
Safe and Secure Software
Ada 2005An Invitation to

Safe Syntax
1

Courtesy of

The GNAT Pro Company
John Barnes

3

Syntax is often considered to be a rather boring mechanical detail. The argument
being that it is what you say that matters but not so much how it is said. That of
course is not true. Being clear and unambiguous are important aids to any
communication in a civilized world.

Similarly, a computer program is a communication between the writer and the
reader, whether the reader be that awkward thing: the compiler, another team
member, a reviewer or other human soul. Indeed, most communication
regarding a program is between two people. Clear and unambiguous syntax is a
great help in aiding communication and, as we shall see, avoids a number of
common errors.

An important aspect of good syntax design is that it is a worthwhile goal to
try to ensure that typical simple typing errors cause the program to become
illegal and thus fail to compile, rather than having an unintended meaning. Of
course it is hard to prevent the accidental typing of X rather than Y or + rather
than * but many structural risks can be prevented. Note incidentally that it is best
to avoid short identifiers for just this reason. If we have a financial program
about rates and times then using identifiers R and T is risky since we could
easily type the wrong identifier by mistake (the letters are next to each other on
the keyboard). But if the identifiers are Rate and Time then inadvertently typing
Tate or Rime will be caught by the compiler. This applies to any language of
course.

Equality and assignment

It is obvious that assignment and equality are different things. If we do an
assignment then we change the state of some variable. On the other hand,
equality is simply an operation to test some state. Changing state and testing
state are very different things and understanding the distinction is important.

Many programming languages have confused these fundamentally different
logical operations.

In the earliest days of Fortran one wrote

X = X + 1

But this is really rather peculiar. In mathematics x never equals x + 1. What the
Fortran statement means of course is "replace the current value of X by the old
value plus one". But why misuse the equals sign in this way when society has
been using the equals sign to mean equals for hundreds of years? (The equals
sign dates from around 1550 when it was introduced by the English
mathematician Robert Recorde.) The designers of Algol 60 recognized the
problem and used the combination of a colon followed by an equals sign to
mean assignment, thus

4

X := X + 1;

and this has the helpful consequence that the equals sign can unambiguously be
used to mean equality, as in

if X = 0 then ...

The C language (like Fortran) adopted = for assignment and as a consequence C
uses a double equals (==) to mean equality. This can cause much confusion.

Here is a fragment of a C program controlling the crossing gates on a railroad

if (the_signal == clear)

{

 open_gates(...);

 start_train(...);

}

The same program in Ada might be

if The_Signal = Clear then

 Open_Gates(...);

 Start_Train(...);

end if;

Now consider what happens if a programmer gets confused and accidentally
forgets one of the equals signs in C thus

if (the_signal = clear)

{

 open_gates(...);

 start_train(...);

}

This still compiles but instead of just testing the_signal it actually assigns the
value clear to the_signal. Moreover C unifies expressions (which have values)
with assignments (which change state). So the assignment also acts as an
expression and the result of the assignment is then used in the test. If the
encoding is such that clear is not zero then the result will be true and so the
gates are always opened, the_signal set to clear and the train started on its
perilous journey. Conversely, if clear is encoded as zero, the test fails, the gates
remain closed, and the train is blocked. In either case, things go badly wrong.

The pitfalls associated with the use of "=" for assignment and "==" for
equality, and allowing assignments as expressions, are well known in the C
community and have given rise to coding guidelines and analysis tools such as
lint. However it is preferable for such pitfalls to be avoided in the first place,
through appropriate language design and that is how Ada has approached this
issue

Safe and Secure Software: An invitation to Ada 2005

5

If the Ada programmer were to accidentally use an assignment in the test

if The_Signal := Clear then -- illegal

then the program will simply fail to compile and all will be well.

Statement groups

It is often necessary to group a sequence of statements together – for example
following a test using a keyword such as "if". There are two typical ways of
doing this

! by bracketing the group of statements so that they act as one (as in C),

! by closing the sequence with something matching the "if" (as in Ada).

These are also illustrated by the railroad example. The statements to open the
gates and to start the train both need to be obeyed if the condition is true.

In C we had

if (the_signal == clear)

{

 open_gates(...);

 start_train(...);

}

and now suppose we inadvertently add a semicolon at the end of the first line
(easily done). The program becomes

if (the_signal == clear) ;

{

 open_gates(...);

 start_train(...);

}

We now find that the condition is governing the null statement which is
implicitly present between the test and the newly inserted semicolon. We cannot
see it because a null statement is just nothing. So no matter what the state of the
signal, the gates are always opened and the train set going.

In Ada the corresponding error would result in

if The_Signal = Clear then ; -- illegal

 Open_Gates(...);

 Start_Train(...);

end if;

 Safe syntax

6

This is syntactically incorrect and so the error is safely caught by the compiler
and the train wreck cannot occur.

Named notation

Another feature of Ada which is of a syntactic nature and can detect many
unfortunate errors is the use of named associations in various situations. Dates
provide a good illustration, because the order of the components varies
according to local culture. Thus 12 January 2008 is written in Europe as
12/01/08 but in the US it is usually written as 01/12/08 (but not on the latest
customs forms) whereas the ISO standard gives the year first, so would be
08/01/12.

In C we might declare a structure for manipulating dates as follows:

struct date {

 int day, month, year;

 } ;

which corresponds to the following type declaration in Ada

type Date is

 record

 Day, Month, Year: Integer;

 end record;

In C we might write

struct date today = {1, 12, 8};

But without looking at the type declaration we do not know whether this means
1 December 2008, 12 January 2008 or even 8 December 2001.

In Ada we have the option of writing

Today: Date := (Day => 1, Month => 12, Year => 08);

which uses named associations. Now it will be crystal clear if we ever write the
values in the wrong order. (Note incidentally that Ada permits leading zeroes.).

We can also write the declaration as

Today: Date := (Month => 12, Day => 1, Year => 08);

which has the correct meaning and reveals the advantage that we do not need to
remember the order in which the fields are declared.

Named associations can be used in other contexts in Ada as well. We might
make similar errors with a function that has several parameters of the same type.

Safe and Secure Software: An invitation to Ada 2005

7

Suppose we have a function to compute the obesity index of a person. The two
parameters are the height and the weight which could be given as floating point
values in pounds and inches (or kilograms and centimeters if you are metric). So
we might have in C:

float index(float height, float weight) {

 ...

 return ... ;

}

or in Ada

function Index(Height, Weight: Float) return Float is

 ...

 return ... ;

end;

Now in the case of the author, the appropriate call of the index function in C
might be

my_index = index(68.0, 168.0);

But if by mistake the call were reversed

my_index = index(168.0, 68.0);

then we would have a very thin and very tall giant! (It's a curious coincidence
that both values end in 68.0 as well.)

Such an unhealthy disaster can be avoided in Ada by using named parameter
calls thus

My_Index := Index(Height => 68.0, Weight => 168.0);

Again we can give the parameters in whatever order we wish and no error will
occur if we forget the order in the declaration of the function.

Named notation is a very valuable feature of Ada. Its use is optional but it is
well worth using freely since not only does it help to prevent errors but it also
makes the program easier to understand.

 Safe syntax

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

