
 1

Ada User Journal Volume 29, Number 3, September 2008

A principled approach to software Engineering
Education, or Java considered Harmful
Edmond Schonberg and Robert Dewar
Adacore Inc, 104 5th Avenue, NYC 10011; email: Schonberg@gnat.com, dewar@gnat.com

Abstract
We examine the use of Java as a first programming
language, in the light of well-established principles of
software engineering, and the increasing concern
with correctness, performance, and maintainability.
We argue that Java is markedly inferior to Ada or
C++ as a language for introductory Computer
Science courses, and that its widespread use in the
training of tomorrow’s software engineers is
counterproductive.

Keywords: Software Engineering, Education, Java,
Ada.

1 Introduction
It is a well-established fact (first discussed by E.Dijkstra)
that the programming language in which programmers
receive their first instruction has a large impact on their
programming habits. Current instruction in Computer
Science (see for example ACM’s Computing Curricula
2005 [1] minimizes the teaching of multiple programming
languages, which makes the impact of the first language
even more critical. Java is more and more the language of
choice for introductory programming courses. We argue
that this is a poor choice.: we examine the drawbacks of
Java as a teaching language under four headings, which
following Koolhas et al are conveniently labelled small,
medium, large, and extra large [4]. Before delving into the
details, let us establish the limits of our arguments:

a) we consider that programming will retain a central role
in all software construction: there is no automatic
programming machinery in sight that will make
programming a secondary activity.

b) Programming remains a demanding intellectual
discipline. The separation between “designers” and
“programmers” attempts to create hierarchy of skills (and
salaries!) but this separation is artificial and
counterproductive: software authors (to coin a term) must
have a rigorous training that includes solid foundations in
software engineering. We are particularly concerned with
safety- and security-critical systems, that present
considerable engineering challenges.

c) We do not debate the importance of Java in today’s
software industry, and do not discuss the merits of the
language in its industrial and commercial applications: our
concern is with the training of soft3are engineers.

d) One of the fundamental skills of a good software
engineer is the ability to zoom, that is to say to change the
focus of his activity from the very large (software
architecture) to the very small (efficiency of generated
code, cost of synchronization, etc.). The education he
receives must develop this ability, and the languages in
which he is taught plays a vital role in this. This argues for
the use of a wide-spectrum language from the beginning.

2 Programming in the small
This is the realm of algorithmic analysis: the programmer
must be able to estimate reliably the performance of code,
in terms of time and space. The disadvantages of Java in
this respect are several:

a) The Java virtual machine hides the real architecture..
The JVM is basically a simple stack machine, which makes
it easy to port, but it includes some complex operations
whose cost will vary from target to target. The use of just-
in-time compiling to speed up critical paths makes the
performance of a Java program even harder to estimate. It
is certainly the case that for many applications (in
particular Web programming) a casual approach to
performance is acceptable. For safety-critical systems and
real-time systems this is not sufficient.

b) Most critically, garbage-collection adds a hard-to-
quantify cost to Java programs. Furthermore, the presence
of the garbage collector encourages what we might call a
profligate style of programming, where objects are created
freely for the simplest of computations. For example,
object-oriented methodologies encourage the “boxing’ of
atomic values (transforming an int to an Integer object, for
example). So as to honour the concept that “everything is
an object”. As a result, the simplest computation will
involve the dynamic creation of heap-allocated objects, and
it will become impossible to estimate the time behaviour of
code. This attempt at unification is inspired by Smalltalk,
but it is interesting to note that Eiffel abandoned this
unified model early in its design [5] and that C++, like Ada,
sensibly maintains a clear distinction between elementary
values and composite ones. The difficulties of analyzing
the performance of large Java systems is vividly described
in [7].

3 Programming in the medium
 This is the realm of abstraction and encapsulation. In Java
(and to a large extent in C++) the fundamental concept is
the class, which we must contrast with the various type

2 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

constructors in Ada. We include in this category the
primitives for concurrent programming.

It is well-known that when designing new abstractions
(software components) composition is more important, and
used more often than inheritance. Yet in Java composition
can only be obtained by delegation, that is to say by
embedding a pointer to an object inside of another one. By
contrast, in Ada (and to some extent in C++) composition is
obtained through aggregation, subtyping, and unions (free
in C++, discriminated in Ada). As a result Java design
leads to a proliferation of objects, heavy use of dynamic
storage, and structures that pointer-heavy and therefore
wasteful of storage. The impact of this on performance is
well described by Mitchell et all [6]..

3.1 Concurrent Programming
Concurrency is an aspect of Java that is decidedly low-
level:

a) Synchronization is per-method, and there is no direct
thread-to-thread communication, except through shared
memory.

b) Distributed locking operations make it harder to
formalize concurrent behaviour, and the suspend/resume
mechanisms are notoriously error-prone (race conditions,
deadlock).

c) The semantics of priorities and the queueing regime are
not defined precisely enough to guarantee real-time
behaviour.

 Concurrency is much better taught with tasks and
protected objects, as presented in [3]: standard concurrent
paradigms (producer-consumer, mailboxes, semaphores,
broadcasting, etc.) are easily constructed with them.
Finally, the use of the Ravenscar profile (part of the Ada
2005 standard) allows the construction of concurrent
programs with fully deterministic behaviour.

4 Programming in the large
The only program-structuring mechanism of Java is the
class. This the most glaring deficiency of Java from the
point of view of software engineering: there is no proper
separation between specification and implementation, and
there is no mechanism for hierarchical composition of
components.

a) The separation between specification and
implementation is not just a matter of information hiding
(which is handled by public/private dictions in all
languages of interest): it is of the greatest importance in the
simultaneous development of large systems. In Ada, design
starts with package specifications. Once these are agreed
upon, development of client code can proceed
independently of the implementation of these
specifications. Finally, the separation between specification
and body simplifies incremental recompilation: a client
need not be recompiled when changes in the
implementation of a package do not affect its specification.

 b) The class is too small a unit out of which to design
systems, but there is no grouping mechanism that allows
the semantically coherent aggregation of classes. The Java
notion of a package is more akin to that of a library of
weakly related components. In contrast, the Ada package
provides a mechanism for type aggregation, a visible
dependency graph through context clauses, and a flexible
model of system extensibility through child units.

c) Java cannot deal with subtyping independently of
inheritance: there is a conceptual confusion between
subtyping as enrichment (the usual notion of inheritance0
and subtyping as subsetting. This is a problem with all O-O
methodologies, and is not just a philosophical issue, but
one with pedagogical import (see e.g. the discussions
around the circle-ellipse relation: which should be
considered a subtype of the other?[8]).

After the concept of package, the most important
contribution of Ada to software engineering is the notion of
constraint (including constraints on scalar types). This
notion has no analogue in other languages. Constraints are
of course a simple but powerful example of program
assertions: they define behaviour more precisely, and they
can be checked statically by the compiler, or enforced
dynamically. In either case they pin down the semantics of
the program in ways that are not available in other
languages.

5 Programming in the very large
Most large software systems today combine components
that are themselves aggregates (subsystems) consisting of a
number of packages or classes, often written in different
languages. For the most part the mechanisms for
assembling these components are embedded in an
Interactive Development Environment (IDE), of which
Eclipse is a well-known example. At this level it would
appear that the choice of language plays a smaller role, but
there are two areas in which Ada presents definite
advantages: interfacing with other languages, and static
program analysis.

a) Ada formalizes the description of components that may
be written in other languages, by means of pragmas
(Import, Export, and Convention). The Ada library
provides data conversion routines to transform e.g. Ada
self-describing strings into C zero-terminated strings, and
Fortran numeric, character, and logical types into the
corresponding Ada types. These pragmas and library
routines allow the Ada compiler to verify the type
coherence of a program that has foreign language
components. By contrast, the JNI mechanism in Java, and
the mechanisms provided by other languages, lose most
type checking in the presence of components written in
other languages.

b) Larger and faster machines make whole-program
analysis possible over programs with tens and hundreds of
thousands of source lines. This makes it possible to detect
programming defects at compile time (uninitialized
variables, race conditions, constraint violations, etc) that

A N Author 3

Ada User Journal Volume 29, Number 3, September 2008

are beyond the reach of unit by unit compilation. However,
the power of static analysis depends on the richness of
information available to the analyzer, and to a large extent
this depends on the richness of the type system of the
language. In this context it is useful to think of a compiler
as simple theorem prover: every diagnosed error is a proof
that a certain invariant is violated somewhere. As with any
deductive system, the richer the set of axioms, the more
interesting the proofs that can be derived from it. In this
sense, redundancy within the program text is beneficial,
because it makes it possible to check for consistency.
Programmers often regard Ada as too verbose, and balk at
the substantial declarative machinery that they have to use,
but these declarations are precisely what makes Ada
compilers so much more precise in their diagnostics.

There is a continuum between type checking as performed
by a compiler, ambitious static analysis as performed by a
tool such as SoftCheck’s Inspector [7], and program
verification as obtained with SPARK [2]. However, what
makes Inspector and SPARK possible (and what makes the
error messages of a good Ada compiler so precise) is the
strong static typing model of Ada. No other language
today has a typing system that is rich enough to support
such tools. The quality of diagnostics produced by these
tools is particularly valuable for beginners, and is a
revelation for programmers coming from other languages.

6 Conclusions
We can summarize the shortcomings of Java as an
introductory programming language as follows:

a) Java hinders the understanding of code performance.

b) Java design methodologies lead to a proliferation of
objects, heavy use of dynamic storage, and data structures
that are pointer-heavy and thus wasteful.

c) The Java model of concurrency is low-level and error-
prone, and the garbage-collected environmemt prevents its
use in real-time applications.

d) The fundamental separation between specification and
implementation is absent in Java, hampering good software
engineering development practices.

e) Without the notion of constraint, Java has no way of
specifying useful invariants to describe program behaviour.

Some of these deficiencies also apply to C++ as an
introductory language, even though as a wide-spectrum
language it does satisfy the concern with performance
analysis described in section 3. There is no further need to
enumerate the reasons for the superiority of Ada over either
Java or C++ as an introductory programming language.

References.
[1] ACM Computing Curricula 2005. At
http://www.acm.org/education/curric_vols,
2006.

[2] John Barnes: High Integrity Software: The Spark
Approach to software Safety and Integrity. Addison-
Wesley 2003

[3] Alan Burns and Andy Wellings: Concurrent and Real-
time Programmming in ada 2005 Cambridge University
Press, 2006

[4] Rem Koolhas et al: S M L XL Monacelli Press, 1997

[5] Bertrand Meyer: Object-Oriented Software
Construction, Prentice Hall 1997

[6] Nick Mitchell, Gary Sevitsky, Harini Srinivasan : The
diary of a Datum: an approach to analyzing runtime
complexity in Framework-based applications in Workshop
on Library-centric software design, OOPSLA 2005

[7] SoftCheck: Inspector:
http://en.wikipedia.org/wiki/SofCheck_Inspector

[8] Wikipedia : Circle-ellipse problem, in

http://en.wikipedia.org/wiki/Circle-ellipse_problem

