
Safe and Secure Software
Ada 2005An Invitation to

Safe Pointers
3

Courtesy of

The GNAT Pro Company
John Barnes

19

Primitive man made a huge leap forward with the discovery of fire. Not only did
this allow him to keep warm and cook and thereby expand into more
challenging environments but it also enabled the creation of metal tools and thus
the bootstrap to an industrial society. But fire is dangerous when misused and
can cause tremendous havoc; observe that society has special standing
organizations just to deal with fires that are out of control.

Software similarly made a big leap forward in its capabilities when the notion
of pointers or references was introduced. But playing with pointers is like
playing with fire. Pointers can bring enormous benefits but if misused can bring
immediate disaster such as a blue screen, or allow a rampaging program to
destroy data, or create the loophole through which a virus can invade.

High integrity software typically limits drastically the use of pointers. The
access types of Ada have the semantics of pointers but in addition carry
numerous safeguards on their use, which makes them suitable for all but the
most demanding safety-critical programs.

References, pointers and addresses

Pointers introduce several opportunities for programming errors such as
▪ Type safety violations  –  creating an object of one type and then

accessing it (through a pointer) as though it were of some other type.
Or, more generally, using a pointer to access an object in a manner that
is inconsistent with some of the object's semantic properties (for
example, assigning to a constant or violating a range constraint).

▪ Dangling references – accessing an object through a pointer after the
object has been freed; either a local variable that has gone out of scope,
or a dynamically allocated object that has been explicitly freed through
some other pointer.

▪ Storage leakage – allocating an object that later becomes inaccessible
(and so is "garbage") but which is never freed.

Although the details are different, type safety violations and dangling references
may similarly arise if the language allows pointers to subprograms.

Historically, languages have taken different approaches to these problems.
Early languages such as Fortran, COBOL and Algol 60 did not have a notion of
pointers at the level of the user program. Programs in all languages use
addresses for basic operations such as calling a subprogram, but addresses in
these languages cannot be directly manipulated by the user.

C (and C++) permit pointers to both heap-allocated and declared (stack-
allocated) objects, and also to functions. Although these languages offer some
checks, it is basically the programmer's responsibility to use pointers correctly.

20

For example, since C treats an array as a pointer to its initial element, and allows
pointer arithmetic as the equivalent of array indexing, all the necessary low-
level ingredients are provided that can get programmers into trouble.

Java and other "pure" object-oriented languages do not expose pointers to the
application but rely on pointers and dynamic allocation as the basis of the
language semantics. Type checking is preserved, dangling references are
prevented (there is no explicit "free"), but to avoid storage leakage the language
requires that the implementation provide automatic storage reclamation
(garbage collection). This is a reasonable approach for certain kinds of
programs. It is still a questionable technology for real-time applications,
especially ones with safety-critical or security-critical requirements.

The history of Ada with respect to pointers is interesting. The original version
of the language, Ada 83, provided pointers only for dynamic allocation (thus no
pointers to declared objects, no pointers to subprograms) and also supplied an
explicit free operation known as Unchecked_Deallocation. This preserved type
safety, and avoided dangling references caused by pointers to out-of-scope local
variables, but introduced the possibility of dangling references through incorrect
uses of Unchecked_Deallocation.

The decision to include Unchecked_Deallocation was unavoidable, since the
only alternative – requiring implementations to supply Garbage Collection –
was not an appropriate option given Ada's intended domain of real-time and
high-integrity systems. However, the Ada philosophy is that if a feature defeats
checks that are normally performed, then its use must be explicit. And indeed, if
we are using Unchecked_Deallocation we need to "with" and then instantiate a
generic procedure. (The concepts of a with clause and generic instantiation are
explained in the next chapter.) This somewhat heavyweight syntax both prevents
accidental usage and makes our intent clear to whomever needs to read or
maintain our code.

Ada 95 extended the Ada 83 mechanism, allowing pointers to declared
objects and also to subprograms. Ada 2005 has taken things a bit further – for
example, making it easier to pass (pointers to) subprograms as runtime
parameters. How these were accomplished without sacrificing safety will be the
subject of this chapter.

A final note before going into further detail. Perhaps because pointers and
references have a hardware-level connotation, Ada uses the term access types.
This enforces the view that values of an access type give access to other objects
of some designated type (are like dynamic names for these objects) and should
not be thought of as simply machine addresses. Indeed, at the implementation
level, the representation of an access value might be different from a physical
pointer.

Safe and Secure Software: An invitation to Ada 2005

21

Access types and strong typing

We can declare a variable whose values give access to objects of type T by
Ref: access T;

If we do not give an initial value then a special value null is assumed. X can
refer to a normal declared object of type T (which must be marked aliased) by

Obj: aliased T;
...
Ref := Obj'Access;

The analogous C version is:
 t* ref;
 t obj;
 ref = &obj;

T might be a record type such as
type Date is
 record
 Day: Integer range 1 .. 31;
 Month: Integer range 1 .. 12;
 Year: Integer;
end record;

so we might have
Birthday: aliased Date := (Day => 10, Month => 12, Year => 1815);
AD: access Date := Birthday'Access;

and then to retrieve the individual components of the date referred to indirectly
by AD we can write for example

The_Day: Integer := AD.Day;

A variable such as AD can also refer to an object dynamically allocated on the
heap (called a storage pool in Ada). We can write

AD := new Date'(Day => 27, Month => 11, Year => 1852);

(The two dates are those of the birth and death of Ada, Countess of Lovelace
after whom the language is named.)

A common application of access types is to create linked lists – we might
declare

 Safe pointers

22

type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;

and then we can create chains of objects of the type Cell linked together.
Sometimes it is convenient to give a name to an access type

type Date_Ptr is access all Date;

The "all" in the syntax indicates that this named type can refer to both objects on
the heap and also to those declared locally on the stack that are marked as
aliased.

Having to mark objects as aliased is a useful safeguard. It alerts the
programmer to the fact that the object might be referred to indirectly (good for
walkthrough reviews) and it also tells the compiler that the object should not be
optimized into a register where it would be difficult to access indirectly.

But the key point is that an access type always identifies the type of the
object that its values refer to and strong typing is enforced on assignments,
parameter passing, and all other uses. Moreover, an access value always has a
legitimate value (which could be null). At runtime, whenever we attempt to
access an object referred to by an object of the type Date_Ptr, there is a check to
ensure that the value is not null – the exception Constraint_Error is raised if this
check fails.

We can explicitly state that an access value cannot be null by declaring it as
follows

WD: not null access Date := Wedding_Day'Access;

and then of course it must be given an initial value which is not null. The
advantage of a so-called null exclusion is that we are guaranteed that an
exception cannot occur when accessing the indirect object.

Finally, note that an access value can denote a component of a composite
structure, provided the component type is marked as aliased. For example

A: array (1 .. 10) of aliased Integer := (1,2,3,4,5,6,7,8,9,10);
P: access Integer := A(4)'Access;

But we cannot perform any incremental operations on P such as P++ or P+1 to
make it refer to A(5) as can be done in C. This sort of thing in C is prone to
errors since nothing prevents us from pointing beyond either end of the array.

Safe and Secure Software: An invitation to Ada 2005

23

Access types and accessibility

We have just seen that the strong typing of Ada ensures that an access value can
never refer to an object of the wrong type. The other requirement our language
must satisfy is to ensure that the object referred to cannot cease to exist while
access objects still refer to it. This is achieved through the notion of
accessibility. Consider

package Data is
 type AI is access all Integer;
 Ref1: AI;
end Data;

with Data; use Data;

procedure P is
 K: aliased Integer;
 Ref2: AI;
begin
 Ref2 := K'Access; -- illegal

 Ref1 := Ref2;
 ...
end P;

This is clearly a very artificial example but illustrates the key points in a small
space. The package Data has an access type AI and an object of that type called
Ref1. The procedure P declares a local variable K and a local access variable
Ref2 also of the type AI and attempts to assign an access to K to the variable
Ref2. This is forbidden. It is not so much that the reference to Ref2 is dangerous
because both Ref2 and K will cease to exist when we return from a call of the
procedure P – the danger is that we might assign the value in Ref2 to the global
variable Ref1, which would then contain a reference to K that would be usable
after K had ceased to exist.

The basic rule is that the lifetime of the accessed object (such as K) must be at
least as long as the lifetime of the specified access type (in this case AI). Here it
is not and so the attempt to obtain a pointer to K is illegal.

The rules are phrased in terms of accessibility levels (how deeply nested the
declaration of something is) and are mostly static, that is to say checked by the
compiler; they incur no cost at run time. But the rules concerning parameters of
subprograms that are of anonymous access types are dynamic (that is, require
runtime checks). This gives more programming flexibility than would otherwise
be possible.

 Safe pointers

24

In this short introduction to Ada it is not feasible to go into further details.
Suffice it to say that the accessibility rules of Ada prevent dangling references,
which can be a source of many subtle and hard-to-diagnose errors in lax
languages.

References to subprograms

Ada permits references to procedures and functions to be manipulated in a
similar way to references to objects. Both strong typing and accessibility rules
apply. For example we can write

A_Func: access function (X: Float) return Float;

and A_Func is then an object that can only refer to functions that take an
argument of the type Float and return an argument of type Float (such as the
predefined function Sqrt).

So we can write
A_Func := Sqrt'Access;

and then
X: Float := A_Func(4.0); -- indirect call

and this will call Sqrt with argument 4.0 and hopefully produce 2.0.
Ada thoroughly checks that the parameters and result always match properly

and so we cannot call a function indirectly that has the wrong number or types
of parameters. The parameter list and result type constitute what is technically
called the profile of the function.

Thus consider the predefined function Arctan (the inverse tangent). It takes
two parameters

function Arctan(Y: Float; X: Float) return Float;

and returns the angle θ (in radians) such that tan θ = Y/X. If we attempt to write
A_Func := Arctan'Access; -- illegal
Z := A_Func(A); -- indirect call prevented

then the compiler rejects the code because the profile of Arctan does not match
that of A_Func. This is just as well because otherwise the function Arctan would
read two items from the runtime stack whereas the indirect call via A_Func
placed only one parameter on the stack. This would result in the computation
becoming meaningless.

Safe and Secure Software: An invitation to Ada 2005

25

Corresponding checks in Ada occur also across compilation unit boundaries
(compilation units are units that can be compiled separately, as explained in the
chapter on Safe Architecture). Equivalent mismatches are not prevented in C
and this is a common cause of serious errors.

More complex situations arise because a subprogram can have another
subprogram as a parameter. Thus we might have a function whose purpose is to
solve an equation Fn(x) = 0 where the function Fn is itself passed as a
parameter. Thus

function Solve(Trial: Float; Accuracy: Float;
 Fn: access function (X: Float) return Float)
 return Float;

The parameter Trial is the initial guess, the parameter Accuracy is the accuracy
required and the third parameter Fn identifies the equation to be solved.

As an example suppose we invest 1000 dollars today and 500 dollars in a
year's time: what would the interest rate have to be for the final value two years
from now to be exactly 2000 dollars? If the interest rate is x% then the Net Final
Value (Nfv) will be given by

 Nfv(x) = 1000 × (1 + x/100)2 + 500 × (1 + x/100)
We can answer the question by declaring the following function, which returns
0.0 when X is such that the net final value is precisely 2000.0.

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

We can then write:
Answer: Float :=
 Solve (Trial => 5.0, Accuracy => 0.01, Fn => Nfv_2000'Access);

We are guessing that the answer might be around 5%, we want the answer with
2 decimal figures of accuracy and of course Nfv'Access identifies the problem.
The reader is invited to estimate the interest rate – the answer is at the end of
this chapter. (Note that terms such as Net Final Value and Net Present Worth are
standard terms used by financial professionals.)

The point of this discussion is to emphasize that Ada checks the matching of
the parameters of the function parameter as well. Indeed, the nesting of profiles
can continue to any degree and Ada matches all levels thoroughly. Many
languages give up after one level.

 Safe pointers

26

Note that the parameter Fn was actually of an anonymous type. Access to
subprogram types can be named or anonymous just like access to object types.
They can also have a null exclusion. Thus we should really have written

A_Func: not null access function (X: Float) return Float := Sqrt'Access;

The advantage of using a null exclusion is that we are guaranteed that the value
of A_Func is not null when the function is called indirectly.

If it seems that having to initialize it, perhaps arbitrarily, to Sqrt'Access is
distasteful then we could always declare

function Default(X: Float) return Float is
begin
 Put("Value not set"); return 0.0;
end Default;
...
A_Func: not null access function (X: Float) return Float := Default'Access;

Similarly we should really add not null to the profile in Solve thus
function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float) return Float;

This ensures that that the actual function corresponding to Fn cannot be null.

Nested subprograms as parameters

We mentioned that accessibility rules also apply to access-to-subprogram
values. Suppose we had declared Solve so that the parameter Fn was of a named
type and that it and Solve are in some package

package Algorithms is
 type A_Function is not null access function (X: Float) return Float;

 function Solve(Trial: Float; Accuracy: Float; Fn: A_Function)
 return Float;
 ...
end Algorithms;

Suppose we now decide to express the interest example with the target value
passed as a parameter. We might try

with Algorithms; use Algorithms;
function Compute_Interest(Target: Float) return Float is

 function Nfv_T (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
 begin

Safe and Secure Software: An invitation to Ada 2005

27

 return 1000.0 * Factor**2 + 500.0 * Factor – Target;
 end Nfv_T;

begin
 return Solve(Trial => 5.0, Accuracy => 0.01, Fn => Nfv_T'Access);
 -- illegal
end Compute_Interest;

However, Nfv_T'Access is not allowed as the Fn parameter because it violates
the accessibility rules. The trouble is that the function Nfv_T is at an inner level
with respect to the type A_Function. (It has to be in order to get hold of the
parameter Target.) If Nfv_T'Access had been allowed then we could have
assigned this value to a global variable of the type A_Function so that when
Compute_Interest had returned we would have still had a reference to Nfv_T
even after it had ceased to be accessible. For example

Dodgy_Fn: A_Function := Default'Access; -- a global variable

function Compute_Interest(Target: Float) return Float is

 function Nfv_T(X: Float) return Float is
 ...
 end Nfv_T;

begin
 Dodgy_Fn := Nfv_T'Access; -- illegal
 ...
end Compute_Interest;

and now suppose that after a call of Compute_Interest we execute:
Answer := Dodgy_Fn(99.9); -- would have unpredictable results

The call of Dodgy_Fn would attempt to call Nfv_T but that is no longer possible
since it is local to Compute_Interest and would attempt to access the parameter
Target which no longer exists. The consequences would be unpredictable (a
meaningless result, or perhaps an exception would be raised) if Ada did not
prevent it. Note that using an anonymous type for the parameter as in the
previous section allows passing the nested function as a parameter, but the
accessibility checks prevent the assignment to Dogdy_Fn. A runtime check
would detect that Nfv_T is more deeply nested than the target access type
A_Function, and a Program_Error exception would be raised. So the solution is
just to change the package Algorithms thus

package Algorithms is
 function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
end Algorithms;

 Safe pointers

28

and the original function Compute_Interest is now exactly as before (except that
the comment -- illegal needs to be removed).

Those of a mischievous mind might suggest that the problem lies with
nesting Nfv_T inside Compute_Interest. It would indeed be possible to declare
Nfv_T at the outermost level so that no accessibility problem arises, but then the
value Target would have to be passed globally through some package – in the
style of Fortran Common blocks. We cannot add it as an additional parameter to
Nfv_T because the parameters of Nfv_T must match those of Fn. But passing
data globally in this way is in fact bad practice. It violates principles of
information hiding and abstraction and does not work at all in a multitasking
program. Note that the practice of nesting a function within another, where the
inner function uses non-local variables (such as Target) is often called a
"downward closure".

Downward closures, that is to say passing a pointer to a nested subprogram as
a runtime parameter, is a mechanism that is used in several parts of the Ada
predefined library, for applications such as iterating over a data structure.

The nesting of subprograms is a natural requirement for these applications
because of the need to pass non-local information. This is harder to do in flat
languages such as C, C++ and Java. Although type extensions can be used in
some languages to model subprogram nesting, this mechanism is less clear and
can be a problem for program maintenance.

Finally, some applications need to combine (invoke) algorithms in a nested
manner. Thus we might have other useful stuff in the package Algorithms

package Algorthms is

 function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
 function Integrate (Lo, Hi: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
 type Vector is array (Positive range <>) of Float;

 procedure Minimize(V: in out Vector; Accuracy: Float;
 Fn: not null access function (V: Vector) return Float);

end Algorithms;

The function Integrate is similar to Solve. It computes the definite integral of the
function parameter, between the given limits. The procedure Minimize is a little
different. It finds those values of the elements of the array V which make the
value of the function parameter a minimum. We might have a situation where a
cost function is to be minimized and is itself the result of doing an integration
and that the values of V are used in the integration (this might seem rather

Safe and Secure Software: An invitation to Ada 2005

29

unlikely but the author spent the first few years of his programming life doing
just this sort of thing in the chemical industry).

The structure could be
with Algorithms; use Algorithms;
procedure Do_It is

 function Cost(V: Vector) return Float is

 function F(X: Float) return Float is
 Result: Float;
 begin
 ... -- compute Result using V as well as X
 return Result;
 end F;

 begin
 return Integrate(0.0, 1.0, 0.01, F'Access);
 end Cost;

 A: Vector(1 .. 10);
begin

 ... -- perhaps read in or set trial values for the vector A

 Minimize(A, 0.01, Cost'Access);

 ... -- output final values of the vector A.
end Do_It;

This all works like a dream in Ada 2005 – just as it did in Algol 60. In other
programming languages this is either difficult or requires the use of unsafe
constructs with potentially dangling references.

Further examples of the use of access to subprogram types will be found in
the chapter on Safe Communication.

Finally, the interest rate that turns the investment of 1000 dollars and 500
dollars into 2000 dollars in two years is about 18.6%. Nice rate if you can get it.

 Safe pointers

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_3.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-8.pdf
	back.pdf

