
Safe and Secure Software
Ada 2005An Invitation to

Safe Object Construction
6

Courtesy of

The GNAT Pro Company
John Barnes

55

This chapter covers a number of aspects of the control of objects. By objects
here we mean both small objects in the sense of simple constants and variables
of an elementary type such as Integer and big objects in the sense of Object-
Oriented Programming.

Ada provides good control and flexibility in this area. This control is in many
cases optional but the good programmer will use the features wherever possible
and the good manager will insist upon them being used wherever possible.

Variables and constants

As we have seen we can declare a variable or a constant by writing
Top: Integer; -- a variable
Max: constant Integer := 100; -- a constant

respectively. Top is a variable and we can assign new values to it whereas Max is
a constant and its value cannot be changed. Note that when we declare a
constant we have to give it a value since we cannot assign to it afterwards. A
variable can optionally be given an initial value as well.

The advantage of using a constant is that it cannot be changed accidentally. It
is not only a useful safeguard but it helps any person later reading the program
and informs them of its status. An important point is that the value of a constant
does not have to be static – that is computed at compile time. An example was in
the program for interest rates where we declared a constant called Factor

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

Each call of the function Nfv_2000 has a different value for X and so a different
value for Factor. But Factor is constant throughout each individual call.
Although this is a trivial example and it is clear that Factor is not changed
during execution of an individual call nevertheless we should get into the habit
of writing constant whenever possible.

Parameters of subprograms are another example of variables and constants.
Parameters may have three modes: in, in out, and out. If no mode is shown

then it is in by default. All parameters of functions must be of mode in.
A parameter of mode in is a constant whose value is given by the actual

parameter. Thus the parameter X of Nfv_2000 has mode in and so is a constant –

56

this means that we cannot assign to it and so are assured that its value will not
change. The actual parameter can be any expression of the type concerned.

Parameters of modes in out and out are variables. The actual parameter must
also be a variable. The difference concerns their initial value. A parameter of
mode in out is a variable whose initial value is given by that of the actual
parameter whereas a parameter of mode out has no initial value (unless the type
has a default value such as null in the case of an access type).

Examples of all three modes occur in the procedures Push and Pop in the
chapter on Safe Architecture

procedure Push(S: in out Stack; X: in Float);
procedure Pop(S: in out Stack; X: out Float);

The rules regarding actual parameters ensure that constancy is never violated.
Thus we could not pass a constant such as Factor to Pop since the relevant
parameter of Pop has mode out and this would enable Pop to change Factor.

The distinction between variables and constants also applies to access types
and objects. Thus if we have

type Int_Ptr is access all Integer;
K: aliased Integer;
KP: Int_Ptr := K'Access;
CKP: constant Int_Ptr := K'Access;

then the value of KP can be changed but the value of CKP cannot. This means
that CKP will always refer to K. However, although we cannot make CKP refer
to any other object we can use CKP to change the value in K by

CKP.all := 47; -- change value of K to 47

On the other hand we might have
type Const_Int_Ptr is access constant Integer;
J: aliased Integer;
JP: Const_Int_Ptr := J'Access;
CJP: constant Const_Int_Ptr := J'Access;

where the access type itself has constant. This means that we cannot change the
value of the object J referred to indirectly whether we use JP or CJP. Note that
JP can refer to different objects from time to time but CJP cannot. Of course,
the value of the object J can always be changed by a direct assignment to J.

Safe and Secure Software: An invitation to Ada 2005

57

Constant and variable views

Sometimes it is convenient to enable a client to read a variable but not to write
to it. In other words to give the client a constant view of a variable. This can be
done with a so-called deferred constant and the access types just described.

A deferred constant is one declared in the visible part of a package and for
which we do not give an initial value. The initial value must then be given in the
private part. Consider the following

package P is
 type Const_Int_Ptr is access constant Integer;
 The_Ptr: constant Const_Int_Ptr; -- deferred constant
private
 The_Variable: aliased Integer;
 The_Ptr: constant Const_Int_Ptr := The_Variable'Access;
 ...
end P;

The client can read the value of The_Variable indirectly through the object
The_Ptr of type Const_Int_Ptr by writing

K := The_Ptr.all; -- indirect read of The_Variable

But since the access type Const_Int_Ptr is declared as access constant the
value of the object referred to by The_Ptr cannot be changed by writing

The_Ptr.all := K; -- illegal, cannot change The_Variable indirectly

However, any subprogram declared in the package P can access The_Variable
directly and so write to it. This technique is particularly useful with tables where
the table is computed dynamically but we do not want the client to be able to
change it.

The named access type is not really necessary since we can equally write
package P is
 The_Ptr: constant access constant Integer; -- deferred constant
private
 The_Variable: aliased Integer;
 The_Ptr: constant access constant Integer := The_Variable'Access;
 ...
end P;

Note the double use of constant in the declaration of The_Ptr. The first says
that The_Ptr is itself a constant. The second says that it cannot be used to
change the value of the object that it refers to.

 Safe object construction

58

Limited types

The types we have met so far (Integer, Float, Date, Circle and so on) have
various operations. Some are predefined, such as the equality operation to
compare two values (with =) and some also have user-defined operations, such
as Area in the case of the type Circle. The operation of assignment is also
available for all the types mentioned so far.

Sometimes assignment is undesirable. There are two main reasons why this
might be the case
▪ the type might represent some resource such as an access right and

copying could imply a violation of security,
▪ the type might be implemented as a linked data structure and copying

would simply copy the head of the structure and not all of it.
We can prevent assignment by declaring the type as limited. A good

illustration of the second problem occurs if we implement the stack using a
linked list. We might have

package Linked_Stacks is
 type Stack is limited private;
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Float);
 procedure Pop(S: in out Stack; X: out Float);

private
 type Cell is
 record
 Next: access Cell;
 Value: Float;
 end record;

 type Stack is access all Cell;
end Stacks;

The body might be
package body Stacks is

 procedure Clear(S: out Stack) is
 begin
 S := null;
 end Clear;

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S := new Cell'(S, X);
 end Push;

Safe and Secure Software: An invitation to Ada 2005

59

 procedure Pop(S: in out Stack; X: out Float) is
 begin
 X := S.Value;
 S := Stack(S.Next);
 end Pop;

end Stacks;

This uses the normal linked list style of implementation. Note that the type
Stack is declared as limited private so that assignment of a stack as in

This_One, That_One: Stack;
...
This_One := That_One; -- illegal, type Stack is limited

is prohibited. If assignment had been permitted then all that would have
happened is that This_One would end up pointing to the start of the list defining
the value of That_One. Calling Pop on This_One would simply move it down
the chain representing That_One. This sort of problem is known as aliasing – we
would have two ways of referring to the same entity and that is often very
unwise.

In this example there is no problem with declaring a stack, it is automatically
initialized to be null which represents an empty stack. However, sometimes we
need to create an object with a specific initial value (necessary if it is a
constant). We cannot do this by assigning in a general way as in

type T is limited ...
...
X: constant T := Y; -- illegal, cannot copy value in variable Y

because this involves copying which is forbidden since the type is limited.
Two techniques are possible. One involves aggregates and the other uses

functions. We will consider aggregates first. Suppose the type represents some
sort of key with components giving the date of issue and the internal code
number such as

type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;

The type is limited so that keys cannot be copied. (They are a bit visible but we
will come to that in a moment.) But we can write

K: Key := (Today, 27);

 Safe object construction

60

since, in the case of a limited type, this does not copy the value defined by the
aggregate as a whole but rather the individual components are given the values
Today and 27. In other words the value for K is built in situ.

It would be more realistic to make the type private and then of course we
could not use an aggregate because the components would not be individually
visible. Instead we can use a constructor function. Consider

package Key_Stuff is
 type Key is limited private;
 function Make_Key(...) return Key;
 ...
private
 type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;
end Key_Stuff;

package body Key_Stuff is

 function Make_Key(...) return Key is
 begin
 return New_Key: Key do
 New_Key.Issued := Today;
 New_Key.Code := ... ;
 end return;
 end Make_Key;
 ...
end Key_Stuff;

The external client (for whom the type is private) can now write
My_Key: Key := Make_Key(...); -- no copying involved

where we assume that the parameters of Make_Key are used to compute the
internal secret code.

It is worth carefully examining the function Make_Key. It has an extended
return statement which starts by declaring the return object New_Key. When the
result type is limited (as here) the return object is actually built in the final
destination of the result of the call (such as the object My_Key). This is similar
to the way in which the components of the aggregate were actually built in situ
in the earlier example. So again no copying is involved.

The net outcome is that Ada provides a way of creating initial values for
objects declared by clients and yet prevents the client from making copies. The

Safe and Secure Software: An invitation to Ada 2005

61

limited type mechanism gives the provider of resources such as the keys
considerable control over their use.

Controlled types

Ada provides a further mechanism for the safe management of objects through
the use of controlled types. This enables us to write special code to be executed
when
1) an object is created and,
2) when it ceases to exist and,
3) when it is copied if it is of a nonlimited type.

The mechanism is based on types called Controlled and Limited_Controlled
declared in a predefined package thus

package Ada.Finalization is
 type Controlled is abstract tagged private;
 procedure Initialize(Object: in out Controlled) is null;
 procedure Adjust(Object: in out Controlled) is null;
 procedure Finalize(Object: in out Controlled) is null;

 type Limited_Controlled is abstract tagged limited private;
 procedure Initialize(Object: in out Limited_Controlled) is null;
 procedure Finalize(Object: in out Limited_Controlled) is null;
private
 ...
end Ada.Finalization;

The central idea (for a nonlimited type) is that the user declares a type which is
derived from Controlled and then provides overriding declarations of the three
procedures Initialize, Adjust and Finalize. These procedures are called when an
object is created, when it is copied, and when it ceases to exist, respectively.
Note carefully that these calls are inserted automatically by the system and the
programmer does not have to write explicit calls. The same mechanism applies
to a limited type which has to be derived from Limited_Controlled but there is no
procedure Adjust since copying is not permitted. These operations are typically
used to provide complex initializations, deep copying of linked structures,
storage reclamation at the end of the lifetime of an object, and other
housekeeping activities that are specific to the type.

As an example, suppose we reconsider the stack and decide that we want to
use the linked mechanism (so there is effectively no upper bound to the capacity
of the stack) but wish to allow copying one stack to another. We can write

 Safe object construction

62

package Linked_Stacks is
 type Stack is private;
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Float);
 procedure Pop(S: in out Stack; X: out Float);

private
 type Cell is
 record
 Next: access Cell;
 Value: Float;
 end record;

 type Stack is new Controlled with
 record
 Header: access Cell;
 end record;

 overriding
 procedure Adjust(S: in out Stack);
end Linked_Stacks;

The type Stack is now just private. The full type shows that it is actually a
tagged type derived from the type Controlled and has a component Header
which effectively is the stack in the previous formulation. In other words we
have introduced a wrapper. Note that the user cannot see that the type is
controlled and tagged. Since we want to make assignment work properly we
have to override the procedure Adjust. Note also that we have supplied the
overriding indicator so that the compiler can double check that Adjust does
indeed have the correct parameters.

The package body might be
package body Linked_Stacks is

 procedure Clear(S: out Stack) is
 begin
 S := (Controlled with Header => null);
 end Clear;

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S.Header := new Cell'(S.Header, X);
 end Push;

 procedure Pop(S: in out Stack; X: out Float) is
 begin
 X := S.Header.Value;

Safe and Secure Software: An invitation to Ada 2005

63

 S.Header := S.Header.Next;
 end Pop;

 function Clone(L: access Cell) return access Cell is
 begin
 if L = null then
 return null;
 else
 return new Cell'(Clone(L.Next), L.Value);
 end if;
 end Clone;

 procedure Adjust(S: in out Stack) is
 begin
 S.Header := Clone(S.Header);
 end Adjust;

end Linked_Stacks;

Assignment will now work properly. Suppose we write
This_One, That_One: Stack;
...
This_One := That_One; -- calls Adjust automatically

The raw assignment of That_One to This_One copies just the record containing
the component Header. The procedure Adjust is then called automatically with
This_One as parameter. Adjust calls the recursive function Clone which actually
makes the copy. This process is often called a deep copy. The result is that
This_One and That_One now contain the same elements but are otherwise
disjoint structures.

Another notable point is that the procedure Clear sets the parameter S to a
record whose header component is null; the structure is known as an extension
aggregate. The first part of the extension aggregate just gives the name of the
parent type (or the value of an object of that type) and the part after with gives
the values of the additional components, if any. The procedures Pop and Push
are straightforward.

The reader might wonder about reclamation of unused storage when Pop
removes an item and also when Clear sets a stack to empty. This will be
discussed in the next chapter when we consider memory management in
general.

Note that Initialize and Finalize are not overridden and thus inherit the null
procedure of the type Controlled. So nothing special happens when a stack is
declared – this is correct since we just get a record whose Header is null by
default and nothing else is required. Also nothing happens when an object of

 Safe object construction

64

type Stack ceases to exist on exit from a procedure and so on – this again raises
the issue of the reclamation of storage and will be addressed in the next chapter.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_6.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

