ada and/or AdaCore tools is
presented in Appendix A.

4.1. Data Validation

Related CWEs
CWE Short description Notes

20 Improper Input Validation Plus all children and
variants

1019 Validate Inputs Plus all children and
variants

Vulnerability

Missing or incorrect validation of input data remains one of the most
common security vulnerabilities in software. This is an application-specific
vulnerability, since exactly what does or doesn’t constitute “valid” input
data is highly dependent on an application and its security requirements.

AdaCore Technologies for Cyber Security

48

Ada offers a range of protections from these problems, from basic
dynamic checks at run time to advanced static analysis and proof
techniques.

Dynamic Mitigation
At the most basic level, Ada has always offered run-time range checking
for scalar values. If a check fails at run time, then an exception is raised
rather than allowing the execution of the program to become undefined.
This offers protection against common defects such as integer range
violations, buffer overflows, arithmetic overflow and division by zero. For
example, any attempt to store an integer value outside the range (-180 ..
180) for an angle, or a real value outside the range (0.0 .. 10000.0) for
a length in the following example will raise an exception at run time.
Similarly, a Data value whose Kind is Angle_Data cannot be mistakenly
interpreted as a value whose Kind is Length_Data (i.e., an Angle bit
pattern cannot be interpreted as a Length) when using the discriminated
unions of Ada; such an error would raise an exception.

type Angle is new Integer range -180 .. 180;
type Length is new Float range 0.0 .. 10_000.0;
type Datatype is (Angle_Data, Length_Data);
type Data (Kind : Datatype) is record
 case Kind is
 when Angle_Data =>
 A : Angle;
 when Length_Data =>
 L : Length;
 end case;
end record;

Ada 95 added a special attribute X'Valid for any scalar object X. This
returns True if and only if the raw bit-pattern present in memory is a valid
value for the type of the object and satisfies any subtype constraint or
predicate (if present). This is more powerful than a simple “range check”,
because it applies to types with complex representations such as floating-
point or enumeration types with non-contiguous values. Further, the
evaluation of X'Valid can never itself become undefined or raise an
exception, so it provides a way to “peek” at incoming data to see if it’s

Roderick Chapman and Yannick Moy

49

OK before proceeding. It also works with the ZFP run time and SPARK,
where exceptions are excluded anyway.

GNAT Pro adds an attribute X'Valid_Scalars that can be additionally
applied to composite types like records and arrays. This applies the
correct X'Valid test recursively to all the components of a composite
object, and only returns True if they are all OK and also satisfy any
subtype constraint/predicate. For example, an input value of type Data
from the previous example could be validated by evaluating
X'Valid_Scalars, which will check that X.Kind is a valid Datatype value,
and depending on this value, that either X.A is a valid angle or X.L is a
valid length.

In terms of run-time verification, GNAT Pro also offers an extended
validity checking mode. This instructs the compiler to make worst-case
assumptions about data validity and assume, for example, that memory
might have been corrupted at any point, so it automatically inserts a
validity test for all objects, every time they are read. This comes with a
noticeable performance penalty, but offers the most protection. As noted
in section 3.3, this mode can be particularly useful in combination with
automated Fuzzing (essentially random input testing), since the extended
validity checks spot a problem sooner rather than later. GNAT Pro also
supports special pragmas that instruct the compiler to initialize scalar
objects to a value which is known to be invalid and will therefore always
fail a validity test on first access. This offers an easy way to spot
uninitialized values at run time, protecting against another pernicious
undefined behavior.

Static Mitigation
The GNAT Pro compiler can detect some violations of data constraints
that do not depend on the flow of control and analysis of calls. In such
cases, it issues a warning that an exception will be raised at run time if
that code is executed. Similarly, it can detect some simple cases of
reading an uninitialized variable.

CodePeer can go further by analyzing values and relations between
variables in a fully flow-sensitive and interprocedural analysis. CodePeer
offers a range of analyses that protect from data validity problems and
implements a form of data-flow analysis that statically detects uninitialized
variables.

AdaCore Technologies for Cyber Security

50

SPARK Pro goes further in a number of ways. Firstly, SPARK Pro offers a
completely static verification for the absence of all undefined behavior,
run-time errors and exceptions. In SPARK it’s possible to prove that none
of Ada’s predefined run-time checks will ever fail for any program
executions.

In the most general sense, subprograms in Ada and SPARK can also
include precondition contracts that can specify arbitrary validity
requirements on their parameters, which can be as permissive or as strict
as is required by the designer. These can be checked at run time, or by
static analysis, or both.

4.2. Native Code Injection

Related CWEs
CWE Short description Notes

94 Code Injection

95 Eval Injection

96 Static Code Injection

97 Improper Neutralization of Server-
Side Includes

119 Improper Restriction of Operations
within the Bounds of a Memory
Buffer

Plus all children and
variants

470 Unsafe Reflection

Vulnerability

This section specifically deals with the problem of malicious injection of
Ada or machine code. This is a universal vulnerability. Injection of code in
other languages (e.g., scripting languages or SQL) can be application
specific, so is considered elsewhere. Two cases are covered here—
injection of Ada code itself, and injection of compiled machine code.

Mitigation—Ada code injection
Ada has always been a compiled language. There is no “reflection” or
“eval”-like construct so it is impossible for Ada source code to be
maliciously inserted and/or interpreted at run time.

Roderick Chapman and Yannick Moy

51

Furthermore, Ada programs (especially for embedded systems) can be
statically linked, and therefore are not susceptible to “DLL spoofing” or
other attacks relating to shared libraries or dynamic linking. Finally,
compiled Ada code is always executable from a read-only memory (such
as ROM or a FLASH device) so can be further protected from tampering.

Mitigation—Machine Code Injection
This remains a common attack against unsafe programming languages
and defective code. In short, a buffer over-write defect results in
overwriting the stack memory with malicious data, which is actually the
attacker’s machine code. The return address on the stack is also
manipulated to force control to jump to the malicious code. There are
variants on this theme (particularly the so-called “return oriented
programming” (ROP) family of attacks) but they all rely on a buffer
overflow defect as the initial point of entry.

Ada is strongly protected from this class of vulnerability, owing to run-
time checking of all array accesses, exception handling, and the strong
forms of static analysis offered by both CodePeer and SPARK Pro. See
section 4.1 for more details, since the same dynamic and static
verification techniques that apply to data validity also apply to buffer
overflows and other defects that lead to code injection.

4.3. Denial of Service

Related CWEs
CWE Short description Notes

400 Resource Exhaustion Plus all children and
variants

606 Unchecked Input for Loop Condition

674 Uncontrolled Recursion

Vulnerability

“Denial-of-Service” has become a broad term that refers to any form of
attack that prevents a computer system from fulfilling its intended role
and service. This is an application-specific vulnerability, since some

AdaCore Technologies for Cyber Security

52

systems can “fail secure” while others might have onerous requirements for
continuity of service and availability.

Three sub-classes of attack are worthy of mention:

• Forced immediate termination. An attacker crafts input data that is
designed to make a target system immediately terminate or
“crash”. A good example would an input that provokes an
unhandled exceptional situation such as a division-by-zero.

• Termination through resource starvation. In this case, the attacker
still causes the target system to terminate unexpectedly, but does
so by deliberately exhausting its resources. For example, a flood
of requests from the attacker causes the target system to “run out
of memory” and eventually terminate.

• Starvation. An attacker floods a system with legitimate-looking,
but bogus requests. The system continues to “work” until this
enormous load, but legitimate users are “starved out”.

Dynamic Mitigation
For some systems, termination in a known “secure state” might be
acceptable. This kind of “fail secure” behavior is supported by Ada
through run-time exception handling. A top-level “catch all” handler can
be inserted into the main program and each task type or object; the
handler can bring the system to a safe and/or secure state before
allowing the system to terminate.

A second option is similar, but the system can implement some sort of
“graceful degradation” and switch to a simpler mode of operation. Other
options include reverting to a backup system, or executing a hardware-
based “reset” to bring the system to a known state.

Static Mitigation
Where continuity of service is important, for example in communications
and real-time control applications, both CodePeer and SPARK Pro offer
strong protection. If programs can be statically shown to be free from all
run-time errors, then they are effectively crash proof in the face of
arbitrary input data.

Roderick Chapman and Yannick Moy

53

To protect against possible non-termination of loops, CodePeer issues
warnings when it detects that a loop may not terminate. SPARK Pro goes
beyond mere warnings and can prove that loops terminate if the user
specifies a loop variant—an expression that can be shown to increase or
decrease towards a constant bound for every iteration of the loop.

SPARK is also immune from starvation or exhaustion of heap-based
memory, since SPARK can be compiled without use of a heap. The
GNATstack tool can also be used to show that SPARK programs will never
run out of stack memory.

In all these scenarios, a “defense in depth” approach is appropriate
where, for example, SPARK Pro might be used to statically eliminate run-
time errors, but the system is still compiled with run-time checks, extended
validity checking, and a top-level “catch all” exception handler.

4.4. Information Leak

Related CWEs
CWE Short description Notes

120 Classic Buffer Overflow

121 Stack-based Buffer Overflow

122 Heap-based Buffer Overflow

125 Out-of-bounds Read

126 Buffer Over-read

127 Buffer Under-read

200 Information Exposure Plus all children and
variants

514 Covert Channel Plus all children and
variants

665 Improper Initialization Plus all children and
variants

Vulnerability

These vulnerabilities form a general class of problems where information
is seen to go where it shouldn’t. Three sub-classes of this problem arise:

AdaCore Technologies for Cyber Security

54

Mitigation—Programming Defects
This is a universal vulnerability. Simple programming defects can cause
information to flow in unexpected ways. For example:

• An uninitialized variable can result in a read from memory of a
value that has been “left over” on the stack from a previous
computation.

• An unchecked buffer over-read can yield sensitive or incorrect
information. The notable “Heartbleed” vulnerability in the
OpenSSL library was of this class.

As noted earlier, Ada offers strong protection from these classes of
vulnerabilities. Uninitialized variables can be tackled with GNAT Pro’s
enhanced validity checking modes, and buffer overflows are always
prevented by run-time checks in Ada. CodePeer and SPARK offer static
protection against both of these defect classes.

Mitigation—Algorithmic Defects
If a programmer simply implements “the wrong code”, then unintended
information flow can result. For example, if a function is supposed to be
computed from two input variables X and Y, but the programmer
mistakenly computes the result from X, Y and Z, then an observer might be
able to deduce something about the value of Z, which might be a security
vulnerability if Z is some sensitive value like a cryptographic key.

The exact nature of these vulnerabilities is highly application specific, but
Ada and SPARK offer some protection through the use of contracts. A
Depends contract, for example, could specify that the function result must
be computed from X and Y and not Z and this specification is verified by
the SPARK Pro tools with information-flow analysis.

Contracts can also be used to specify, for example, that data of different
classification (e.g. “Unclassified” and “Top-Secret”) shall not be mixed in
a single computation. Again, SPARK Pro offers strong verification for such
properties.

Roderick Chapman and Yannick Moy

55

Mitigation—Side Channels
So-called “Side” or “Covert” channels exploit devious and unusual
observations of a program’s execution to deduce its internal state. These
include:

• Timing-based attacks. Observation of a program’s execution time
can yield information on its internal state and variables.

• Power. Observation of the electrical power consumption of a
computer can divulge what’s going on internally.

• Electro-magnetic emissions.
• Acoustic (sound) emissions.
• Other things that no-one has even thought of yet...

These attacks are extremely difficult to prevent using software techniques
alone. SPARK offers some assistance, since it is designed to be amenable
to timing analysis, and its information flow analysis engine could be used
to detect where execution time depends on a particular critical variable.

4.5. Improper use of API

“Entia non sunt multiplicanda praeter necessitatem”
[“Entities are not to be multiplied beyond necessity”]

– William of Ockham, 14th Century.

or, put another way

“When in doubt, leave it out...”
– Joshua Bloch, Google.

AdaCore Technologies for Cyber Security

56

Related CWEs
CWE Short description Notes

440 Expected Behaviour Violation

559 Often Misused: Arguments and
Parameters

628 Function Call with Incorrectly
Specified Arguments

648 Incorrect Use of Privileged APIs

749 Exposed Dangerous Method or
Function

Vulnerability

The design of reusable, general, and error-tolerant APIs remains one of
the core skills of a software designer. (See Joshua Bloch’s lecture [18] for
an overview of this topic.)

For secure systems, the unintentional misuse of cryptographic or
communications APIs and libraries is a regular source of defects and
headlines.

A core issue is the expressive power, precision and abstraction with which
a programming language allows an API specification to be defined.
Many APIs need to express usage rules—what a user should and
shouldn’t do to use the API properly—and if these rules are specified
formally then they can be checked either at run time or using static
analysis.

Mitigations
Once again, Ada’s contracts offer strong support. Preconditions express
exactly the conditions under which a particular operation may be
invoked, and can even be used to express ordering constraints on
operations (e.g. “operation X must be invoked before either of operations
Y or Z.”) Similarly, postcondition contracts can express exactly what
operations promise to do (and not do.)

Increasingly, such contracts are being added to parts of the standard
Ada library to increase the strength of their specifications, and as a result
their usage can be verified statically by the CodePeer and SPARK Pro

Roderick Chapman and Yannick Moy

57

tools. This is the case for example for the standard numerical library
shipped with GNAT Pro. Some freely available libraries have also
started to appear in SPARK, such as standard cryptographic algorithms
[19].

4.6. Weak or No Crypto

Related CWEs
CWE Short description Notes

326 Inadequate Encryption Strength Plus all children and
variants

327 Use of a Broken or Risky
Cryptographic Algorithm

Plus all children and
variants

338 Use of a Cryptographically Weak
PRNG

Vulnerability

These are clearly application specific. The appropriate use of
cryptographic algorithms depends on an application’s precise needs for
confidentiality, authentication and integrity of data, plus the perceived
capability and threat owing to attackers.

The “strength” of cryptographic algorithms can depend on the algorithm
chosen, the key length employed, and the quality of random numbers that
are used in the generation of critical values such as keys and “nonce”
values.

Mitigations
Ada can help to some extent through its system of strong types. A good
design approach would be to declare distinct and incompatible types for
unencrypted and encrypted data, so that they cannot be confused or
used in the wrong context. For example:

type Plaintext_Buffer is private;

type Encrypted_Buffer is private

AdaCore Technologies for Cyber Security

58

Even though, under the hood, these types might both represent an
unstructured sequence of bytes, they are distinct and incompatible from
the point of view of the client. For example, a procedure that outputs an
encrypted buffer to a communications channel might be declared:

procedure Send_Buffer (B : in Encrypted_Buffer);

This procedure cannot send a Plaintext_Buffer and any attempt to do so
would be rejected by the compiler.

If it is necessary to encrypt a plaintext buffer to produce an encrypted
buffer, then a single function can do this and use contracts to enforce the
strength of the key. For example:

type Key is limited private; -- no copying permitted!

function Strength_Of (K : in Key) return Natural;

function Encrypt (Data : in Plaintext_Buffer;
 K : in Key) return Encrypted_Buffer
 with Pre => Strength_Of (K) >= 256;

Note that the Key type is declared limited private so that objects of that
type cannot be copied by assignment—another built-in feature of Ada
that is ideal for such sensitive types.

Roderick Chapman and Yannick Moy

59

4.7. Failure to erase sensitive data

Related CWEs
CWE Short description Notes

14 Compiler Removal of Code to Clear
Buffers

226 Sensitive Information Uncleared
Before Release

Plus all children and
variants

733 Compiler Optimization Removal or
Modification of Security-critical
Code

Vulnerability

This vulnerability concerns the need to erase (or “sanitize”) sensitive data,
such as cryptographic keys, after they have been used, to prevent
unintentional leak or exposure of that some time later.

This is a complex issue that spans application-specific needs across to
highly technical implementation details. At the high level, applications
need to define exactly what data is “sensitive” in the first place, and how
much protection is required. At the low end of the spectrum, just “writing
zeros” into memory might suffice. At the high end, it might be necessary to
physical destroy hard disks and memory chips.

As a software programming challenge, this problem is more complex than
it looks. Issues include data validity (“all zeroes” might be illegal or
invalid), how to stop a compiler optimizing away the sanitizing code,
avoiding explicit or implicit copying of sensitive data, coping with the
complexities of data caches and memory devices, and so on.

Mitigations
Ada provides some specific support in this area. Its limited types are ideal
for sensitive data since they cannot be copied by assignment, and are
always passed by reference at run time. Ada 95 also introduced a
special pragma Inspection_Point which serves to forbid “dead store
elimination” in the compiler for a particular object at a particular place,
thus ensuring that a final “sanitizing assignment” is not removed.

AdaCore Technologies for Cyber Security

60

SPARK Pro offers some static verification support through information-flow
analysis, since a final sanitizing assignment is reported as an expected
anomaly (because it does not contribute to the functional behavior of the
program), and can be justified as such.

A full description of this problem and how it was solved in a particular
project can be found in [20].

4.8. Authentication and Authorization

Related CWEs
CWE Short description Notes

284 Improper Access Control Plus all children and
variants

Vulnerability

This large family of vulnerabilities is highly application specific. What is
or is not “authorized” for a user of a system depends on the system, its
environment, and the threat model that is expected.

Mitigations
In the broadest terms, systems should be designed with the least privilege
principle in mind, restricting the most important or risky operations to the
fewest users and operational scenarios.

Given a strong design along those lines, these concepts can be encoded in
Ada using types and contracts. A simple model might map a user’s ID onto
some ordered value of authorization:

type User_ID is limited private;

type Authorization is (None, Low, High);

function Authorizaton_Of (U : User_ID) return Authorization;

Sensitive operations can then use a precondition to restrict access, such as:

Roderick Chapman and Yannick Moy

61

procedure Sensitive_Operation (Data : in out Encrypted_Buffer;
 User : in User_ID)
 with Pre => Authorization_Of (User) = High;

Operations that “escalate” a particular user’s authorization (from “Low”
to “High” for example) could be strictly controlled and verified using
Ada’s types and the appropriate combination of static and dynamic
checking.

 63

5. Industrial Scenario
Examples
5.1. Overview
This chapter presents a number of security-related scenarios that may
arise in real-world projects. Each opens with a description of the context
and the security issue, and then shows how either Ada or SPARK, in
conjunction with the relevant AdaCore tool(s), can contribute. Each
scenario is illustrated with one or more examples, drawn from experience
with customers and industrial projects.

5.2. Scenario 1: Identifying and repairing
security vulnerabilities in existing
Ada codebases

In this scenario an existing system written in Ada has to be analyzed for
security vulnerabilities, perhaps because of regulatory oversight or
commercial/corporate obligations. This is typical of closed systems which
become exposed to new threats by connecting them to other systems (ad-
hoc networks, Internet, etc.)

The recommended approach comprises two steps:

1. Use GNAT Pro and inspect the compiler warnings.

Even when GNAT Pro is not the main compiler on a project, it can
still be used as a basic static analysis tool. GNAT Pro flags
around 50 different classes of warnings which represent over
130 warning messages. Experience shows that a careful selection
of warnings combined with a fix-all-warnings policy can
significantly increase the quality of a code base. Warnings that
cannot be fixed can be justified with pragma Warnings Off.
Warnings can be treated as errors (thus stopping compilation) by

AdaCore Technologies for Cyber Security

64

enforcing the fix-all-warnings policy with switch -gnatwe.

2. Submit the code base to CodePeer for analysis.

CodePeer can exhaustively detect all occurrences of many
vulnerabilities from the CWE list: CWE-120 (“Classic Buffer
Overflow”), CWE-190 (“Integer Overflow or Wraparound”),
CWE-476 (“NULL Pointer Dereference”), CWE-571 (“Expression
is Always True”), etc. Users have the choice to opt for an
exhaustive report of all potential vulnerabilities (using the -level
max switch) or, more commonly, to adjust the level of analysis to
their needs, balancing soundness with the effort required to
review all messages.

CodePeer can also include GNAT warnings in its messages by
using the switch -gnat-warnings. This is particularly relevant for
projects that do not use GNAT as the compiler, or else use an
older version of GNAT that may lack some of the newer
warnings. The GNAT warnings selected are described in the
CodePeer User’s Guide.

Example of Scenario 1 – GNAT Pro Compiler
GNAT Pro is the compiler for Ada developed by AdaCore, based on the
GCC compiler architecture. The front end of GNAT Pro is written in Ada.
It is a large software component with 458 units, 370 ksloc, and has been
in development since 1992. The front end is compiled with warnings-as-
errors (-gnawe) and a large set of warnings enabled (-gnatwa).

Since 2017, AdaCore has been running CodePeer on the GNAT Pro front
end, with a fix-all-messages policy. These runs have resulted in the
detection of a number of errors in the code, as well as code quality issues
(e.g. dead code) which are opportunities for refactoring. CodePeer is run
at level 1 for fast execution (less than 10 minutes on a developer
machine) while minimizing false alarms. Remaining false alarms are
justified with pragma Annotate in the code. CodePeer runs have been
integrated in the continuous building environment and nightly regression
testing.

Roderick Chapman and Yannick Moy

65

5.3. Scenario 2: Ada software
development practices for increasing
security

This case covers a majority of ongoing software developments in Ada,
where the strengths of the Ada language are combined with the AdaCore
toolset to deliver high-quality software with lower error density than with
other languages/toolsets.

Of particular importance, especially for high-integrity development, are
the Ada features for encapsulation (packages / private types), reuse
(generics), control of representation (data size and layout, addresses),
strong typing (type constraints, predicates, invariants), and contract-
based programming (preconditions and postconditions). Specific guidance
is available for the use of Object-Oriented Programming in Ada [12].

Tools that are relevant in most contexts for high-integrity development
are the GNAT Pro compiler for warnings and style checking, the
GNATcheck coding standard checker, GNATmetric for metrics
computation, GNATstack for memory usage analysis, GNATtest for test
harness generation, and CodePeer for static analysis.

Example of Scenario 2 – Ada Web Server
The Ada Web Server (AWS) is an Ada implementation of the HTTP/1.1
protocol. It is a library that can be embedded in an application to allow
communication with modern web browsers. AWS supports HTTPS (secure
HTTP) using SSL. This is based on either OpenSSL or GNUTLS, two open-
source SSL implementations.

Because AWS is security sensitive, special care is taken in its code to state
explicitly the constraints that should be respected for the program to
operate without errors, using Ada contracts on types and subprograms.
For example, AWS code deals with time-zone string representation in
many places. The code uses a predicate on this type to enforce that this
representation remains valid:

AdaCore Technologies for Cyber Security

66

subtype Time_Zone_String is String with
 Dynamic_Predicate =>
 (Time_Zone_String'Length = 0
 or else
 (Time_Zone_String'Length = 5
 and then
 Time_Zone_String (Time_Zone_String'First) in '-' | '+'
 and then
 Time_Zone_String (Time_Zone_String'First + 1) in '0' .. '2'
 and then
 Time_Zone_String (Time_Zone_String'First + 2) in '0' .. '9'
 and then
 Time_Zone_String (Time_Zone_String'First + 3) in '0' .. '5'
 and then
 Time_Zone_String (Time_Zone_String'First + 4) in '0' .. '9'
));

In the same vein AWS uses a Hex_String type which contains only
numbers and letters from 'a' to 'f'.

AWS also uses preconditions and postconditions on many subprograms.
For example, when building an object containing a response to be sent
back to the Web browser, the postcondition ensures at a minimum that the
Build routine does not return an empty object, and that the Status_Code
of the response is set according to the corresponding parameter:

function Build
 (Content_Type : String;
 UString_Message : Unbounded_String;
 Status_Code : Messages.Status_Code := …;
 Cache_Control : Messages.Cache_Option := …;
 Encoding : Messages.Content_Encoding := …)
 return Data
with Post => not Is_Empty (Build'Result)
 and then Response.Status_Code (Build'Result) = Status_Code;

As another example, in the Session API, AWS uses a postcondition to
ensure that the value of a session is empty if the corresponding key is
unknown:

Roderick Chapman and Yannick Moy

67

function Get (SID : Id; Key : String) return String with
 Post => (not Exist (SID, Key) and then Get'Result'Length = 0)
 or else Exist (SID, Key);

The benefit in expressing these constraints as type predicates and
subprogram contracts is that they can be checked at run time, instead of
informal comments as would be used in other languages. Another benefit
is that these explicit contracts replace defensive programming in a way
that makes it clear to clients of the API what is expected.

5.4. Scenario 3: Secure Design through
SPARK

This scenario illustrates a high-security system where maximum assurance
is required. Such systems often contain few or no COTS components and
can be both embedded and feature a “bare metal” implementation style
with minimal or no operating system support.

At the high-end, a “bare metal” implementation, the use of SPARK and
the Zero FootPrint (ZFP) Ada run-time library offer the ability to account
for every byte of object code in the finished product.

For such systems, the recommended approach is to use SPARK in fully
constructive mode with Verification-Driven Design (see section 2.4) to set
objectives for each subsystem or module. All code should be proven free
from run-time errors, and critical modules should be proven to satisfy
application-specific security properties.

Example of Scenario 3 – the Muen Kernel
Muen [21] is a high-assurance hypervisor for the x86_64 architecture,
with the most critical components designed and verified using SPARK.
Muen is also a Separation Kernel and supports strict partitioning and
security policy enforcement for its clients.

The Muen system, including all the code, is freely available under
version 3 of the GNU Public License (GPL).

AdaCore Technologies for Cyber Security

68

Examples of Scenario 3 – Crypto and Tokeneer
Several projects have used SPARK to develop critical cryptographic
components, including cross-domain switches and reference
implementations of cryptographic algorithms [19, 22, 23]. Some of these
have been evaluated to the highest levels of assurance required by
national regulators.

The Tokeneer project [24] was a demonstration of high-integrity
development in SPARK, funded by the US National Security Agency
(NSA). The Tokeneer code and all documentation have been released
under a permissive license and are freely available for study and
research.

5.5. Scenario 4: Support for Mixed
Criticality Systems

This scenario covers systems with mixed assurance requirements,
developed using a variety of technologies and programming languages.

The key is a sound security engineering and architectural design that
separates critical from non-critical components, and that makes the most
critical components as small as possible. The architecture should support a
verification argument that top-level security requirements are indeed met.

Various implementation mechanisms can support such an architecture—
distinct CPUs, multi-core CPUs, hypervisors and RTOSs can all offer the
support required. The software might be several distinct “programs”
which might be implemented in SPARK (for the most critical), Ada (for
mission-critical components and infrastructure), C (for some low-level
functions) and possibly other languages like C++, Java or Python for a
user-interface component.

Example of Scenario 4
The MULTOS CA [8] formed the root certificate authority and key
generation facility for the MULTOS smartcard operating system. The CA
facility stored the private signing keys that were used to digitally sign
certificates for MULTOS applications, and so were subject to an
extraordinary level of physical, procedural, and computer-based security.

Roderick Chapman and Yannick Moy

69

The software architecture was similar to that described above. Great
care was taken to isolate security-critical functions in a single security
kernel component that was constructed and verified using SPARK. In
another architectural simplification, the system was designed so that there
was no concurrent execution of security-critical functions. The system’s
software infrastructure was developed in Ada (using tasking for the non-
critical, but naturally concurrent activities), while the GUI was
implemented using C++ and the Microsoft Foundation Classes. A small
number of C libraries were used, while a small amount of SQL code
supported the system’s internal database.

5.6. Scenario 5: Introducing Ada in a C
project

The introduction of Ada and/or SPARK can be a challenge for some
projects, especially those with a large code base in C or some other
language. This section deals with C in particular, since it is commonly used
for embedded systems development.

In fact, “mixed language” development with Ada, SPARK, C, and
assembler is standard practice among AdaCore’s customers. Projects
often have libraries or components written in C which have long-standing
provenance, so there is little desire (or technical merit) to rewrite them in
Ada or SPARK [25].

Ada can be introduced into such an environment for new or modified
subsytems, and linked with existing code. Ada has particularly strong
support in this area, in terms of both language features and tooling. The
Ada language definition devotes an entire annex to the matter of
interfacing Ada code with other languages, with special sections for C
and C++ among others.

The crucial step is to identify, isolate, and “wrap” C libraries, to provide
an Ada interface for invoking them. Where a C library exports a
function, for example, an Ada package would contain a corresponding
subprogram declaration. Essentially, the idea is to produce a specification
of the function in Ada, but to keep the implementation in the original
language. The Ada specification can take advantage of Ada’s strong
types, parameter passing modes, and contracts to their full extent. This

AdaCore Technologies for Cyber Security

70

may involve careful study of the C library’s documentation and
implementation to understand fully what it does (and doesn’t) promise to
its clients. These properties and assumptions can be documented as
contracts in the Ada code, but these are formal in that they can be used
for both dynamic and static checking.

Once C libraries are “wrapped” in this fashion, they can be called from
new Ada or SPARK code as expected. (It also works in the other direction:
Ada and SPARK can be called from C.) The contracts on the library
binding will be verified, either dynamically at run time, statically using
CodePeer or SPARK Pro, or both.

AdaCore’s tools support this style of development well. As a first-class
member of the GCC family, GNAT Pro can compile Ada and C “out of
the box”, following all of the guidance in the interfacing annex of the
Ada standard. Additionally, GNAT Pro supplies a “binding generator”
that can automate the process of turning a C “.h” file into an equivalent
Ada package specification. Many of AdaCore’s other tools (e.g. GPS,
GDB, and GNATcoverage) are also “multi-lingual” and work seamlessly
with mixed-language code.

Example of Scenario 5: Industrial mixed-language
system
This project is a large, critical system using a combination of Ada, SPARK,
and C [26].

While the critical functions are implemented in SPARK, the user-interface
is constructed using the X11/Motif framework and libraries which express
their API in C. Therefore, a “binding layer” was constructed to connect the
SPARK code, via C, to the underlying libraries. The C layer is subject to
static analysis using the MISRA guidelines [27] and a MISRA checking tool.

Some effort was spent to document the assumptions that the SPARK and C
code make about each other’s behavior, and how these assumptions can
be expressed as contracts and verified in practice. Further details of this
project appear in [26], which is available from the authors.

 71

6. Summing Up
Developing software that operates predictably and “does the right thing”
in an overtly malicious environment is a high bar for software designers to
overcome, but it can be done with a combination of engineering
discipline, processes, languages and tools. While security remains a multi-
faceted problem, the Ada and SPARK languages and AdaCore’s tools
provide some effective means to build software that truly matters.

From its earliest days, Ada has always emphasized the needs of high-
integrity systems and, in particular, the verifiability of code. With the
rising need for security in software, the strengths of Ada’s design are
gaining increased recognition and appreciation. Although other
languages are trying to add support for high-integrity and secure
programming, these are properties that need to be considered from the
earliest stages of the language design, they cannot be grafted on
afterwards. If and when those languages eventually arrive at that sweet
spot, they will find Lady Ada already there waiting to greet them.

Ada’s design also catalyzed the development of SPARK, which brings
even greater emphasis on verifiability and sound static verification. The
importance of soundness should not be underestimated—it allows some
defect classes to be entirely prevented in the face of arbitrary input
data. Static verification also saves money by reducing wasteful testing
and rework later in the lifecycle, and stands a chance of freeing
developers from an endless cycle of “test and patch.”

In brief, Ada and SPARK and their associated tools stand out among
current language technologies in addressing the two issues underling
secure software:

• Ensuring that specific security functions are implemented correctly
and enforce the required security policy, and

• Verifying that the rest of the software is free of vulnerabilities
that could defeat the required security policy.

Developing secure software is by its nature a daunting problem, but Ada
and SPARK can make it manageable.

 73

A. CWE Mapping
Overview
This appendix focuses on the MITRE Corporation’s Common Weakness
Enumeration (CWE) and how the use of Ada and AdaCore technologies
can address particular CWEs.

Several terms are used here with specific meanings. A language or tool is
said to prevent a given CWE if:

• That CWE can be shown to be entirely absent from an
application, and

• The argument is sound – i.e. there is confidence that all instances
of that CWE have been prevented.

A language feature or tool is said to mitigate a CWE if either:

• The risk of that CWE occurring in an application is reduced, but
perhaps not entirely eliminated, or

• Eliminating that CWE requires the user to remember to run a tool
(e.g., CodePeer or SPARK Pro), and correctly interpret the results,
or

• The user must formulate corrective action should a failure of that
CWE be detected at run time—for example, the correct recovery
action if a buffer overflow is detected via an exception, or

• Some combination of the above.

In the same way as the vulnerabilities covered in Chapter 4, some CWEs
are universal in that all software should be free of all occurrences. Buffer
overflow is an example, since all programs should be free of all buffer
overflows, regardless of any individual application’s requirements or
operational domain.

Many CWEs are also application specific, depending on the application’s
particular security requirements and operational environment. For
example, the class of CWEs commonly known as “SQL Injection” are
highly relevant to web server applications that have a database

AdaCore Technologies for Cyber Security

74

supporting them, but are of no importance to a small embedded control
system that has no “SQL Server” or database of any kind attached to it.
Many of these CWEs can be prevented simply, but these require some
thought on the part of the system designer.

Note that “CWE compliance” for an application is a highly domain- and
application-specific concept. The list of CWEs also grows and evolves as
weaknesses are discovered, so compliance with the CWE should not be
seen as a one-off “box ticking” exercise. Rather, the CWEs should be
considered as a starting point for developers, not an endpoint in itself.

Another important consideration is whether a CWE is mitigated by static
or dynamic means. Ada offers substantial run-time checking for many
CWEs via its built-in run-time checks and exception handling facilities. In
contrast, tools like CodePeer and SPARK Pro offer static mitigation.

It is up to the designer to choose an appropriate mix of static and
dynamic mitigation strategies. For some projects (for example, those
working in a particularly harsh environment, such as a space-borne
application) a combination of both static and dynamic mitigation might be
appropriate.

CWEs prevented by Ada
The following table shows CWEs that relate to specific features of
languages other than Ada—for example, a CWE that is particular to
Java, and cannot affect an Ada program. Merely using Ada at all is
sufficient to prevent these CWEs.

CWE Identifiers Note

467, 484 Only affects C and C++

500 Only affects C++ and Java

520, 526 Only affects .NET languages

8, 9, 487, 555, 574, Only affects Java

103, 104, 107, 108,
109, 110, 608

Only affects Struts framework

Roderick Chapman and Yannick Moy

75

The next table shows a group of CWEs that reflect programming
language problems and constructs that cannot affect Ada at all, but are
not particular to any other specific language.

CWE Identifiers Note

588 Unsafe pointer usage – not possible in Ada.

95 Unvalidated code in dynamic “eval” context –
not possible in Ada.

481, 482 Confusion between assignment and comparison
– not possible in Ada.

170 Improper null termination of Strings – not
possible in Ada.

228, 229, 233, 237,
240 (and variants
thereof)

Parameters missing/extra/confused – not
possible in Ada owing to parameter passing
rules and strong type checking.

CWEs Mitigated by Ada, CodePeer and SPARK
The following table lists CWEs by their identifier and short description,
then shows how each is prevented or mitigated in columns with the
following headings:

DM_Ada – Dynamically mitigated by Ada (using run-time exception
handling for example.)

SM_CP – Statically mitigated by CodePeer.

SM_SP – Statically mitigated by SPARK Pro.

These tables only list “Base” CWEs, not “Class” or “Variant” CWEs.

AdaCore Technologies for Cyber Security

76

CWE Short description DM_Ada SM_CP SM_SP

120 Buffer Overflow Y Y Y

123 Write-what-where condition Y Y Y

124 Buffer Under-write Y Y Y

125 Out-of-bounds read Y Y Y

128 Wrap-around error Y Y Y

129 Improper validation of array
index

Y Y Y

130 Improper handling of length
parameter

Y Y Y

131 Incorrect calculation of buffer
size

Y Y Y

136 Type errors Y Y Y

137 Representation errors Y Y

188 Reliance on data layout Y

190 Integer overflow or wrap-
around

Y Y Y

191 Integer underflow or wrap-
around

Y Y Y

193 Off-by-one error Y Y Y

194 Unexpected sign extension Y Y Y

197 Numeric truncation error Y Y Y

252 Unchecked return value Y Y Y

253 Incorrect check of function
return value

Y Y Y

366 Race condition Y Y

369 Divide-by-zero Y Y Y

456 Missing variable initialization Y Y

466 Return of pointer value outside
expected range

 Y

468 Incorrect pointer scaling Y

469 Use of pointer subtraction to
determine size

 Y

476 Null pointer dereference Y Y Y

Roderick Chapman and Yannick Moy

77

562 Return of stack variable
address

Y Y Y

682 Incorrect calculation Y Y Y

786 Access before start of buffer Y Y Y

787 Out-of-bounds write Y Y Y

788 Access after end of buffer Y Y Y

805 Buffer access with incorrect
length

Y Y Y

820 Missing synchronization Y Y

821 Incorrect synchronization Y Y

822 Untrusted pointer access Y

823 Out-of-range pointer offset Y

824 Uninitialized pointer Y Y Y

825 Expired pointer dereference Y

835 Loop with unreachable exit Y Y

Ada Restrictions to CWE Mapping
As noted in section 3.1 Ada has a Restrictions pragma that allows
particular language features to be forbidden from a program.

Some of these Restrictions remove entire classes of defect and
vulnerability from programs at a stroke. The following table shows a
mapping from Restrictions to CWE identifiers. Details on the exact
meaning and effect of each Restriction are given in the GNAT Reference
Manual.

Note to GNAT Pro users: If a project is not using the Restrictions pragma,
then the list of Restrictions that could be applied can be generated using
the GNAT Pro Binder tool’s “-r” switch. In GPS, this switch can be enabled
from the Project Properties dialog box, by selecting the Build / Switches /
Binder menu entry and then checking the “List possible restrictions”
checkbox.

AdaCore Technologies for Cyber Security

78

Restriction Identifier CWEs prevented

No_Allocators 122, 244, 415, 416, 467, 590, 761

No_Tasking or
Max_Tasks => 0

362, 364, 366, 432, 479, 543, 558, 567,
572, 585, 662, 663, 820, 821, 828, 831,
833

No_Recursion 674

No_Exceptions 248, 396, 397, 460, 584, 600

No_Exception_Handlers 396, 584

No_Finalization 568, 583, 586

No_Streams 499

No_Unchecked_Conversion 197, 588, 704, 843

No_Wide_Characters 135, 176

No_Dependence 676 (“potentially dangerous functions” can
be forbidden using this Restriction.)

 79

B. Handling SQL Injection
in Ada and SPARK

This appendix builds a worked example of how the common “SQL
Injection” defect can be handled using Ada and SPARK.

SQL Injection is a particular instance of the more general vulnerability of
“treating data as code”—something that developers should always be
wary of, yet is extremely useful and common practice. In short, some
“data” (coming from a user, another computer system, a network, etc.)
arrives in a program and is composed or manipulated in some way to
form “code” that is executed or interpreted. In this particular instance, the
language in question is SQL which is executed by some database server.

These forms of “code injection” attacks have been at or near the top of
the most-reported cyber security vulnerabilities for many years.

Some static analysis tools claim to find and report SQL Injection problems,
using some form of “taint analysis”. This is where the flow of information
from an input to an SQL query is tracked through a program, so that
potentially suspicious (or “tainted”) queries can be reported. This
approach is essentially heuristic—a tool is trying to assess if a particular
user input might be tainted. This yields both false positives (spurious
alarms) and false negatives (missing alarms).

The crux is that a general-purpose tool cannot know what does or doesn’t
constitute a valid and secure SQL query without detailed knowledge of
the target application’s security policy and requirements. This detail is
inherently domain- and application specific, so there’s no way an “out of
the box” tool can have such a built-in oracle.

This example shows how Ada’s contracts can be used to solve this
problem.

In the following code, a very simple database API is expressed as an
Ada package specification.

AdaCore Technologies for Cyber Security

80

package DB
 with SPARK_Mode => On,
 Abstract_State => State,
 Initializes => State
is
 procedure Execute (SQL_Query : in String;
 Result : out Integer)
 with Global => (Input => State);
end DB;

For simplicity it is assumed that the Execute procedure takes a single
String parameter (which is the SQL to be executed) and always returns
an Integer value.

The contracts work as follows:

• SPARK_Mode means that the package is supposed to comply
with the rules of the SPARK language subset.

• The Abstract_State contract allows the package to name an
abstraction of some persistent state that is embodied in the
package. In this case the name “State” represents the state of all
the data in the database. It needs a name so that it can be
referenced in later contracts.

• The Initializes contract specifies that the State data is to be
considered to be well-defined and initialized when the program
starts. In short, the database server is assumed to be “initialized”
before the program begins execution.

• The Global contract on the Execute procedure signifies that, in
addition to its “in” parameter, the procedure may read from the
database State, but not write to it. This is useful, since it confirms
that the Execute procedure is not permitted to change the state of
the database.

So far, there is no explicit constraint on what constitutes a “valid” SQL
Query. For example, a malicious client might call Execute with
SQL_Query set to “DROP TABLE Customers;” which would clearly violate
the intent.

A constraint is needed to ensure that the procedure Execute can only be
called under specific circumstances when the query is valid. This is a

Roderick Chapman and Yannick Moy

81

precondition on the Execute procedure. Good software engineering
practice entails abstracting that validity property as a function, and also
adding a Precondition contract to procedure Execute, thus:

package DB
 with SPARK_Mode => On,
 Abstract_State => State,
 Initializes => State
is
 function Is_Valid (SQL_Query : in String) return Boolean;

 procedure Execute (SQL_Query : in String;
 Result : out Integer)
 with Global => (Input => State),
 Pre => Is_Valid (SQL_Query);
end DB;

In Ada, that precondition will be evaluated every time that Execute is
called, to ensure that all is well before the query is allowed to proceed.

If a main program tries to call Execute without checking Is_Valid first and
chooses not to handle the resulting exception, then the result is
predictable:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE : failed precondition
from db.ads:11

If programmed correctly using Is_Valid as a defensive check, then the call
will always be allowed to proceed. For example:

if DB.Is_Valid (Full_Query) then
 DB.Execute (Full_Query, Result);
else
 Result := 0;
end if;

No Free Lunch—Implementing Is_Valid
To build and execute a program like this, a designer would have to
supply a legal body for the function Is_Valid. This poses something of a
problem: what should the body be? How strict should it be? On the one

AdaCore Technologies for Cyber Security

82

hand Is_Valid could return True all the time—this would cause no
violations but would be rather obviously unsound if a malicious query
really did arrive. On the other hand, it could always return False—never
allowing any SQL queries at all. This would be “secure” but offer a rather
high false-positive rate, since all perfectly legal queries would be
rejected.

Between these two extremes lies a “sweet spot” where Is_Valid
implements precisely the security policy required by the system, yielding
the “just right” balance of precision and soundness. However, this means
that a security policy exists in the first place.

An important lesson for system designers is that technologies like Ada and
SPARK can offer useful mechanisms in building secure systems, but they do
not supply policy. That can only come from a knowledge of the system’s
application domain and requirements.

An example of Is_Valid
For simplicity this example assumes that the system’s security policy exists
and says that an SQL query is valid if:

• The lower-bound index of the query String is 1, and
• The String is at least seven characters long, and
• The first seven characters are “SELECT ”, and
• The number of semi-colon characters (the statement terminator in

SQL) is exactly 1, and
• The final character is a semi-colon.

For example, the query

 “SELECT Name from Customers;”

would be deemed OK, while

 “SELECT Name from Customers; DROP TABLE Customers;”

would be rejected.

This can be implemented in the body of package DB as follows:

Roderick Chapman and Yannick Moy

83

with Ada.Strings.Fixed; use Ada.Strings.Fixed;
package body DB is
 function Is_Valid (SQL_Query : in String) return Boolean is
 begin
 return (SQL_Query'First = 1 and SQL_Query'Last >= 7)
 and then SQL_Query (1 .. 7) = "SELECT "
 and then SQL_Query (SQL_Query'Last) = ';'
 and then Count (SQL_Query, ";") = 1;
 end Is_Valid;
end DB;

Going further with SPARK and Static Verification
This example has shown how Ada’s contracts can offer precise facilities
for dynamic verification of complex, domain-specific security properties
like SQL Injection.

The SPARK language and tools go further, offering fully static verification
of the same properties.

If a client package C1 calls DB.Execute twice, first without the correct
defensive check, and later with the check correctly programmed, then the
GNATprove tool might report:

$ gnatprove -Psql --report=all -u c1.adb
Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
c1.adb:14:09: medium: precondition might fail
c1.adb:24:12: info: precondition proved

as expected.

Going further with Correct-by-Design SQL Queries

The above example shows how Ada contracts can be leveraged to
provide a safety net against SQL injection by introducing a validity
checking step for every SQL query, and how SPARK further provides
static verification of this required check.

In practice however, a safe application would not build SQL queries using
simple string operations in the first place. Instead, it would more likely use
type-safe APIs like those provided by the library GNATCOLL.SQL, or

AdaCore Technologies for Cyber Security

84

higher level tools such as the GNATcoll Object Relational Mapper, to
construct SQL queries whose syntax is fully constrained by Ada's static
strong typing. The rendering of these queries into SQL, with safe handling
of user-provided data (either through appropriate escaping, or even
passing it out of band as separate parameters to the SQL execution
back-end), can then be left to the API implementer.

 85

References
[1] Ross Anderson. Security Engineering, 2nd Edition. Wiley, 2008.

Also available at http://www.cl.cam.ac.uk/~rja14/book.html

[2] CERT CyberSecurity Engineering Site.
https://www.cert.org/cybersecurity-engineering/

[3] Cyber Security Body of Knowledge website.
http://www.cybok.org/

[4] European Cyber Security Organisation. Overview of Existing
Cybersecurity Standards and Certification Schemes v2. Dec 2017.
https://ecs-org.eu/documents/publications/5a31129ea8e97.pdf

[5] Daniel Jackson et al. Software for Dependable Systems: Sufficient
Evidence? US National Academy of Sciences, 2007.
https://www.nap.edu/catalog/11923/software-for-
dependable-systems-sufficient-evidence

[6] Paul E. Black et al. Dramatically Reducing Software Vulnerabilities.
NIST Report NISTIT 8151. January 2017.
https://www.nist.gov/publications/dramatically-reducing-
software-vulnerabilities

[7] National Cyber Security Centre. UK National Cyber Security
Strategy 2016-2021.
https://www.ncsc.gov.uk/document/national-cyber-security-
strategy-ncss

[8] Roderick Chapman and Anthony Hall. Correctness by construction:
building a commercial secure system. IEEE Software, vol. 19, no. 1,
Jan/Feb 2002, pp. 18–25, DOI: 10.1109/52.976937. PDF
available from the first author.

[9] ISO/IEC, Ada Language Reference Manual, 2012.
Available at
http://www.adaic.org/ada-resources/standards/ada12/

AdaCore Technologies for Cyber Security

86

[10] John Barnes and Ben Brosgol, Safe and Secure Software, an
invitation to Ada 2012, AdaCore, 2015.
Available at http://www.adacore.com/knowledge/technical-
papers/safe-and-secure-software-an-invitation-to-ada-2012/

[11] John Barnes, Programming in Ada 2012, Cambridge University
Press, 2014

[12] AdaCore, High-Integrity Object-Oriented Programming in Ada,
2013. Available at
http://www.adacore.com/knowledge/technical-papers/high-
integrity-oop-in-ada/

[13] John W. McCormick and Peter C. Chapin, Building High Integrity
Applications with SPARK, Cambridge University Press, 2015

[14] Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, Source
Code Security Analysis Tool Functional Specification, NIST, 2011.

[15] CWE Compatible Product website.
http://cwe.mitre.org/compatible/compatible.html

[16] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton,
Olivier Hainque, Thomas Quinot, Object and Source Coverage for
Critical Applications with the COUVERTURE Open Analysis
Framework, ERTS, 2010. PDF available here.

[17] CWE/SANS Top 25 Most Dangerous Software Errors.
http://cwe.mitre.org/top25/

[18] Joshua Bloch. How to Design a Good API and Why it Matters.
Various on-line sources, including video here:
https://www.youtube.com/watch?v=aAb7hSCtvGw.

[19] A. Senier et al. LibSPARKCrypto – A cryptographic library
implemented in SPARK. http://senier.net/libsparkcrypto/

Roderick Chapman and Yannick Moy

87

[20] Roderick Chapman. Sanitizing Sensitive Data: How to Get It Right
(or at Least Less Wrong). Proc of Reliable Software Technologies
– Ada Europe 2017. Vienna, Austria, June 2017. Springer LNCS
Vol. 10300. DOI: 10.1007/978-3-319-60588-3_3. PDF
available from the author.

[21] Muen – An x86/64 Separation Kernel for High-Assurance.
https://muen.codelabs.ch/

[22] R. Chapman, E. Botcazou, and A. Wallenburg. SPARKSkein: a
formal and fast reference implementation of Skein. Proc 14th
Brazilian Symp on Formal Methods, Sao Paulo, Brazil, Sept 2011.
Springer-Verlag LNCS, vol. 7021, pp. 16–27.
DOI: 10.1007/978-3-642-25032-3_2. PDF available from the
first author.

[23] Yannick Moy. SPARKSkein – From Tour-de-Force to Run-of-the-Mill
Formal Verification. SPARK 2014 Blog Entry, 1st June 2015.

[24] Tokeneer project archive. http://www.adacore.com/tokeneer

[25] Johannes Kanig, Quentin Ochem, Cyrille Comar. Bringing SPARK
to C developers. 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), Jan 2016, Toulouse, France.
https://hal.archives-ouvertes.fr/hal-01258395/

[26] J. Kanig, R. Chapman, C. Comar, J. Guitton, Y Moy, and E. Rhys.
Explicit Assumptions—A Prenup for Marrying Static and Dynamic
Program Verification. Proc Tests and Proofs 2014. Springer-
Verlag LNCS, vol. 8570, pp. 142 – 157. DOI: 10.1007/978-3-
319-09099-3_11

[27] MISRA. Guidelines for the Use of the C Language in Critical
Systems, ISBN 978-1-906400-10-1 (paperback), ISBN 978-1-
906400-11-8 (PDF), March 2013. http://www.misra.org.uk/

 89

Index

Ada language
Assertion_Error exception, 28
Buffer overflow prevention, 30
Concurrent programming (tasks), 29
Contract-based programming, 27, 31
Generic templates, 28
History and overview, 25
Limited types, 59
Object-Oriented Programming (OOP), 29
Postconditions, 27
pragma Inspection_Point, 59
pragma Restrictions, 30
Preconditions, 27
Programming in the large, 28
Real-Time Systems Annex, 30
Scalar ranges, 26
Systems Programming Annex, 30
Usage, 25

AdaCore
Ada history, 26
ASIS-for-GNAT. See ASIS-for-GNAT
CodePeer. See CodePeer
GNAT Pro Assurance. See GNAT Pro Assurance
GNAT Pro Enterprise. See GNAT Pro Enterprise
GNAT Programming Studio. See GNAT Programming Studio (GPS)
GNAT2XML. See GNAT2XML
GNATbench. See GNATbench
GNATcheck. See GNATcheck
GNATcoverage. See GNATcoverage
GNATdashboard. See GNATdashboard
GNATemulator. See GNAtemulator
GNATmetric. See GNATmetric
GNATprove. See GNATprove
GNATstack. See GNATstack
GNATtest. See GNATtest
SPARK Pro. See SPARK Pro
Support and expertise, 34

Anderson, Ross, 9
API Usage, 55
Architecture, 20

Physical, 20
Simplicity, 20

ASIS (Ada Semantic Interface Specification), 39
ASIS-for-GNAT, 39
Assurance

AdaCore Technologies for Cyber Security

90

Evidence-based, 20
Asymmetry

Capability, 14
Effort, 14
Impact, 15
Knowledge, 14

AUnit, 42
Authentication, 60
Authorization, 60

Babbage, Charles, 25
Buffer overflow, 30, 41

C language

Buffer overflow, 30
Supported by GNAT Pro, 33

C++ language
Buffer overflow, 30

Case studies
Ada Web Server, 65
cryptographic algorithms, 68
GNAT Pro frontend, 64
Muen, 67
MULTOS CA, 68
SQL Injection, 79
Tokeneer project, 68

CENELEC EN 50128, 19, 30
Code Injection, 50

Ada, 50
Machine code, 51
SQL, 79

CodePeer, 40
Common Weakness Enumeration (CWE) errors detected, 41
Early error detection, 41

Coding standard
Enforcement by GNATcheck, 35

Common Criteria, 30
Common Weakness Enumeration (CWE) errors detected by CodePeer, 41
Computer Emergency Readiness Team (CERT), 9
Cryptography, 14

Weak or absent, 57
CWEs, 47

Ada language Restrictions mapping, 77
Application specific, 73
Compliance, 74
Dynamic mitigation, 74
Mitigated by Ada, 75

Roderick Chapman and Yannick Moy

91

Mitigated by CodePeer, 75
Mitigated by SPARK, 75
Mitigation, 73
Prevented by Ada, 74
Prevention, 73
Static mitigation, 74
Universal, 73

Cyber Security Body of Knowledge (CyBOK), 9

Data Validation, 34, 47
Data Validity

Valid attribute, 48
Valid_Scalars attribute, 49

Decision coverage, 44
Defect density, 15
Denial of Service, 51
DO-178C, 19, 30
DO-326, 20
Dynamic Verification, 21

Eclipse support. See GNATbench
Evidence-based Assurance, 20

First release problem, 16
Formal Methods, 22
Free lunch

Lack of, 22
Fuzz testing, 49
Fuzz Testing, 34

Garbage collection, 29
GNAT Pro Assurance, 34

Configurable Run-Time Library, 33
Sustained branch. See Sustained branch
Traceability analysis service. See Traceability (Source to Object)
Warnings, 63

GNAT Pro Enterprise, 33
GNAT Programming Studio (GPS), 33, 44
GNAT2XML, 40
GNATbench, 33, 45
GNATcheck, 35

Coding standard enforcement, 35
GNATcoverage, 43
GNATdashboard, 45
GNATemulator, 43
GNATmetric, 35
GNATprove, 31

AdaCore Technologies for Cyber Security

92

GNATstack, 36
GNATtest, 42
GNU GCC technology, 33

High-level requirements, 19
Hybrid verification, 32

Ichbiah, Jean, 25
Incorrect calculation of buffer size, 41
Information Leak, 53

Side channel, 55
Input Data

Validation, 34
Integer overflow or wraparound, 41
Integrated Development Environments (IDEs), 44

Java language, 29

Libadalang, 39
Limits

Talent, 15
Testing, 15

Liskov Substitution Principle (LSP), 43
Lovelace, Augusta Ada, 25
Low-level requirements, 19

Market, 17

Failure, 17
Lemons, 18

Memory
Leak, 38
Usage verification, 38

Modified Condition/Decision Coverage (MC/DC), 44
Muen hypervisor, 67

Patching, 16

QEMU, 43

Rapita Systems Ltd., 38
Ravenscar Profile, 31
Requirements, 19
Runtime Library

Zero Footprint, 42

Safety-critical systems, 14
Satan's computer, 14

Roderick Chapman and Yannick Moy

93

Sensitive Data, 59
Erasing, 59

SPARK, 31
Absence of run-time exceptions, 42
Data and control flow analysis, 41
Information flow analysis, 41
Static verification support, 41
Usage, 31

SPARK Pro, 31

SQL Injection, 79

Dynamic mitigation using Ada, 79
Static prevention using SPARK, 83

Standards, 16
abundance of, 17

Statement coverage, 44
Static Analysis. See Static Verification
Static Verification, 21

Soundness, 21, 32
Sustained branch, 35

Taft, Tucker, 25
Test-Driven Development, 21
Timing Verification, 38
Traceability (Source to Object), 35

Valgrind, 44
Verification

Dynamic, 21
Static, 21

Verification-Driven Development, 21
Vulnerabilities, 47

Application specific, 47
Universal, 47

WCET Analysis, 38
Weak Crypto, 57
Workbench (WindRiver development environment), 45

	CyberSecurity-PDFCover.pdf
	AdaCoreTechnologiesForCyber5-4-18.pdf

