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Foreword 
 

Building secure software is a challenging task. It seems that almost every 
week we read the news about yet another computer system that has 
failed in some way in the face of malicious or accidental misuse. “Cyber 
Security” is a wide-ranging field, spanning human factors, hardware 
design, sociology, and legal issues, in addition to software engineering. 
This book summarizes the contribution that the Ada and SPARK languages 
and AdaCore’s tools can make to this final area—how to develop and 
verify correct and secure software.  

Unlike AdaCore’s previous guides to airborne and rail system software, 
this book does not follow the structure or requirements of a particular 
standard—in part because there is no widely used security standard that 
is required in practice. Instead it offers a more general treatment of the 
problem, but also includes an analysis of how AdaCore’s technologies 
help address the weaknesses identified in the MITRE Corporation’s 
Common Weakness Enumeration (CWE). The content is based on the 
authors’ many years of practical experience in the development of 
high-end secure systems, the design of the Ada and SPARK programming 
languages, and research into program verification tools. 

The book is intended for readers who are involved with software at any 
level (developers, project managers, procurement personnel) and who 
would like to learn how currently available technology can help address 
some of the most serious challenges associated with software and security.  
Our goal is to provide useful guidance both to those who are using other 
languages and are interested in the benefits that Ada offers, and to 
existing Ada users who might be confronted with new security 
requirements. 

Please contact us if you have questions about any particular kind of 
software vulnerability, or how Ada, SPARK and their associated 
development and verification tools can help. 
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1. Introduction 
It seems that every week’s news brings a story about yet another high-
profile failure of a computer system owing to a security issue. These 
problems have a significant impact on the public, businesses and 
government alike, affecting the reputation and share price of major 
organizations. In the most critical industry sectors, company directors face 
liability and governance concerns in an increasingly litigated environment. 

In general, the “security” of computer systems can be characterized as a 
weakest-link scenario where attackers need only find and exploit a single 
weakness in any part of a system, including its hardware, software, 
operational environment, people, or operating procedures. Many attacks 
rely on social engineering, insiders, human factors, accidental misuse, and 
so on. These issues are important aspects of secure system design, but are 
not the focus of this document. Readers are referred to Ross Anderson’s 
Security Engineering book [1], the US CERT website [2], or the recently 
established Cyber Security Body of Knowledge (CyBOK) project [3] for 
an overview of these wider issues. 

Instead, this document focuses on a common attack vector—that of 
insufficiently secure software—and what can be done about it. More 
specifically, this book concentrates on the contribution that the Ada and 
SPARK languages and their associated tools can make. Ada was 
designed from the outset to support the needs of “high assurance” 
systems; its strengths in this area are now becoming more widely 
recognized as the operational environment has become more malicious, 
and hence less tolerant of defective software. From the outset, Ada was 
designed to emphasize readability, understanding, and verification. 
Many pernicious defects that plague other languages are absent from 
Ada. For example: 

• Ada’s syntax prevents several problems, including confusion of 
assignment and comparison, the “dangling else” problem, and the 
unintentional use of the null statement. 

• Ada does not require the explicit use of “pointers” for low-level 
programming, parameter passing, or the use of array types. As 
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such, a huge number of “pointer-related” defects are entirely 
avoided. 

• Ada’s strong typing prevents a host of issues, including assignment 
of incompatible values to one another, confusion over “promotion” 
of types, and so on. 

• Ada has high-level features for concurrent programming, freeing 
the programmer from low-level use of “locks” or semaphores and 
threads. 

SPARK, a formally analyzable subset of Ada, inherits all of Ada’s 
strengths and offers additional advantages for high-assurance software. 
These include the ability to mathematically prove program properties 
such as the correct uses of data, the absence of run-time errors, and even 
functional correctness with respect to a formally specified set of 
requirements. 

Reader’s Guide 
Chapter 2 is recommended for all readers. It covers why producing 
secure software is such a challenge, and thus motivates our technical 
approach. 

Chapter 3 covers the Ada and SPARK languages and then goes on to 
describe AdaCore’s tools, with a focus on how they can support an 
evidence-based assurance case for security. Readers already familiar 
with Ada can probably skip section 3.1, while those familiar with 
AdaCore’s tools as well can go straight on to chapter 4. 

Chapter 4 presents a selection of common “vulnerabilities” in software, 
and describes how Ada and AdaCore’s tools can address these issues. 
This selection is a very small subset of all such issues, but have been 
chosen since they present an opportunity to discuss areas where Ada and 
SPARK have a particular contribution to make. 

Chapter 5 presents a number of industrial scenarios, from purely 
retrospective analysis of legacy systems, to new developments, to systems 
that involve mixed criticality and development technologies. These are 
intended as illustrations of real-world situations; suggestions for 
additional examples are welcome and will be considered for inclusion in 
future editions of this book. 
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Chapter 6 forms something of a “call to arms” for software developers. 

Finally, two appendices cover the specifics of mapping Ada language 
and tool capabilities to the CWE enumeration, and a worked example of 
how the pernicious “SQL Injection” style of vulnerability can be handled 
with great panache in Ada and SPARK. 
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2. The Challenge of Secure 
Software 
This chapter considers why building and operating secure computer 
systems appears to be so difficult, as evidenced by the frequency and 
magnitude of attacks reported in the media. Having set out the “bad 
news”, this chapter closes with some principles that can be applied and 
justify AdaCore’s position and technical approach. 

2.1. Why is it so hard? 
Security is a system-level property that is commonly defined as the 
protection of assets against threats that may compromise confidentiality, 
integrity, or availability.  Thus, security means protection against 
unauthorized access to, corruption of, and denial of access to the assets.  
In a cyber system, software plays a key role in whether and how these 
requirements are met, and it does this in two ways: 

• Providing the relevant security functionality (for example, 
cryptographic functions), and 

• For the rest of the software, avoiding vulnerabilities that, if triggered, 
could violate the confidentiality, integrity and/or availability 
requirements. 

In short, security entails demonstrating, with a level of confidence 
commensurate with the value of the assets, that the security functions do 
what they are supposed to do, and the rest of the system cannot do 
anything to place the assets at risk. 

The development of secure software sets particular challenges that place 
it beyond a mere “quality control” problem, though. The following sub-
sections expand on these challenges to set the scene and justify a rational 
technical approach. 
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The Malicious Environment 
AdaCore customers have always been involved with building ultra-
reliable safety-critical systems. In this world, the engineers usually have 
strict control of the software’s operational environment, or the environment 
may be assumed to be benign or well-behaved in some way. 

This is no longer the case. Software is often connected to open networks 
where benign behavior cannot be assumed. In short, software must be 
built to withstand and continue to operate correctly in an overtly malicious 
environment. 

Ross Anderson and Roger Needham coined the phrase “Programming 
Satan’s Computer” to characterize this challenge. Satan’s computer 
doesn’t fail randomly either—it fails intelligently, in the worst-possible way, 
at the worst-possible time, and it can fail in ways that you don’t even know 
about (yet...). 

Asymmetry of Capability 
It gets worse. The “bad guys” (attackers, malicious actors) are smarter 
than you, have more money than you, and more time than you. 
Furthermore, their capabilities don’t grow in some linear, predictable 
fashion. A public “leak” of a government’s arsenal of hacking tools can 
put nation-state level capability within reach of anyone at all in a matter 
of days, and these capabilities become commoditized very rapidly. 

Asymmetry of Effort 
The software developer is responsible for preventing every possible 
defect that might lead to any sort of security exploit or failure of the 
system. An attacker, on the other hand, has to find just one defect to 
mount a successful attack. 

Asymmetry of Knowledge 
Computer security (and, in particular, its sub-genre cryptography) is a 
strange discipline, since the total knowledge of the field is far greater 
than what is published in the scientific literature. In short, various groups 
(including “attackers”, and certain notable government agencies) know 
things that typical developers don’t. Examples include the RSA 
cryptosystem in the early 1970’s, Differential Power Analysis pre-1999, 
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and (until very recently) the so-called “Spectre” and “Meltdown” 
problems in modern CPUs. 

This sets the software developer with a particular challenge: to defend 
software against attacks that the developer doesn’t even know about. 

Asymmetry of Impact 
In software, it is very difficult to predict the relationship between a 
particular defect (or class of defects) and its potential impact on the 
system’s behavior, the system’s customers/users, or the developing 
organization’s business. The impact of security issues can range from 
negligible to those that destroy the reputation and share-price of a 
company overnight. Given that attacks exist that developers don’t know 
about, trying to decide whether a particular defect is “high impact” (and 
therefore worthy of being fixed) can be almost impossible. 

The Limits of Test 
In the 1972 Turing Award lecture, Edsger Dijkstra famously pointed out 
that “program testing can be a very effective way to show the presence 
of bugs, but is hopelessly inadequate for showing their absence.” 

Given an arbitrarily intelligent and motivated attacker, developers of 
secure systems must assume that systems will be attacked with input data 
and in states that have never been tested. For any non-trivial software 
system, any claim of security solely based on “lots of testing” must be 
regarded with extreme skepticism. Even a well-organized and 
independent Penetration Testing activity offers no guarantee of finding 
“all the bugs”. 

The Limits of Talent 
Some projects like to claim that their software quality is OK “because we 
only hire really good people...” or something like that. Such claims do not 
stand up to the most cursory inspection. Data from the Personal Software 
Process / Team Software Process (PSP/TSP) group at the US Software 
Engineering Institute show that even the best performing programmers 
inject around 20 defects per 1000 logical lines of code in their work. 
Truly critical systems might aim for 0.2 defect per kloc delivered to the 
customer—a factor of 100 times better, or equivalent to those 
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programmers preventing or finding and fixing 99 out of every 100 
defects. 

It is also obvious to note that this approach does not scale with team 
size—projects need technologies and disciplines that allow all developers 
to produce work of the required quality, instead of relying on a few 
“hero programmers” to save the day (or the project, or the company...) 

The “First Release” Problem 
There is lots of advice that tells us to “patch” our software regularly to 
make sure we’ve got the latest (and presumably least-buggy) version. 
This is reasonable advice, but can be something of a challenge to 
implement with appropriate levels of authentication and confidentiality, 
particularly for small embedded devices. 

For a developer, the ability to “patch” should not be an excuse to ship 
defective software to the customer, thinking that it can be patched later if 
defects are reported. The problem is that some defects are of such 
dramatic impact, and the damage is done so fast, that there is no time or 
opportunity for any corrective action. As an example, consider the flight 
control software for an aerodynamically unstable fighter aircraft. A 
developer approaching the test pilot before first flight and saying “Don’t 
worry about the bugs, we’ll ship you a patch...” would soon be looking for 
a new career. 

While “improve and patch” is a reasonable model for many software 
vendors, some software just has to be fit-for-purpose at the point of its 
first release. Additionally, a demonstration of fitness for purpose might 
need to be submitted to an independent authority or regulator. This 
problem requires a fundamental shift in engineering mind-set: one that is 
embodied in Ada itself and many of AdaCore’s key technologies. 

2.2. Standards and Guidance 

“The nice thing about standards is that you have so 
many to choose from.” 

– Andrew S Tanenbaum 
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Given the perceived scale and threat from “Cyber Security”, it is no 
surprise that a great deal has been written about the problem, and what 
to do about it. 

The European Cyber Security Organisation has published an “Overview 
of existing Cybersecurity standards and certification schemes” [4]. The 
document (which is just a survey) is nearly 200 pages, and lists something 
like 107 different guidance documents and/or standards for system 
development, and goes on to cite nine schemes for certification of 
professional skills. 

Even within a particular application domain or industry sector, there can 
still be an overwhelming volume of guidance and “standards” that 
appear to apply. Standards also vary widely in terms of the vigor with 
which they are enforced (from effectively mandatory to entirely optional) 
and their technical demands (from highly specific and onerous to general 
and lax). 

There have also been some higher-level attempts to look at the problem 
which merit some attention. Examples include the US National Academy of 
Sciences report “Software for Dependable Systems: Sufficient Evidence?” 
[5] and the US National Institute for Standards and Technology (NIST) 
report “Dramatically Reducing Software Vulnerabilities” [6]. The NIST 
report identifies five approaches that have the potential to make a 
dramatic impact on software quality, including the use of formal methods, 
which (as will be shown later) aligns closely with AdaCore’s capabilities 
and technologies. 

2.3. The Market, Lemons, and Regulators 
For many years, there was hope that “the market” would self-correct and 
produce a rational approach to the development of secure software. This 
has not happened. Firstly, the development of “secure” software has been 
seen as something of a specialist “niche”, but development disciplines and 
approaches have been dominated by the larger market for “not so 
secure” software where time-to-market and “features” take precedence 
over quality. Secondly, for a buyer of software it is almost impossible to 
tell if some specific product is any more or less secure than any other 
product, since proprietary software is often cloaked in secrecy (“security 
by obscurity”) and restricted by prohibitive licensing terms. Economists call 
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this “A market for Lemons” after similar observations were made about 
the market for used cars. 

In a significant change of stance, the UK’s National Cyber Security 
Strategy 2016-2021 (NCSS) explicitly notes: 

“But the combination of market forces and government encouragement 
has not been sufficient in itself to secure our long-term interests in 
cyberspace at the pace required. Too many networks, including in 
critical sectors, are still insecure. The market is not valuing, and 
therefore not managing, cyber risk correctly.” [7 section 4.13] 

The NCSS goes on to promise more active “intervention” in critical areas. 
It is not yet clear what form these interventions will take, but the challenge 
is clear: system and software developers must be ready to improve, 
justify and defend their practices before their national regulator (or 
worse, their insurer or a court of law) decides to step in. 

2.4. A Manifesto for Secure Software 
Although this picture may seem bleak, progress is possible. 

AdaCore is primarily involved with the design of software development 
and verification tools, but these are not the sole route to improvement. 
Great engineering involves an interplay between technologies (tool, 
languages etc.), people (their skills, disciplines, attitudes), and engineering 
processes. 

These three elements impact one another—for example, the introduction 
of a new static verification tool on a project might mean that later code 
review processes can be modified, and that engineers change their 
disciplines and “coding style” as they learn how to get best results from 
the tool. 

This section lays out some basic principles for high-integrity software 
engineering that could be applied to any project, regardless of the 
standards, industry, or regulatory environment that might apply. 
Chapter 3 goes into more details, showing how AdaCore’s languages and 
tool technologies contribute to meeting these goals. 
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Requirements 
Arguably the most important aspect of producing secure and reliable 
software, and also perhaps the most difficult to achieve, is to specify a 
complete, consistent, and unambiguous set of requirements that the 
software must meet, and to do so without overly constraining the solution. 
The requirements should specify the “what”, but not the “how”, and should 
be expressed in a way that facilitates verifying whether they are met. 
Software standards such as DO-178C (airborne software) and CENELEC 
EN 50128 (railway control and protection systems) recognize the critical 
role of the requirements specification in the software life cycle. Typically 
derived from overall system requirements, software requirements are 
most easily visualized as comprising several tiers: 

• High-level requirements that relate to overall functionality, 
performance, capacity /response time, interface issues, usability, 
and safety and/or security. These requirements drive the design 
of the software architecture. 

• Low-level requirements that emerge from the software design. 
These requirements are defined for each component and in 
particular establish what each code module (subprogram, in Ada 
parlance) assumes when it is invoked and what it promises to 
deliver when it returns. 

A language such as Ada or SPARK can serve to specify requirements at 
both levels, in particular through the various forms of contracts (pre- and 
postconditions, type invariants). The developer can thus directly embed 
requirements in the source code and verify compliance either statically 
with SPARK proofs or dynamically with Ada run-time checks.  SPARK also 
has the advantage of an unambiguous notation that can formalize 
requirements such as the information flow between components, key 
integrity properties for security and/or safety, and the detailed semantics 
of what a subprogram computes. 

Security requirements should be formulated at the outset; issues such as 
the usage environment (standalone with trusted operations personnel 
versus networked and accessible from unvetted parties) have an obvious 
effect on the design and the relevant assurance level. The security-related 
interactions between the system and its environment need to be defined, 
the threats identified, and countermeasures specified. (An example of 
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how security-related issues are being assessed in the commercial avionics 
industry may be found in DO-326, Airworthiness Security Process 
Specification.) 

Security-related requirements established at the system level flow down 
through the software life cycle into high-level requirements (for example 
the strength of a cryptography function) and ultimately into low-level 
requirements and then source code.  The chosen programming language(s) 
and tools have a significant effect on the ease or difficulty of 
demonstrating that the resulting code in fact correctly implements the 
requirements. As will be explained throughout this book, the Ada and 
SPARK languages together with AdaCore's development and verification 
tools offer particular advantages. 

Architecture 
A system’s architecture entails its high-level design as components with 
well-defined interfaces and interrelationships. A good architecture 
provides a solid framework with effective modularization and robustness 
in the presence of future enhancements and requirements changes. 
Architecture covers issues such as redundancy, the provision of fail-safe 
states or modes, mitigation of security concerns by physical means (e.g. 
hardware design), and the separation of critical from non-critical 
components. The last of these also allows the most critical software 
components to be as small as possible, which helps to control cost. 

At a more technical level, strong architecture and separation means that 
the most appropriate languages, tools and technologies can be used 
where they are best suited. For example, in the MULTOS CA system, 
developed by Praxis in the UK [8], the security kernel of the system was 
implemented and verified using the SPARK toolset, while the GUI was 
implemented in C++, based on a deliberate and strict separation of 
security concerns. 

Evidence-based Assurance 
The fitness-for-purpose of a system should be justified by a logical 
argument which is supported by evidence from a wide range of sources. 
The evidence might be based on analysis of design artefacts, observation 
including all forms of testing, metrics, and both direct and indirect 
evidence of process compliance. 
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Verification-Driven Development 
Given a need for evidence, a development approach should be chosen 
that generates the evidence as a natural by-product. This can be 
summarized as “Security should be built in, not bolted on.” This idea can 
be seen as a generalization of “Test-Driven Development” to cover all the 
forms of verification activity that are available. 

In line with the Agile manifesto, verification tasks should be automated as 
far as possible, and embodied in a continuous integration pipeline. 

Analysis over Observation 

“Talk is Cheap...Show me the Code.” 
 – Linus Torvalds 

Verification activities can be categorized as “static” or “dynamic.” 

Static Verification (also known as “Static Analysis”) concentrates on 
analysis of development artefacts (e.g. designs, models, source code) 
without actually running the system. Static analyses can be performed by 
humans (for example, personal and peer review), or automated by 
machines (for example, use of a tool like CodePeer or SPARK Pro.) 

Dynamic Verification constitutes all activities that involve observation of 
the system, in either a simulated or real-world environment, so covers all 
forms of “testing.” 

As noted earlier, testing of security-critical systems has severe limitations. 
In short, the results are only as good as the test data that have been 
exercised, and that will always a tiny fraction of the possible system 
states and inputs. Further, it must be assumed that attackers will find 
“tests” that the system’s developers haven’t tried. 

In theory, a static verification activity should yield results that are true for 
all possible states and inputs, and therefore offers a qualitatively different 
level of assurance from testing alone. This tool property is referred to as 
“Soundness”, meaning that the results of a static verification really are 
trustworthy. The concept is best illustrated with a simple example. Imagine 
submitting a program’s source code to a tool, asking the question “Are 
there any defects?” (for example, reads of uninitialized variables) and 
receiving a report in response.  If the tool is Sound, then these are the 
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only such defects; if the tool is Unsound then the code may have defects 
that were not reported. Phrased differently: if a Sound tool reports that 
the program has no defects, then this conclusion can be trusted.  If an 
Unsound tool reports that the program has no defects, then it is still 
possible that unreported defects are present. 

The Sound tool offers a more desirable result than the Unsound tool, since 
it provides a higher degree of confidence and requires less testing and 
re-work later. 

For these reasons, a verification approach that emphasizes the use of 
sound, automated and static verification is recommended. 

But...as always, there is no “free lunch.” It turns out that Soundness in static 
verification is rather difficult to achieve, for the reasons set out in the next 
sub-section. And all tools, whether Sound or Unsound, run the risk of 
generating “false alarms”: reporting a potential defect that in fact is not 
a problem. An ideal tool that is both Sound (reporting all defects) and 
precise (not reporting any non-defects) is not achievable; in practice a 
trade-off must be maintained. For example, first applying an Unsound 
but precise tool to analyze legacy code and correct the reported defects, 
and then using a Sound tool to identify the remaining defects.  

Unambiguous Notation 
To analyze the meaning (and therefore the presence or absence of 
important defects) of a program successfully, a tool needs to know exactly 
what a program means. This seems obvious, but turns out to be rather 
difficult to achieve with most of the popular and practical programming 
languages. 

The problem is ambiguity in programming languages—there are features 
or scenarios where the meaning of a program is said to be undefined or 
unspecified by the definition of the language. This is easy for a compiler 
to resolve—it just chooses one of a range of options and carries on—but 
is something of a disaster for static verification tools. If a verification tool 
has to “guess” the meaning of an undefined behavior in a program, then 
the results can be Unsound. 
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AdaCore’s approach is to achieve Soundness in static verification as far 
as is possible, and with respect to a reasonable and practical set of 
assumptions. 

In the interest of run-time performance the Ada language has provision 
for unspecified behavior and compiler-dependent choices. For example, 
the order of evaluation of sub-expressions inside an expression is 
unspecified, which can lead to different results depending on the order 
chosen if these sub-expressions have side-effects. In particular, the 
association of additions in an expression A + B + C is compiler 
dependent, which can lead to different results depending on the order 
chosen if one of these choices leads to an integer overflow. For each of 
these, the CodePeer static analyzer makes and documents its choices, so 
that they are as close as possible to the choices made in general, and in 
particular in the GNAT compiler. But it cannot guarantee that these 
coincide with the choices made by a specific compiler version with a 
specific host and target configuration, so these choices should be 
inspected if they could be relevant for the static analysis. 

The SPARK language and toolset set a high-water mark in this regard. 
Soundness is achieved through a combination of language subsetting, 
additional language rules, and analyses. SPARK can also be thought of as 
a fully Formal language owing to its unambiguous semantics. 
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3. Languages, Tools and 
Technologies Overview 
This chapter summarizes the Ada and SPARK languages, as well as 
AdaCore’s tools and technologies, and highlights their contributions to 
system security. 

3.1. Ada 
Ada is a modern programming language designed for large, long-lived 
applications – and embedded systems in particular – where reliability, 
maintainability, and efficiency are essential. It was originally developed 
in the early 1980s (this version is generally known as Ada 83) by a team 
led by Jean Ichbiah at CII-Honeywell-Bull in France. The language was 
revised and enhanced in an upward-compatible fashion in the early 
1990s, under the leadership of Tucker Taft from Intermetrics in the U.S. 
The resulting language, Ada 95, was the first internationally standardized 
(ISO) object-oriented language. Under the auspices of ISO, a further 
(minor) revision was completed as an amendment to the standard; this 
version of the language is known as Ada 2005. Additional features 
(including support for contract-based programming in the form of 
subprogram pre- and postconditions and type invariants) were added in 
the most recent version of the language standard, Ada 2012 (see 
[9,10,11] for information about Ada). 

The name “Ada” is not an acronym; it was chosen in honor of Augusta 
Ada Lovelace (1815-1852), a mathematician who is sometimes regarded 
as the world’s first programmer because of her work with Charles 
Babbage. She was also the daughter of the poet Lord Byron. 

Ada is seeing significant usage worldwide in high-integrity / safety-
critical / high-security domains including commercial and military aircraft 
avionics, air traffic control, space applications, railroad systems, and 
medical devices. With its embodiment of modern software engineering 
principles Ada is an excellent teaching language for both introductory 
and advanced computer science courses, and it has been the subject of 
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significant university research especially in the area of real-time 
technologies. 

AdaCore has a long history and close connection with the Ada 
programming language. Company members worked on the original 
Ada 83 design and review and played key roles in the Ada 95 project 
as well as the subsequent revisions. The initial GNAT compiler was 
essential to the growth of Ada 95; it was delivered at the time of the 
language’s standardization, thus guaranteeing that users would have a 
quality implementation for transitioning to Ada 95 from Ada 83 or other 
languages. 

Language Overview  
Ada is multi-faceted. From one perspective it is a classical stack-based 
general-purpose language, not tied to any specific development 
methodology. It has a simple syntax, structured control statements, 
flexible data composition facilities, strong type checking, traditional 
features for code modularization (“subprograms”), and a mechanism for 
detecting and responding to exceptional run-time conditions (“exception 
handling”). 

But it also includes much more: 

Scalar ranges  
Unlike languages based on C (such as C++, Java, and C#), Ada allows 
the programmer to simply and explicitly specify the range of values that 
are permitted for variables of scalar types (integer, floating-point, fixed-
point, and enumeration types). The attempted assignment of an out-of-
range value causes a run-time error. The ability to specify range 
constraints makes programmer intent explicit and makes it easier to 
detect a major source of coding and user input errors. It also provides 
useful information to static analysis tools and facilitates automated proofs 
of program properties. 

Here’s an example of an integer scalar range: 
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Score : Integer range 1..100; 
N     : Integer; 
... 
Score := N; 
-- A run-time check verifies that N is within the range 1..100 
-- If this check fails, a Constraint_Error exception is raised 

 

Contract-based programming 
Ada 2012 allows extending a subprogram specification or a 
type/subtype declaration with a contract (a Boolean assertion). 
Subprogram contracts take the form of preconditions and postconditions. 
Through contracts the developer can formalize the intended behavior of 
the application, and can verify this behavior by testing, static analysis or 
formal proof. 

Here’s a skeletal example that illustrates contact-based programming; a 
Table object is a fixed-length container for distinct Float values. 

package Table_Pkg is 
   type Table is private;  -- Encapsulated type 
 
   function Is_Full  (T    : in Table) return Boolean; 
   function Contains (T    : in Table; 
                      Item : in Float) return Boolean; 
 
   procedure Insert (T : in out Table; Item: in Float) 
     with Pre  => not Is_Full(T) and not Contains(T, Item), 
          Post => Contains(T, Item); 
 
   procedure Remove (T : in out Table; Item: out Float); 
     with Pre  => Contains(T, Item), 
          Post => not Contains(T, Item); 
   ... 
private 
   ... -- Full declaration of Table 
end Table_Pkg; 
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A compiler option controls whether the pre- and post-conditions are 
checked at run time. If checks are enabled, a failure raises the 
Assertion_Error exception. 

Ada 2012 goes further still, allowing type invariants and subtype 
predicates to specify precisely what is and isn’t valid for any particular 
(sub)type, including composite types such as records and arrays. For 
example, one can easily specify that field Max_A in the Launching_Pad 
structure below is the maximal value of angle allowed given the distance 
D to the center of the launching pad and the height H of the rocket, with 
the guarantee that automatic run-time checks will be inserted by the 
compiler to verify this predicate as well as constraints on the individual 
fields: 

type Launching_Pad is record 
   D, H  : Length; 
   Max_A : Angle; 
end record 
  with Predicate => Angle (Arctan (H, D)) <= Max_A; 

 

Programming in the large  

The original Ada 83 design introduced the package construct, a feature 
that supports encapsulation (“information hiding”) and modularization, 
and which allows the developer to control the namespace that is 
accessible within a given compilation unit. Ada 95 introduced the concept 
of “child units,” adding considerable flexibility and easing the design of 
very large systems. Ada 2005 extended the language’s modularization 
facilities by allowing mutual references between package specifications, 
thus making it easier to interface with languages such as Java. 

Generic templates  
A key to reusable components is a mechanism for parameterizing modules 
with respect to data types and other program entities, for example a 
stack package for an arbitrary element type. Ada meets this requirement 
through a facility known as “generics”; since the parameterization is done 
at compile time, run-time performance is not penalized.  
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Object-Oriented Programming (OOP)  
Ada 83 was object-based, allowing the partitioning of a system into 
modules (packages) corresponding to abstract data types or abstract 
objects. Full OOP support was not provided since, first, it seemed not to 
be required in the real-time domain that was Ada’s primary target, and, 
second, the apparent need for automatic garbage collection in an OO 
language would have interfered with predictable and efficient 
performance. 

However, large real-time systems often have components such as GUIs 
that do not have real-time constraints and that could be most effectively 
developed using OOP features. In part for this reason, Ada 95 added 
comprehensive support for OOP, through its “tagged type” facility: 
classes, polymorphism, inheritance, and dynamic binding. These features 
do not require automatic garbage collection; instead, definitional 
features introduced by Ada 95 allow the developer to supply type-
specific storage reclamation operations (“finalization”). Ada 2005 
brought additional OOP features including Java-like interfaces and 
traditional obj.op(...) operation invocation notation. 

Ada is methodologically neutral and does not impose a “distributed 
overhead” for OOP. If an application does not need OOP, then the OOP 
features do not have to be used, and there is no run-time penalty. 

See [11] or [12] for more details. 

Concurrent programming  
Ada supplies a structured, high-level facility for concurrency. The unit of 
concurrency is a program entity known as a “task.” Tasks can communicate 
implicitly via shared data or explicitly via a synchronous control 
mechanism known as the rendezvous. A shared data item can be defined 
abstractly as a “protected object” (a feature introduced in Ada 95), with 
operations executed under mutual exclusion when invoked from multiple 
tasks. Asynchronous task interactions are also supported, specifically 
timeouts and task termination. Such asynchronous behavior is deferred 
during certain operations, to prevent the possibility of leaving shared 
data in an inconsistent state. Mechanisms designed to help take 
advantage of multi-core architectures were introduced in Ada 2012. 
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Systems programming  
Both in the “core” language and the Systems Programming Annex, Ada 
supplies the necessary features for hardware-specific processing. For 
example, the programmer can specify the bit layout for fields in a 
record, define alignment and size properties, place data at specific 
machine addresses, and express specialized code sequences in assembly 
language. Interrupt handlers can also be written in Ada, using the 
protected type facility. 

Real-time programming  
Ada’s tasking facility and the Real-Time Systems Annex support common 
idioms such as periodic or event-driven tasks, with features that can help 
avoid unbounded priority inversions. A protected object locking policy is 
defined that uses priority ceilings; this has an especially efficient 
implementation in Ada (mutexes are not required) since protected 
operations are not allowed to block. Ada 95 defined a task dispatching 
policy that basically requires tasks to run until blocked or preempted, and 
Ada 2005 introduced several others including Earliest Deadline First.  

High-integrity systems  
With its emphasis on sound software engineering principles Ada supports 
the development of high-integrity applications, including those that need 
to be certified against safety standards such DO-178C for avionics, 
CENELEC EN 50128 for rail systems and security standards such as the 
Common Criteria. For example, strong typing means that data intended 
for one purpose will not be accessed via inappropriate operations; errors 
such as treating pointers as integers (or vice versa) are prevented. And 
Ada’s array bounds checking prevents buffer overflow vulnerabilities that 
are common in C and C++. 

However, the full language may be inappropriate in a safety- or 
security-critical application, since the generality and flexibility of some 
features – especially those with complex run-time semantics – complicates 
analysis and could interfere with traceability / certification requirements. 
Ada addresses this issue by supplying a compiler directive, pragma 
Restrictions, that allows constraining the language features to a well-
defined subset (for example, excluding dynamic OOP facilities). 
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The evolution of Ada has seen the continued increase in support for 
safety-critical and high-security applications. Ada 2005 standardized the 
Ravenscar Profile, a collection of concurrency features that are powerful 
enough for real-time programming but simple enough to make 
certification practical. Ada 2012 has introduced contract-based 
programming facilities, allowing the programmer to specify preconditions 
and/or postconditions for subprograms, and invariants for encapsulated 
(private) types. These can serve both for run-time checking and as input to 
static analysis tools. 

In brief, Ada is an internationally standardized language combining 
object-oriented programming features, well-engineered concurrency 
facilities, real-time support, and built-in reliability through both compile-
time and run-time checks. As such it is an appropriate language for 
addressing the real issues facing software developers today. Ada is used 
throughout a number of major industries to design software that protects 
businesses and lives. 

3.2. SPARK  
SPARK1 is a software development technology (programming language 
and verification toolset) specifically designed for engineering ultra-low 
defect level applications, for example where safety and/or security are 
key requirements. SPARK Pro is the commercial-grade offering of the 
SPARK technology developed by AdaCore and Altran. The main 
component in the toolset is GNATprove, which performs formal 
verification on SPARK code. 

SPARK has an extensive industrial track record. Since its inception in the 
late 1980s it has been used worldwide in a range of industrial 
applications such as civil and military avionics, air traffic management / 
control, railway signaling, cryptographic software, and cross-domain 
solutions. SPARK 2014 is the most recent version of the technology (see 
[13]). 

                                                
1 Note that our SPARK is totally unrelated to the Apache SPARK analytics 
framework, or the SPARC CPU Instruction Set Architecture. 
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Formality and Soundness 
Two major design goals of SPARK are the provision of an unambiguous 
and formal semantics, which therefore permits the soundness of static 
verification. These goals have always been at the heart of SPARK’s 
design. Soundness builds trust in the tools, supports evidence-based 
assurance, completely removes many classes of dangerous defects, and 
allows subsequent verification activities (e.g. testing) to be cheaper 
(owing to less rework) or eliminated entirely. 

Flexibility  
SPARK 2014 offers the flexibility of configuring the language on a per-
project basis. Restrictions can be fine-tuned based on the relevant coding 
standards or run-time environments. 

SPARK 2014 code can easily be combined with full Ada code or with C, 
so that new systems can be built on and reuse legacy codebases. 

Ease of Adoption  
The SPARK 2014 technology is easy to learn and can be smoothly 
integrated into an organization’s existing development and verification 
methodology and infrastructure. 

Pre-2014 versions of the SPARK language used a special annotation 
syntax for the various forms of contracts. In SPARK 2014 this has been 
merged with the standard Ada 2012 contract syntax, which both 
simplifies the learning process and also allows new paradigms of 
software verification. Programmers familiar with writing executable 
contracts for run-time assertion checking can use the same approach but 
with additional flexibility: the contracts can be verified either dynamically 
through classical run-time testing methods or statically (i.e., pre-
compilation and pre-test) using automated tools. 

SPARK supports “hybrid verification” that can mix testing with formal 
proofs. For example an existing project in Ada and C can adopt SPARK 
to implement new functionality for critical components. The SPARK units 
can be analyzed statically to achieve the desired level of verification, 
with testing performed at the interfaces between the SPARK units and the 
modules in the other languages. 
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Reduced Test Effort and Cost 
Software verification typically involves extensive testing, including unit 
tests and integration tests. Traditional testing methodologies are a major 
contributor to the high delivery costs for safety-critical software. 
Furthermore, they may fail to detect errors. SPARK 2014 addresses this 
issue by allowing automated proof to be used to demonstrate functional 
correctness at the subprogram level, either in combination with or as a 
replacement for unit testing. In the high proportion of cases where proofs 
can be discharged automatically the cost of writing unit tests is completely 
avoided. Moreover, verification by proofs covers all execution conditions 
and not just a sample. 

3.3. GNAT Pro Enterprise 
GNAT Pro Enterprise is an Ada and C development environment for 
producing critical software systems where reliability, efficiency and 
maintainability are essential. 

Based on the GNU GCC technology, GNAT Pro Enterprise supports all 
versions of the Ada language standard, from Ada 83 to Ada 2012, and 
also handles multiple versions of C (C89, C99, and C11). It includes an 
Integrated Development Environment (GNAT Programming Studio and/or 
GNATbench), a comprehensive toolsuite including a visual debugger, and 
a set of libraries and bindings. 

GNAT Pro Enterprise offers several features that make it ideal for the 
development of secure systems. These include: 

Configurable Run-Time Library  
GNAT Pro Enterprise includes a configurable run-time capability, which 
allows specifying support for Ada’s dynamic features in an a la carte 
fashion ranging from none at all to full Ada. The units included in the 
executable may be either a subset of the standard libraries provided 
with GNAT Pro, or specially tailored to the application. For the most 
critical applications and “bare metal” systems, the Zero FootPrint (ZFP) run 
time offers a truly minimal application footprint (rivalling that of C) while 
retaining compatibility with the SPARK subset and verification tools. 
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Full Ada 83 to 2012 Implementation  
GNAT Pro provides a complete implementation of all versions of the Ada 
language standard, from Ada 83 to Ada 2012. Developers of safety-
critical and high-security systems can thus take advantage of features 
such as contract-based programming. 

Enhanced Data Validity Checking 
Improper or absent data validity checking is a pernicious source of 
security vulnerabilities in software systems. Ada has always offered 
range checks for scalar subtypes, but GNAT Pro goes further, offering 
enhanced validity checking that can protect a program against malicious 
or accidental memory corruption, failed I/O devices, and so on. This 
feature is particularly useful in combination with automatic Fuzz Testing, 
since its offers strong defense for invalid data at the software boundary of 
a system. 

Support and Expertise  
At the heart of every AdaCore subscription are the support services that 
AdaCore provides to its customers. AdaCore staff are recognized experts 
on the Ada language, software certification standards in several domains, 
compilation technologies, and static and dynamic verification. They have 
extensive experience in supporting customers in avionics, railway, space, 
energy, air traffic management/control, and military projects. 

Every AdaCore product comes with front-line support provided directly 
by these experts, who are also the developers of the technology. This 
ensures that customers’ questions (requests for guidance on feature usage, 
suggestions for technology enhancements, or defect reports) are handled 
efficiently and effectively. 

Beyond this bundled support, AdaCore also provides Ada language and 
tool training as well as on-site consulting on topics such as how to best 
deploy the technology, and assistance on start-up issues. On-demand tool 
development or ports to new platforms are also available. 

3.4. GNAT Pro Assurance 
GNAT Pro Assurance adds specialized support, such as bug fixes and 
“known problems” analyses, on a specific version of the toolchain. This 
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product line is especially suitable for applications with long-lived 
maintenance cycles or assurance requirements, since critical updates to the 
compiler or other product components may become necessary years after 
the initial release.  

Sustained Branches 
Unique to GNAT Pro Assurance is a service known as a “sustained 
branch”: customized support and maintenance for a specific version of the 
product. A project on a sustained branch can monitor relevant known 
problems, analyze their impact, and if needed update to a newer version 
of the product on the same development branch (i.e., not incorporating 
changes introduced in later versions of the product). 

Sustained branches are a practical solution to the problem of ensuring 
toolchain stability while allowing flexibility in case an upgrade is needed 
to correct a critical problem. 

Source to Object Traceability 
A compiler option can limit the use of language constructs that generate 
object code that is not directly traceable to the source code. As an add-
on service, AdaCore can perform an analysis that demonstrates this 
traceability and justifies any remaining cases of non-traceable code. 

3.5. Static Verification - Basic Tools 

GNATmetric  
The GNATmetric tool analyzes source code to calculate a set of commonly 
used industry metrics, thus allowing developers to estimate the size and 
better understand the structure of the source code. This information also 
facilitates satisfying the requirements of certain software development 
frameworks. 

GNATcheck  
GNATcheck is a coding standard verification tool that is extensible and 
rule-based. It allows developers to completely define a coding standard 
as a set of rules, for example a subset of permitted language features. It 
verifies a program’s conformance with the resulting rules and thereby 
facilitates demonstration of a system’s compliance with certification 
standards. 
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Key features include: 

• An integrated Ada Restrictions mechanism for banning specific 
features from an application. This can be used to restrict features such 
as tasking, exceptions, dynamic allocation, fixed- or floating point, 
input/output and unchecked conversions. 

• Restrictions specific to GNAT Pro, such as banning features that result 
in the generation of implicit loops or conditionals in the object code, 
or in the generation of elaboration code. 

• Additional Ada semantic rules resulting from customer input, such as 
ordering of parameters, normalized naming of entities, and 
subprograms with multiple returns. 

• Easy-to-use interface for creating and using a complete coding 
standard. 

• Generation of project-wide reports, including evidence of the level of 
compliance with a given coding standard. 

• Over 30 compile-time warnings from GNAT Pro that detect typical 
error situations, such as local variables being used before being 
initialized, incorrect assumptions about array lower bounds, infinite 
recursion, incorrect data alignment, and accidental hiding of names. 

• Style checks that allow developers to control indentation, casing, 
comment style, and nesting level. 

GNATstack 
GNATstack is a software analysis tool that enables Ada/C software 
development teams to accurately predict the maximum size of the 
memory stack required for program execution. 

The GNATstack tool statically computes the maximum stack space 
required by each task in an application. The reported bounds can be 
used to ensure that sufficient space is reserved, thus guaranteeing safe 
execution with respect to stack usage. The tool uses a conservative 
analysis (and user-supplied input) to deal with complexities such as 
subprogram recursion, while avoiding unnecessarily pessimistic estimates. 
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GNATstack exploits data generated by the compiler to compute worst-
case stack requirements. It performs per-subprogram stack usage 
computation combined with control flow analysis. 

GNATstack can analyze object-oriented applications, automatically 
determining maximum stack usage on code that uses dynamic dispatching 
in Ada. A dispatching call challenges static analysis because the identity 
of the subprogram being invoked is not known until run time. GNATstack 
solves this problem by statically determining the subset of potential 
targets (primitive operations) for every dispatching call. This significantly 
reduces the analysis effort and yields precise stack usage bounds on 
complex Ada code. 

This is a static analysis tool in the sense that its computation is based on 
information known at compile time. When the tool indicates that the result 
is accurate, the computed bound can never be exceeded. 

On the other hand, there may be cases in which the results will not be 
accurate (the tool will report such situations) because of some missing 
information (such as the maximum depth of subprogram recursion, indirect 
calls, etc.). The user can assist the tool by specifying missing call graph 
and stack usage information. 

GNATstack’s main output is the worst-case stack usage for every entry 
point, together with the paths that result in these stack sizes. The list of 
entry points can be automatically computed (all the tasks, including the 
environment task) or can be specified by the user (a list of entry points or 
all the subprograms matching a given regular expression). 

GNATstack can also detect and display a list of potential problems when 
computing stack requirements: 

• Indirect (including dispatching) calls. The tool will indicate the number 
of indirect calls made from any subprogram. 

• External calls. The tool displays all the subprograms that are 
reachable from any entry point for which there is no stack or call 
graph information. 

• Unbounded frames. The tool displays all the subprograms that are 
reachable from any entry point with an unbounded stack requirement. 



AdaCore Technologies for Cyber Security 

38 

The required stack size depends on the arguments passed to the 
subprogram. For example: 

procedure P (N : Integer) is 
   S : String (1 .. N); 
begin 
   ... 
end P; 

 

• Cycles. The tool can detect all the cycles (i.e., potential recursion) 
in the call graph. 

GNATstack allows the user to supply a text file with the missing 
information, such as the potential targets for indirect calls, the stack 
requirements for externals calls, and the maximal size for unbounded 
frames.  

 

Timing Verification 
Suitably subsetted, Ada (and SPARK) are also amenable to the static 
analysis of timing behavior. This kind of analysis is relevant for real-time 
systems, where worst-case execution time (WCET) must be known in order 
to guarantee that timing deadlines will always be met. Timing analysis is 
also of interest for secure systems, where the issue might be to show that 
programs do not leak information via so-called side-channels based on 
the observation of differences in execution time. 

AdaCore does not produce its own WCET tool, but there are several such 
tools on the market from partner companies, such as RapiTime from 
Rapita Systems Ltd. 

Memory Usage Verification 
Ada and SPARK can support the static analysis of worst-case memory 
consumption, so that a developer can show that a program will never run 
out of memory at execution time. 

SPARK can be compiled with no heap data structure at run time, so 
memory usage analysis reduces to a worst-case analysis of stack usage 
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for each task in a system. This is implemented directly in AdaCore’s 
GNATstack tool, as described above.  

Semantic Analysis Tools—Libadalang 
Libadalang is a reusable library that forms a high-performance semantic 
processing and transformation engine for Ada source code. In some ways 
it is similar to ASIS (see below), but exposes its API in Java and Python as 
well as Ada. It is particularly suitable for writing lightweight and project-
specific static analysis tools. 

An example of a potential Libadalang application is the enforcement of 
a particular naming convention—perhaps a rule for the naming of types 
that contain security-critical data. This is outside the scope of general-
purpose tools like GNATcheck or CodePeer but is simple to express in 
Libadalang. 

Semantic Analysis Tools—ASIS and GNAT2XML 
ASIS, the Ada Semantic Interface Specification, is a library that gives 
applications access to the complete syntactic and semantic structure of an 
Ada compilation unit. This library is typically used by tools that need to 
perform some sort of static analysis on an Ada program. 

ASIS is an international standard (ISO/IEC 15291:1995) and is designed 
to be compiler independent. Thus, a tool that processes the ASIS 
representation of a program will work regardless of which ASIS 
implementation has been used. ASIS-for-GNAT is AdaCore’s 
implementation of the ASIS standard, for use with the GNAT Pro Ada 
development environment and toolset. 

AdaCore can assist customers in developing ASIS-based tools to meet 
their specific needs, as well as develop such tools upon request. 

Typical ASIS-for-GNAT applications include: 

• Static analysis (property verification) 

• Code instrumentation 

• Design and document generation tools 
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• Metric testing or timing Tools 

• Dependency tree analysis tools 

• Type dictionary generators 

• Coding standard enforcement tools 

• Language translators (e.g., to CORBA IDL) 

• Quality assessment tools 

• Source browsers and formatters 

• Syntax directed editors 

GNAT2XML provides the same information as ASIS but allows users to 
manipulate it through an XML tree. 

3.6. Static Verification - CodePeer 
CodePeer is an Ada source code analyzer that detects run-time and logic 
errors. CodePeer assesses potential bugs before program execution, 
serving as an automated peer reviewer, helping to find errors efficiently 
and early in the development life-cycle. It can also be used to perform 
impact analysis when introducing changes to the existing code, as well as 
helping vulnerability analysis. Using control-flow, data-flow, and other 
advanced static analysis techniques, CodePeer detects errors that would 
otherwise only be found through labor-intensive debugging. 

CodePeer can analyze programs written in full Ada (including all the 
features of Ada 2012) and does not rely on a particular language subset 
having been used. It is therefore suitable for analysis and assurance of 
existing code bases, and maintaining discipline for new and modified 
code. 

As a stand-alone tool, CodePeer can also be used with projects that do 
not use GNAT Pro for compilation. 
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Early Error Detection  
CodePeer’s advanced static error detection finds bugs in code by 
mathematically analyzing every line of code, considering every possible 
input and every path through the program. CodePeer can be used very 
early in the development life cycle to identify problems when defects are 
much less costly to repair. It can also be used retrospectively on existing 
code bases, to detect latent vulnerabilities. 

CodePeer can be used from within the GNAT Pro development 
environment, or as part of a continuous integration regime. It can detect 
several of the “Top 25 Most Dangerous Software Errors” in the Common 
Weakness Enumeration: CWE-120 (Classic Buffer Overflow), CWE-131 
(Incorrect Calculation of Buffer Size), and CWE-190 (Integer Overflow or 
Wraparound). See [14] for more details. 

CodePeer has been certified by the MITRE Corporation as a “CWE-
Compatible” product [15]. 

3.7. Static Verification - SPARK Pro 
SPARK Pro offers the ultimate toolset for high-integrity development. 
Through the discipline of the language subset, the SPARK Pro tools are 
able to offer verification that combines speed, flexibility, depth and 
soundness. Adoption of the language subset means that SPARK Pro is best 
suited for new high-assurance code (including situations where the existing 
code is at a lower assurance level and is written in full Ada or other 
languages such as C) or projects where the existing high-assurance coding 
standard is sufficiently close to SPARK to ease transition. 

Powerful Static Verification  
The SPARK language supports a wide range of static verification 
techniques. At one end of the spectrum is basic data- and control-flow 
analysis, i.e., exhaustive detection of errors such as attempted reads of 
uninitialized variables, and ineffective assignments (where a variable is 
assigned a value that is never read). For more critical applications, 
dependency contracts can constrain the information flow allowed in an 
application. Violations of these contracts – potentially representing 
violations of safety or security policies – can then be detected even 
before the code is compiled. 
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In addition, SPARK supports mathematical proof and can thus provide 
high confidence that the software meets a range of assurance 
requirements: from the absence of run-time exceptions, to the enforcement 
of safety or security properties, to compliance with a formal specification 
of the program’s required behavior. 

Minimal Run-Time Footprint 
For the most secure systems (for example, embedded cryptographic 
devices), a developer has to worry about and justify the presence of all 
the code in a delivered system. Guidance talks of “minimizing the trusted 
computing base”, which really means just making the delivered system as 
small as possible. There is also the problem of Commercial Off-the-Shelf 
(COTS) components: if a system uses a COTS library or operating system, 
then how are these to be evaluated or verified without the close (and 
probably expensive) cooperation of the COTS vendor? 

For the most critical embedded systems, SPARK supports the so-called 
“Bare-Metal” development style, where SPARK code is running directly on 
a CPU with little or no COTS libraries or operating system at all. SPARK is 
also designed to be compatible with GNAT Pro’s Zero FootPrint (ZFP) run-
time library. In a Bare-Metal/ZFP development, every byte of object 
code can be traced to the application’s source code, and accounted for. 
This can be particularly useful for systems that must withstand evaluation 
by a national technical authority or regulator. 

SPARK code can also run on top of a full Ada run-time library and a 
commercial desktop operating system or anything in-between, but the 
choice is left to the system designer, not imposed by the language. 

3.8. Dynamic Analysis Tools 

GNATtest  
The GNATtest tool helps create and maintain a complete unit testing 
infrastructure for complex projects. Based on AUnit, it captures the simple 
idea that each visible subprogram should have at least one 
corresponding unit test. GNATtest takes a project file as input, and 
produces two outputs: 
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• The complete harnessing code for executing all the unit tests under 
consideration. This code is generated completely automatically. 

• A set of separate test stubs for each subprogram to be tested. These 
test stubs are to be completed by the user. 

GNATtest handles Ada’s Object-Oriented Programming features and can 
help verify tagged type substitutability (the Liskov Substitution Principle), 
which can be used to demonstrate consistency of class hierarchies. 

GNATemulator 
GNATemulator is an efficient and flexible tool that provides integrated, 
lightweight target emulation. 

Based on the QEMU technology, a generic and open-source machine 
emulator and virtualizer, GNATemulator allows software developers to 
compile code directly for their target architecture and run it on their host 
platform, through an approach that translates from the target object code 
to native instructions on the host. This avoids the inconvenience and cost of 
managing an actual board, while offering an efficient testing environment 
compatible with the final hardware. 

There are two basic types of emulators. The first can serve as a surrogate 
for the final hardware during development for a wide range of 
verification activities, particularly those that require time accuracy. 
However, they tend to be extremely costly, and are often very slow. The 
second, which includes GNATemulator, does not attempt to be a complete 
time-accurate target board simulator, and thus it cannot be used for all 
aspects of testing. But it does provide a very efficient and cost-effective 
way to execute the target code very early in the development and 
verification processes. GNATemulator thus offers a practical compromise 
between a native environment that lacks target emulation capability, and 
a cross configuration where the final target hardware might not be 
available soon enough or in sufficient quantity. 

GNATcoverage  
GNATcoverage is a dynamic analysis tool that analyzes and reports 
program coverage. GNATcoverage can perform coverage analysis at 
both the object code level (instruction and branch coverage), and the 
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source code level for Ada or C (Statement, Decision, and Modified 
Condition/Decision Coverage - MC/DC). 

Unlike most other technologies, GNATcoverage is nonintrusive: it works 
without requiring instrumentation of the application code. Instead, the 
code runs directly on an instrumented execution platform, such as 
GNATemulator, Valgrind on Linux, or on a real board monitored by a 
probe. 

See [16] for more details on the underlying technology. 

3.9. Integrated Development 
Environments (IDEs) 

GNAT Programming Studio (GPS)  
GPS is a powerful and simple-to-use IDE that streamlines software 
development from the initial coding stage through testing, debugging, 
system integration, and maintenance. GPS is designed to allow 
programmers to exploit the full capabilities of the GNAT Pro technology. 

Tools 
GPS’s extensive navigation and analysis tools can generate a variety of 
useful information including call graphs, source dependencies, project 
organization, and complexity metrics, giving the developer a thorough 
understanding of a program at multiple levels. It allows interfacing with 
third-party Version Control Systems, easing both development and 
maintenance. 

Robust, Flexible and Extensible  
Especially suited for large, complex systems, GPS can import existing 
projects from other Ada implementations while adhering to their file 
naming conventions and retaining the existing directory organization. 
Through the multi-language capabilities of GPS, components written in C 
and C++ can also be handled. GPS is highly extensible; additional tools 
can be plugged in through a simple scripting approach. It is also 
tailorable, allowing various aspects of the program’s appearance to be 
customized in the editor. 
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Easy to Learn, Easy to Use  
GPS is intuitive to new users thanks to its menu-driven interface with 
extensive online help (including documentation of all the menu selections) 
and “tool tips”. The Project Wizard makes it simple to get started, 
supplying default values for almost all of the project properties. For 
experienced users, GPS offers the necessary level of control for 
advanced purposes; e.g., the ability to run command scripts. Anything that 
can be done on the command line is achievable through the menu 
interface.  

Remote Programming  
Integrated into GPS, Remote Programming provides a secure and 
efficient way for programmers to access any number of remote servers on 
a wide variety of platforms while taking advantage of the power and 
familiarity of their local PC workstations.  

Eclipse support - GNATbench  
GNATbench is an Ada development plug-in for Eclipse and Wind River’s 
Workbench environment. The Workbench integration supports Ada 
development on a variety of VxWorks real-time operating systems. The 
Eclipse version is primarily for native applications, with some support for 
cross development. In both cases the Ada tools are tightly integrated. 

GNATdashboard  
GNATdashboard serves as a one-stop control panel for monitoring and 
improving the quality of Ada software. It integrates and aggregates the 
results of AdaCore’s various static and dynamic analysis tools 
(GNATmetric, GNATcheck, GNATcoverage, CodePeer, SPARK Pro, among 
others) within a common interface, helping quality assurance managers 
and project leaders understand or reduce their software’s technical debt, 
and eliminating the need for manual input. 

GNATdashboard fits naturally into a continuous integration environment, 
providing users with metrics on code complexity, code coverage, 
conformance to coding standards, and more. 
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4. Security Vulnerabilities 
and Their Mitigation 
This chapter considers a number of specific and high-profile software 
vulnerabilities, inspired by the CWE/SANS “Top 25 Most Dangerous 
Software Errors” [17], and discusses how each can be prevented or 
mitigated using Ada, SPARK, and AdaCore’s tools. 

Some vulnerabilities are universal in that all software should be free of all 
occurrences—buffer overflow would be a good example, since all 
programs should be free of all buffer overflows, regardless of the 
particular application’s requirements or operational domain. 

Many vulnerabilities are in some way application specific in that they may 
or may not be a problem, depending on the application’s particular 
security requirements and operational environment. 

Related CWE identifiers are given in each sub-section. A more detailed 
list of other CWEs that are handled by Ada and/or AdaCore tools is 
presented in Appendix A. 

4.1. Data Validation 

Related CWEs 
CWE Short description Notes 

20 Improper Input Validation Plus all children and 
variants 

1019 Validate Inputs Plus all children and 
variants 

Vulnerability 

Missing or incorrect validation of input data remains one of the most 
common security vulnerabilities in software. This is an application-specific 
vulnerability, since exactly what does or doesn’t constitute “valid” input 
data is highly dependent on an application and its security requirements. 
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Ada offers a range of protections from these problems, from basic 
dynamic checks at run time to advanced static analysis and proof 
techniques. 

Dynamic Mitigation 
At the most basic level, Ada has always offered run-time range checking 
for scalar values. If a check fails at run time, then an exception is raised 
rather than allowing the execution of the program to become undefined. 
This offers protection against common defects such as integer range 
violations, buffer overflows, arithmetic overflow and division by zero. For 
example, any attempt to store an integer value outside the range (-180 .. 
180) for an angle, or a real value outside the range (0.0 .. 10000.0) for 
a length in the following example will raise an exception at run time. 
Similarly, a Data value whose Kind is Angle_Data cannot be mistakenly 
interpreted as a value whose Kind is Length_Data (i.e., an Angle bit 
pattern cannot be interpreted as a Length) when using the discriminated 
unions of Ada; such an error would raise an exception. 

type Angle is new Integer range -180 .. 180; 
type Length is new Float range 0.0 .. 10_000.0; 
type Datatype is (Angle_Data, Length_Data); 
type Data (Kind : Datatype) is record 
   case Kind is  
      when Angle_Data => 
         A : Angle; 
      when Length_Data => 
         L : Length; 
   end case; 
end record; 

 

Ada 95 added a special attribute X'Valid for any scalar object X. This 
returns True if and only if the raw bit-pattern present in memory is a valid 
value for the type of the object and satisfies any subtype constraint or 
predicate (if present). This is more powerful than a simple “range check”, 
because it applies to types with complex representations such as floating-
point or enumeration types with non-contiguous values. Further, the 
evaluation of X'Valid can never itself become undefined or raise an 
exception, so it provides a way to “peek” at incoming data to see if it’s 
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OK before proceeding. It also works with the ZFP run time and SPARK, 
where exceptions are excluded anyway.  

GNAT Pro adds an attribute X'Valid_Scalars that can be additionally 
applied to composite types like records and arrays. This applies the 
correct X'Valid test recursively to all the components of a composite 
object, and only returns True if they are all OK and also satisfy any 
subtype constraint/predicate. For example, an input value of type Data 
from the previous example could be validated by evaluating 
X'Valid_Scalars, which will check that X.Kind is a valid Datatype value, 
and depending on this value, that either X.A is a valid angle or X.L is a 
valid length. 

In terms of run-time verification, GNAT Pro also offers an extended 
validity checking mode. This instructs the compiler to make worst-case 
assumptions about data validity and assume, for example, that memory 
might have been corrupted at any point, so it automatically inserts a 
validity test for all objects, every time they are read. This comes with a 
noticeable performance penalty, but offers the most protection. As noted 
in section 3.3, this mode can be particularly useful in combination with 
automated Fuzzing (essentially random input testing), since the extended 
validity checks spot a problem sooner rather than later. GNAT Pro also 
supports special pragmas that instruct the compiler to initialize scalar 
objects to a value which is known to be invalid and will therefore always 
fail a validity test on first access. This offers an easy way to spot 
uninitialized values at run time, protecting against another pernicious 
undefined behavior. 

Static Mitigation 
The GNAT Pro compiler can detect some violations of data constraints 
that do not depend on the flow of control and analysis of calls. In such 
cases, it issues a warning that an exception will be raised at run time if 
that code is executed. Similarly, it can detect some simple cases of 
reading an uninitialized variable. 

CodePeer can go further by analyzing values and relations between 
variables in a fully flow-sensitive and interprocedural analysis. CodePeer 
offers a range of analyses that protect from data validity problems and 
implements a form of data-flow analysis that statically detects uninitialized 
variables. 
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SPARK Pro goes further in a number of ways. Firstly, SPARK Pro offers a 
completely static verification for the absence of all undefined behavior, 
run-time errors and exceptions. In SPARK it’s possible to prove that none 
of Ada’s predefined run-time checks will ever fail for any program 
executions. 

In the most general sense, subprograms in Ada and SPARK can also 
include precondition contracts that can specify arbitrary validity 
requirements on their parameters, which can be as permissive or as strict 
as is required by the designer. These can be checked at run time, or by 
static analysis, or both. 

4.2. Native Code Injection 

Related CWEs 
CWE Short description Notes 

94 Code Injection  

95 Eval Injection  

96 Static Code Injection  

97 Improper Neutralization of Server-
Side Includes 

 

119 Improper Restriction of Operations 
within the Bounds of a Memory 
Buffer 

Plus all children and 
variants 

470 Unsafe Reflection  

Vulnerability 

This section specifically deals with the problem of malicious injection of 
Ada or machine code. This is a universal vulnerability. Injection of code in 
other languages (e.g., scripting languages or SQL) can be application 
specific, so is considered elsewhere. Two cases are covered here—
injection of Ada code itself, and injection of compiled machine code. 

Mitigation—Ada code injection 
Ada has always been a compiled language. There is no “reflection” or 
“eval”-like construct so it is impossible for Ada source code to be 
maliciously inserted and/or interpreted at run time. 
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Furthermore, Ada programs (especially for embedded systems) can be 
statically linked, and therefore are not susceptible to “DLL spoofing” or 
other attacks relating to shared libraries or dynamic linking. Finally, 
compiled Ada code is always executable from a read-only memory (such 
as ROM or a FLASH device) so can be further protected from tampering. 

Mitigation—Machine Code Injection 
This remains a common attack against unsafe programming languages 
and defective code. In short, a buffer over-write defect results in 
overwriting the stack memory with malicious data, which is actually the 
attacker’s machine code. The return address on the stack is also 
manipulated to force control to jump to the malicious code. There are 
variants on this theme (particularly the so-called “return oriented 
programming” (ROP) family of attacks) but they all rely on a buffer 
overflow defect as the initial point of entry. 

Ada is strongly protected from this class of vulnerability, owing to run-
time checking of all array accesses, exception handling, and the strong 
forms of static analysis offered by both CodePeer and SPARK Pro. See 
section 4.1 for more details, since the same dynamic and static 
verification techniques that apply to data validity also apply to buffer 
overflows and other defects that lead to code injection. 

4.3. Denial of Service 

Related CWEs 
CWE Short description Notes 

400 Resource Exhaustion Plus all children and 
variants 

606 Unchecked Input for Loop Condition  

674 Uncontrolled Recursion  

Vulnerability 

“Denial-of-Service” has become a broad term that refers to any form of 
attack that prevents a computer system from fulfilling its intended role 
and service. This is an application-specific vulnerability, since some 
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systems can “fail secure” while others might have onerous requirements for 
continuity of service and availability. 

Three sub-classes of attack are worthy of mention: 

• Forced immediate termination. An attacker crafts input data that is 
designed to make a target system immediately terminate or 
“crash”. A good example would an input that provokes an 
unhandled exceptional situation such as a division-by-zero. 

• Termination through resource starvation. In this case, the attacker 
still causes the target system to terminate unexpectedly, but does 
so by deliberately exhausting its resources. For example, a flood 
of requests from the attacker causes the target system to “run out 
of memory” and eventually terminate. 

• Starvation. An attacker floods a system with legitimate-looking, 
but bogus requests. The system continues to “work” until this 
enormous load, but legitimate users are “starved out”. 

Dynamic Mitigation 
For some systems, termination in a known “secure state” might be 
acceptable. This kind of “fail secure” behavior is supported by Ada 
through run-time exception handling. A top-level “catch all” handler can 
be inserted into the main program and each task type or object; the 
handler can bring the system to a safe and/or secure state before 
allowing the system to terminate. 

A second option is similar, but the system can implement some sort of 
“graceful degradation” and switch to a simpler mode of operation. Other 
options include reverting to a backup system, or executing a hardware-
based “reset” to bring the system to a known state. 

Static Mitigation 
Where continuity of service is important, for example in communications 
and real-time control applications, both CodePeer and SPARK Pro offer 
strong protection. If programs can be statically shown to be free from all 
run-time errors, then they are effectively crash proof in the face of 
arbitrary input data.  
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To protect against possible non-termination of loops, CodePeer issues 
warnings when it detects that a loop may not terminate. SPARK Pro goes 
beyond mere warnings and can prove that loops terminate if the user 
specifies a loop variant—an expression that can be shown to increase or 
decrease towards a constant bound for every iteration of the loop. 

SPARK is also immune from starvation or exhaustion of heap-based 
memory, since SPARK can be compiled without use of a heap. The 
GNATstack tool can also be used to show that SPARK programs will never 
run out of stack memory. 

In all these scenarios, a “defense in depth” approach is appropriate 
where, for example, SPARK Pro might be used to statically eliminate run-
time errors, but the system is still compiled with run-time checks, extended 
validity checking, and a top-level “catch all” exception handler. 

4.4. Information Leak 

Related CWEs 
CWE Short description Notes 

120 Classic Buffer Overflow  

121 Stack-based Buffer Overflow  

122 Heap-based Buffer Overflow  

125 Out-of-bounds Read  

126 Buffer Over-read  

127 Buffer Under-read  

200 Information Exposure Plus all children and 
variants 

514 Covert Channel Plus all children and 
variants 

665 Improper Initialization Plus all children and 
variants 

Vulnerability 

These vulnerabilities form a general class of problems where information 
is seen to go where it shouldn’t. Three sub-classes of this problem arise: 
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Mitigation—Programming Defects 
This is a universal vulnerability. Simple programming defects can cause 
information to flow in unexpected ways. For example: 

• An uninitialized variable can result in a read from memory of a 
value that has been “left over” on the stack from a previous 
computation. 

• An unchecked buffer over-read can yield sensitive or incorrect 
information. The notable “Heartbleed” vulnerability in the 
OpenSSL library was of this class. 

As noted earlier, Ada offers strong protection from these classes of 
vulnerabilities. Uninitialized variables can be tackled with GNAT Pro’s 
enhanced validity checking modes, and buffer overflows are always 
prevented by run-time checks in Ada. CodePeer and SPARK offer static 
protection against both of these defect classes. 

Mitigation—Algorithmic Defects 
If a programmer simply implements “the wrong code”, then unintended 
information flow can result. For example, if a function is supposed to be 
computed from two input variables X and Y, but the programmer 
mistakenly computes the result from X, Y and Z, then an observer might be 
able to deduce something about the value of Z, which might be a security 
vulnerability if Z is some sensitive value like a cryptographic key. 

The exact nature of these vulnerabilities is highly application specific, but 
Ada and SPARK offer some protection through the use of contracts. A 
Depends contract, for example, could specify that the function result must 
be computed from X and Y and not Z and this specification is verified by 
the SPARK Pro tools with information-flow analysis. 

Contracts can also be used to specify, for example, that data of different 
classification (e.g. “Unclassified” and “Top-Secret”) shall not be mixed in 
a single computation. Again, SPARK Pro offers strong verification for such 
properties. 
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Mitigation—Side Channels 
So-called “Side” or “Covert” channels exploit devious and unusual 
observations of a program’s execution to deduce its internal state. These 
include: 

• Timing-based attacks. Observation of a program’s execution time 
can yield information on its internal state and variables. 

• Power. Observation of the electrical power consumption of a 
computer can divulge what’s going on internally. 

• Electro-magnetic emissions. 
• Acoustic (sound) emissions. 
• Other things that no-one has even thought of yet... 

These attacks are extremely difficult to prevent using software techniques 
alone. SPARK offers some assistance, since it is designed to be amenable 
to timing analysis, and its information flow analysis engine could be used 
to detect where execution time depends on a particular critical variable. 

4.5. Improper use of API 

“Entia non sunt multiplicanda praeter necessitatem” 
[“Entities are not to be multiplied beyond necessity”]  

– William of Ockham, 14th Century. 

or, put another way 

“When in doubt, leave it out...” 
– Joshua Bloch, Google. 

 



AdaCore Technologies for Cyber Security 

56 

Related CWEs 
CWE Short description Notes 

440 Expected Behaviour Violation  

559 Often Misused: Arguments and 
Parameters 

 

628 Function Call with Incorrectly 
Specified Arguments 

 

648 Incorrect Use of Privileged APIs  

749 Exposed Dangerous Method or 
Function 

 

Vulnerability 

The design of reusable, general, and error-tolerant APIs remains one of 
the core skills of a software designer. (See Joshua Bloch’s lecture [18] for 
an overview of this topic.) 

For secure systems, the unintentional misuse of cryptographic or 
communications APIs and libraries is a regular source of defects and 
headlines. 

A core issue is the expressive power, precision and abstraction with which 
a programming language allows an API specification to be defined. 
Many APIs need to express usage rules—what a user should and 
shouldn’t do to use the API properly—and if these rules are specified 
formally then they can be checked either at run time or using static 
analysis. 

Mitigations 
Once again, Ada’s contracts offer strong support. Preconditions express 
exactly the conditions under which a particular operation may be 
invoked, and can even be used to express ordering constraints on 
operations (e.g. “operation X must be invoked before either of operations 
Y or Z.”) Similarly, postcondition contracts can express exactly what 
operations promise to do (and not do.) 

Increasingly, such contracts are being added to parts of the standard 
Ada library to increase the strength of their specifications, and as a result 
their usage can be verified statically by the CodePeer and SPARK Pro 
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tools. This is the case for example for the standard numerical library 
shipped with GNAT Pro. Some freely available libraries have also 
started to appear in SPARK, such as standard cryptographic algorithms 
[19]. 

4.6. Weak or No Crypto 

Related CWEs 
CWE Short description Notes 

326 Inadequate Encryption Strength Plus all children and 
variants 

327 Use of a Broken or Risky 
Cryptographic Algorithm 

Plus all children and 
variants 

338 Use of a Cryptographically Weak 
PRNG 

 

Vulnerability 

These are clearly application specific. The appropriate use of 
cryptographic algorithms depends on an application’s precise needs for 
confidentiality, authentication and integrity of data, plus the perceived 
capability and threat owing to attackers. 

The “strength” of cryptographic algorithms can depend on the algorithm 
chosen, the key length employed, and the quality of random numbers that 
are used in the generation of critical values such as keys and “nonce” 
values. 

Mitigations 
Ada can help to some extent through its system of strong types. A good 
design approach would be to declare distinct and incompatible types for 
unencrypted and encrypted data, so that they cannot be confused or 
used in the wrong context. For example: 

type Plaintext_Buffer is private; 
 
type Encrypted_Buffer is private 
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Even though, under the hood, these types might both represent an 
unstructured sequence of bytes, they are distinct and incompatible from 
the point of view of the client. For example, a procedure that outputs an 
encrypted buffer to a communications channel might be declared: 

procedure Send_Buffer (B : in Encrypted_Buffer); 

 

This procedure cannot send a Plaintext_Buffer and any attempt to do so 
would be rejected by the compiler. 

If it is necessary to encrypt a plaintext buffer to produce an encrypted 
buffer, then a single function can do this and use contracts to enforce the 
strength of the key. For example: 

type Key is limited private; -- no copying permitted! 
 
function Strength_Of (K : in Key) return Natural; 
 
function Encrypt (Data : in Plaintext_Buffer; 
                  K    : in Key) return Encrypted_Buffer 
  with Pre => Strength_Of (K) >= 256; 

 

Note that the Key type is declared limited private so that objects of that 
type cannot be copied by assignment—another built-in feature of Ada 
that is ideal for such sensitive types. 
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4.7. Failure to erase sensitive data 

Related CWEs 
CWE Short description Notes 

14 Compiler Removal of Code to Clear 
Buffers 

 

226 Sensitive Information Uncleared 
Before Release 

Plus all children and 
variants 

733 Compiler Optimization Removal or 
Modification of Security-critical 
Code 

 

Vulnerability 

This vulnerability concerns the need to erase (or “sanitize”) sensitive data, 
such as cryptographic keys, after they have been used, to prevent 
unintentional leak or exposure of that some time later. 

This is a complex issue that spans application-specific needs across to 
highly technical implementation details. At the high level, applications 
need to define exactly what data is “sensitive” in the first place, and how 
much protection is required. At the low end of the spectrum, just “writing 
zeros” into memory might suffice. At the high end, it might be necessary to 
physical destroy hard disks and memory chips. 

As a software programming challenge, this problem is more complex than 
it looks. Issues include data validity (“all zeroes” might be illegal or 
invalid), how to stop a compiler optimizing away the sanitizing code, 
avoiding explicit or implicit copying of sensitive data, coping with the 
complexities of data caches and memory devices, and so on. 

Mitigations 
Ada provides some specific support in this area. Its limited types are ideal 
for sensitive data since they cannot be copied by assignment, and are 
always passed by reference at run time. Ada 95 also introduced a 
special pragma Inspection_Point which serves to forbid “dead store 
elimination” in the compiler for a particular object at a particular place, 
thus ensuring that a final “sanitizing assignment” is not removed. 
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SPARK Pro offers some static verification support through information-flow 
analysis, since a final sanitizing assignment is reported as an expected 
anomaly (because it does not contribute to the functional behavior of the 
program), and can be justified as such. 

A full description of this problem and how it was solved in a particular 
project can be found in [20]. 

4.8. Authentication and Authorization 

Related CWEs 
CWE Short description Notes 

284 Improper Access Control Plus all children and 
variants 

Vulnerability 

This large family of vulnerabilities is highly application specific. What is 
or is not “authorized” for a user of a system depends on the system, its 
environment, and the threat model that is expected. 

Mitigations 
In the broadest terms, systems should be designed with the least privilege 
principle in mind, restricting the most important or risky operations to the 
fewest users and operational scenarios. 

Given a strong design along those lines, these concepts can be encoded in 
Ada using types and contracts. A simple model might map a user’s ID onto 
some ordered value of authorization: 

type User_ID is limited private; 
 
type Authorization is (None, Low, High); 
 
function Authorizaton_Of (U : User_ID) return Authorization; 

 

Sensitive operations can then use a precondition to restrict access, such as: 
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procedure Sensitive_Operation (Data : in out Encrypted_Buffer; 
                               User : in     User_ID) 
  with Pre => Authorization_Of (User) = High; 

 

Operations that “escalate” a particular user’s authorization (from “Low” 
to “High” for example) could be strictly controlled and verified using 
Ada’s types and the appropriate combination of static and dynamic 
checking. 
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5. Industrial Scenario 
Examples 
5.1. Overview 
This chapter presents a number of security-related scenarios that may 
arise in real-world projects. Each opens with a description of the context 
and the security issue, and then shows how either Ada or SPARK, in 
conjunction with the relevant AdaCore tool(s), can contribute. Each 
scenario is illustrated with one or more examples, drawn from experience 
with customers and industrial projects.  

5.2. Scenario 1: Identifying and repairing 
security vulnerabilities in existing 
Ada codebases 

In this scenario an existing system written in Ada has to be analyzed for 
security vulnerabilities, perhaps because of regulatory oversight or 
commercial/corporate obligations. This is typical of closed systems which 
become exposed to new threats by connecting them to other systems (ad-
hoc networks, Internet, etc.) 

The recommended approach comprises two steps: 

1. Use GNAT Pro and inspect the compiler warnings. 
 
Even when GNAT Pro is not the main compiler on a project, it can 
still be used as a basic static analysis tool. GNAT Pro flags 
around 50 different classes of warnings which represent over 
130 warning messages. Experience shows that a careful selection 
of warnings combined with a fix-all-warnings policy can 
significantly increase the quality of a code base. Warnings that 
cannot be fixed can be justified with pragma Warnings Off. 
Warnings can be treated as errors (thus stopping compilation) by 
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enforcing the fix-all-warnings policy with switch -gnatwe. 
 

2. Submit the code base to CodePeer for analysis. 
 
CodePeer can exhaustively detect all occurrences of many 
vulnerabilities from the CWE list: CWE-120 (“Classic Buffer 
Overflow”), CWE-190 (“Integer Overflow or Wraparound”), 
CWE-476 (“NULL Pointer Dereference”), CWE-571 (“Expression 
is Always True”), etc. Users have the choice to opt for an 
exhaustive report of all potential vulnerabilities (using the -level 
max switch) or, more commonly, to adjust the level of analysis to 
their needs, balancing soundness with the effort required to 
review all messages. 
 
CodePeer can also include GNAT warnings in its messages by 
using the switch -gnat-warnings. This is particularly relevant for 
projects that do not use GNAT as the compiler, or else use an 
older version of GNAT that may lack some of the newer 
warnings. The GNAT warnings selected are described in the 
CodePeer User’s Guide. 

Example of Scenario 1 – GNAT Pro Compiler 
GNAT Pro is the compiler for Ada developed by AdaCore, based on the 
GCC compiler architecture. The front end of GNAT Pro is written in Ada. 
It is a large software component with 458 units, 370 ksloc, and has been 
in development since 1992. The front end is compiled with warnings-as-
errors (-gnawe) and a large set of warnings enabled (-gnatwa). 

Since 2017, AdaCore has been running CodePeer on the GNAT Pro front 
end, with a fix-all-messages policy. These runs have resulted in the 
detection of a number of errors in the code, as well as code quality issues 
(e.g. dead code) which are opportunities for refactoring. CodePeer is run 
at level 1 for fast execution (less than 10 minutes on a developer 
machine) while minimizing false alarms. Remaining false alarms are 
justified with pragma Annotate in the code. CodePeer runs have been 
integrated in the continuous building environment and nightly regression 
testing. 
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5.3. Scenario 2: Ada software 
development practices for increasing 
security 

This case covers a majority of ongoing software developments in Ada, 
where the strengths of the Ada language are combined with the AdaCore 
toolset to deliver high-quality software with lower error density than with 
other languages/toolsets. 

Of particular importance, especially for high-integrity development, are 
the Ada features for encapsulation (packages / private types), reuse 
(generics), control of representation (data size and layout, addresses), 
strong typing (type constraints, predicates, invariants), and contract-
based programming (preconditions and postconditions). Specific guidance 
is available for the use of Object-Oriented Programming in Ada [12]. 

Tools that are relevant in most contexts for high-integrity development 
are the GNAT Pro compiler for warnings and style checking, the 
GNATcheck coding standard checker, GNATmetric for metrics 
computation, GNATstack for memory usage analysis, GNATtest for test 
harness generation, and CodePeer for static analysis. 

Example of Scenario 2 – Ada Web Server 
The Ada Web Server (AWS) is an Ada implementation of the HTTP/1.1 
protocol. It is a library that can be embedded in an application to allow 
communication with modern web browsers. AWS supports HTTPS (secure 
HTTP) using SSL. This is based on either OpenSSL or GNUTLS, two open-
source SSL implementations. 

Because AWS is security sensitive, special care is taken in its code to state 
explicitly the constraints that should be respected for the program to 
operate without errors, using Ada contracts on types and subprograms. 
For example, AWS code deals with time-zone string representation in 
many places. The code uses a predicate on this type to enforce that this 
representation remains valid: 
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subtype Time_Zone_String is String with 
 Dynamic_Predicate => 
  (Time_Zone_String'Length = 0 
     or else 
  (Time_Zone_String'Length = 5 
     and then 
   Time_Zone_String (Time_Zone_String'First) in '-' | '+' 
     and then 
   Time_Zone_String (Time_Zone_String'First + 1) in '0' .. '2' 
     and then 
   Time_Zone_String (Time_Zone_String'First + 2) in '0' .. '9' 
     and then 
   Time_Zone_String (Time_Zone_String'First + 3) in '0' .. '5' 
     and then 
   Time_Zone_String (Time_Zone_String'First + 4) in '0' .. '9' 
  )); 

 
In the same vein AWS uses a Hex_String type which contains only 
numbers and letters from 'a' to 'f'. 
 
AWS also uses preconditions and postconditions on many subprograms. 
For example, when building an object containing a response to be sent 
back to the Web browser, the postcondition ensures at a minimum that the 
Build routine does not return an empty object, and that the Status_Code 
of the response is set according to the corresponding parameter: 

function Build 
  (Content_Type    : String; 
   UString_Message : Unbounded_String; 
   Status_Code     : Messages.Status_Code := …; 
   Cache_Control   : Messages.Cache_Option := …; 
   Encoding        : Messages.Content_Encoding := …) 
   return Data 
with Post => not Is_Empty (Build'Result) 
   and then Response.Status_Code (Build'Result) = Status_Code; 

 

As another example, in the Session API, AWS uses a postcondition to 
ensure that the value of a session is empty if the corresponding key is 
unknown: 
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function Get (SID : Id; Key : String) return String with 
 Post => (not Exist (SID, Key) and then Get'Result'Length = 0) 
          or else Exist (SID, Key); 

 

The benefit in expressing these constraints as type predicates and 
subprogram contracts is that they can be checked at run time, instead of 
informal comments as would be used in other languages. Another benefit 
is that these explicit contracts replace defensive programming in a way 
that makes it clear to clients of the API what is expected.  

5.4. Scenario 3: Secure Design through 
SPARK 

This scenario illustrates a high-security system where maximum assurance 
is required. Such systems often contain few or no COTS components and 
can be both embedded and feature a “bare metal” implementation style 
with minimal or no operating system support. 

At the high-end, a “bare metal” implementation, the use of SPARK and 
the Zero FootPrint (ZFP) Ada run-time library offer the ability to account 
for every byte of object code in the finished product. 

For such systems, the recommended approach is to use SPARK in fully 
constructive mode with Verification-Driven Design (see section 2.4) to set 
objectives for each subsystem or module. All code should be proven free 
from run-time errors, and critical modules should be proven to satisfy 
application-specific security properties. 

Example of Scenario 3 – the Muen Kernel 
Muen [21] is a high-assurance hypervisor for the x86_64 architecture, 
with the most critical components designed and verified using SPARK. 
Muen is also a Separation Kernel and supports strict partitioning and 
security policy enforcement for its clients. 

The Muen system, including all the code, is freely available under 
version 3 of the GNU Public License (GPL). 
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Examples of Scenario 3 – Crypto and Tokeneer 
Several projects have used SPARK to develop critical cryptographic 
components, including cross-domain switches and reference 
implementations of cryptographic algorithms [19, 22, 23]. Some of these 
have been evaluated to the highest levels of assurance required by 
national regulators. 

The Tokeneer project [24] was a demonstration of high-integrity 
development in SPARK, funded by the US National Security Agency 
(NSA). The Tokeneer code and all documentation have been released 
under a permissive license and are freely available for study and 
research. 

5.5. Scenario 4: Support for Mixed 
Criticality Systems 

This scenario covers systems with mixed assurance requirements, 
developed using a variety of technologies and programming languages. 

The key is a sound security engineering and architectural design that 
separates critical from non-critical components, and that makes the most 
critical components as small as possible. The architecture should support a 
verification argument that top-level security requirements are indeed met. 

Various implementation mechanisms can support such an architecture—
distinct CPUs, multi-core CPUs, hypervisors and RTOSs can all offer the 
support required. The software might be several distinct “programs” 
which might be implemented in SPARK (for the most critical), Ada (for 
mission-critical components and infrastructure), C (for some low-level 
functions) and possibly other languages like C++, Java or Python for a 
user-interface component. 

Example of Scenario 4 
The MULTOS CA [8] formed the root certificate authority and key 
generation facility for the MULTOS smartcard operating system. The CA 
facility stored the private signing keys that were used to digitally sign 
certificates for MULTOS applications, and so were subject to an 
extraordinary level of physical, procedural, and computer-based security. 



Roderick Chapman and Yannick Moy 

69 

The software architecture was similar to that described above. Great 
care was taken to isolate security-critical functions in a single security 
kernel component that was constructed and verified using SPARK. In 
another architectural simplification, the system was designed so that there 
was no concurrent execution of security-critical functions. The system’s 
software infrastructure was developed in Ada (using tasking for the non-
critical, but naturally concurrent activities), while the GUI was 
implemented using C++ and the Microsoft Foundation Classes. A small 
number of C libraries were used, while a small amount of SQL code 
supported the system’s internal database. 

5.6. Scenario 5: Introducing Ada in a C 
project 

The introduction of Ada and/or SPARK can be a challenge for some 
projects, especially those with a large code base in C or some other 
language. This section deals with C in particular, since it is commonly used 
for embedded systems development. 

In fact, “mixed language” development with Ada, SPARK, C, and 
assembler is standard practice among AdaCore’s customers. Projects 
often have libraries or components written in C which have long-standing 
provenance, so there is little desire (or technical merit) to rewrite them in 
Ada or SPARK [25]. 

Ada can be introduced into such an environment for new or modified 
subsytems, and linked with existing code. Ada has particularly strong 
support in this area, in terms of both language features and tooling. The 
Ada language definition devotes an entire annex to the matter of 
interfacing Ada code with other languages, with special sections for C 
and C++ among others. 

The crucial step is to identify, isolate, and “wrap” C libraries, to provide 
an Ada interface for invoking them. Where a C library exports a 
function, for example, an Ada package would contain a corresponding 
subprogram declaration. Essentially, the idea is to produce a specification 
of the function in Ada, but to keep the implementation in the original 
language. The Ada specification can take advantage of Ada’s strong 
types, parameter passing modes, and contracts to their full extent. This 
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may involve careful study of the C library’s documentation and 
implementation to understand fully what it does (and doesn’t) promise to 
its clients. These properties and assumptions can be documented as 
contracts in the Ada code, but these are formal in that they can be used 
for both dynamic and static checking. 

Once C libraries are “wrapped” in this fashion, they can be called from 
new Ada or SPARK code as expected. (It also works in the other direction: 
Ada and SPARK can be called from C.) The contracts on the library 
binding will be verified, either dynamically at run time, statically using 
CodePeer or SPARK Pro, or both. 

AdaCore’s tools support this style of development well. As a first-class 
member of the GCC family, GNAT Pro can compile Ada and C “out of 
the box”, following all of the guidance in the interfacing annex of the 
Ada standard. Additionally, GNAT Pro supplies a “binding generator” 
that can automate the process of turning a C “.h” file into an equivalent 
Ada package specification. Many of AdaCore’s other tools (e.g. GPS, 
GDB, and GNATcoverage) are also “multi-lingual” and work seamlessly 
with mixed-language code. 

Example of Scenario 5: Industrial mixed-language 
system 
This project is a large, critical system using a combination of Ada, SPARK, 
and C [26]. 

While the critical functions are implemented in SPARK, the user-interface 
is constructed using the X11/Motif framework and libraries which express 
their API in C. Therefore, a “binding layer” was constructed to connect the 
SPARK code, via C, to the underlying libraries. The C layer is subject to 
static analysis using the MISRA guidelines [27] and a MISRA checking tool. 

Some effort was spent to document the assumptions that the SPARK and C 
code make about each other’s behavior, and how these assumptions can 
be expressed as contracts and verified in practice. Further details of this 
project appear in [26], which is available from the authors. 
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6. Summing Up 
Developing software that operates predictably and “does the right thing” 
in an overtly malicious environment is a high bar for software designers to 
overcome, but it can be done with a combination of engineering 
discipline, processes, languages and tools. While security remains a multi-
faceted problem, the Ada and SPARK languages and AdaCore’s tools 
provide some effective means to build software that truly matters. 

From its earliest days, Ada has always emphasized the needs of high-
integrity systems and, in particular, the verifiability of code. With the 
rising need for security in software, the strengths of Ada’s design are 
gaining increased recognition and appreciation. Although other 
languages are trying to add support for high-integrity and secure 
programming, these are properties that need to be considered from the 
earliest stages of the language design, they cannot be grafted on 
afterwards. If and when those languages eventually arrive at that sweet 
spot, they will find Lady Ada already there waiting to greet them. 

Ada’s design also catalyzed the development of SPARK, which brings 
even greater emphasis on verifiability and sound static verification. The 
importance of soundness should not be underestimated—it allows some 
defect classes to be entirely prevented in the face of arbitrary input 
data. Static verification also saves money by reducing wasteful testing 
and rework later in the lifecycle, and stands a chance of freeing 
developers from an endless cycle of “test and patch.” 

In brief, Ada and SPARK and their associated tools stand out among 
current language technologies in addressing the two issues underling 
secure software: 

• Ensuring that specific security functions are implemented correctly 
and enforce the required security policy, and 

• Verifying that the rest of the software is free of vulnerabilities 
that could defeat the required security policy. 

Developing secure software is by its nature a daunting problem, but Ada 
and SPARK can make it manageable. 
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A. CWE Mapping 
Overview 
This appendix focuses on the MITRE Corporation’s Common Weakness 
Enumeration (CWE) and how the use of Ada and AdaCore technologies 
can address particular CWEs. 

Several terms are used here with specific meanings. A language or tool is 
said to prevent a given CWE if: 

• That CWE can be shown to be entirely absent from an 
application, and 

• The argument is sound – i.e. there is confidence that all instances 
of that CWE have been prevented. 

A language feature or tool is said to mitigate a CWE if either: 

• The risk of that CWE occurring in an application is reduced, but 
perhaps not entirely eliminated, or 

• Eliminating that CWE requires the user to remember to run a tool 
(e.g., CodePeer or SPARK Pro), and correctly interpret the results, 
or 

• The user must formulate corrective action should a failure of that 
CWE be detected at run time—for example, the correct recovery 
action if a buffer overflow is detected via an exception, or 

• Some combination of the above. 

In the same way as the vulnerabilities covered in Chapter 4, some CWEs 
are universal in that all software should be free of all occurrences. Buffer 
overflow is an example, since all programs should be free of all buffer 
overflows, regardless of any individual application’s requirements or 
operational domain. 

Many CWEs are also application specific, depending on the application’s 
particular security requirements and operational environment. For 
example, the class of CWEs commonly known as “SQL Injection” are 
highly relevant to web server applications that have a database 
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supporting them, but are of no importance to a small embedded control 
system that has no “SQL Server” or database of any kind attached to it. 
Many of these CWEs can be prevented simply, but these require some 
thought on the part of the system designer. 

Note that “CWE compliance”  for an application is a highly domain- and 
application-specific concept. The list of CWEs also grows and evolves as 
weaknesses are discovered, so compliance with the CWE should not be 
seen as a one-off “box ticking” exercise. Rather, the CWEs should be 
considered as a starting point for developers, not an endpoint in itself. 

Another important consideration is whether a CWE is mitigated by static 
or dynamic means. Ada offers substantial run-time checking for many 
CWEs via its built-in run-time checks and exception handling facilities. In 
contrast, tools like CodePeer and SPARK Pro offer static mitigation.  

It is up to the designer to choose an appropriate mix of static and 
dynamic mitigation strategies. For some projects (for example, those 
working in a particularly harsh environment, such as a space-borne 
application) a combination of both static and dynamic mitigation might be 
appropriate. 

CWEs prevented by Ada 
The following table shows CWEs that relate to specific features of 
languages other than Ada—for example, a CWE that is particular to 
Java, and cannot affect an Ada program. Merely using Ada at all is 
sufficient to prevent these CWEs. 

CWE Identifiers Note 

467, 484 Only affects C and C++ 

500 Only affects C++ and Java 

520, 526 Only affects .NET languages 

8, 9, 487, 555, 574,  Only affects Java 

103, 104, 107, 108, 
109, 110, 608 

Only affects Struts framework 
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The next table shows a group of CWEs that reflect programming 
language problems and constructs that cannot affect Ada at all, but are 
not particular to any other specific language. 

CWE Identifiers Note 

588 Unsafe pointer usage – not possible in Ada. 

95 Unvalidated code in dynamic “eval” context – 
not possible in Ada. 

481, 482 Confusion between assignment and comparison 
– not possible in Ada. 

170 Improper null termination of Strings – not 
possible in Ada. 

228, 229, 233, 237, 
240 (and variants 
thereof) 

Parameters missing/extra/confused – not 
possible in Ada owing to parameter passing 
rules and strong type checking. 

 

CWEs Mitigated by Ada, CodePeer and SPARK 
The following table lists CWEs by their identifier and short description, 
then shows how each is prevented or mitigated in columns with the 
following headings: 

DM_Ada – Dynamically mitigated by Ada (using run-time exception 
handling for example.) 

SM_CP – Statically mitigated by CodePeer. 

SM_SP – Statically mitigated by SPARK Pro. 

These tables only list “Base” CWEs, not “Class” or “Variant” CWEs. 



AdaCore Technologies for Cyber Security 

76 

CWE Short description DM_Ada SM_CP SM_SP 

120 Buffer Overflow Y Y Y 

123 Write-what-where condition Y Y Y 

124 Buffer Under-write Y Y Y 

125 Out-of-bounds read Y Y Y 

128 Wrap-around error Y Y Y 

129 Improper validation of array 
index 

Y Y Y 

130 Improper handling of length 
parameter 

Y Y Y 

131 Incorrect calculation of buffer 
size 

Y Y Y 

136 Type errors Y Y Y 

137 Representation errors  Y Y 

188 Reliance on data layout   Y 

190 Integer overflow or wrap-
around 

Y Y Y 

191 Integer underflow or wrap-
around 

Y Y Y 

193 Off-by-one error Y Y Y 

194 Unexpected sign extension Y Y Y 

197 Numeric truncation error Y Y Y 

252 Unchecked return value Y Y Y 

253 Incorrect check of function 
return value 

Y Y Y 

366 Race condition  Y Y 

369 Divide-by-zero Y Y Y 

456 Missing variable initialization  Y Y 

466 Return of pointer value outside 
expected range 

  Y 

468 Incorrect pointer scaling   Y 

469 Use of pointer subtraction to 
determine size 

  Y 

476 Null pointer dereference Y Y Y 
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562 Return of stack variable 
address 

Y Y Y 

682 Incorrect calculation Y Y Y 

786 Access before start of buffer Y Y Y 

787 Out-of-bounds write Y Y Y 

788 Access after end of buffer Y Y Y 

805 Buffer access with incorrect 
length 

Y Y Y 

820 Missing synchronization  Y Y 

821 Incorrect synchronization  Y Y 

822 Untrusted pointer access   Y 

823 Out-of-range pointer offset   Y 

824 Uninitialized pointer Y Y Y 

825 Expired pointer dereference   Y 

835 Loop with unreachable exit  Y Y 

 

Ada Restrictions to CWE Mapping 
As noted in section 3.1 Ada has a Restrictions pragma that allows 
particular language features to be forbidden from a program. 

Some of these Restrictions remove entire classes of defect and 
vulnerability from programs at a stroke. The following table shows a 
mapping from Restrictions to CWE identifiers. Details on the exact 
meaning and effect of each Restriction are given in the GNAT Reference 
Manual. 

Note to GNAT Pro users: If a project is not using the Restrictions pragma, 
then the list of Restrictions that could be applied can be generated using 
the GNAT Pro Binder tool’s “-r” switch. In GPS, this switch can be enabled 
from the Project Properties dialog box, by selecting the Build / Switches / 
Binder menu entry and then checking the “List possible restrictions” 
checkbox. 
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Restriction Identifier CWEs prevented 

No_Allocators 122, 244, 415, 416, 467, 590, 761 

No_Tasking or 
Max_Tasks => 0 

362, 364, 366, 432, 479, 543, 558, 567, 
572, 585, 662, 663, 820, 821, 828, 831, 
833 

No_Recursion 674 

No_Exceptions 248, 396, 397, 460, 584, 600 

No_Exception_Handlers 396, 584 

No_Finalization 568, 583, 586 

No_Streams 499 

No_Unchecked_Conversion 197, 588, 704, 843 

No_Wide_Characters 135, 176 

No_Dependence 676 (“potentially dangerous functions” can 
be forbidden using this Restriction.) 
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B. Handling SQL Injection 
in Ada and SPARK 

This appendix builds a worked example of how the common “SQL 
Injection”  defect can be handled using Ada and SPARK. 

SQL Injection is a particular instance of the more general vulnerability of 
“treating data as code”—something that developers should always be 
wary of, yet is extremely useful and common practice. In short, some 
“data” (coming from a user, another computer system, a network, etc.) 
arrives in a program and is composed or manipulated in some way to 
form “code” that is executed or interpreted. In this particular instance, the 
language in question is SQL which is executed by some database server. 

These forms of “code injection” attacks have been at or near the top of 
the most-reported cyber security vulnerabilities for many years. 

Some static analysis tools claim to find and report SQL Injection problems, 
using some form of “taint analysis”. This is where the flow of information 
from an input to an SQL query is tracked through a program, so that 
potentially suspicious (or “tainted”) queries can be reported. This 
approach is essentially heuristic—a tool is trying to assess if a particular 
user input might be tainted. This yields both false positives (spurious 
alarms) and false negatives (missing alarms). 

The crux is that a general-purpose tool cannot know what does or doesn’t 
constitute a valid and secure SQL query without detailed knowledge of 
the target application’s security policy and requirements. This detail is 
inherently domain- and application specific, so there’s no way an “out of 
the box” tool can have such a built-in oracle. 

This example shows how Ada’s contracts can be used to solve this 
problem. 

In the following code, a very simple database API is expressed as an 
Ada package specification. 
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package DB 
  with SPARK_Mode     => On, 
       Abstract_State => State, 
       Initializes    => State 
is 
   procedure Execute (SQL_Query : in      String; 
                      Result    :     out Integer) 
     with Global => (Input => State); 
end DB; 

For simplicity it is assumed that the Execute procedure takes a single 
String parameter (which is the SQL to be executed) and always returns 
an Integer value. 

The contracts work as follows: 

• SPARK_Mode means that the package is supposed to comply 
with the rules of the SPARK language subset. 

• The Abstract_State contract allows the package to name an 
abstraction of some persistent state that is embodied in the 
package. In this case the name “State” represents the state of all 
the data in the database. It needs a name so that it can be 
referenced in later contracts. 

• The Initializes contract specifies that the State data is to be 
considered to be well-defined and initialized when the program 
starts. In short, the database server is assumed to be “initialized” 
before the program begins execution. 

• The Global contract on the Execute procedure signifies that, in 
addition to its “in” parameter, the procedure may read from the 
database State, but not write to it. This is useful, since it confirms 
that the Execute procedure is not permitted to change the state of 
the database. 

So far, there is no explicit constraint on what constitutes a “valid” SQL 
Query. For example, a malicious client might call Execute with 
SQL_Query set to “DROP TABLE Customers;” which would clearly violate 
the intent. 

A constraint is needed to ensure that the procedure Execute can only be 
called under specific circumstances when the query is valid. This is a 



Roderick Chapman and Yannick Moy 

81 

precondition on the Execute procedure. Good software engineering 
practice entails abstracting that validity property as a function, and also 
adding a Precondition contract to procedure Execute, thus: 

package DB 
  with SPARK_Mode     => On, 
       Abstract_State => State, 
       Initializes    => State 
is 
   function Is_Valid (SQL_Query : in String) return Boolean; 
 
   procedure Execute (SQL_Query : in     String; 
                      Result    :    out Integer) 
     with Global => (Input => State), 
          Pre    => Is_Valid (SQL_Query); 
end DB; 

In Ada, that precondition will be evaluated every time that Execute is 
called, to ensure that all is well before the query is allowed to proceed. 

If a main program tries to call Execute without checking Is_Valid first and 
chooses not to handle the resulting exception, then the result is 
predictable: 

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE : failed precondition 
from db.ads:11 

If programmed correctly using Is_Valid as a defensive check, then the call 
will always be allowed to proceed. For example: 

if DB.Is_Valid (Full_Query) then 
   DB.Execute (Full_Query, Result); 
else 
   Result := 0; 
end if; 

No Free Lunch—Implementing Is_Valid 
To build and execute a program like this, a designer would have to 
supply a legal body for the function Is_Valid. This poses something of a 
problem: what should the body be? How strict should it be? On the one 
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hand Is_Valid could return True all the time—this would cause no 
violations but would be rather obviously unsound if a malicious query 
really did arrive. On the other hand, it could always return False—never 
allowing any SQL queries at all. This would be “secure” but offer a rather 
high false-positive rate, since all perfectly legal queries would be 
rejected. 

Between these two extremes lies a “sweet spot” where Is_Valid 
implements precisely the security policy required by the system, yielding 
the “just right” balance of precision and soundness. However, this means 
that a security policy exists in the first place. 

An important lesson for system designers is that technologies like Ada and 
SPARK can offer useful mechanisms in building secure systems, but they do 
not supply policy. That can only come from a knowledge of the system’s 
application domain and requirements. 

An example of Is_Valid 
For simplicity this example assumes that the system’s security policy exists 
and says that an SQL query is valid if: 

• The lower-bound index of the query String is 1, and 
• The String is at least seven characters long, and 
• The first seven characters are “SELECT ”, and 
• The number of semi-colon characters (the statement terminator in 

SQL) is exactly 1, and 
• The final character is a semi-colon. 

For example, the query 

 “SELECT Name from Customers;” 

would be deemed OK, while 

 “SELECT Name from Customers; DROP TABLE Customers;” 

would be rejected. 

This can be implemented in the body of package DB as follows: 
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with Ada.Strings.Fixed; use Ada.Strings.Fixed; 
package body DB is 
   function Is_Valid (SQL_Query : in String) return Boolean is 
   begin 
      return    (SQL_Query'First = 1 and SQL_Query'Last >= 7) 
       and then  SQL_Query (1 .. 7) = "SELECT " 
       and then  SQL_Query (SQL_Query'Last) = ';' 
       and then  Count (SQL_Query, ";") = 1; 
   end Is_Valid; 
end DB; 

Going further with SPARK and Static Verification 
This example has shown how Ada’s contracts can offer precise facilities 
for dynamic verification of complex, domain-specific security properties 
like SQL Injection. 

The SPARK language and tools go further, offering fully static verification 
of the same properties. 

If a client package C1 calls DB.Execute twice, first without the correct 
defensive check, and later with the check correctly programmed, then the 
GNATprove tool might report: 

$ gnatprove -Psql --report=all -u c1.adb 
Phase 1 of 2: generation of Global contracts ... 
Phase 2 of 2: flow analysis and proof ... 
c1.adb:14:09: medium: precondition might fail 
c1.adb:24:12: info: precondition proved 

as expected. 

Going further with Correct-by-Design SQL Queries 

The above example shows how Ada contracts can be leveraged to 
provide a safety net against SQL injection by introducing a validity 
checking step for every SQL query, and how SPARK further provides 
static verification of this required check. 

In practice however, a safe application would not build SQL queries using 
simple string operations in the first place. Instead, it would more likely use 
type-safe APIs like those provided by the library GNATCOLL.SQL, or 
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higher level tools such as the GNATcoll Object Relational Mapper, to 
construct SQL queries whose syntax is fully constrained by Ada's static 
strong typing. The rendering of these queries into SQL, with safe handling 
of user-provided data (either through appropriate escaping, or even 
passing it out of band as separate parameters to the SQL execution 
back-end), can then be left to the API implementer. 
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