
Safe and Secure Software
Ada 2005An Invitation to

Foreward / Contents / Introduction / Bibliography

Courtesy of

The GNAT Pro Company
John Barnes

iii

Foreword

The aim of this booklet is to show how the study of Ada in general and Ada
2005 in particular, is helpful to everyone designing safe and secure software
regardless of the programming language in which the software is eventually
written. After all, successful implementers of safe and secure software write in
the spirit of Ada in any language!
Thank you John for showing this throughout your papers, rationales, books, and
this booklet.
AdaCore dedicates this booklet to all the designers and implementers of safe
and secure software.

v

Contents

Introduction 1
1 Safe Syntax 3

Equality and assignment 3
Statement groups 5
Named notation 6

2 Safe Typing 9

Using distinct types 9
Enumerations and integers 11
Constraints and subtypes 13
Arrays and constraints 14
Real errors 17

3 Safe Pointers 19

References, pointers and addresses 19
Access types and strong typing 21
Access types and accessibility 23
References to subprograms 24
Nested subprograms as parameters 26

4 Safe Architecture 31

Package specifications and bodies 31
Private types 35
Generic contract model 37
Child units 38
Unit testing 39
Mutually dependent types 40

5 Safe Object-Oriented Programming 43

Object-Orientation versus Function-Orientation 43
Overriding indicators 47

vi

Dispatchless programming 48
Interfaces and multiple inheritance 49

6 Safe Object Construction 55

Variables and constants 55
Constant and variable views 57
Limited types 58
Controlled types 61

7 Safe Memory Management 65

Buffer overflow 65
Heap control 66
Storage pools 69
Restrictions 73

8 Safe Startup 75

Elaboration 75
Elaboration pragmas 77
Dynamic loading 78

9 Safe Communication 81

Representation of data 81
Validity of data 83
Communication with other languages 84
Streams 85
Object factories 87

10 Safe Concurrency 91

Operating systems and tasks 91
Protected objects 93
The rendezvous 98
Restrictions 101
Ravenscar 102
Timing and scheduling 102

Safe and Secure Software: An invitation to Ada 2005

vii

11 Certified Safe with SPARK 105

Contracts 105
Correctness by construction 106
The kernel language 109
Tool support 110
Examples 112
Certification 113

Conclusion 115
Bibliography 119

 Contents

1

Introduction

The aim of this booklet is to show how Ada 2005 addresses the needs of
designers and implementers of safe and secure software. The discussion will
also show that those aspects of Ada that make it ideal for safety-critical and
security-critical application areas will also simplify the development of robust
and reliable software in many other areas.

The world is becoming more and more concerned about both safety and
security. Moreover, software now pervades all aspects of the workings of
society. Accordingly, it is important that software which is concerned with
systems for which safety or security are a major concern should be safe and
secure.

There has been a long tradition of concern for safety going back to the
development of railroad signaling and more recently with aviation. Vital
software systems such as those that control aircraft navigation and landing have
to meet well established certification and validation criteria.

More recently there has been growing concern with security in systems such
as banking and communications generally. This has been heightened with
concern for the activities of terrorists.

Safety and security are intertwined through communication. An interesting
characterization of the difference is
▪ safety – the software must not harm the world,
▪ security – the world must not harm the software.

So a safety-critical system is one in which the program must be correct,
otherwise it might wrongly change some external device such as an aircraft flap
or a railroad signal, with serious real-world consequences.

And a security-critical system is one in which it must not be possible for
some incorrect or malicious input from the outside to violate the integrity of the
system, for example by corrupting a password checking mechanism and stealing
social security information.

The key to guarding against both problems is that the software must be
correct in the aspects affecting the system's integrity. And by correct we mean
that it meets its specification. Of course if the specification is incomplete or
itself incorrect then the system will be vulnerable. Capturing requirements
correctly is a hard problem and is the focus of much attention from the lean
software development community.

One of the trends of the second half of the twentieth century was a universal
concern with freedom. But there are two aspects of freedom. The ability of the

2

individual to do whatever they want conflicts with the right to be protected from
the actions of others. Maybe A would like the freedom to smoke in a pub
whereas B wants freedom from smoke in a pub. Concern with health in this
example is changing the balance between these freedoms. Maybe the twenty-
first century will see further shifts from "freedom to" to "freedom from".

In terms of software, the languages Ada and C have very different attitudes to
freedom. Ada introduces restrictions and checks, with the goal of providing
freedom from errors. On the other hand C gives the programmer more freedom,
making it easier to make errors.

One of the historical guidelines in C was "trust the programmer". This would
be fine were it not for the fact that programmers, like all humans, are frail and
fallible beings. Experience shows that whatever techniques are used it is hard to
write "correct" software. It is good advice therefore to use tools that can help by
finding bugs and preventing bugs. Ada was specifically designed to help in this
respect. There have been three versions of Ada – Ada 83, Ada 95 and now Ada
2005.

The purpose of this booklet is to illustrate the ways in which Ada 2005 can
help in the construction of reliable software, by illustrating some aspects of its
features. It is hoped that it will be of interest to programmers and managers at
all levels.

It must be stressed that the discussion is not complete. Each chapter selects a
particular topic under the banner of Safe X where Safe is just a brief token to
designate both safety and security. For the most critical software, use of the
related SPARK language appears to be very beneficial, and this is outlined in
Chapter 11.

A topic with which Ada has much synergy is lean software development –
there is not enough space in this booklet to expand on this concept but the reader
is encouraged to explore its good ideas elsewhere.

As the twenty-first century progresses we will see software becoming even
more pervasive. It would be nice to think that software in automobiles for
example was developed with the same care as that in airplanes. But that is not
so. My wife recently had an experience where her car displayed two warning
icons. One said "stop at once", the other said "drive immediately to your dealer".
Another anecdotal motor story is that of a driver attempting to select channel 5
on the radio, only to see the car change into 5th gear! Luckily he did not try
Replay.

For a fuller description of Ada 2005, SPARK, and lean software development
and papers on related topics please consult the bibliography.

Safe and Secure Software: An invitation to Ada 2005

119

Bibliography

The following two books are comprehensive descriptions of Ada 2005 and
SPARK respectively. Both contain CDs with appropriate supporting material.

John Barnes. Programming in Ada 2005. Addison-Wesley (2006).
John Barnes with Praxis Critical Systems. High Integrity Software – The
SPARK approach to Safety and Security. Addison-Wesley (2003).

The following award-winning book is a good introduction to lean software
development.

Peter Middleton, James Sutton. Lean Software Strategies: Proven
Techniques for Managers and Developers. Productivity Press (2005).

The following websites provide access to much useful information.
www.adacore.com – for AdaCore and its products.
www.ada-europe.org – for Ada-Europe, conferences and journal.
www.adaic.org – for the Ada Information Clearinghouse.
www.sparkada.com – for SPARK.

The following further documents and books are referenced in the text.
[1] Software Considerations in Airborne Systems and Equipment Certification,

DO-178B/ED-12B, RTCA_EUROCAE. (December 1992).
[2] Cyrille Comar and Pat Rogers. On Dynamic Plug-in Loading with Ada 95

and Ada 2005. AdaCore (2005). http://www.adacore.com/.
[3] ISO/IEC TR 24718:2004. Guide for the use of the Ada Ravenscar profile

in high integrity systems. (2004).
[4] Alan Burns and Andy Wellings. Concurrent and Real-Time programming

in Ada 2005. Cambridge University Press (2006).
[5] Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David

Cooper and Bill Everett. Engineering the Tokeneer Enclave Protection
Software. Published in ISSSE 06, the proceedings of the 1st IEEE
International Symposium on Secure Software Engineering. IEEE (March
2006). Also available from www.sparkada.com.

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_foreward.pdf
	Pages from SafeSecureAda2005-final-2008-03-05.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-2.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-3.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-4.pdf
	back.pdf

