
50 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: Safety-CritiCal Software

Avionics is the canonical example
of safety-critical embedded software,
where an error could kill hundreds of
people. To prevent such catastrophic
events, the avionics industry and regu-
latory authorities have defined a strin-
gent certification standard for avionics

software, DO-178 and its equivalent in
Europe, ED-12, which are known ge-
nerically as DO-178. The standard pro-
vides guidance—objectives as well as
associated activities and data—concern-
ing various software life-cycle processes,
with a strong emphasis on verification.

The current version, called DO-
178B,1 has been quite successful, with
no fatalities attributed to faulty imple-
mentation of software requirements
since the standard’s introduction in
1992. However, the cost of complying
with it is significant: projects can spend
up to seven times more on verification
than on other development activities.2
The complexity of avionics software
has also increased to the point where
many doubt that current verification
techniques based on testing will be suf-
ficient in the future.3 This led the avi-
onics industry to consider alternative
means of verification during the DO-
178B revision process. The new stan-
dard, DO-178C,1 includes a supplement
on formal methods (see the “What Are
Formal Methods?” sidebar), known as
DO-3334, which states the following:

Formal methods might be used in a
very selective manner to partially ad-
dress a small set of objectives, or might
be the primary source of evidence for
the satisfaction of many of the objec-
tives concerned with development and
verification.

Although this permission to replace
part of testing with formal verification
is quite new, we’ve successfully applied
this new guidance into a production-
like environment at Dassault-Aviation
and Airbus. The use of formal verifi-
cation for activities previously done by
testing has been cost-effective for both
companies, by facilitating maintenance
leading to gains in time on repeated
activities.

Formal verification
at the source-code Level
DO-178 requires verification activities
to show that a program in executable
form satisfies its requirements (see Fig-
ure 1). For some requirements, verifica-
tion, which can include formal analysis,
can be conducted directly on the binary

Testing or Formal
Verification:
DO-178C Alternatives
and Industrial Experience

Yannick Moy, AdaCore

Emmanuel Ledinot, Dassault-Aviation

Hervé Delseny, Airbus

Virginie Wiels, ONERA

Benjamin Monate, TrustMySoft

// Software for commercial aircraft is subject to stringent

certification processes described in the DO-178B standard,

Software Considerations in Airborne Systems and Equipment

Certification. Issued in late 2011, DO-178C allows formal

verification to replace certain forms of testing. Dassault-Aviation

and Airbus have successfully applied formal verification

early on as a cost-effective alternative to testing. //

s3moy.indd 50 4/2/13 11:33 AM

 may/JunE 2013 | IEEE SoftwarE 51

representation. For example, Airbus
uses formal analysis tools to compute
the worst case execution time (WCET)
and maximum stack usage of execut-
ables.5 For many other requirements,
such as datafl ow and functional prop-
erties, formal verifi cation is only feasi-
ble via the source-code representation.
DO-178 allows this approach, provided
the user can demonstrate that proper-
ties established at the source level still
hold at the binary level. The natural
way to fulfi ll this objective is to show
that requirements at source-code level
are traceable down to the object-code
level.6,7 Demonstrating traceability be-
tween source and object code is greatly

WhAt ARe FoRMAL
MethoDs?

According to RTCA DO-333, formal methods are mathematically based techniques for
the specifi cation, development, and verifi cation of software aspects of digital systems.
The fi rst work on formal methods dates back to the 1960s, when engineers needed to
prove the correctness of programs. The technology has evolved steadily since then, ex-
ploiting computing power that has increased exponentially. In DO-333, a formal meth-
od is defi ned as “a formal model combined with a formal analysis.” A model is formal
if it has unambiguous, mathematically defi ned syntax and semantics. This allows auto-
mated and exhaustive verifi cation of properties using formal analysis techniques, which
DO-333 separates into three categories: deductive methods such as theorem proving,
model checking, and abstract interpretation. Today, formal methods are used in a wide
range of application domains including hardware, railway, and aeronautics.

• Compliance
• Traceability

• Compliance
• Traceability

• Compliance
• Traceability

• Traceability

• Compliance

• Compliance

• Accuracy and consistency
• Compatibility with the target computer

• Veri�ability
• Conformance to standards

• Algorithm accuracy

System
requirements

High-level
requirements

Source code

Executable
object code

Design

Software
architecture

Low-level
requirements

• Accuracy and consistency
• Compatibility with the target computer
• Veri�ability
• Conformance to standards
• Algorithm accuracy

• Consistency
• Compatibility with the target computer

• Veri�ability
• Conformance to standards

• Partitioning integrity

• Veri�ability
• Conformance to standards
• Accuracy and consistency

• Completeness and correctness

• Compatibility with the target computer

• Compliance
• Robustness

• Compliance
• Robustness

Development activity
Review activity
Test activity

Note: Requirements include
derived requirements

fiGUre 1. Activities mandated by DO-178C to ful� ll objectives (the labels on the arcs). Veri� cation against requirements is shown in two white

boxes with blue borders. (Note that the legend says “Test activity,” but DO-333 allows formal veri� cation to replace these testing activities;

artwork reproduced with permission of RTCA/EUROCAE.)

s3moy.indd 51 4/2/13 11:33 AM

52 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Safety-CritiCal Software

facilitated by using qualified tools for
purposes such as enforcing coding re-
strictions against features that would
complicate traceability, by applying ap-
propriate compiler options to preserve
control flow, and by using code trace-
ability analyses prepared by compiler
vendors.

Assuring the correctness of the com-
piler’s translation of source code into
object code is, of course, important.
Trust can be based on examination
of the compiler itself (the tool qualifi-
cation process) or the compiler’s out-
put. The former approach (qualifying
the compiler) is rare because of the ef-
fort involved. The latter approach pro-
vides the relevant degree of assurance
through the multiple and overlapping
activities required by DO-178, includ-
ing the hardware/software integration
testing and the verification of untrace-
able object code.

The form of verification required
by DO-178 is mostly based on require-
ments, both for verifying high-level re-
quirements, such as “HLR1: the pro-
gram is never in error state E1,” and for
verifying low-level requirements, such
as “LLR1: function F computes out-
puts O1, …, On from inputs I1, … Im.”
For both HLRs and LLRs, the DO-
178 guidance requires in-range (com-
pliance) and out-of-range (robustness)

verification, either by testing or by for-
mal verification.

Compliance requirements focus on
a program’s intended nominal behav-
iors. To use formal verification for these
requirements, you first express the re-
quirement in a formal language—for
example, HLR1 can be expressed as a
temporal logic formula on traces of ex-
ecution or as an observer program that
checks the error state is never reached.
Then, you can use symbolic execution
techniques to check that the require-
ment is respected. The Java PathFinder
tool used at NASA and the Aoraï plug-in
of Frama-C implement this technique.8

As another example, you can express
LLR1 as a logic function contract (see
the “What Are Function Contracts?”
sidebar). Then, you use various formal
analyses to check that the code imple-
ments these formal contracts, although
deductive methods typically perform
better here, as demonstrated by the op-
erational deployment of tools such as
Caveat/Frama-C5,8 and SPARK.9

Robustness requirements focus on a
program’s behaviors outside its nomi-
nal use cases. A particularly important
robustness requirement is that pro-
grams are free from runtime errors,
such as reading uninitialized data, ac-
cessing out-of-bounds array elements,
dereferencing null pointers, generating

numeric overflows, and so on, which
might be manifest at runtime by an ex-
ception or by the program silently go-
ing wrong. Formal analyses can help
check for the absence of runtime errors.
Model checking and abstract interpre-
tation are attractive options because
they don’t require the user to write
contracts, but they usually suffer from
state explosion problems (meaning the
tool doesn’t terminate) or they gener-
ate too many false alarms (meaning
the tool warns about possible problems
that aren’t genuine). A successful ex-
ample of such a tool is Astrée,5 which
was specifically crafted to address this
requirement on a restricted domain-
specific software. Deductive verifica-
tion techniques require user-written
function contracts instead of domain-
specific tools and don’t suffer from ter-
mination problems or too many false
alarms. These techniques are available
in Caveat,5 Frama-C,8 and SPARK.9

Replacing coverage with
Alternative objectives
To increase confidence in the compre-
hensiveness of testing-based verifica-
tion activities, DO-178 requires cov-
erage analysis. Test coverage analysis
is a two-step process that involves
requirements-based and structural cov-
erage analyses. Requirements-based
coverage establishes that verification
evidence exists for all of the software’s
requirements—that is, that all the re-
quirements have been met. This also
applies to formal verification. Struc-
tural coverage analysis during testing
(for example, statement coverage) aims
to detect shortcomings in test cases, in-
adequacies in requirements, or extrane-
ous code.

Structural coverage analysis doesn’t
apply to formal verification. Instead,
DO-178C’s supplement on formal
methods, DO-333, defines four al-
ternative activities to reach the struc-
tural coverage goals when using formal

WhAt ARe Function
contRActs?
The concept of program contracts was invented by the researcher C.A.R. Hoare in 1969
in the context of reasoning about programs. In the mid-1980s, another researcher,
Bertrand Meyer, introduced the modern function contract in the Eiffel programming
language. In its simplest formulation, a function contract consists of two Boolean ex-
pressions: a precondition to specify input constraints and a postcondition to specify
output constraints. Function contracts have subsequently been included in many other
languages, either as part of the language (such as CodeContracts for .NET or contracts
for Ada 2012) or as an annotation language (such as JML for Java or ACSL for C). Con-
tracts can be executed as runtime assertions, interpreted as logic formulas by analysis
tools, or both.

s3moy.indd 52 4/2/13 11:33 AM

 may/JunE 2013 | IEEE SoftwarE 53

verification:6,7 cover, complete, data-
flow, and extraneous. The four alterna-
tive activities aim to achieve the same
three goals, substituting verification
cases for test cases in the first one.

Cover: Detect Missing
Verification Evidence
Unlike testing, formal verification can
provide complete coverage with re-
spect to a given requirement: it en-
sures that each requirement has been
sufficiently—in other words, mathe-
matically—verified. But unlike testing,
formal verification results depend on
assumptions, typically constraints on
the running environment, such as the
range of values from a sensor. Thus, all
assumptions should be known, under-
stood, and justified.

Complete: Detect Missing
or Incomplete Requirements
Formal verification is complete with re-
spect to any given requirement. How-
ever, additional activities are necessary
to ensure that all requirements have
been expressed—that is, all admissible
behaviors of the software have been
specified. This activity states that the
completeness of the set of requirements
should be demonstrated with respect to
the intended function:

•	 “For all input conditions, the re-
quired output has been specified.”

•	 “For all outputs, the required input
conditions have been specified.”

Checking that the cases don’t over-
lap and that they cover all input con-
ditions is sufficient for demonstrating
the first bullet point. Furthermore, it’s
easy to detect obvious violations of the
second point by checking syntactically
that each case explicitly mentions each
output. A manual review completes this
verification. Note that formal methods
can’t handle the more general problem
of detecting all missing requirements.

Dataflow: Detect Unintended Dataflow
To show that the coding phase didn’t
introduce undesired functionality, the
absence of unintended dependencies
between the source code’s inputs and
outputs must be demonstrated. You
can use formal analysis to achieve this

objective. Formal notations exist to
specify dataflows, such as the SPARK
dataflow contracts9 or the Fan-C nota-
tion in Frama-C,8 and associated tools
automate the analysis.

Extraneous: Detect Code That Doesn’t
Correspond to a Requirement
DO-178C requires demonstrating the
absence of “extraneous code”: any code
that can’t be traced to a requirement.
This includes “dead code” as defined
in DO-178C: code that’s present by er-
ror and unreachable. The relevant sec-
tion of DO-333 explicitly states that
detection of extraneous code should be
achieved by “review or analysis (other
than formal).” Although formal analy-
sis might detect some such code, com-
putability theory tells us that any prac-
tical formal analysis tool (which doesn’t
generate so many false alarms that it’s
useless in practice) will be unsound,
meaning it will fail to detect some in-
stances of extraneous code. DO-178C
doesn’t allow unsound tools.

The effort required by this review or
analysis depends chiefly on the degree
of confidence obtained after complet-
ing the previous activities (cover, com-
plete, and dataflow). Testing detects
extraneous code as code that isn’t ex-
ecuted at runtime. This step detects
both unreachable code that can never

be executed and unintended function-
alities—those that could be executed
but aren’t triggered by the tests derived
from requirements. When you use for-
mal analysis, the previous activities give
some degree of confidence that unin-
tended functionalities can be detected.

It only remains to detect by review or
analysis the unreachable code. Because
this is a manual activity, its details vary
from project to project.

Formal verification
of Functional
Properties: Airbus
Since 2001, a group at Airbus has trans-
ferred formal verification technology—
tools and associated methods—from
research projects to operational teams
who develop avionics software.5 The
technology for verifying nonfunctional
properties such as stack consumption
analysis, WCET assessment, absence
of runtime errors, and floating-point
accuracy isn’t seen as an alternative to
testing and won’t be discussed here. In-
stead, we focus on unit proof,4,10 which
we developed for verifying functional
properties. It has replaced some of the
testing activities at Airbus for parts
of critical embedded software on the
A400M military aircraft and the A380
and A350 commercial aircraft.

Within the classical V-cycle devel-
opment process of most safety-critical
avionics programs, we use unit proof
for achieving DO-178 objectives re-
lated to verifying that the executable
code meets the functional LLRs. The
term “unit proof” echoes the name of
the classical technique it replaces: unit

Unit proof has replaced some
of the testing activities at Airbus on
the A400M military aircraft and the

A380 and A350 commercial aircraft.

s3moy.indd 53 4/2/13 11:33 AM

54 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Safety-CritiCal Software

testing. The use of unity proof diverged
from the DO-178B standard (more ac-
curately, it was treated as an alternative
method of compliance), so we worked
with the certification authorities to ad-
dress and authorize this alternative.
The new DO-178C standard—together
with the formal methods supplement

DO-333—fully supports the use of unit
proof.

Unit proof is a process comprising
three steps:

•	 An engineer expresses LLRs for-
mally as dataflow constraints be-
tween a computation’s inputs and
outputs, and as preconditions and
postconditions in first-order logic,
during the development process’s
detailed design activity.

•	 An engineer writes a module to im-
plement the desired functionality
(this is the classical coding activ-
ity). The C language is used for this
purpose.

•	 An engineer gives the C module’s
formal requirements and the mod-
ule itself to a proof tool. This activ-
ity is performed for each C function
of each C module.

Different steps are needed when us-
ing the theorem-proving tool. An en-
gineer first defines the proof environ-
ment, and then the tool automatically
generates the data and control flows
from the C code. The engineer then
verifies these flows against the data and
control flows defined during the design
phase. Next, the tool attempts to prove
that the C code correctly implements

the functional properties defined dur-
ing the design phase. Finally, the en-
gineer analyzes the proof results. The
theorem-proving tool is integrated
into the standard process management
tool, so that this proof process is en-
tirely automated and supported during
maintenance.

As discussed earlier, because we
perform a verification activity at the
source level instead of the binary level,
we also analyze the compiler-generated
object code, including the effects of the
compiler options on the object code,
to ensure that the compiler preserves
in the object code the property proved
on the source code. Within this devel-
opment cycle, HLRs are expressed in-
formally, so integration verification is
done via testing, which includes verifi-
cation of timing aspects and hardware-
related properties. Even when taking
into account these additional activities,
the technique of unit proof reduces the
overall effort compared to unit test-
ing, in particular because it facilitates
maintenance.

This approach satisfies the four
alternative objectives to coverage:

•	 Cover. Each requirement is ex-
pressed as a property, each property
is formally proved exhaustively, and
every assumption made for formal
verification is verified.

•	 Complete. Completeness of the set
of requirements is verified by verify-
ing that the dataflow gives evidence
that the data used by the source
code is conformant with decisions
made during design. Based on this

guarantee, the theorem-proving
tool verifies that the formal con-
tract defined in the design phase
specifies a behavior for all possible
inputs. Then, we manually verify
the formal contracts, to determine
that an accurate property exists and
specifies the value of each output
for each execution condition.

•	 Dataflow. The dataflow verification
gives evidence that the operands
used by the source code are those
defined at the design level.

•	 Extraneous. Except for unreach-
able code (which can’t be executed),
all the executable code is formally
verified against LLRs. Thus, the
completeness of the properties and
the exhaustiveness of formal proof
guarantee that any code section
that can be executed will have no
other impact on function results
than what’s specified in the LLRs.
Identification of unreachable code,
including dead code, is achieved
through an independent, focused
manual review of the source code.

There are two manually intensive,
low-level testing activities in DO-178:
normal range testing and robustness
testing. While Airbus has been us-
ing formal verification to replace both
types of testing (excluding runtime er-
rors), Dassault-Aviation has experi-
mented with formal verification to re-
place the robustness testing (including
runtime errors).

Formal verification
of Robustness:
Dassault-Aviation
Since 2004, a group at Dassault-
Aviation has used formal verification
techniques experimentally to replace
integration robustness testing,6 where
robustness is defined as “the extent to
which software can continue to oper-
ate correctly despite abnormal inputs
and conditions.”1 We’ve applied these

The technique of unit proof reduces the
overall effort compared to unit testing,

in particular because it facilitates
maintenance.

s3moy.indd 54 4/2/13 11:33 AM

 may/JunE 2013 | IEEE SoftwarE 55

techniques to flight control software
developed following a model-based
approach, specifically on the Falcon
family of business jets equipped with
digital flight control systems. C source
code is automatically generated from a
graphical model that includes a mix of
dataflow and statechart diagrams. The
average size of the software units veri-
fied by static analyzers is roughly 50
KLOC.

Normal conditions for this software
are defined as intervals bounding the
model’s input variables and the per-
manent validity of a set of assertions
stated at the model level. These asser-
tions are assumptions expected to be
met in both normal and abnormal in-
put conditions for the model to operate
properly—typically, they’re range con-
straints on arguments to library func-
tions at the model’s leaf nodes. Apart
from runtime errors, the robustness as-
sertions amount to a few hundred prop-
erties stated at the model level and then
propagated to the generated C code.

On such software, integration testing
is functional, based on pilot-in-the-loop
and hardware-in-the-loop activation of
the flight control laws. Designing test
cases to observe what might happen if
some internal assertions break was de-
termined to be costly and inconclusive,
so we handle robustness by manually
justifying that normal and abnormal
external inputs can’t lead to assertion
failures. A set of design rules facilitate
the checking of range properties; we
apply them at the software-modeling
level and use a custom checker to verify
them. These rules made a manual justi-
fication possible.

We anticipated that strengthen-
ing the manual analysis of range con-
straints through mechanized interval
propagation and abstract interpretation
would be beneficial. But we couldn’t
compare the benefits of this process
evolution on the baseline process by
simply comparing past testing cost and

present formal verification cost: for-
mal verification supplements an activity
that was never performed through test-
ing, just through human analysis.

To mechanize the analysis through
formal proof of the assertions, we use
two static analyzers that collaborate
and share results on the Frama-C plat-
form. Approximately 85 percent of
these assertions are proved by abstract
interpretation using Frama-C’s value-
analysis plug-in, and the remaining as-
sertions are proved by deductive verifi-
cation using Frama-C’s WP plug-in and
a set of automated theorem provers.
The value-analysis plug-in takes into
account IEEE 754-compliant numerical
precision; while propagating intervals,
it also verifies the absence of runtime
errors, in particular, the absence of
overflows and underflows.

As far as the verification process is
concerned, once the integrated flight
control software is sufficiently stable,
a static analysis expert, in cooperation
with a model expert, initially performs
the formal robustness verification. The
critical issue is to add a few extra asser-
tions to be conclusive about the return
values for the numerically intensive li-
brary functions. Finding them requires

both deep knowledge of the model and
abstract interpretation expertise. It
takes roughly a person-month effort
to set up the Frama-C analysis script
and to tune any manually added as-
sertions. Then the model verifiers—an
independent group from the model de-
velopment team—can autonomously
replay and update the analysis until
some substantial algorithmic change in

the model requires revisiting the extra
assertions, possibly with some support
from the formal verification expert.

Design-rule verification and manual
assertion analysis is estimated to take a
person-month of effort by the indepen-
dent control engineers (not software en-
gineers) in charge of model verification.
This effort must be repeated for every
software model release, so there’s no
economic gain for a single release. How-
ever, because robustness verification is
a recurrent task that’s automated once
the setup phase is complete, this rather
long preparation provides a significant
competitive advantage for repetitive
analyses. The gain is roughly a person-
month per flight software release.

This approach satisfies the following
alternative objectives to coverage:

•	 Cover. An engineer handles abnor-
mal input conditions through larger
intervals and no other assump-
tions. The tool performs abstract
interpretation with no assumptions
other than those required to en-
sure hardware-dependent numerical
consistency.

•	 Complete. A manual peer review of
the set of assertions in the libraries

and in the model ensures that ro-
bustness requirements are complete.
This is facilitated by the simplicity
of typical assertions, 90 percent of
which are interval constraints.

•	 Dataflow. An engineer formally
specifies dataflows at the model
level, using a dataflow formalism.
Qualification of the code genera-
tor ensures no unintended dataflow

Because robustness verification
is a recurrent task, the gain is roughly

a person-month per flight software release.

s3moy.indd 55 4/2/13 11:33 AM

56 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Safety-CritiCal Software

relationship at the source-code level
compared to the design model.

Airbus and Dassault-Aviation were
early adopters of formal verifi cation as
a means to replace manually-intensive

testing, at a time where the applicable
standard DO-178B didn’t fully recog-
nize it. New projects can expect to get
the same benefi ts in contexts where the
new standard DO-178C explicitly sup-
ports it.

F ormal methods technology has
matured considerably in recent
years, and it’s attracting in-

creasing interest in the domain of high-
integrity systems. Airborne software
is an obvious candidate, but DO-178B
treated the use of formal methods for
verifi cation as an activity that could
supplement but not necessarily replace
the prescribed testing-based approach.
The revision of DO-178B has changed
this, and the new DO-178C standard
together with its DO-333 supplement
offer specifi c guidance on how formal
techniques can replace, and not simply
augment, testing.

Experience at Airbus and Dassault-
Aviation shows that the use of formal
methods in a DO-178 context isn’t
simply possible but also practical and
cost-effective, especially when backed
by automated tools. During the require-
ments formulation process, engineers
can use formal notation to express
requirements, thus avoiding the ambi-
guities of natural language, and formal
analysis techniques can then be used to
check for consistency. This is especially
useful because, in practice, the errors
that show up in fi elded systems tend to
be with requirements rather than with
code. However, the correct capture of
system-functional safety at the soft-
ware level can’t be addressed by for-
mal methods. During the coding phase,
formal verifi cation techniques can de-
termine that the source code complies
with its requirements.

An interesting possibility that we
didn’t discuss here is to combine test-
ing with formal verifi cation. This has
seen some promising research in recent
years,11 and further industrial experience
in this area will no doubt prove useful.

Acknowledgments
We thank the anonymous reviewers and Ben-
jamin Brosgol for their helpful comments on
this article, as well as Cyrille Comar for in-
spiring us to write it.

YAnnicK MoY is a senior engineer at AdaCore, working on static
analysis and formal verifi cation tools for Ada and SPARK programs. He
previously worked on similar tools for C/C++ programs at PolySpace,
INRIA research labs, and Microsoft Research. Moy received a PhD in
formal program verifi cation from Université Paris-Sud. Contact him at
moy@adacore.com.

eMMAnueL LeDinot is a senior expert in formal methods applied
to software and system engineering at Dassault-Aviation and was
Dassault’s representative in the ED-12/DO-178 formal methods group.
Ledinot graduated as an engineer from Centrale Paris and has an MS in
theoretical computer science from the University of Paris VII. Contact
him at emmanuel.ledinot@dassault-aviation.com.

heRvÉ DeLsenY is an expert in avionic software aspects of certi-
fi cation at Airbus and was a member of the working group in charge
of writing issue C of ED-12/DO-178. His professional interests include
formal methods and promoting their use in avionics software verifi ca-
tion. Delseny has an MS in industrial software from Tours University,
France. Contact him at herve.delseny@airbus.com.

viRGinie WieLs is a research scientist at Onera. She previously
worked for NASA on formal verifi cation of the Space Shuttle’s embed-
ded software. Wiels received a PhD in formal system development
and verifi cation from Ecole Nationale Supérieure d’Aéronautique et
d’Espace. Contact her at virginie.wiels@onera.fr.

BenJAMin MonAte is a founder and director at TrustMySoft. He’s
the former leader of the Software Reliability Laboratory at CEA LIST
and a senior expert in formal verifi cation and validation. His research
interests include application of formal methods to static and dynamic
analysis of programs as well as their certifi cation and methodologies
of deployment. Monate has a PhD from Université Paris-Sud Orsay.
Contact him at benjamin.monate@cea.fr.

a
B

o
U

t
 t

H
e

 a
U

t
H

o
r

S

s3moy.indd 56 4/2/13 11:33 AM

 may/JunE 2013 | IEEE SoftwarE 57

References
 1. RTCA DO-178, “Software Considerations in

Airborne Systems and Equipment Certifi ca-
tion,” RTCA and EUROCAE, 2011.

 2. NASA ARMD Research Opportunities
in Aeronautics 2011 (ROA-2011), research
program System-Wide Safety and Assurance
Technologies Project (SSAT2), subtopic
AFCS-1.3 Software Intensive Systems, p. 77;
http://nspires.nasaprs.com/external/
viewrepositorydocument/cmdocumentid=
320108/solicitationId=%7B2344F7C4
-8CF5-D17B-DB86-018B0B184C63%7D/
viewSolicitationDocument=1/ROA-2011%20
Amendment%208%2002May12.pdf.

 3. J. Rushby, “New Challenges in Certifi cation
for Aircraft Software,” Proc. 9th ACM Int’l
Conf. Embedded Software, ACM, 2011;
www.csl.sri.com/users/rushby/papers/
emsoft11.pdf.

 4. RTCA DO-333, Formal Methods Supplement
to DO-178C and DO-278A, RTCA
and EUROCAE, 2011.

 5. J. Souyris et al., “Formal Verifi cation of

Avionics Software Products,” Proc. Formal
Methods, Springer, 2009; http://link.springer.
com/chapter/10.1007%2F978-3-642
-05089-3_34?LI=true.

 6. E. Ledinot and D. Pariente, “Formal Methods
and Compliance to the DO-178C/ED-12C
Standard in Aeronautics,” Static Analysis of
Software, J.-L. Boulanger, ed., John Wiley &
Sons, 2012, pp. 207–272.

 7. D. Brown et al., “Guidance for Using Formal
Methods in a Certifi cation Context,” Proc.
Embedded Real-Time Systems and Software,
2010; www.open-do.org/wp-content/
uploads/2013/03/ERTS2010_0038_fi nal.pdf.

 8. P. Cuoq et al., “Frama-C, A Software Analysis
Perspective,” Proc. Int’l Conf. Software Eng.
and Formal Methods, Springer, 2012; www.
springer.com/computer/swe/book/978-3-642
-33825-0.

 9. J. Barnes, SPARK, the Proven Approach to
High Integrity Software, Altran Praxis, 2012.

 10. J. Souyris and D. Favre-Félix, “Proof of
Properties in Avionics,” Building the Informa-
tion Society, IFIP Int’l Federation for Informa-

tion Processing, René Jacquart, ed., vol. 156,
2004, pp. 527–535.

 11. C. Comar, J. Kanig, and Y. Moy, “In-
tegrating Formal Program Verifi cation with
Testing,” Proc. Embedded Real-Time Systems
and Software, 2012; www.adacore.com/
uploads_gems/Hi-Lite_ERTS-2012.pdf.

IEEE Computer Society is offering $40,000
in student scholarships, from $1,000 and up, to
recognize and reward active student volunteer

leaders who show promise in their academic and
professional efforts.

Graduate students and undergraduate students
in their final two years, enrolled in a program in

electrical or computer engineering, computer
science, information technology, or a well-defined
computer-related field, are eligible. IEEE Computer

Society student membership is required.

Apply now! Application deadline is 30 April 2013.
For more information, go to www.computer.org/
scholarships, or email chuffman@computer.org.

To join IEEE Computer Society,
visit www.computer.org/membership.

Richard E. Merwin
Student Leadership

Scholarship

See www.computer.org/software
-multimedia for multimedia
content related to this article.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

s3moy.indd 57 4/2/13 11:33 AM

