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Primitive man made a huge leap forward with the discovery of fire. Not only did 
this allow him to keep warm and cook and thereby expand into more 
challenging environments but  it  also enabled the creation of metal tools and thus 
the bootstrap to an industrial society. But  fire is dangerous when misused and 
can cause tremendous havoc; observe that society has special standing 
organizations just to deal with fires that are out of control.

Software similarly made a big leap forward in its capabilities when the notion 
of pointers or references was introduced. But playing with pointers is like 
playing with fire. Pointers can bring enormous benefits but  if misused can bring 
immediate disaster such as a blue screen, or allow a rampaging program to 
destroy data, or create the loophole through which a virus can invade.

High integrity software typically limits drastically the use of pointers. The 
access types of Ada have the semantics of pointers but  in addition carry 
numerous safeguards on their use, which makes them suitable for all but the 
most demanding safety-critical programs.

References, pointers and addresses

Pointers introduce several opportunities for programming errors such as
▪ Type safety violations  –  creating an object  of one type and then 

accessing it (through a pointer) as though it  were of some other type. 
Or, more generally, using a pointer to access an object in a manner that 
is inconsistent  with some of the object's semantic properties (for 
example, assigning to a constant or violating a range constraint).

▪ Dangling references – accessing an object through a pointer after the 
object  has been freed; either a local variable that has gone out of scope, 
or a dynamically allocated object  that has been explicitly freed through 
some other pointer.

▪ Storage leakage – allocating an object  that  later becomes inaccessible 
(and so is "garbage") but which is never freed.

Although the details are different, type safety violations and dangling references 
may similarly arise if the language allows pointers to subprograms.

Historically, languages have taken different  approaches to these problems. 
Early languages such as Fortran, COBOL and Algol 60 did not  have a notion of 
pointers at  the level of the user program. Programs in all languages use 
addresses for basic operations such as calling a subprogram, but  addresses in 
these languages cannot be directly manipulated by the user.

C (and C++) permit pointers to both heap-allocated and declared (stack-
allocated) objects, and also to functions. Although these languages offer some 
checks, it is basically the programmer's responsibility to use pointers correctly. 
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For example, since C treats an array as a pointer to its initial element, and allows 
pointer arithmetic as the equivalent  of array indexing, all the necessary low-
level ingredients are provided that can get programmers into trouble.

Java and other "pure" object-oriented languages do not expose pointers to the 
application but rely on pointers and dynamic allocation as the basis of the 
language semantics. Type checking is preserved, dangling references are 
prevented (there is no explicit  "free"), but to avoid storage leakage the language 
requires that  the implementation provide automatic storage reclamation 
(garbage collection). This is a reasonable approach for certain kinds of 
programs. It  is still a questionable technology for real-time applications, 
especially ones with safety-critical or security-critical requirements.

The history of Ada with respect to pointers is interesting. The original version 
of the language, Ada 83, provided pointers only for dynamic allocation (thus no 
pointers to declared objects, no pointers to subprograms) and also supplied an 
explicit  free operation known as Unchecked_Deallocation. This preserved type 
safety, and avoided dangling references caused by pointers to out-of-scope local 
variables, but introduced the possibility of dangling references through incorrect 
uses of Unchecked_Deallocation.

The decision to include Unchecked_Deallocation was unavoidable, since the 
only alternative – requiring implementations to supply Garbage Collection – 
was not  an appropriate option given Ada's intended domain of real-time and 
high-integrity systems. However, the Ada philosophy is that if a feature defeats 
checks that are normally performed, then its use must be explicit. And indeed, if 
we are using Unchecked_Deallocation we need to "with" and then instantiate a 
generic procedure. (The concepts of a with clause and generic instantiation are 
explained in the next chapter.) This somewhat heavyweight syntax both prevents 
accidental usage and makes our intent  clear to whomever needs to read or 
maintain our code. 

Ada 95 extended the Ada 83 mechanism, allowing pointers to declared 
objects and also to subprograms. Ada 2005 has taken things a bit  further – for 
example, making it easier to pass (pointers to) subprograms as runtime 
parameters. How these were accomplished without sacrificing safety will be the 
subject of this chapter.

A final note before going into further detail. Perhaps because pointers and 
references have a hardware-level connotation, Ada uses the term access types. 
This enforces the view that values of an access type give access to other objects 
of some designated type (are like dynamic names for these objects) and should 
not be thought of as simply machine addresses. Indeed, at  the implementation 
level, the representation of an access value might  be different from a physical 
pointer.

Safe and Secure Software: An invitation to Ada 2005
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Access types and strong typing

We can declare a variable whose values give access to objects of type T by
Ref: access T;

If we do not give an initial value then a special value null is assumed. X can 
refer to a normal declared object of type T (which must be marked aliased) by

Obj: aliased T;
...
Ref := Obj'Access;

The analogous C version is:
        t* ref;
        t obj;
        ref = &obj;

T might be a record type such as
type Date is
   record
      Day: Integer range 1 .. 31;
      Month: Integer range 1 .. 12;
      Year: Integer;
end record;

so we might have
Birthday: aliased Date := (Day => 10, Month => 12, Year => 1815);
AD: access Date := Birthday'Access;

and then to retrieve the individual components of the date referred to indirectly 
by AD we can write for example

The_Day: Integer := AD.Day;

A variable such as AD can also refer to an object dynamically allocated on the 
heap (called a storage pool in Ada). We can write

AD := new Date'(Day => 27, Month => 11, Year => 1852);

(The two dates are those of the birth and death of Ada, Countess of Lovelace 
after whom the language is named.)

A common application of access types is to create linked lists – we might 
declare
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type Cell is
   record
      Next: access Cell;
      Value: Integer;
   end record;

and then we can create chains of objects of the type Cell linked together.
Sometimes it is convenient to give a name to an access type

type Date_Ptr is access all Date;

The "all" in the syntax indicates that this named type can refer to both objects on 
the heap and also to those declared locally on the stack that  are marked as 
aliased.

Having to mark objects as aliased is a useful safeguard. It alerts the 
programmer to the fact that the object  might  be referred to indirectly (good for 
walkthrough reviews) and it  also tells the compiler that  the object should not  be 
optimized into a register where it would be difficult to access indirectly.

But  the key point is that  an access type always identifies the type of the 
object  that its values refer to and strong typing is enforced on assignments, 
parameter passing, and all other uses. Moreover, an access value always has a 
legitimate value (which could be null). At  runtime, whenever we attempt  to 
access an object referred to by an object of the type Date_Ptr, there is a check to 
ensure that the value is not null – the exception Constraint_Error is raised if this 
check fails.

We can explicitly state that  an access value cannot be null by declaring it  as 
follows 

WD: not null access Date := Wedding_Day'Access;

and then of course it  must be given an initial value which is not null. The 
advantage of a so-called null exclusion is that  we are guaranteed that  an 
exception cannot occur when accessing the indirect object.

Finally, note that  an access value can denote a component of a composite 
structure, provided the component type is marked as aliased. For example

A: array (1 .. 10) of aliased Integer := (1,2,3,4,5,6,7,8,9,10);
P: access Integer := A(4)'Access;

But we cannot  perform any incremental operations on P such as P++ or P+1 to 
make it  refer to A(5) as can be done in C. This sort  of thing in C is prone to 
errors since nothing prevents us from pointing beyond either end of the array.

Safe and Secure Software: An invitation to Ada 2005
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Access types and accessibility

We have just seen that the strong typing of Ada ensures that  an access value can 
never refer to an object  of the wrong type. The other requirement our language 
must satisfy is to ensure that the object referred to cannot cease to exist  while 
access objects still refer to it. This is achieved through the notion of 
accessibility. Consider

package Data is
   type AI is access all Integer;
   Ref1: AI;
end Data;

with Data; use Data;

procedure P is
   K: aliased Integer;
   Ref2: AI;
begin
   Ref2 := K'Access;  -- illegal
   
   Ref1 := Ref2;
   ...
end P;

This is clearly a very artificial example but illustrates the key points in a small 
space. The package Data has an access type AI and an object of that  type called 
Ref1. The procedure P declares a local variable K and a local access variable 
Ref2  also of the type AI and attempts to assign an access to K to the variable 
Ref2. This is forbidden. It is not  so much that the reference to Ref2 is dangerous 
because both Ref2 and K will cease to exist  when we return from a call of the 
procedure P – the danger is that  we might  assign the value in Ref2 to the global 
variable Ref1, which would then contain a reference to K that would be usable 
after K had ceased to exist.

The basic rule is that  the lifetime of the accessed object  (such as K) must be at 
least as long as the lifetime of the specified access type (in this case AI). Here it 
is not and so the attempt to obtain a pointer to K is illegal. 

The rules are phrased in terms of accessibility levels (how deeply nested the 
declaration of something is) and are mostly static, that  is to say checked by the 
compiler; they incur no cost at run time. But the rules concerning parameters of 
subprograms that are of anonymous access types are dynamic (that  is, require 
runtime checks). This gives more programming flexibility than would otherwise 
be possible.
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In this short introduction to Ada it is not  feasible to go into further details. 
Suffice it to say that the accessibility rules of Ada prevent  dangling references, 
which can be a source of many subtle and hard-to-diagnose errors in lax 
languages.

References to subprograms

Ada permits references to procedures and functions to be manipulated in a 
similar way to references to objects. Both strong typing and accessibility rules 
apply. For example we can write

A_Func: access function (X: Float) return Float;

and A_Func  is then an object that can only refer to functions that  take an 
argument of the type Float and return an argument of type Float (such as the 
predefined function Sqrt).

So we can write
A_Func := Sqrt'Access;   

and then
X: Float := A_Func(4.0);   -- indirect call

and this will call Sqrt with argument 4.0 and hopefully produce 2.0.
Ada thoroughly checks that the parameters and result always match properly 

and so we cannot call a function indirectly that has the wrong number or types 
of parameters. The parameter list  and result  type constitute what is technically 
called the profile of the function.

Thus consider the predefined function Arctan (the inverse tangent). It  takes 
two parameters

function Arctan(Y: Float; X: Float) return Float;

and returns the angle θ (in radians) such that tan θ = Y/X. If we attempt to write
A_Func := Arctan'Access;  -- illegal
Z := A_Func(A);    -- indirect call prevented

then the compiler rejects the code because the profile of Arctan does not match 
that of A_Func. This is just  as well because otherwise the function Arctan would 
read two items from the runtime stack whereas the indirect call via A_Func 
placed only one parameter on the stack. This would result  in the computation 
becoming meaningless.

Safe and Secure Software: An invitation to Ada 2005
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Corresponding checks in Ada occur also across compilation unit boundaries 
(compilation units are units that  can be compiled separately, as explained in the 
chapter on Safe Architecture). Equivalent mismatches are not prevented in C 
and this is a common cause of serious errors.

More complex situations arise because a subprogram can have another 
subprogram as a parameter. Thus we might have a function whose purpose is to 
solve an equation Fn(x) = 0 where the function Fn is itself passed as a 
parameter. Thus

function Solve(Trial: Float; Accuracy: Float; 
             Fn: access function (X: Float) return Float)
                                                                                              return Float;

The parameter Trial is the initial guess, the parameter Accuracy is the accuracy 
required and the third parameter Fn identifies the equation to be solved. 

As an example suppose we invest 1000 dollars today and 500 dollars in a 
year's time: what would the interest rate have to be for the final value two years 
from now to be exactly 2000 dollars? If the interest  rate is x% then the Net  Final 
Value (Nfv) will be given by

 Nfv(x) = 1000 × (1 + x/100)2 + 500 × (1 + x/100)
We can answer the question by declaring the following function, which returns 
0.0 when X is such that the net final value is precisely 2000.0.

function Nfv_2000 (X: Float) return Float is
   Factor: constant Float := 1.0 + X/100.0;
begin 
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

We can then write:
Answer: Float := 
        Solve (Trial => 5.0, Accuracy => 0.01, Fn => Nfv_2000'Access);

We are guessing that  the answer might  be around 5%, we want the answer with 
2 decimal figures of accuracy and of course Nfv'Access identifies the problem. 
The reader is invited to estimate the interest rate – the answer is at the end of 
this chapter. (Note that  terms such as Net Final Value and Net Present  Worth are 
standard terms used by financial professionals.)

The point of this discussion is to emphasize that  Ada checks the matching of 
the parameters of the function parameter as well. Indeed, the nesting of profiles 
can continue to any degree and Ada matches all levels thoroughly. Many 
languages give up after one level.
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Note that the parameter Fn was actually of an anonymous type. Access to 
subprogram types can be named or anonymous just like access to object  types. 
They can also have a null exclusion. Thus we should really have written

A_Func: not null access function (X: Float) return Float := Sqrt'Access;

The advantage of using a null exclusion is that we are guaranteed that  the value 
of A_Func is not null when the function is called indirectly.

If it  seems that  having to initialize it, perhaps arbitrarily, to Sqrt'Access is 
distasteful then we could always declare

function Default(X: Float) return Float is
begin
   Put("Value not set");  return 0.0;
end Default;
...
A_Func: not null access function (X: Float) return Float := Default'Access;

Similarly we should really add not null to the profile in Solve thus
function Solve(Trial: Float; Accuracy: Float; 
       Fn: not null access function (X: Float) return Float) return Float;

This ensures that that the actual function corresponding to Fn cannot be null.

Nested subprograms as parameters

We mentioned that accessibility rules also apply to access-to-subprogram 
values. Suppose we had declared Solve so that  the parameter Fn was of a named 
type and that it and Solve are in some package

package Algorithms is
   type A_Function is not null access function (X: Float) return Float;

   function Solve(Trial: Float; Accuracy: Float; Fn: A_Function) 
                                                                                              return Float;
   ...
end Algorithms;

Suppose we now decide to express the interest  example with the target value 
passed as a parameter. We might try

with Algorithms;  use Algorithms;
function Compute_Interest(Target: Float) return Float is

   function Nfv_T (X: Float) return Float is
      Factor: constant Float := 1.0 + X/100.0;
   begin 

Safe and Secure Software: An invitation to Ada 2005
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      return 1000.0 * Factor**2 + 500.0 * Factor – Target;
   end Nfv_T;

begin
   return Solve(Trial => 5.0, Accuracy => 0.01, Fn => Nfv_T'Access);
                                                                                                      -- illegal
end Compute_Interest;

However, Nfv_T'Access is not allowed as the Fn parameter because it violates 
the accessibility rules. The trouble is that the function Nfv_T is at an inner level 
with respect to the type A_Function. (It  has to be in order to get  hold of the 
parameter Target.) If Nfv_T'Access had been allowed then we could have 
assigned this value to a global variable of the type A_Function so that  when 
Compute_Interest had returned we would have still had a reference to Nfv_T 
even after it had ceased to be accessible. For example

Dodgy_Fn: A_Function := Default'Access;  -- a global variable

function Compute_Interest(Target: Float) return Float is

   function Nfv_T(X: Float) return Float is
      ...
   end Nfv_T;

begin
   Dodgy_Fn := Nfv_T'Access; -- illegal
   ...
end Compute_Interest;

and now suppose that after a call of Compute_Interest we execute:
Answer := Dodgy_Fn(99.9); -- would have unpredictable results

The call of Dodgy_Fn would attempt  to call Nfv_T  but that  is no longer possible 
since it  is local to Compute_Interest and would attempt to access the parameter 
Target which no longer exists. The consequences would be unpredictable (a 
meaningless result, or perhaps an exception would be raised) if Ada did not 
prevent it. Note that  using an anonymous type for the parameter as in the 
previous section allows passing the nested function as a parameter, but the 
accessibility checks prevent  the assignment  to Dogdy_Fn. A runtime check 
would detect that Nfv_T  is more deeply nested than the target access type 
A_Function, and a Program_Error exception would be raised. So the solution is 
just to change the package Algorithms thus

package Algorithms is
   function Solve(Trial: Float; Accuracy: Float;
                         Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
end Algorithms;

  Safe pointers
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and the original function Compute_Interest is now exactly as before (except  that 
the comment -- illegal needs to be removed).

Those of a mischievous mind might  suggest that  the problem lies with 
nesting Nfv_T inside Compute_Interest. It  would indeed be possible to declare 
Nfv_T  at  the outermost level so that  no accessibility problem arises, but  then the 
value Target would have to be passed globally through some package – in the 
style of Fortran Common blocks. We cannot add it  as an additional parameter to 
Nfv_T  because the parameters of Nfv_T  must  match those of Fn. But  passing 
data globally in this way is in fact  bad practice. It violates principles of 
information hiding and abstraction and does not  work at  all in a multitasking 
program. Note that the practice of nesting a function within another, where the 
inner function uses non-local variables (such as Target) is often called a 
"downward closure".

Downward closures, that  is to say passing a pointer to a nested subprogram as 
a runtime parameter, is a mechanism that  is used in several parts of the Ada 
predefined library, for applications such as iterating over a data structure.

The nesting of subprograms is a natural requirement for these applications 
because of the need to pass non-local information. This is harder to do in flat 
languages such as C, C++ and Java. Although type extensions can be used in 
some languages to model subprogram nesting, this mechanism is less clear and 
can be a problem for program maintenance.

Finally, some applications need to combine (invoke) algorithms in a nested 
manner. Thus we might have other useful stuff in the package Algorithms 

package Algorthms is

   function Solve(Trial: Float; Accuracy: Float;
                        Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
   function Integrate (Lo, Hi: Float; Accuracy: Float;
                        Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
   type Vector is array (Positive range <>) of Float;

   procedure Minimize(V: in out Vector; Accuracy: Float;
 Fn: not null access function (V: Vector) return Float);

end Algorithms;

The function Integrate is similar to Solve. It computes the definite integral of the 
function parameter, between the given limits. The procedure Minimize is a little 
different. It finds those values of the elements of the array V which make the 
value of the function parameter a minimum. We might  have a situation where a 
cost  function is to be minimized and is itself the result of doing an integration 
and that the values of V are used in the integration (this might seem rather 
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unlikely but  the author spent  the first few years of his programming life doing 
just this sort of thing in the chemical industry).

The structure could be
with Algorithms;  use Algorithms;
procedure Do_It is

   function Cost(V: Vector) return Float is

      function F(X: Float) return Float is
         Result: Float;
      begin
         ...  -- compute Result using V as well as X
         return Result;
      end F;

   begin
      return Integrate(0.0, 1.0, 0.01, F'Access);
   end Cost;

   A: Vector(1 .. 10);
begin

   ...  -- perhaps read in or set trial values for the vector A

   Minimize(A, 0.01, Cost'Access);

   ...   -- output final values of the vector A.
end Do_It;

This all works like a dream in Ada 2005 – just  as it  did in Algol 60. In other 
programming languages this is either difficult or requires the use of unsafe 
constructs with potentially dangling references.

Further examples of the use of access to subprogram types will be found in 
the chapter on Safe Communication. 

Finally, the interest rate that turns the investment of 1000 dollars and 500 
dollars into 2000 dollars in two years is about 18.6%. Nice rate if you can get it.
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