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CHAPTER

ONE

OBJECTIVES AND CONTENTS

This document was written to facilitate the adoption of SPARK. It targets team leaders and technology experts, who
will find a description of the various levels of software assurance at which the technology can be used along with the
associated costs and benefits. It also targets software developers (these are assumed to have some knowledge of Ada
language and AdaCore technology), who will find detailed guidance of how to adopt SPARK at every assurance level.

Section Levels of Software Assurance presents the four assurance levels described in this document. It starts with
a brief introduction of the Ada programming language and its SPARK subset and then presents the levels (Stone,
Bronze, Silver and Gold) that can be achieved with the use of SPARK language and toolset, using techniques varying
from merely applying the language subset up to using the most powerful analyses. The lowest levels are the simplest
to adopt and already bring significant benefits. The highest levels require more effort to adopt and bring the most
guarantees. This section is particularly well suited for team leaders and technology experts who want to understand
how SPARK could be useful in their context.

Sections Stone Level - Valid SPARK to Gold Level - Proof of Key Integrity Properties present the details of the four
levels of software assurance. Each section starts with a short description of three key aspects of adopting SPARK at
that level:

• Benefits - What is gained from adopting SPARK?

• Impact on Process - How should the process be adapted to use SPARK?

• Costs and Limitations - What are the main costs and limitations for adopting SPARK?

The rest of each section describes how to progressively adopt SPARK at that level in an Ada project. Section Example
shows an example of application for all four levels. These sections are particularly well suited for software developers
who need to use SPARK at a given level.

Although this document is about adopting SPARK for use on existing Ada code, the same guidelines can be used for
adopting SPARK from the beginning of a project. The main difference in that case is that one would not want to start
at the lowest level but already take into account the final targeted level starting with the initial design phase.

This version of the document is based on the SPARK Pro 17 and GPS 17 versions. Further references are given at the
end of this document.
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CHAPTER

TWO

LEVELS OF SOFTWARE ASSURANCE

2.1 Ada

Ada is a language for long-lived critical systems. Programming in Ada makes it easier to prevent the introduction of
errors, thanks to the stronger language rules than in many comparative languages (C and C++ in particular, including
their safer variants like MISRA C and MISRA C++) which make it possible for the compiler to reject erroneous
programs. Programming in Ada also makes it easier to detect the presence of errors in programs, thanks to the
language rules mandating run-time checking of type safety and memory safety conditions which cannot be checked at
compile time so that violating these conditions during testing leads to exceptions rather than undefined behavior.

A lesser known advantage of programming in Ada is its greater number of language features for embedding pro-
gram specifications inside the program, from mundane properties of data like ranges of values to rich data invariants
expressed with arbitrary boolean expressions. An important addition to this list of features is the ability to provide
contracts on subprograms, consisting of preconditions and postconditions. Contracts are a central part of the Ada 2012
version of the language.

Preconditions are properties that should be true when a subprogram is called. In typical software development in Ada
or other languages, preconditions are either given in the program as comments accompanying subprogram declarations
or as defensive code inside subprograms to detect improper calling conditions. When using the latest version of Ada,
developers can express preconditions as boolean properties which should hold when a subprogram is called and the
compiler can insert run-time checks to ensure that preconditions are true when the subprogram is called.

Postconditions are properties that should be true when a subprogram returns. In typical software development, post-
conditions are also either given in the program as comments accompanying subprogram declarations or as assertions
inside subprograms to detect implementation errors, but can also be provided as defensive code to detect improper val-
ues returned at the call site. When using the latest version of Ada, developers can express postconditions as boolean
properties which should be true when a subprogram returns and the compiler can insert run-time checks to ensure that
postconditions are true when the subprogram returns.

The main use of preconditions and postconditions, like other language features in Ada for embedding program spec-
ifications inside the program, is to allow detecting violations of these program specifications during testing. Another
increasingly important use of these language features is to facilitate the detection of errors by static analyzers, which
analyze the source code of programs without actually executing them. Without such specifications in the program,
static analyzers can only detect violations of language dynamic constraints (e.g. division by zero or buffer overflow).
However, the presence of such specifications in the program allows static analyzers to target the verification of these
higher level properties. Specifications also constrain the state space that the static analyzer has to consider during
analysis, which leads to faster running time and higher precision.

3
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2.2 SPARK

Static analyzers fall into two broad categories: bug finders and verifiers. Bug finders detect violations of properties.
Verifiers guarantee the absence of violations of properties. Because they target opposite goals, bug finders and verifiers
usually have different architectures, are based on different technologies, and require different methodologies. Typi-
cally, bug finders require little upfront work, but may generate many false alarms which need to be manually triaged
and addressed, while verifiers require some upfront work, but generate fewer false alarms thanks to the use of more
powerful techniques. AdaCore develops and distributes one bug finder (CodePeer) and one verifier (SPARK).

SPARK is a verifier co-developed by AdaCore and Altran and distributed by AdaCore. The main webpage for the
SPARK Pro product is http://www.adacore.com/sparkpro/. SPARK analysis can give strong guarantees that a program:

• does not read uninitialized data,

• accesses global data only as intended,

• does not contain concurrency errors (deadlocks and data races),

• does not contain run-time errors (e.g. division by zero or buffer overflow),

• respects key integrity properties (e.g. interaction between components or global invariants),

• is a correct implementation of software requirements expressed as contracts.

SPARK can analyze a complete program or only parts of it, but can only be applied to parts of a program that don’t
explicitly use pointers (though references and addresses are allowed) and that don’t catch exceptions. Pointers and
exceptions are both features that make formal verification, as done by SPARK, infeasible, either because of limitations
of state-of-the-art technology or because of the disproportionate effort required from users to apply formal verification
in such situations. This large subset of Ada that is analyzed by SPARK is also called the SPARK language subset.

SPARK builds on the strengths of Ada to provide even more guarantees statically rather than dynamically. As sum-
marized in the following table, Ada provides strict syntax and strong typing at compile time plus dynamic checking
of run-time errors and program contracts. SPARK allows performing such checking statically. In addition, it enforces
the use of a safer language subset and detects data flow errors statically.

Ada SPARK
Contract programming dynamic dynamic / static
Run-time errors dynamic dynamic / static
Data flow errors – static
Strong typing static static
Safer language subset – static
Strict clear syntax static static

The main benefit of formal program verification, as performed by SPARK (and by Frama-C or TrustInSoft Analyzer
for C code) is that it allows verifying properties that are difficult or very costly to verify by other methods, such
as testing or reviews. That difficulty may originate in a mix of the complexity of the software, the complexity of
the requirement, and the unknown capabilities of attackers. Formal verification allows giving guarantees that some
properties are always verified, however complex the context. The latest versions of international certification standards
for avionics (DO-178C) and railway (CENELEC 50128:2011) have recognized these benefits by increasing the role
that formal methods can play in the development of critical software.

2.3 Levels of SPARK Use

The scope and level of SPARK analysis depend on the objectives being pursued by the adoption of SPARK. The scope
of analysis may be the totality of a project, only some units, or only parts of units. The level of analysis may range
from simple guarantees provided by flow analysis to complex properties being proved. These can be divided in five
easily remembered levels:

4 Chapter 2. Levels of Software Assurance
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1. Stone level - valid SPARK

2. Bronze level - initialization and correct data flow

3. Silver level - absence of run-time errors (AoRTE)

4. Gold level - proof of key integrity properties

5. Platinum level - full functional proof of requirements

Platinum level is defined here for completeness, but is not further discussed in this document since it is not recom-
mended during initial adoption of SPARK. Each level builds on the previous one, so that the code subject to the Gold
level should be a subset of the code subject to Silver level, which itself is a subset of the code subject to Bronze level,
which is in general the same as the code subject to Stone level. We advise using:

• Stone level only as an intermediate level during adoption,

• Bronze level for as large a part of the code as possible,

• Silver level as the default target for critical software (subject to costs and limitations),

• Gold level only for a subset of the code subject to specific key integrity (safety/security) properties.

Our starting point is a program in Ada, which could be thought of as the Brick level: thanks to the use of Ada
programming language, this level already provides some confidence: it is the highest level in The Three Little Pigs
fable! And indeed languages with weaker semantics could be thought of as Straw and Sticks levels. However, the
adoption of SPARK allows us to get stronger guarantees, should the wolf in the fable adopt more aggressive means of
attack than blowing.

In the following, we use “SPARK” to denote the SPARK language, and “GNATprove” to denote the formal verification
tool in SPARK product.

2.3. Levels of SPARK Use 5
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CHAPTER

THREE

STONE LEVEL - VALID SPARK

The goal of reaching this level is to identify as much code as possible as belonging to the SPARK subset. The user
is responsible for identifying candidate SPARK code by applying the marker SPARK_Mode to flag SPARK code
to GNATprove, which is responsible for checking that the code marked with SPARK_Mode is indeed valid SPARK
code. Note that valid SPARK code may still be incorrect in many ways, such as raising run-time exceptions. Being
valid merely means that the code respects the legality rules that define the SPARK subset in the SPARK Reference
Manual (see http://docs.adacore.com/spark2014-docs/html/lrm/). The number of lines of SPARK code in a program
can be computed (along with other metrics such as the total number of lines of code) by the metrics computation tool
GNATmetric.

Benefits

The stricter SPARK rules are enforced on a hopefully large part of the program, which leads to better quality and
maintainability, as error-prone features, such as side-effects in functions and aliasing between parameters, are avoided
and others, such as use of pointers, are isolated to non-SPARK parts of the program. Individual and peer review
processes can be lightened on those parts of the program in SPARK, since analysis automatically eliminates some
categories of defects. Parts of the program that don’t respect the SPARK rules are carefully isolated so they can be
more thoroughly reviewed and tested.

Impact on Process

After the initial pass of applying SPARK rules to the program, ongoing maintenance of SPARK code is similar to
ongoing maintenance of Ada code, with a few additional rules, such as the need to avoid side-effects in functions
and aliasing between parameters. These additional rules are checked automatically by running GNATprove on the
modified program, which can be done either by the developer before pushing changes or by an automatic system
(continuous builder, regression testsuite, etc.)

Costs and Limitations

Pointer-heavy code needs to be rewritten to remove the use of pointers or to hide pointers from SPARK analysis, which
may be difficult. The initial pass may require large, but shallow, rewrites in order to transform the code, for example
to rewrite functions with side-effects into procedures.

3.1 Initial Setup

GNATprove can only be run on the sources of a GNAT project (a file with extension ‘gpr’ describing source files and
switches to the GNAT compiler and other tools in the GNAT tool suite). As an installation check, we should start by
applying GNATprove to the project without any SPARK_Mode markers:

7
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> gnatprove -P my_project.gpr --mode=check -j0

The -j0 switch analyzes files from the project in parallel, using as many cores as available, and the --mode=check
switch runs GNATprove in fast checking mode. GNATprove should output the following messages:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: fast partial checking of SPARK legality rules ...

If you installed SPARK in a different repository from GNAT, you may get errors about project files not found if
your project depends on XML/Ada, GNATCOLL, or any other project distributed with GNAT. In that case, you should
update the environment variable GPR_PROJECT_PATH as indicated in the SPARK User’s Guide: http://docs.adacore.
com/spark2014-docs/html/ug/en/install.html

After you successfully run GNATprove without errors, choose a simple unit in the project, preferably a leaf unit that
doesn’t depend on other units, and apply the SPARK_Mode marker to it by adding the following pragma at the start
of both the spec file (typically a file with extension ‘ads’) and the body file (typically a file with extension ‘adb’ for
this unit:

pragma SPARK_Mode;

Then apply GNATprove to the project again:

> gnatprove -P my_project.gpr --mode=check -j0

GNATprove should output the following messages, stating that SPARK legality rules were checked on the unit marked,
possibly followed by a number of error messages pointing to locations in the code where SPARK rules were violated:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: checking of SPARK legality rules ...

If you applied SPARK_Mode to a spec file without body (e.g. a unit defining only constants), GNATprove will notify
you that no body was actually analyzed:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
warning: no bodies have been analyzed by GNATprove
enable analysis of a body using SPARK_Mode

At this point, you should switch to using GNAT Pro Studio (GPS), the integrated development environment provided
with GNAT, in order to more easily interact with GNATprove. For example, GPS provides basic facilities for code
navigation and location of errors that facilitate the adoption of SPARK. Open GPS on your project:

> gps -P my_project.gpr

There should be a SPARK menu available. Repeat the previous action within GPS by selecting the SPARK → Examine
All menu, select the check fast mode in the popup window, and click Execute. The following snapshot shows the popup
window from GPS with these settings:

8 Chapter 3. Stone Level - Valid SPARK
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GNATprove should output the same messages as before. If error messages are generated, they should now be located
on the code that violates SPARK rules.

At this point, you managed to run GNATprove successfully on your project. The next step is to evaluate how much
code can be identified as SPARK code. The easiest way to do that is to start by applying the marker SPARK_Mode to
all files, using a script like the following shell script:

# mark.sh
for file in $@; do

echo 'pragma SPARK_Mode;' > temp
cat $file >> temp
mv temp $file

done

or the following Python script:

# mark.py
import sys
for filename in sys.argv[1:]:

with open(filename, 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write('pragma SPARK_Mode;\n' + content)

These scripts, when called on a list of files as command-line arguments, insert a line with the pragma SPARK_Mode
at the beginning of each file. The list of files from a project can be obtained by calling GPRls when the project has
main files (that is, it generates executables instead of libraries):

> gprls -P my_project.gpr --closure

or by calling GPRbuild with suitable arguments as follows:

> gprbuild -q -f -c -P my_project.gpr -gnatd.n | grep -v adainclude | sort | uniq

One you’ve obtained the list of Ada source files in the project by one of the two methods mentioned previously, you
can systematically apply the SPARK_Mode marker to all the files with the small shell or Python script shown above:

> cat list_of_sources.txt | mark.sh

or:

3.1. Initial Setup 9
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> cat list_of_sources.txt | python mark.py

Then, open GPS on your project again and rerun the SPARK validity checker by again selecting menu SPARK →
Examine All, select the check fast mode in the popup window that opens, and click Execute. This mode doesn’t
issue all possible violations of SPARK rules, but it runs much faster, so you should run in this mode in your initial
runs. GNATprove should output error messages located on code that violates SPARK rules. The section Dealing with
SPARK Violations explains how to address these violations by either modifying the code or excluding it from analysis.

After all the messages have been addressed, you should yet again rerun the SPARK validity checker, this time in a
mode where all possible violations are issued. Do this by again selecting menu SPARK → Examine All, but now select
the check all mode in the popup window that opens, and again click Execute. Again, GNATprove should output error
messages located on code that violates SPARK rules, which should also be addressed as detailed in section Dealing
with SPARK Violations.

A warning frequently issued by GNATprove at this stage looks like the following:

warning: no Global contract available for "F"
warning: assuming "F" has no effect on global items

This warning simply informs you that GNATprove could not compute a summary of the global variables read and
written by subprogram F, either because it comes from an externally built library (such as the GNAT standard library,
or XML/Ada) or because the implementation for F is not available to the analysis (for example if the code was not
yet developed, the subprogram is imported, or the file with F‘s implementation was excluded from analysis). You
can provide this information to GNATprove by adding a Global contract to F‘s declaration (see the section Global
Contract). Alternatively, you can silence this specific warning by adding the following pragma either in the files that
raise this warning or in a global configuration pragma file:

pragma Warnings (Off, "no Global Contract available",
Reason => "External subprograms have no effect on globals");

Note that, if required, you can silence all warnings from GNATprove with the --warnings=off switch.

3.2 Dealing with SPARK Violations

For each violation reported by GNATprove, you must decide whether to modify the code to make it respect the
constraints of the SPARK subset or to exclude the code from analysis. If you make the first choice, GNATprove will
be able to analyze the modified code; for the second choice, the code will be ignored during the analysis. It is thus
preferable for you to modify the code whenever possible and to exclude code from analysis only as a last resort.

3.2.1 Excluding Code From Analysis

There are multiple methods for excluding code from analysis. Depending on the location of the violation, it may be
more appropriate to exclude the enclosing subprogram or package or the complete enclosing unit.

Excluding a Subprogram From Analysis

When a violation occurs in a subprogram body, you can exclude that specific subprogram body from analysis by
annotating it with SPARK_Mode aspect with value Off as follows:

procedure Proc_To_Exclude (..) with SPARK_Mode => Off is ...
function Func_To_Exclude (..) return T with SPARK_Mode => Off is ...

10 Chapter 3. Stone Level - Valid SPARK
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When the violation occurs in the subprogram spec, you must exclude both the spec and body from analysis by anno-
tating both with SPARK_Mode aspect with value Off. The annotation on the subprogram body is given above and
the annotation on the subprogram spec is similar:

procedure Proc_To_Exclude (..) with SPARK_Mode => Off;
function Func_To_Exclude (..) return T with SPARK_Mode => Off;

Only top-level subprograms can be excluded from analysis, i.e. subprogram units or subprograms declared inside
package units, but not nested subprograms declared inside other subprograms. If a violation occurs inside a nested
subprogram, you must exclude the enclosing top-level subprogram from analysis.

When only the subprogram body is excluded from analysis, the subprogram can still be called in SPARK code. When
you exclude both the subprogram spec and body from analysis, you must also exclude all code that calls the subpro-
gram.

Excluding a Package From Analysis

Just as with subprograms, only top-level packages can be excluded from analysis, i.e. package units or packages
declared inside package units, but not nested packages declared inside subprograms. If a violation occurs inside a
nested package, you need to exclude the enclosing top-level subprogram from analysis. The case of local packages
declared inside packages is similar to the case of subprograms, so in the following we only consider package units.

When a violation occurs in a package body, either it occurs inside a subprogram or package in this package body, in
which case you can exclude just that subprogram or package from analysis or you can exclude the complete pack-
age body from analysis by removing the pragma SPARK_Mode that was inserted at the start of the file. In that
mode, you can still analyze subprograms and packages declared inside the package body by annotating them with a
SPARK_Mode aspect with value On as follows:

-- no pragma SPARK_Mode here
package body Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

When the violation occurs in the package spec, there are three possibities: First, the violation can occur inside the
declaration of a subprogram or package in the package spec. In that case, you can exclude just that subprogram or
package from analysis by excluding both its spec and the corresponding body from analysis by annotating them with
a SPARK_Mode aspect with value Off as follows:

pragma SPARK_Mode;
package Pack_To_Analyze is

procedure Proc_To_Exclude (..) with SPARK_Mode => Off;
package Pack_To_Exclude with SPARK_Mode => Off is ...

end Pack_To_Analyze;

pragma SPARK_Mode;
package body Pack_To_Analyze is ...

procedure Proc_To_Exclude (..) with SPARK_Mode => Off is ...
package body Pack_To_Exclude with SPARK_Mode => Off is ...

end Pack_To_Analyze;

Second, the violation can occur directly inside the private part of the package spec. In that case, you can exclude the
private part of the package from analysis by inserting a pragma SPARK_Modewith value Off at the start of the private
part and removing the pragma SPARK_Mode that was inserted at the start of the file containing the package body.
In that mode, entities declared in the visible part of the package spec, such as types, variables, and subprograms, can
still be used in SPARK code in other units, provided these declarations do not violate SPARK rules. In addition, it’s

3.2. Dealing with SPARK Violations 11
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possible to analyze subprograms or packages declared inside the package by annotating them with a SPARK_Mode
aspect with value On as follows:

pragma SPARK_Mode;
package Pack_To_Use is ...

-- declarations that can be used in SPARK code
private

pragma SPARK_Mode (Off);
-- declarations that cannot be used in SPARK code

end Pack_To_Use;

-- no pragma SPARK_Mode here
package body Pack_To_Use is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Use;

Finally, the violation can occur directly inside the package spec. In that case, you can exclude the complete package
from analysis by removing the pragma SPARK_Mode that was inserted at the start of both the files for the package
spec and the package body. In that mode, entities declared in the package spec, such as types, variables, and subpro-
grams, can still be used in SPARK code in other units, provided these declarations do not violate SPARK rules. In
addition, it’s also possible to analyze subprograms or packages declared inside the package, by annotating them with
a SPARK_Mode aspect with value On as follows:

-- no pragma SPARK_Mode here
package Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On;
package Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

-- no pragma SPARK_Mode here
package body Pack_To_Exclude is ...

procedure Proc_To_Analyze (..) with SPARK_Mode => On is ...
package body Pack_To_Analyze with SPARK_Mode => On is ...

end Pack_To_Exclude;

Note that cases 2 and 3 above are not exclusive: the violations of case 2 are in fact included in those of case 3. In case
2, all declarations in the visible part of the package are analyzed as well as their bodies when explicitly marked with
a SPARK_Mode aspect. In case 3, only those declarations and bodies explicitly marked with a SPARK_Mode aspect
are analyzed.

3.2.2 Modifying Code To Remove SPARK Violations

In many cases, code can be modified so that either SPARK violations are removed completely or can be moved to
some part of the code that does not prevent most of the code from being analyzed. In general, this is good because
SPARK violations point to features that can easily lead to code that is more difficult to maintain (such as side effects
in functions) or to understand (such as pointers). Below, we consider typical SPARK violations found in Ada code
and how to address each by modifying the code. When code modification is not possible or too complex/costly, the
code with the violation should be excluded from analysis by following the recommendations of the previous section.
The following table lists the main restrictions of SPARK that lead to violations in Ada code and how they are typically
addressed, as detailed in the rest of this section.
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How to remove the violation? How to hide the violation?
Use of
access
type

Use references, addresses, or
indexes in an array or a
collection

Use a private type, defined as access type in a private section
marked SPARK_Mode Off

Side-
effect in
function

Transform function in procedure
with additional parameter for
result

Mark function body with SPARK_Mode Off and function
spec with Global => null to hide side-effect

Exception
handler

Use result value to notify caller
of error when recovery is
required

Split subprogram into functionality without exception handler,
and wrapper with exception handler marked with
SPARK_Mode Off

In the following, we consider the error messages that are issued in each case.

access to “T” is not allowed in SPARK

See ‘access type is not allowed in SPARK’

access type is not allowed in SPARK

These errors are issued on uses of access types (‘pointers’). For example:

Data1 : Integer;
Data2 : Boolean;
Data3 : access Integer; --<<-- VIOLATION

procedure Operate is
begin

Data1 := 42;
Data2 := False;
Data3.all := 42; --<<-- VIOLATION

end Operate;

In some cases, the uses of access types can be removed from the subprogram into a helper subprogram, which is
then excluded from analysis. For example, we can modify the code above as follows, where both the declara-
tion of global variable Data3 of access type and the assignment to Data3.all are grouped in a package body
Memory_Accesses that is excluded from analysis, while the package spec for Memory_Accesses can be used
in SPARK code:

Data1 : Integer;
Data2 : Boolean;

package Memory_Accesses is
procedure Write_Data3 (V : Integer);

end Memory_Accesses;

package body Memory_Accesses
with SPARK_Mode => Off

is
Data3 : access Integer;

procedure Write_Data3 (V : Integer) is
begin

Data3.all := V;
end Write_Data3;

end Memory_Accesses;
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procedure Operate is
begin

Data1 := 42;
Data2 := False;
Memory_Accesses.Write_Data3 (42);

end Operate;

In other cases, the access type needs to be visible from client code, but the fact that it’s implemented as an access type
need not be visible to client code. Here’s an example of such a case:

type Ptr is access Integer; --<<-- VIOLATION

procedure Operate (Data1, Data2, Data3 : Ptr) is
begin

Data1.all := Data2.all;
Data2.all := Data2.all + Data3.all;
Data3.all := 42;

end Operate;

In that case, the access type can be made a private type of either a local package or of package defined in a different
unit, whose private part (and possibly also its package body) is excluded from analysis. For example, we can modify
the code above as follows, where the type Ptr together with accessors to query and update objects of type Ptr are
grouped in package Ptr_Accesses:

package Ptr_Accesses is
type Ptr is private;
function Get (X : Ptr) return Integer;
procedure Set (X : Ptr; V : Integer);

private
pragma SPARK_Mode (Off);
type Ptr is access Integer;

end Ptr_Accesses;

package body Ptr_Accesses
with SPARK_Mode => Off

is
function Get (X : Ptr) return Integer is (X.all);
procedure Set (X : Ptr; V : Integer) is
begin

X.all := V;
end Set;

end Ptr_Accesses;

procedure Operate (Data1, Data2, Data3 : Ptr_Accesses.Ptr) is
use Ptr_Accesses;

begin
Set (Data1, Get (Data2));
Set (Data2, Get (Data2) + Get (Data3));
Set (Data3, 42);

end Operate;

explicit dereference is not allowed in SPARK

See ‘access type is not allowed in SPARK’
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function with “in out” parameter is not allowed in SPARK

This error is issued on a function with an ‘in out’ parameter. For example:

function Increment_And_Add (X, Y : in out Integer) return Integer is
--<<-- VIOLATION

begin
X := X + 1;
Y := Y + 1;
return X + Y;

end Increment_And_Add;

The function can be transformed into a procedure by adding an ‘out’ parameter for the returned value, as follows:

procedure Increment_And_Add (X, Y : in out Integer; Result : out Integer) is
begin

X := X + 1;
Y := Y + 1;
Result := X + Y;

end Increment_And_Add;

function with output global “X” is not allowed in SPARK

This error is issued on a function with a side-effect on variables in scope. For example:

Count : Integer := 0;

function Increment return Integer is
begin

Count := Count + 1; --<<-- VIOLATION
return Count;

end Increment;

The function can be transformed into a procedure by adding an ‘out’ parameter for the returned value, as follows:

procedure Increment (Result : out Integer) is
begin

Count := Count + 1;
Result := Count;

end Increment;

Alternatively, when the side-effects have no influence on the properties to verify, they can be masked to the analysis.
For example, consider a procedure Log that writes global data, causing all of its callers to have side-effects:

Last : Integer := 0;

procedure Log (X : Integer) is
begin

Last := X;
end Log;

function Increment_And_Log (X : Integer) return Integer is
begin

Log (X); --<<-- VIOLATION
return X + 1;

end Increment_And_Log;
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A legitimate solution here is to mask the side-effects in procedure Log for the analysis, by annotating the spec of Log
with an aspect Global with value null and by excluding the body of Log from analysis:

procedure Log (X : Integer)
with Global => null;

Last : Integer := 0;

procedure Log (X : Integer)
with SPARK_Mode => Off

is
begin

Last := X;
end Log;

function Increment_And_Log (X : Integer) return Integer is
begin

Log (X);
return X + 1;

end Increment_And_Log;

handler is not allowed in SPARK

This error is issued on exception handlers. For example, on the following code:

Not_Found : exception;

procedure Find_Before_Delim
(S : String;
C, Delim : Character;
Found : out Boolean;
Position : out Positive)

is
begin

for J in S'Range loop
if S(J) = Delim then

raise Not_Found;
elsif S(J) = C then

Position := J;
Found := True;

Return;
end if;

end loop;
raise Not_Found;

exception --<<-- VIOLATION
when Not_Found =>

Position := 1;
Found := False;

end Find_Before_Delim;

The subprogram with an exception handler can usually be split between core functionality, which may raise exceptions
but does not contain an exception handler and thus can be analyzed, and a wrapper calling the core functionality, which
contains the exception handler and is excluded from analysis. For example, we can modify the code above to perform
the search for a character in function Find_Before_Delim, which raises an exception if the desired character is
not found before either the delimiter or the end of the string, and a procedure Find_Before_Delim, which wraps
the call to function Find_Before_Delim, as follows:
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Not_Found : exception;

function Find_Before_Delim (S : String; C, Delim : Character) return Positive is
begin

for J in S'Range loop
if S(J) = Delim then

raise Not_Found;
elsif S(J) = C then

return J;
end if;

end loop;
raise Not_Found;

end Find_Before_Delim;

procedure Find_Before_Delim
(S : String;
C, Delim : Character;
Found : out Boolean;
Position : out Positive)
with SPARK_Mode => Off

is
begin

Position := Find_Before_Delim (S, C, Delim);
Found := True;

exception
when Not_Found =>

Position := 1;
Found := False;

end Find_Before_Delim;

side effects of function “F” are not modeled in SPARK

This error is issued on a call to a function with side-effects on variables in scope. Note that a corresponding error ‘func-
tion with output global “X” is not allowed in SPARK’ will also be issued on function F if it’s marked SPARK_Mode
with value On (either directly or in a region of code marked as such). For example, on the following code, calling the
function Increment_And_Log seen previously:

procedure Call_Increment_And_Log is
X : Integer;

begin
X := Increment_And_Log (10); --<<-- VIOLATION

end Call_Increment_And_Log;

The called function can be transformed into a procedure as seen previously. If it’s not marked SPARK_Mode with
value On, a legitimate solution might be to mask its side-effects for the analysis, by annotating its spec with a Global
aspect with value null.
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CHAPTER

FOUR

BRONZE LEVEL - INITIALIZATION AND CORRECT DATA FLOW

The goal of reaching this level is making sure that no uninitialized data can ever be read and, optionally, preventing
unintended access to global variables. This also ensures no possible interference between parameters and global
variables, meaning that the same variable isn’t passed multiple times to a subprogram, either as a parameter or global
variable.

Benefits

The SPARK code is guaranteed to be free from a number of defects: no reads of uninitialized variables, no possible
interference between parameters and global variables, no unintended access to global variables.

When Global contracts are used to specify which global variables are read and/or written by subprograms, mainte-
nance is facilitated by a clear documentation of intent, which is checked automatically by running GNATprove, so that
any mismatch between the implementation and the specification is reported.

Impact on Process

An initial pass is required where flow analysis is turned on and the resulting messages are resolved either by rewriting
code or justifying any false alarms. Once this is complete, ongoing maintenance can maintain the same guarantees at
a low cost. A few simple idioms can be used to avoid most false alarms and the remaining false alarms can be easily
justified.

Costs and Limitations

The initial pass may require a substantial effort to get rid of all false alarms, depending on the coding style adopted
up to that point. The analysis may take a long time, up to an hour, on large programs but it is guaranteed to terminate.
Flow analysis is, by construction, limited to local understanding of the code, with no knowledge of values (only code
paths) and handling of composite variables is only through calls, rather than component by component, which may
lead to false alarms.

4.1 Running GNATprove in Flow Analysis Mode

Two distinct static analyses are performed by GNATprove. Flow analysis is the fastest and requires no user-supplied
annotations. It tracks the flow of information between variables on a per subprogram basis. In particular, it allows
finding every potential use of uninitialized data. The second analysis, proof, will be described in the sections on Silver
and Gold levels.
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To run GNATprove in flow analysis mode on your project, select the SPARK → Examine All menu. In the GPS panel,
select the flow analysis mode, check the Do not report warnings box, uncheck the Report checks proved box, and click
Execute. The following snapshot shows the popup window from GPS with these settings:

GNATprove should output the following messages, possibly followed by a number of messages pointing to potential
problems in your program:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

The following messages output by GNATprove are check messages and should have the form:

medium: "V" might not be initialized

Listed first is the severity of the check, which is one of low, medium, or high. It reflects both the likelihood that the
reported problem is indeed a bug and the criticality if it is a bug. Following the colon is the type of check message,
here a potential read of an uninitialized variable. They’ll be located at the point in your code where the error can occur.
The corresponding line in GPS will be highlighted in red.

Flow analysis can issue several types of check messages. In this document, we concentrate on the two most com-
mon ones. Initialization checks relate to uses of uninitialized data and are described in section Initialization Checks.
Section Aliasing discusses check messages related to aliasing of subprogram parameters and global variables. Other
check messages can also be issued when volatile variables or tasking constructs are used. You can find more in-
formation about these additional checks in http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_
gnatprove_output.html#description-of-messages.

Once you have addressed each check message, you can re-reun flow analysis with the Report checks proved box
checked to see the verifications successfully performed by GNATprove. This time, it should only issue ‘info’ messages,
highlighted in green in GPS, like the following:

info: initialization of "V" proved

Flow analysis can also generate useful warnings about dead code, unused variables or incorrect parameter modes. To
achieve this level, it may be interesting to look at these warnings. We explain how this can be done in section Flow
Analysis Warnings.

As further optional steps in this level, critical parts of the program can be annotated to make sure they don’t make
unintended accesses to global data. This activity is explained in section Global Annotations.
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4.2 Initialization Checks

Initialization checks are the most common check messages issued by GNATprove in flow analysis mode. Indeed, each
time a variable is read or returned by a subprogram, GNATprove performs a check to make sure it has been initialized.
A failed initialization check message can have one of the two forms:

high: "V" is not initialized

or:

medium: "V" might not be initialized

Choose a unit in which GNATprove reports an unproved initialization check and open it in GPS. You can launch flow
analysis on only this unit by opening the SPARK → Examine File menu, selecting the flow analysis mode in the GPS
panel, checking the Do not report warnings box, unchecking the Report checks proved box, and clicking Execute. To
investigate an unproved initialization check, click on the corresponding check message in the GPS Locations tab. The
editor should move to the corresponding location in your program.

Not all unproved initialization checks denote actual reads of uninitialized variables: SPARK features a stronger ini-
tialization policy than Ada and the verification of initialization of variables in GNATprove suffers from shortcomings.
Determining whether an initialization check issued by GNATprove is a real error is done by code review and is usually
straightforward. While actual reads of uninitialized data must be corrected, check messages that don’t correspond to
actual errors (called ‘false alarms’ or ‘false positives’) can be either ‘justified’, that is, annotated with a proper justifi-
cation (see section on Justifying Unproved Check Messages), or worked around. In the rest of this section, we review
the most common cases where GNATprove may produce unproved initialization checks. We then describe how the
code can be changed to avoid false alarms or, alternately, explain how they can be justified.

4.2.1 SPARK Strong Data Initialization Policy

GNATprove verifies data initialization modularly on a per subprogram basis. To allow this verification, the SPARK
language requires a stronger data initialization policy than standard Ada: you should initialize every global variable
that is read by a subprogram and every parameter of mode ‘in’ or ‘in out’ on entry to the subprogram.

procedure P (X : in out Integer) is
begin

X := X + 1; --<<-- ok
end P;
X : Integer;
P (X); --<<-- high: "X" is not initialized

Parameters of mode ‘out’ are considered to always be uninitialized on subprogram entry so their value should not be
read prior to initialization:

procedure P (X : out Integer) is
begin

X := X + 1; --<<-- high: "X" is not initialized
end P;
X : Integer;
P (X); --<<-- ok

The expression returned from a function and the parameters of mode ‘out’ of a procedure should be initialized on the
subprogram’s return:

procedure P (X : out Integer) is --<<-- high: "X" is not initialized in P
begin
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null;
end P;

If a global variable is completely initialized by a subprogram, it’s considered as an output of the subprogram and
SPARK does not require it to be initialized at subprogram entry:

G : Integer;
procedure P is --<<-- info: initialization of "G" proved
begin

G := 0;
end P;

You can find more information about SPARK’s data initialization policy in the SPARK User’s Guide: http://docs.
adacore.com/spark2014-docs/html/ug/en/source/language_restrictions.html#data-initialization-policy.

In some cases, this initialization policy may be too constraining. For example, consider the following Search proce-
dure:

procedure Search (A : Nat_Array;
E : Natural;
Found : out Boolean;
Result : out Positive)

is
begin

for I in A'Range loop
if A (I) = E then

Found := True;
Result := I;
return;

end if;
end loop;
Found := False;

end Search;

This code is perfectly safe as long as the value of Result is only read when Found is True. Nevertheless, flow
analysis issues an unproved check on Result‘s declaration:

medium: "Result" might not be initialized in "Search"

You can consider this check message as a false alarm and can easily either justify it (see section on Justifying Unproved
Check Messages) or work around it, depending on what is more appropriate. A safer alternative, however, is to always
initialize Result on all paths through Search.

4.2.2 Handling of Composite Objects as a Whole

It follows from the SPARK initialization policy that out parameters of a composite type must be completely defined by
the subprogram. One side-effect of this is that it makes it impossible to fully initialize a record object by successively
initializing each component through procedure calls:

type R is record
F1 : Integer;
F2 : Integer;

end record;

procedure Init_F1 (X : out R) is
--<<-- high: "X.F2" is not initialized in "Init_F1"
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begin
X.F1 := 0;

end Init_F1;

procedure Init_F2 (X : in out R) is
begin

X.F2 := 0;
end Init_F2;

X : R;
Init_F1 (X);
Init_F2 (X);

4.2.3 Imprecise Handling of Arrays

Though record objects are treated as composites for inter-procedural data initialization policy, the initialization status
of each record component is tracked independently inside a single subprogram. For example, a record can be initialized
by successive assignments into each of its components:

X : R;
X.F1 := 0;
X.F2 := 0;
P (X); --<<-- info: initialization of "Y.F1" proved

--<<-- info: initialization of "Y.F2" proved

The same isn’t true for arrays because checking that each index of an array has been initialized in general requires
dynamic evaluation of expressions (to compute which indexes have been assigned to). As a consequence, GNATprove
considers an update of an array variable as a read of this variable and issues an unproved initialization check every time
an assignment is done into a potentially uninitialized array. It then assumes that the whole array has been initialized for
the rest of the analysis. Specifically, initializing an array element-by-element will result in an unproved initialization
check:

A : Nat_Array (1 .. 3);
A (1) := 1; --<<-- medium: "A" might not be initialized
A (2) := 2; --<<-- info: initialization of "A" proved

4.2.4 Value Dependency

Flow analysis is not value dependent, meaning that it is not influenced by the actual value of expressions. As a
consequence, it’s not able to determine that some paths of a program are impossible, so it may issue unproved checks on
such a path. For example, in the following program, GNATprove cannot verify that X1 is initialized in the assignment
to X2 even though the two if statements share the same condition:

X1 : Integer;
X2 : Integer;
if X < C then

X1 := 0;
end if;
if X < C then

X2 := X1; --<<-- medium: "X1" might not be initialized
end if;
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4.2.5 Rewriting the Code to Avoid False Alarms

In cases where the code can be modified, it may be a good idea to rewrite it so that GNATprove can successfully
verify data initialization. In the following, we list these modifications, starting from the least intrusive and ending with
the most intrusive. It’s best to initialize variables at declaration and this is the recommended work-around whenever
possible since it only requires modifying the variable declaration and is not very error-prone. However, it is impossible
for variables of a private type and may be difficult for complex data and inefficient for large structures.

A : Nat_Array (1 .. 3) := (others => 0);
A (1) := 1; --<<-- info: initialization of "A" proved
A (2) := 2; --<<-- info: initialization of "A" proved

Another option is to add a default to the variable’s type, though this is more intrusive as it impacts every variable
of that type with default initialization. For example, if the initializing expression takes time to execute and there are
thousands of variables of this type which are initialized by default, this may impact the overall running time of the
application. On the other hand, it’s especially interesting for private types, for which the previous work-around is
not applicable. A default initial value can be defined for scalar types using Default_Value, for array types using
Default_Component_Value, and for record types by introducing a default for each record component:

type My_Int is new Integer with Default_Value => 0;
type Nat_Array is array (Positive range <>) of Natural with

Default_Component_Value => 0;
type R is record

F1 : Integer := 0;
F2 : My_Int;

end record;

You can also annotate private types with the Default_Initial_Condition aspect, which allows defining a
property which should hold whenever a variable of this type is initialized by default. When no property is provided, it
defaults to True and implies that the type can be safely initialized by default. If the full view of the type is in SPARK,
a single initialization check will be issued for such a type at the type’s declaration:

type Stack is private with Default_Initial_Condition;
type Stack is record

Size : Natural := 0;
Content : Nat_Array (1 .. Max);

end record; --<<-- medium: type "Stack" is not fully initialized

S : Stack;
P (S); --<<-- info: initialization of "S.Size" proved

--<<-- info: initialization of "S.Content" proved

Yet another option is to refactor code to respect the SPARK data initialization policy. Specifically, initialize every
components of a record object in a single procedure and always initialize subprogram outputs. Alternatively, partial
initialization (only on some program paths) can be represented by a variant record:

type Optional_Result (Found : Boolean) is record
case Found is

when False => null;
when True => Content : Positive;

end case;
end record;

procedure Search (A : Nat_Array;
E : Natural;
Result : out Optional_Result)

is
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begin
for I in A'Range loop

if A (I) = E then
Result := (Found => True, Content => I);
return;

end if;
end loop;
Result := (Found => False);

end Search;

4.2.6 Justifying Unproved Check Messages

You can selectively accept check messages, like those emitted for data initialization, by supplying an appropriate
justification. When you do that, the tool silently assumes the data affected by the justified check has been initialized
and won’t warn again about its uses. To annotate a check, add a pragma Annotate in the source code on the line
following the failed initialization check:

pragma Annotate (GNATprove, Category, Pattern, Reason);

A pragma Annotate expects exactly 4 arguments. The first is fixed and should always be GNATprove. The
second argument, named Category, can be either False_Positive or Intentional. False_Positive
should be used when the data is initialized by the program but GNATprove is unable to verify it, while Intentional
should be used when the variable is not initialized, but for some reason this is not a problem; some examples will be
given later. The third argument, named Pattern, should be a part of the check message. For initialization checks,
“‘X” might not be initialized’ or “‘X” is not initialized’, depending on the message, is appropriate. Finally, the last
argument is the most important. It stores an explanation of why the check was accepted. It should allow reviewing
the justification easily. A rule that’s often applied in practice is that the reason should identify the author of the
justification, using the format ‘<initials> <reason>’, for example ‘YM variable cannot be zero here’.

You can find a complete description of how checks can be justified in the SPARK User’s Guide: http://docs.adacore.
com/spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#justifying-check-messages.

On the code below, GNATprove is unable to verify that the array A is initialized by successive initialization of its
elements:

A : Nat_Array (1 .. 3);
A (1) := 1;
pragma Annotate
(GNATprove, False_Positive, """A"" might not be initialized",
String'("A is properly initialized by these three successive"

& " assignments"));
A (2) := 2;
A (3) := 3;

Since the array A is correctly initialized by the code above, the annotation falls in the category False_Positive.
Note that the pragma Annotate must be located just after the line for which the check message is issued.

Because SPARK enforces a stronger initialization policy than Ada, you may want to justify a check message for a
variable that may not be completely initialized. In this case, you should be especially careful to precisely state the
reasons why the check message is acceptable since the code may change later and SPARK would not spot any invalid
usage of the annotated variable. For example, when we accept the check message stating that Result may not be
initialized by Search, we must explain precisely what is required both from the implementation and from the callers
to make the review valid:

procedure Search (A : Nat_Array;
E : Natural;
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Found : out Boolean;
Result : out Positive);

pragma Annotate
(GNATprove, Intentional, """Result"" might not be initialized",
String'("Result is always initialized when Found is True and never"

& " read otherwise");

As another example, we can assume every instance of a stack is initialized by default only under some assumptions
that should be recorded in the justification message:

type Stack is private with Default_Initial_Condition;
type Stack is record

Size : Natural := 0;
Content : Nat_Array (1 .. Max);

end record;
pragma Annotate
(GNATprove, Intentional, """Stack"" is not fully initialized",
String'("The only indexes that can be accessed in a stack are"

& " those smaller than Size. These indexes will always"
& " have been initialized when Size is increased."));

On existing, thoroughly tested code, unconditional reads of uninitialized data are rather unlikely. Neverthless, there
may be a path through the program where an uninitialized variable can be read. Before justifying an unproved initial-
ization check, it’s important to understand why it’s not proved and what are the assumptions conveyed to the tool when
justifying it. The result of this analysis should then be stored inside the reason field of the pragma Annotate to
simplify later reviews.

4.3 Aliasing

4.3.1 Detecting Possible Aliasing

In SPARK, an assignment to a variable cannot change the value of another variable. This is enforced by forbidding the
use of access types (‘pointers’) and by restricting aliasing between parameters and global variables so that only benign
aliasing is accepted (i.e. aliasing that does not cause interference).

A check message concerning a possible aliasing has the form:

high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

This message is warning that, for the call at the given location, the variable Y supplied for the formal parameter X of
the subprogram was already visible in the subprogram. As a result, assignments to Y in the subprogram will affect the
value of X and the converse holds too. This is detected as an error by GNATprove, which always assumes variables to
be distinct.

As stated in the check message, the precise rules for aliasing are detailed in SPARK Reference Manual section 6.4.2.
They can be summarized as follows:

Two out parameters should never be aliased. Notice that the trivial cases of parameter aliasing are already forbidden
by Ada and reported as errors by the compiler, such as in the following subprogram:

procedure Swap (X, Y : in out Integer);

Swap (Z, Z); --<<-- writable actual for "X" overlaps with actual for "Y"

An ‘in’ and ‘an’ out parameter should not be aliased:
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procedure Move_X_To_Y (X : in T; Y : out T);

Move_X_To_Y (Z, Z);
--<<-- high: formal parameters "X" and "Y" are aliased (SPARK RM 6.4.2)

As an exception, SPARK allows aliasing between an ‘in’ and an ‘out’ parameter if the ‘in’ parameter is always passed
by copy. For example, if we change T to Integer in the previous example (so that the arguments are always passed
by copy), GNATprove no longer outputs any unproved check message:

procedure Move_X_To_Y (X : in Integer; Y : out Integer);

Move_X_To_Y (Z, Z); --<<-- ok

However, an ‘out’ parameter should never be aliased with a global variable referenced by the subprogram. This is
really the same as aliasing between output parameters, but it cannot be reported by the compiler because it doesn’t
track uses of global variables:

procedure Swap_With_Y (X : in out Integer);

Swap_With_Y (Y);
--<<-- high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

Note that aliasing between an ‘out’ parameter and a global variable is also forbidden even if the global variable is
never written:

procedure Move_X_To_Y (Y : out Integer);

Move_X_To_Y (X);
--<<-- high: formal parameter "Y" and global "X" are aliased (SPARK RM 6.4.2)

An ‘in’ parameter should not be aliased with a global variable written by the subprogram:

procedure Move_X_To_Y (X : in T);

Move_X_To_Y (Y);
--<<-- high: formal parameter "X" and global "Y" are aliased (SPARK RM 6.4.2)

Just like aliasing between parameters, aliasing is allowed if the ‘in’ parameter is always passed by copy:

procedure Move_X_To_Y (X : in Integer);

Move_X_To_Y (Y); --<<-- ok

Note that aliasing can also occur between parts of composite variables such as components of records or elements
of arrays. You can find more information about aliasing in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/language_restrictions.html#absence-of-interferences.

4.3.2 Dealing with Unproved Aliasing Checks

Complying with SPARK rules concerning aliasing usually requires refactoring the code. This is, in general, a good idea
because aliasing can be the source of errors that are difficult to find since they only occur in some cases. When calling
a subprogram with aliased parameters, there’s a good chance of failing in a case the implementer of the subprogram
has not considered and thus of triggering an inappropriate result. Furthermore, the behavior of a subprogram call when
its parameter are aliased depends on how parameter are passed (by copy or by reference) and on the order in which
the by-copy parameters, if any, are copied back. Since these are not specified by the Ada language, it may introduce
either compiler or platform dependences in the behavior of the program.
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It can be the case that GNATprove’s analysis is not precise enough and that it issues an unproved check message in
cases in which there really is no possible aliasing. This can be the case, for example, for aliasing between a subprogram
input parameter and an output global variable referenced by the subprogram if the parameter is not of a by-copy type
(a type mandated to be passed by value by the Ada Reference Manual) but for which the developer knows that, in
her environment, the compiler indeed passes it by copy. In this case, the check message can be justified similarly to
initialization checks:

type T is record
F : Integer;

end record with
Convention => C_Pass_By_Copy;

procedure Move_X_To_Y (X : in T);

Move_X_To_Y (Y);
pragma Annotate
(GNATprove, False_Positive,
"formal parameter ""X"" and global ""Y"" are aliased",
String'("My compiler follows Ada RM-B-3 68 implementation advice"

& " and passes variables of type T by copy as it uses the"
& " C_Pass_By_Copy convention"));

GNATprove restrictions explained in the section about initialization checks can also lead to false alarms, in particular
for aliasing between parts of composite objects. In the following example, Only_Read_F2_Of_X only references
the component F2 in X. But, since GNATprove handles composite global variables as a whole, it still emits an unproved
aliasing check in this case, which can be justified as follows:

procedure Only_Read_F2_Of_X (Y : out Integer);

Only_Read_F2_Of_X (X.F1);
pragma Annotate
(GNATprove, False_Positive,
"formal parameter ""Y"" and global ""X"" are aliased",
String'("Only_Read_F2_Of_X only references the component F2 in X"

& " so no aliasing can be introduced with X.F1"));

In the same way, because it is not value dependent, flow analysis emits an unproved aliasing check when two (distinct)
indices of an array are given as output parameters to a subprogram, which can be justified as follows:

pragma Assert (I = 2);
Swap (A (1), A (I));
pragma Annotate
(GNATprove, False_Positive,
"formal parameters ""X"" and ""Y"" might be aliased",
String'("As I is equal to 2 prior to the call, A (1) and A (I) are"

& " never aliased."));

4.4 Flow Analysis Warnings

Other than check messages, flow analysis can also issue warnings, which usually flag suspicious code that may be
the sign of an error in the program. They should be inspected, but can be suppressed when they’re deemed spurious,
without risk of missing a critical issue for the soundness of the analysis. To see these warnings, run the tool in flow
analysis mode with warnings enabled. Select SPARK → Examine All menu, in the GPS panel, select the flow mode,
uncheck the Do not report warnings and Report checks proved boxes, and click Execute.
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GNATprove warnings, like the compiler warnings, are associated with a source location and prefixed with the word
‘warning’:

warning: subprogram "Test" has no effect

You can suppress GNATprove warnings globally by using the switch --warnings=off, which is equivalent to
checking the Do not report warnings box in GPS, or locally by using pragma Warnings. For example, the above
warning can be suppressed by switching off local warnings with the above message around the declaration of the
procedure Test as follows:

pragma Warnings
(Off, "subprogram ""Test"" has no effect",
Reason => "Written to demonstrate GNATprove's capabilities");

procedure Test;

pragma Warnings (On, "subprogram ""Test"" has no effect");

A common rule applied in practice is that the reason should identify the author of the pragma, using the format
‘<initials> <reason>’, for example ‘CD subprogram is only a test’.

How warnings can be suppressed in GNATprove is described in the SPARK User’s Guide: http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_use_gnatprove_in_a_team.html#suppressing-warnings.

The rest of this section lists warnings that may be issued by GNATprove and explains the meaning of each.

initialization of X has no effect

Flow analysis tracks flow of information between variables. While doing so, it can detect cases where the initial value
of a variable is never used to compute the value of any object. It reports it with a warning:

function Init_Result_Twice return Integer is
Result : Integer := 0;

--<<-- warning initialization of Result has no effect
begin

Result := 1;
return Result;

end Init_Result_Twice;

unused assignment

Flow analysis also detects assignments which store into a variable a value that will never be read:

procedure Write_X_Twice (X : out Integer) is
begin

X := 1; --<<-- warning: unused assignment
X := 2;

end Write_X_Twice;

Note that flow analysis is not value dependent. As a consequence, it cannot detect cases when an assignment is useless
because it stores the same value that was previously stored in the variable:

procedure Write_X_To_Same (X : in out Integer) is
Y : Integer;

begin
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Y := X;
X := Y; --<<-- no warning

end Write_X_To_Same;

“X” is not modified, could be IN

Flow analysis also checks the modes of subprogram parameters. It warns on ‘in out’ parameters whose value is never
modified:

procedure Do_Not_Modify_X (X, Y : in out Integer) is
--<<-- warning: "X" is not modified, could be IN

begin
Y := Y + X;

end Do_Not_Modify_X;

unused initial value of “X”

Flow analysis also detects an ‘in’ or ‘in out’ parameter whose initial value is never read by the program:

procedure Initialize_X (X : in out Integer) is
--<<-- warning: unused initial value of "X"

begin
X := 1;

end Initialize_X;

statement has no effect

Flow analysis can detect a statement which has no effect on any output of the subprogram:

procedure Initialize_X (X : out Integer) is
Y : Integer;

begin
Set_To_One (Y); --<<-- statement has no effect
X := 1;

end Initialize_X;

subprogram “S” has no effect

When a subprogram as a whole has no output or effect, it’s also reported by GNATprove:

procedure Do_Nothing is
--<<-- warning: subprogram "Do_Nothing" has no effect

begin
null;

end Do_Nothing;
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4.5 Global Annotations

4.5.1 Global Contract

In addition to what’s been presented so far, you may want to use flow analysis to verify specific data-dependency
relations. This can be done by providing the tool with additional Global contracts stating the set of global variables
accessed by a subprogram. You need to only supply those contracts that you want to verify. Other contracts will be
automatically inferred by the tool. The simplest form of data dependency contract states that a subprogram is not
allowed to either read or modify global variables:

procedure Increment (X : in out Integer) with
Global => null;

This construction uses the Ada 2012 aspect syntax. You must place it on the subprogram declaration if any, otherwise
on the subprogram body. You can use an alternative notation based on pragmas if compatibility with older versions of
Ada is required:

procedure Increment (X : in out Integer);
pragma Global (null);

This annotation is the most common one as most subprograms don’t use global state. In its more complete form,
the Global contract allows specifing precisely the set of variables that are read, updated, and initialized by the
subprogram:

procedure P with
Global =>

(Input => (X1, X2, X3),
-- variables read but not written by P (same as 'in' parameters)
In_Out => (Y1, Y2, Y3),

-- variables read and written by P (same as 'in out' parameters)
Output => (Z1, Z2, Z3));

-- variables initialized by P (same as 'out' parameters)

The use of Global contracts is not mandatory. However, whenever a contract is provided, it must be correct and
complete: that is, it must mention every global variable accessed by the subprogram with the correct mode. Similarly
to subprogram parameter modes, global contracts are checked by the tool in flow analysis mode and checks and
warnings are issued in case of non-conformance. To verify manually supplied global contracts, run GNATprove in
flow analysis mode by selecting the SPARK → Examine File menu, selecting the flow mode in the GPS panel, checking
the Do not report warnings box, uncheck the Report checks proved box, and clicking Execute.

Global contracts are described more completely in the SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/
html/ug/en/source/subprogram_contracts.html#data-dependencies.

4.5.2 Constants with Variable Inputs

When a subprogram accesses a constant whose value depends on variable inputs (that is, on the value of variables or
of other constants with variable inputs), it must be listed in the Global contract of the subprogram, if any. This may
come as a surprise to users. However, this is required to properly verify every flow of information between variables
of the program. As an example, on the following program, the dependency of Set_X_To_C on the value of Y is
expressed by the constant with the variable input C appearing in its Global contract:

Y : Integer := 0;
procedure Set_X_To_Y (X : out Integer) with

Global => (Input => Y) --<<-- Y is an input of Set_X_To_Y
is
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C : constant Integer := Y;
procedure Set_X_To_C with

Global => (Input => C, Output => X)
--<<-- the dependency on Y is visible through the dependency on C

is
begin

X := C;
end Set_X_To_C;

begin
Set_X_To_C;

end Set_X_To_Y;

You can find more information about constants with variable inputs in the SPARK User’s Guide: http://docs.adacore.
com/spark2014-docs/html/ug/en/source/package_contracts.html#special-cases-of-state-abstraction.

4.5.3 Abstract State

Sometimes, you may want to annotate a subprogram that accesses a variable that isn’t visible from the subprogram
declaration because it’s declared inside some package private part or body. In such a case, you must give a name to the
variable through an abstract state declaration. This name can then be used to refer to the variable from within Global
contracts (but not from within regular code or assertions). More precisely, an abstract state can be declared for the
hidden state of a package using an Abstract_State aspect (or the equivalent pragma):

package P with
Abstract_State => State

is
V : Integer; -- V is visible in P so cannot be part of State

procedure Update_All with
Global => (Output => (V, State));

-- The Global contract mentions V explicitly but uses State to
-- refer to H and B.

private
H : Integer with -- H is hidden in P, it must be part of State
Part_Of => State;

end P;

package body P with
Refined_State => (State => (H, B))

is
B : Integer; -- B is hidden in P, it must be part of State

procedure Update_All is
begin

V := 0;
H := 0;
B := 0;

end Update_All;
end P;

An Abstract_State annotation is not required, though it may be necessary to annotate some subprograms with
Global contracts. However, when it’s provided, it must be correct and complete: it must list precisely all the hidden
variable declared in the package. Several abstract states can be defined for the same package to allow more precise
Global contracts on subprograms accessing only subsets of the package’s hidden variables:
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package P with
Abstract_State => (State1, State2)

is
procedure Update_Only_H with
Global => (Output => (State1));

-- If only one abstract state was defined for B and H, the Global
-- contract would be less precise.

private
H : Integer with
Part_Of => State1;

end P;

package body P with
Refined_State => (State1 => H, State2 => B)

is
B : Integer := 0;

procedure Update_Only_H is
begin

H := 0;
end Update_Only_H;

end P;

When you provide an abstract state, you must refine it into its constituents in the package body using the
Refined_State aspect or pragma. Furthermore, to be able to analyze the package specification independently,
every private variable must be linked to an abstract state using the Part_Of aspect. You can find information about
state abstraction in the SPARK User’s Guide: http://docs.adacore.com/spark2014-docs/html/ug/en/source/package_
contracts.html#state-abstraction.
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CHAPTER

FIVE

SILVER LEVEL - ABSENCE OF RUN-TIME ERRORS (AORTE)

The goal of this level is ensuring that the program does not raise an exception at run time. Among other things,
this ensures that the control flow of the program cannot be circumvented by exploiting a buffer overflow, possibly
as a consequence of an integer overflow. This also ensures that the program cannot crash or behave erratically when
compiled without support for run-time exceptions (compiler switch -gnatp) because of operation that would have
triggered a run-time exception.

GNATprove can be used to prove the complete absence of possible run-time errors corresponding to all possible
explicit raising of exceptions in the program, raising exception Constraint_Error at run time, and all possible
failures of assertions (corresponding to raising exception Assert_Error at run time).

A special kind of run-time errors that can be proved at this level is the absence of exceptions from defensive code.
This requires users to add subprogram preconditions (see section Preconditions for details) that correspond to the
conditions checked in defensive code. For example, defensive code that checks the range of inputs will translate into
preconditions of the form Input_X in Low_Bound .. High_Bound. These conditions are then checked by
GNATprove at each call.

Benefits

The SPARK code is guaranteed to be free from run-time errors (Absence of Run Time Errors - AoRTE) plus all
the defects already detected at Bronze level: no reads of uninitialized variables, no possible interference between
parameters and/or global variables, and no unintended access to global variables. Thus, the quality of the program can
be guaranteed to achieve higher levels of integrity than would be possible in another programming language.

All the messages about possible run-time errors can be carefully reviewed and justified (for example by relying on
external system constraints such as the maximum time between resets) and these justifications can be later reviewed
as part of quality inspections.

The proof of AoRTE can be used to compile the final executable without run-time exceptions (compiler switch
-gnatp), which allows having a very efficient code comparable to what can be achieved in C or assembly.

The proof of AoRTE can be used to comply with the objectives of certification standards in various domains (DO-178
in avionics, EN 50128 in railway, IEC 61508 in many safety related industries, ECSS-Q-ST-80C in space, IEC 60880
in nuclear, IEC 62304 in medical, ISO 26262 in automotive). To date, the use of SPARK has been qualified in EN
50128 context. Qualification material for DO-178 contexts should be available in 2018. Qualification material in any
context can be developed by AdaCore as part of a contract.

Impact on Process

An initial pass is required where proof of AoRTE is applied to the program and the resulting messages are resolved
by either rewriting code or justifying any false alarms. Once this is complete, like for the Bronze level, ongoing main-
tenance can maintain the same guarantees at reasonable cost. Using precise types and simple subprogram contracts
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(preconditions and postconditions) is sufficient to avoid most false alarms and any remaining false alarms can be easily
justified.

Special treatment is required for loops, which may need the addition of loop invariants to prove AoRTE inside and
after the loop. The detailed process for adding them is described in the SPARK User’s Guide, as well as examples of
common patterns of loops and their corresponding loop invariants.

Costs and Limitations

The initial pass may require a substantial effort to get rid of all false alarms, depending on the coding style adopted
previously. The analysis may take a long time, up to a few hours, on large programs but is guaranteed to terminate.
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables, and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may nevertheless not be able to prove it, due to limitations of the
heuristic techniques used in automatic provers. In practice, these limitations are mostly visible on non-linear integer
arithmetic (such as division and modulo) and floating-point arithmetic.

5.1 Running GNATprove in Proof Mode

Proof is the second static analysis performed by GNATprove, after the flow analysis seen at Bronze level. Unlike flow
analysis, proof may take more or less time to run, depending on the selected proof level. The higher the proof level,
the more precise the results and the longer the analysis.

Launch GNATprove in proof mode on your project by selecting the SPARK → Prove All menu. In the GPS panel,
select 0 as the value of Proof level, check the Multiprocessing box, uncheck the Report checks proved box, and click
Execute. The following snapshot shows the popup window from GPS with these settings:

GNATprove should output the following messages, possibly followed by a number of messages pointing to potential
problems in your program:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ..

The following messages output by GNATprove are check messages and should have the form:

medium: overflow check might fail

Similarly to the messages previously described, the severity of the check is shown first. It is one of low, medium, or
high and reflects both the likelihood of the reported problem being a bug and the criticality of the bug, if it exists.
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Following the colon is the type of the check message, here a potential arithmetic overflow. Each message is located in
your code at the point where the error can occur and the corresponding line in GPS editor is highlighted in red.

GNATprove can issue several kinds of check messages. In this document, we concentrate on the five most common:
division by zero, array index, arithmetic overflow, value in range, and correct discriminant. They are described in
section Run-time Checks. Other specific check messages can also be issued when tagged types or tasking constructs
are used. You can find more information about these additional checks in the SPARK User’s Guide: http://docs.
adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.html#description-of-messages.

Proving AoRTE requires interacting with GNATprove inside GPS to either fix the code, add annotations, succeed
in proving the check, or to justify the innocuity of the message. This process is explained in section Investigating
Unproved Run-time Checks.

Once each unproved check message has been addressed in some way, you can run proof mode again with the box
Report checks proved checked to see the verifications successfully performed by GNATprove. It should only issue
‘info’ messages, highlighted in green in GPS, like the following:

info: overflow check proved

5.2 Run-time Checks

divide by zero

This checks that the second operand of a division, mod or rem operation is not equal to zero. It’s applicable to all
integer and real types for division and to all integer types for mod and rem. Here’s an example of such checks:

type Oper is (D, M, R);
type Unsigned is mod 2**32;
Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small
with Size => 8;

procedure Oper_Integer (Op : Oper; X, Y : Integer; U : out Integer) is
begin

case Op is
when D => U := X / Y; --<<-- medium: divide by zero might fail
when M => U := X mod Y; --<<-- medium: divide by zero might fail
when R => U := X rem Y; --<<-- medium: divide by zero might fail

end case;
end Oper_Integer;

procedure Oper_Unsigned (Op : Oper; X, Y : Unsigned; U : out Unsigned) is
begin

case Op is
when D => U := X / Y; --<<-- medium: divide by zero might fail
when M => U := X mod Y; --<<-- medium: divide by zero might fail
when R => U := X rem Y; --<<-- medium: divide by zero might fail

end case;
end Oper_Unsigned;

procedure Div_Float (X, Y : Float; U : out Float) is
begin

U := X / Y; --<<-- medium: divide by zero might fail
end Div_Float;

procedure Div_Fixed (X, Y : Fixed; U : out Fixed) is
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begin
U := X / Y; --<<-- medium: divide by zero might fail

end Div_Fixed;

A special case of possible division by zero is the exponentiation of a float value of 0.0 by a negative exponent since
the result of this operation is defined as the inverse of the exponentiation of its argument (hence 0.0) by the absolute
value of the exponent. Here’s an example of such checks:

procedure Exp_Float (X : Float; Y : Integer; U : out Float) is
begin

U := X ** Y; --<<-- medium: divide by zero might fail
end Exp_Float;

index check

This checks that a given index used to access an array is within the bounds of the array. This applies to both reads and
writes to an array. Here’s an example of such checks:

function Get (S : String; J : Positive) return Character is
begin

return S(J); --<<-- medium: array index check might fail
end Get;

procedure Set (S : in out String; J : Positive; C : Character) is
begin

S(J) := C; --<<-- medium: array index check might fail
end Set;

overflow check

This checks that the result of a given arithmetic operation is within the bounds of its base type, which corresponds to
the bounds of the underlying machine type. It’s applicable to all signed integer types (but not modular integer types)
and real types, for most arithmetic operations (unary negation, absolute value, addition, subtraction, multiplication,
division, exponential). Here’s an example of such checks:

type Oper is (Minus, AbsVal, Add, Sub, Mult, Div, Exp);
type Unsigned is mod 2**32;
Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small
with Size => 8;

procedure Oper_Integer (Op : Oper; X, Y : Integer; E : Natural; U : out Integer) is
begin

case Op is
when Minus => U := -X; --<<-- medium: overflow check might fail
when AbsVal => U := abs X; --<<-- medium: overflow check might fail
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => U := X ** E; --<<-- medium: overflow check might fail

end case;
end Oper_Integer;
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procedure Oper_Float (Op : Oper; X, Y : Float; E : Natural; U : out Float) is
begin

case Op is
when Minus => U := -X;
when AbsVal => U := abs X;
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => U := X ** E; --<<-- medium: overflow check might fail

end case;
end Oper_Float;

procedure Oper_Fixed (Op : Oper; X, Y : Fixed; E : Natural; U : out Fixed) is
begin

case Op is
when Minus => U := -X; --<<-- medium: overflow check might fail
when AbsVal => U := abs X; --<<-- medium: overflow check might fail
when Add => U := X + Y; --<<-- medium: overflow check might fail
when Sub => U := X - Y; --<<-- medium: overflow check might fail
when Mult => U := X * Y; --<<-- medium: overflow check might fail
when Div => U := X / Y; --<<-- medium: overflow check might fail
when Exp => null;

end case;
end Oper_Fixed;

Note that there is no overflow check when negating a floating-point value or taking its absolute value since floating-
point base types (32 bits or 64 bits) have symmetric ranges. On the other hand, negating a signed integer or taking its
absolute value may result in an overflow if the argument value is the minimal machine integer for this type because
signed machine integers are don’t have symmetric ranges (they have one less positive value than to negative values).
Fixed-point types are based in an machine integer representation, so they can also overflow on negation and absolute
value.

range check

This checks that a given value is within the bounds of its expected scalar subtype. It’s applicable to all scalar types,
including signed and modulo integers, enumerations and real types. Here’s an example of such checks:

type Enum is (A, B, C, D, E);
subtype BCD is Enum range B .. D;

type Unsigned is mod 2**32;
subtype Small_Unsigned is Unsigned range 0 .. 10;

Small : constant := 1.0 / 2.0**7;
type Fixed is delta Small range -1.0 .. 1.0 - Small
with Size => 8;

subtype Natural_Fixed is Fixed range 0.0 .. Fixed'Last;

subtype Natural_Float is Float range 0.0 .. Float'Last;

procedure Convert_Enum (X : Enum; U : out BCD) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Enum;
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procedure Convert_Integer (X : Integer; U : out Natural) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Integer;

procedure Convert_Unsigned (X : Unsigned; U : out Small_Unsigned) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Unsigned;

procedure Convert_Float (X : Float; U : out Natural_Float) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Float;

procedure Convert_Fixed (X : Fixed; U : out Natural_Fixed) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Fixed;

discriminant check

This checks that the discriminant of the given discriminated record has the expected value. For variant records, this
check is performed for a simple access, either read or write, to a record component. Here’s an example of such checks:

type Rec (B : Boolean) is record
case B is

when True =>
X : Integer;

when False =>
Y : Float;

end case;
end record;

function Get_X (R : Rec) return Integer is
begin

return R.X; --<<-- medium: discriminant check might fail
end Get_X;

procedure Set_X (R : in out Rec; V : Integer) is
begin

R.X := V; --<<-- medium: discriminant check might fail
end Set_X;

5.3 Investigating Unproved Run-time Checks

You should expect many messages about possible run-time errors to be issued the first time you analyze a program, for
two main reasons: First, the analysis done by GNATprove relies on the information provided in the program to compute
all possible values of variables. This information lies chiefly in the types and contracts added by programmers. If
types are not precise enough and/or necessary contracts are not inserted, GNATprove cannot prove AoRTE. Second,
the initial analysis performed at proof level 0 is the fastest but also the least precise. Nevertheless, you should start at
this level because many checks are not initially provable due to imprecise types and missing contracts. As you add
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precise types and contracts to the program, it becomes profitable for you to perform analyses at higher proof levels 1
and 2 to get more precise results.

Proving AoRTE requires interacting with GNATprove inside GPS. Thus, we suggest that you select a unit (preferably
one with few dependences over other unproved units, ideally a leaf unit not depending on other unproved units) with
some unproved checks. Open GPS on your project, display this unit inside GPS, and put the focus on this unit. Inside
this unit, select a subprogram (preferably one with few calls to other unproved subprograms, ideally a leaf subprogram
not calling other unproved subprograms) with some unproved checks. This is the first subprogram you will analyze at
Silver level.

For each unproved run-time check in this subprogram, you should follow the following steps:

1. Understand why the run-time check can’t fail. If you don’t understand why a run-time check can never fail,
GNATprove can’t either. You may discover at this stage that the run-time check can indeed fail, in which case
you must first correct the program so that this isn’t possible.

2. Determine if the reason(s) that the check always succeeds are known locally. GNATprove analysis is modular,
meaning it only looks at locally available information to determine whether a check succeeds or not. This
information consists mostly of the types of parameters and global variables, the precondition of the subprogram,
and the postconditions of the subprogram it calls. If the information is not locally available, you should change
types and/or add contracts to make it locally available to the analysis. See the paragraphs below on ‘More
Precise Types’ and ‘Useful Contracts’.

3. If the run-time check depends on the value of a variable being modified in a loop, you may need to add a
loop invariant, i.e. a specific annotation in the form of a pragma Loop_Invariant inside the loop, which
summarizes the effect of the loop on the variable value. See the specific section of the SPARK User’s Guide on
that topic: http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html.

4. Once you’re confident this check should be provable, run SPARK in proof mode on the specific line with
the check by right-clicking on the line in the editor panel inside GPS, selecting SPARK → Prove Line from
the contextual menu, selecting 2 as value for Proof level and checking the Report checks proved box, both in
the GPS panel, and clicking Execute. GNATprove should either output a message confirming that the check is
proved or the same message as before. In the latter case, you will need to interact with GNATprove to investigate
why the check still isn’t proved.

5. It may sometimes be difficult to distinguish cases where some information is missing for the provers to prove
the check from cases where the provers are incapable of proving the check even with the necessary informa-
tion. There are multiple actions you can take that may help distinguishing those cases, as documented in a
specific section of the SPARK User’s Guide on that topic (see subsections on ‘Investigating Unprovable Prop-
erties’ and ‘Investigating Prover Shortcomings’): http://docs.adacore.com/spark2014-docs/html/ug/en/source/
how_to_investigate_unproved_checks.html. Usually, the best action to narrow down the issue to its core is to
insert assertions in the code that test whether the check can be proved at some specific point in the program.
For example, if a check message is issued about a possible division by zero on expression X/Y, and the imple-
mentation contains many branches and paths before this point, try adding assertions that Y /= 0 in the various
branches. This may point to a specific path in the program which causes the issue or it may help provers to
manage to prove both the assertion and the check. In such a case, it’s good practice to retain in the code only
those essential assertions that help produce the automatic proof and to remove other intermediate assertions that
you inserted during your interaction with the prover.

6. If the check turns out to be unprovable due to limitations in the proving technology, you will have to justify
its presence by inserting a pragma Annotate after the line where the check message is reported so that
future runs of GNATprove will not report it again . See SPARK User’s Guide at http://docs.adacore.com/
spark2014-docs/html/ug/en/source/how_to_investigate_unproved_checks.html.

Below we describe how you can change types to be more precise for analysis and how you can add contracts that will
make it possible to prove AoRTE.
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More Precise Types

GNATprove’s analysis crucially depends on the ranges of scalar types. If the program uses standard scalar types
such as Integer and Float, nothing is known about the range of the data manipulated and result most arithmetic
operations will lead to an overflow check message. In particular, data that is used to index arrays or as the right-hand-
side of division operations (which includes mod and rem operators) should be known to be respectively in range of the
array and not null, generally just by looking at their type.

When standard types such as Integer and Float are used, you will need to introduce more specific types like
Temperature or Length, with suitable ranges. These may be either new types like:

type Temperature is digits 6 range -100.0 .. 300.0;
type Length is range 0 .. 65_535;

derived types like:

type Temperature is new Float range -100.0 .. 300.0;
type Length is new Integer range 0 .. 65_535;

or subtypes like:

subtype Temperature is Float range -100.0 .. 300.0;
subtype Length is Integer range 0 .. 65_535;

When user types are introduced, you may either add a suitable range to these types or introduce derived types or
subtypes with suitable range as above.

Useful Contracts

Aside from types, it might be important to specify in which context a subprogram may be called. This is known
as the precondition of the subprogram. All the examples of check messages seen in section Run-time Checks
could be proved if suitable preconditions are added to the enclosing subprogram. For example, consider procedure
Convert_Integer, which assigns an integer X to a natural U:

procedure Convert_Integer (X : Integer; U : out Natural) is
begin

U := X; --<<-- medium: range check might fail
end Convert_Integer;

In order for GNATprove to prove that the conversion cannot lead to a range check failure, it needs to know that X is
non-negative when calling Convert_Integer, which can be expressed as a precondition as follows:

procedure Convert_Integer (X : Integer; U : out Natural)
with Pre => X >= 0

is
begin

U := X;
end Convert_Integer;

With such a precondition, the range check inside Convert_Integer is proved by GNATprove. As a result of
inserting preconditions for subprograms, GNATprove checks that the corresponding conditions hold when calling
these subprograms. When these conditions cannot be proved, GNATprove issues check messages that need to be
handled like run-time check messages. As a result, the same precondition may be pushed up multiple levels of callers
to a point where the condition is known to hold.
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When a subprogram calls another subprogram, it may also be important to specify what can be guaranteed about the
result of that call. For example, consider procedure Call_Convert_Integer, which calls the previously seen
procedure Convert_Integer:

procedure Call_Convert_Integer (Y : in out Natural) is
Z : Natural;

begin
Convert_Integer (Y, Z);
Y := Y - Z; --<<-- medium: range check might fail

end Call_Convert_Integer;

When GNATprove analyzes Call_Convert_Integer, the only locally available information about the value of Z
after the call to Convert_Integer is its type. This isn’t sufficient to guarantee that the subtraction on the following
line results in a non-negative result, so GNATprove issues a message about a possible range check failure on this code.
In order for GNATprove to prove that the subtraction cannot lead to a range check failure, it needs to know that Z is
equal to Y after calling Convert_Integer, which can be expressed as a postcondition as follows:

procedure Convert_Integer (X : Integer; U : out Natural)
with Pre => X >= 0,

Post => X = U
is
begin

U := X;
end Convert_Integer;

With such a postcondition, the range check inside Call_Convert_Integer is proved by GNATprove. Because of
the postconditions added to subprograms, GNATprove checks that the corresponding conditions hold when returning
from these subprograms. When these conditions cannot be proved, GNATprove issues check messages that need to be
handled similarly to run-time check messages.
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CHAPTER

SIX

GOLD LEVEL - PROOF OF KEY INTEGRITY PROPERTIES

The goal of the Gold level is ensuring key integrity properties such as maintaining critical data invariants throughout
execution and ensuring that transitions between states follow a specified safety automaton. Typically, these properties
derive from software requirements. Together with the Silver level, these goals ensure program integrity, that is, the
program keeps running within safe boundaries: the control flow of the program is correctly programmed and cannot
be circumvented through run-time errors and data cannot be corrupted.

SPARK defines a number of useful features used to specify both data invariants and control flow constraints:

• Type predicates state properties that should always be true of any object of the type.

• Preconditions state properties that should always hold on subprogram entry.

• Postcondition state properties that should always hold on subprogram exit.

These features can be verified statically by running GNATprove in prove mode, similarly to what was done at the
Silver level. At every point where a violation of the property may occur, GNATprove issues either an ‘info’ message,
verifying that the property always holds, or a ‘check’ message about a possible violation. Of course, a benefit of
proving properties is that they don’t need to be tested, which can be used to reduce or completely remove unit testing.

These features can also be used to augment integration testing with dynamic verification that these key integrity prop-
erties are satisfied. To enable these additional verifications during execution, you can use either the compilation switch
-gnata (which enables verification of all invariants and contracts at run time) or pragma Assertion_Policy
(which enables a subset of the verifications) either inside the code (so that it applies to the code that follows in the
current unit) or in a pragma configuration file (so that it applies to the entire program).

Benefits

The SPARK code is guaranteed to respect key integrity properties as well as being free from all the defects already
detected at Bronze and Silver levels: no reads of uninitialized variables, no possible interference between parameters
and global variables, no unintended access to global variables, and no run-time errors. This is a unique feature of
SPARK that is not found in other programming languages. In particular, such guarantees may be used in a safety case
to make reliability claims.

The effort in achieving that level of confidence based on proof is relatively low compared to the effort required to
achieve the same level based on testing. Indeed, confidence based on testing has to rely on a nearly comprehensive
testing strategy. In fact, certification standards define criteria for approaching comprehensive testing, such as Modified
Condition/Decision Coverage (MC/DC), which are notoriously expensive to achieve. Many certification standards
allow the use of proof as a replacement for testing, in particular DO-178C in avionics, EN 50128 in railway and IEC
61508 in process and military. Obtaining proofs, as done in SPARK, can thus be used as cost effective alternative to
unit testing.
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Impact on Process

In a certification context where proof replaces testing, if independence is required between development and verifi-
cation activities, subprogram contracts that express software requirements should not be created by the developers
implementing such requirements. This is similar to the independence that can be required between the developer and
the tester of a module. However, programmers can be expected to write intermediate assertions and to run GNATprove
to check that their implementation satisfies the requirements.

Depending on the complexity of the property being proven, it may be more or less costly to add the necessary contracts
on types and subprograms and to achieve complete automatic proof by interacting with the tool. This typically requires
some experience with the tool that can be developed by training and practice, which suggests that not all developers
should be tasked with developing such contracts and proofs, but instead that a few developers should be designated for
this task.

As with the proof of AoRTE at Silver level, special treatment is required for loops, which may need the addition of
loop invariants to prove properties inside and after the loop. The detailed process for doing so is described in SPARK
User’s Guide, as well as examples of loops and their corresponding loop invariants.

Costs and Limitations

The analysis may take a long time, up to a few hours, on large programs, but it is guaranteed to terminate. It may also
take more or less time depending on the proof strategy adopted (as indicated by the switches passed to GNATprove).
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may fail to prove it due to limitations of the heuristic techniques used
in automatic provers. In practice, these limitations are mostly visible on non-linear integer arithmetic (such as division
and modulo) and on floating-point arithmetic.

Some properties may not be easily expressible in the form of data invariants and subprogram contracts, for example
properties on execution traces or temporal properties. Other properties may require the use of non-intrusive instru-
mentation in the form of ghost code.

6.1 Type predicates

Type predicates are boolean expressions that constrain the value of objects of a given type. You can attach a type
predicate to a scalar type or subtype:

type Even is new Integer
with Predicate => Even mod 2 = 0;

In the case above, the use of the type name Even in the predicate expression denotes the current object of type Even,
which we’re saying must be even for the expression to evaluate to True. Similarly, a type predicate can be attached
to an array type or subtype:

subtype Simple_String is String
with Predicate =>

Simple_String'First = 1 and Simple_String'Last in Natural;

type Sorted is array (1 .. 10) of Integer
with Predicate => (for all J in 1 .. 9 => Sorted(J) <= Sorted(J+1));
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Simple_String is the same as standard String except that objects of this type always start at index 1 and have a
unique representation for the null string, which normally ends at index 0. Type Sorted uses a more complex quantified
expression to express that contiguous elements in the array are sorted in increasing order. Finally, a type predicate can
also be attached to a record type or subtype:

type Name (Size : Positive) is record
Data : String(1 .. Size);
Last : Positive;

end record
with Predicate => Last <= Size;

Discriminated record Name is a typical example of a variable-sized record, where the internal array Data is indexed
up to the value of component Last. The predicate expresses an essential invariant of objects of type Name, namely
that Last will always be no greater than Size. This assures that to Data(Last) will be in bounds.

6.2 Preconditions

Preconditions are boolean expressions that should be true each time a subprogram is called and are typically used
to express API constraints that ensure correct execution of the subprogram. They can thus replace or complement
comments and/or defensive code that expresses and/or checks such constraints. Compare the following three styles of
expressing that string Dest should be at least as long as string Src when copying Src into Dest. The first way is to
express the constraint in a comment attached to the subprogram declaration:

procedure Copy (Dest : out String; Src : in String);
-- Copy Src into Dest. Require Dest length to be no less than Src length,
-- otherwise an exception is raised.

Though readable by humans, this constraint cannot be verified automatically. The second way is to express the con-
straint is using defensive code inside the subprogram body:

procedure Copy (Dest : out String; Src : in String) is
begin

if Dest'Length < Src'Length then
raise Constraint_Error;

end if;
-- copies Src into Dest here

end Copy;

While this constraint can be verified at run time, it’s hidden inside the implementation of the subprogram and can’t be
verified statically with GNATprove. The third way is to express the constraint is as a precondition:

procedure Copy (Dest : out String; Src : in String)
with Pre => Dest'Length >= Src'Length;

-- Copy Src into Dest.

This constraint is readable by humans and it can be verified at run time and statically by GNATprove.

6.3 Postconditions

Postconditions are boolean expressions that should be true each time a subprogram returns. Postconditions are similar
to the normal assertions used by programmers to check properties at run time (with pragma Assert), but are more
powerful:
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1. When a subprogram has multiple returns, it is easy to forget to add a pragma Assert before one of the exit
points. Postconditions avoid that pitfall.

2. Postconditions can express relations between values of variables at subprogram entry and at subprogram exit,
using the attribute X'Old to denote the value of variable X at subprogram entry.

Postconditions can be used to express major transformations in the program that are performed by some subprograms.
For example, data collected from a network may need to be sanitized and then normalized before being fed to the main
part of the program. This can be expressed with postconditions:

type Status is (Raw, Sanitized, Normalized);
type Chunk is record

Data : String (1 .. 256);
Stat : Status;

end record;

procedure Sanitize (C : in out Chunk)
with Pre => C.Stat = Raw,

Post => C.Stat = Sanitized;

procedure Normalize (C : in out Chunk)
with Pre => C.Stat = Sanitized,

Post => C.Stat = Normalized;

procedure Main_Treatment (C : in Chunk)
with Pre => C.Stat = Normalized;

In the code segment above, preconditions and postconditions are used to track the status of the data chunk C so that
we can guarantee that transformations are performed in the specified order.

6.4 Ghost Code

Sometimes, the variables and functions present in a program are insufficient to specify intended properties and to verify
these properties with GNATprove. This is the case if the property that should be verified is never used explicitly in the
code. For example, the property that a collection is sorted can be maintained for efficient modifications and queries on
the collection without the need to have an explicit function Is_Sorted. However, this function is essential to state
the property that the collection remains sorted.

In such a case, SPARK allows you to insert additional code in the program that’s useful for specification and verifica-
tion, specially identified with the aspect Ghost so that it can be discarded during compilation. So-called ghost code
in SPARK are these parts of the code that are only meant for specification and verification and have no effect on the
functional behavior of the program at run time.

Various kinds of ghost code are useful in different situations: * Ghost functions are typically used to express properties
used in contracts. * Global ghost variables are typically used to keep track of the current state

of a program or maintain a log of past events of some type. This information can then be referred to in
contracts.

Typically, the current state of the program may be stored in a global ghost variable, whose value may be suitably
constrained in preconditions and postconditions. For example, the program may need to proceed through a number of
steps, from sanitization through normalization to main treatment. A ghost variable Current_State may then be
used to record the current status of the program and its value may be used in contracts as follows:

type Status is (Raw, Sanitized, Normalized) with Ghost;
Current_State : Status with Ghost;
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procedure Sanitize
with Pre => Current_State = Raw,

Post => Current_State = Sanitized;

procedure Normalize
with Pre => Current_State = Sanitized,

Post => Current_State = Normalized;

procedure Main_Treatment
with Pre => Current_State = Normalized;

See the SPARK User’s Guide for more examples of ghost code: http://docs.adacore.com/spark2014-docs/html/ug/en/
source/specification_features.html#ghost-code

6.5 Investigating Unproved Properties

As seen at Silver level in the section Investigating Unproved Run-time Checks, it’s expected that many messages about
possible violations of properties (assertions, contracts) are issued the first time a program is analyzed, for similar
reasons:

1. The analysis done by GNATprove relies on the information provided in the program to compute possible rela-
tions between variables. For proving properties, this information lies mostly in the contracts added by program-
mers. If the contracts are not precise enough, GNATprove cannot prove the desired properties.

2. The initial analysis performed at proof level 0 is the fastest but the least precise. At the Gold level, we advise
starting at level 2, so all provers are requested to use reasonable effort (steps). During the interaction with GNAT-
prove, while contracts and assertions are added in the program, it is in general a good idea to perform analysis
with only CVC4 enabled (--prover=cvc4), no step limit (--steps=0) and a higher timeout for individual
proof attempts (--timeout=30) to get both faster and more precise results. Note that using timeouts instead
of steps is not portable between machines, so it’s better to reserve it for interactive use. The following snapshot
shows the popup window from GPS (using the Advanced User profile set through the Preference → SPARK
menu) with these settings:

Proving properties requires interacting with GNATprove inside GPS. Thus, we suggest you select a unit (preferably
one with few dependences over other unproved units, ideally a leaf unit not depending on other unproved units) with
some unproved checks. Open GPS on your project, display this unit inside GPS, and put the focus on this unit. Inside
this unit, select a subprogram (preferably one with few calls to other unproved subprograms, ideally a leaf subprogram
not calling other unproved subprograms) with some unproved checks. This is the first subprogram you will analyze at
Gold level.
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For each unproved property in this subprogram, you should follow the following steps:

1. Understand why the property can’t be false at run time. If you don’t understand why a property holds, GNAT-
prove can’t either. You may discover at this stage that indeed the property may fail at run time, in which case
you first need to correct the program so that it can’t fail.

2. Determine if the reasons for the property to hold are known locally. GNATprove analysis is modular, which
means it only looks at locally available information to determine whether a check succeeds or not. This infor-
mation consists mostly of the types of parameters and global variables, the precondition of the subprogram, and
the postconditions of the subprogram it calls. If the information is not locally available, you should change types
and/or add contracts to make it locally available tothe analysis.

3. If the property depends on the value of a variable being modified in a loop, you may need to add a loop invariant,
i.e. a specific annotation in the form of a pragma Loop_Invariant inside the loop, that summarizes the
effect of the loop on the variable value. See the specific section of the SPARK User’s Guide on that topic:
http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html.

4. Once you are confident this property should be provable, run SPARK in proof mode on the specific line with
the check by right-clicking on this line in the editor panel inside GPS, selecting SPARK → Prove Line from
the contextual menu, selecting 2 as value for Proof level (and possibly setting the switches --prover=cvc4
--steps=0 --timeout=30 in the textual box, as described above) and checking the Report checks proved
box, all in the GPS panel, and clicking Execute. GNATprove should either output a message that confirms that
the check is proved or the same message as before. In the latter case, you will need to interact with GNATprove
to investigate why the check is still not proved.

5. It may sometimes be difficult to distinguish cases where some information is missing for the provers to prove the
property from cases where the provers are incapable of proving the property even with the necessary information.
The are multiple actions you can take that may help distinguishing those cases, as documented in a specific
section of the SPARK User’s Guide on that topic (see subsections on ‘Investigating Unprovable Properties’
and ‘Investigating Prover Shortcomings’): http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_
investigate_unproved_checks.html. Usually, the most useful action to narrow down the issue to its core is to
insert assertions in the code that test whether the property (or part of it) can be proved at some specific point
in the program. For example, if a postcondition states a property (P or Q) and the implementation contains
many branches and paths, try adding assertions that P holds or Q holds where they’re expected to hold. This may
point to a specific path in the program and/or a specific part of the property which cause the issue. This may also
help provers to manage to prove both the assertion and the property. In such a case, it’s good practice to retain
in the code only those essential assertions that help getting automatic proof and to remove other intermediate
assertions that you inserted during the interaction.

6. If the check turns out to be unprovable due to limitations in the proving technology, you have to justify its
presence by inserting a pragma Annotate after the line where the check message is reported so future runs
of GNATprove will not report it again. See SPARK User’s Guide at http://docs.adacore.com/spark2014-docs/
html/ug/en/source/how_to_investigate_unproved_checks.html.
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CHAPTER

SEVEN

EXAMPLE

As an example, we applied the guidelines in this document to the top-level program in the GNATprove tool itself,
called gnatprove, which handles the configuration switches, calls other executables to do the analysis and re-
ports messages. We started by manually adding a pragma SPARK_Mode (On) to every file of the project. Since
gnatprove is small (26 units for a total of 4,500 sloc), we didn’t need any automation for this step. We then ran
GNATprove in check mode. It appeared that no unit of the project was valid SPARK, mostly because of string access
types in configuration phase and because of uses of standard container packages for reporting, both of which are not
in SPARK.

We chose to concentrate on the print_table package, which display the results of a run of GNATprove as a table.
It stores the results inside a two dimensional array and then prints them in the gnatprove.out file. It’s relatively
small, but exhibits possible run-time errors, for example when indexing the array or when computing the size required
for the table.

7.1 Stone Level

We first ran GNATprove in check mode on the unit. We found a non-conformance due to the initializing function for
the table having global outputs. Indeed, the unit was designed to construct a unique table, by storing elements line by
line from right to left. The current position in the table was stored as a global variable in the package body. As the
table array itself was of an unconstrained type (we do not know the number of lines and columns required a priori) it
was not stored as a global variable, but carried explicitly as a parameter of the storage procedure. The initialization
function both returned a new array, and initialized the value of the current position, thus having global outputs:

function Create_Table (Lines, Cols : Natural) return Table is
T : constant Table (1 .. Lines, 1 .. Cols) :=

(others => (others => Cell'(Content => Null_Unbounded_String,
Align => Right_Align)));

begin
Cur_Line := 1;
Cur_Col := 1;
return T;

end Create_Table;

To deal with a function with output globals, the guidelines advise either hiding the function body for analysis if the
effect does not matter for proof or turning it into a procedure with an ‘out’ parameter. None of these solutions was
adequate here as the effects of this function do matter and the array cannot be given as an ‘out’ parameter since it’s
unconstrained. In fact, the non-conformance here comes from a bad implementation choice, which separated the table
from its cursors, allowing for unexpected behaviors if two tables were to be initialized. We therefore chose to redesign
the code and introduced a record with discriminants to hold both the array and the current position. As this record is of
an unconstrained type, it’s not stored in a global variable but rather passed explicitly as a parameter as the array used
to be.
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type Table (L, C : Natural) is record
Content : Table_Content (1 .. L, 1 .. C);
Cur_Line : Positive;
Cur_Col : Positive;

end record;

function Create_Table (Lines, Cols : Natural) return Table;

Other than this non-conformance, GNATprove issued a dozen warnings about assuming no effect of functions from
the Ada.Strings.Unbounded and Ada.Text_IO libraries. This is fine: these functions indeed should have no
effects on variables visible to GNATprove. It simply means that issues that may arise when using these libraries are
outside of the scope of GNATprove and should be verified in a different way.

We ran GNATprove in check mode on the unit without further errors. We therefore reached the Stone level on this
unit.

7.2 Bronze Level

Next, we ran GNATprove in flow analysis mode on the unit. No check messages were emitted: we only got a new
warning stating that the procedure Dump_Table, which writes the value of the table to the gnatprove.out file,
had no effect. This is expected: functions from the Ada.Text_IO library are assumed to have no effect.

As no global variables are accessed by the unit subprograms after the modification outlined earlier, we added global
contracts on every subprogram enforcing this:

function Create_Table (Lines, Cols : Natural) return Table with
Global => null;

These contracts are all verified by GNATprove. We thus reached Bronze level on this unit.

7.3 Silver Level

We then ran GNATprove in prove mode on the unit. 13 check messages were emitted:

• 3 array index checks when accessing at the current position in the table,

• 1 assertion used as defensive coding,

• 2 range checks on Natural, and

• 7 overflow checks when computing the maximal size of the array.

To prove the array index checks, we needed to state that the position is valid in the array when storing a new element.
To do this, we put preconditions on the storing procedure:

procedure Put_Cell
(T : in out Table;
S : String;
Align : Alignment_Type := Right_Align)

with
Global => null,
Pre => T.Cur_Line <= T.L and then T.Cur_Col <= T.C;

With this precondition, GNATprove could successfully verify the index checks as well as two overflow checks located
at the increment of the position cursors.
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The assertion states that the procedure New_Line, which moves the current position to the beginning of the next line,
can only be called if we’re at the end of the current line. We transformed it into a precondition:

procedure New_Line (T : in out Table)
with

Global => null,
Pre => T.Cur_Col = T.C + 1 and then T.Cur_Line <= T.L;

Avoiding run-time errors in the computation of the maximum size of the table was more complicated. It required
bounding both the maximum number of elements in the table and the size of each element. To bound the maximal
number of elements in the table, we introduce a constrained subtype of Positive for the size of the table, as
described in the guidelines:

subtype Less_Than_Max_Size is Natural range 0 .. Max_Size;

type Table (L, C : Less_Than_Max_Size) is record
Content : Table_Content (1 .. L, 1 .. C);
Cur_Line : Positive;
Cur_Col : Positive;

end record;

We couldn’t introduce a range for the size of the elements stored in the table, as they aren’t scalars but instead un-
bounded strings. We thus resorted to a predicate to express the constraint:

type Cell is record
Content : Unbounded_String;
Align : Alignment_Type;

end record with
Predicate => Length (Content) <= Max_Size;

Next, we needed to add an additional precondition to Put_Cell to appropriately constrain the strings that can be
stored in the table. With these constraints, as well as some loop invariants to propagate the bound throughout the
computation of the maximum size of the table, every check message was discharged except for three, which needed
additional information on the subprograms from the unbounded strings library. We introduced an assumption for
why the checks could not fail and justified it by quoting the Ada Reference Manual as it is easier to review a single
assumption than try to understand what can cause a more complex check to fail.

pragma Assume (Length (Null_Unbounded_String) = 0,
"Null_Unbounded_String represents the null String.");

T.Content (T.Cur_Line, T.Cur_Col) :=
Cell'(Content => To_Unbounded_String (S),

Align => Align);

There were no more unproved check messages when running GNATprove in prove mode on print_table. We thus
reached Silver level on this unit.

7.4 Gold Level

The subprograms defined in Print_Table are annotated with precise comments describing their effects on the table.
As an example, here is the comment associated with Put_Cell:

procedure Put_Cell
(T : in out Table;
S : String;
Align : Alignment_Type := Right_Align);
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-- Print a string into the current cell of the table, and move to the next
-- cell. Note that this does not move to the next line, you need to call
-- New_Line below after printing to the last cell of a line.

We used these comments to derive postconditions on the procedures used to create the table. So that the postcondition
of Put_Cell is easier to read, we decided to introduce a ghost expression function Is_Set that relates the values
of the contents of the table before and after the update:

function Is_Set
(T : Table_Content;
L, C : Less_Than_Max_Size;
S : String;
A : Alignment_Type;
R : Table_Content) return Boolean

-- Return True if R is S updated at position (L, C) with Cell (S, A)
is

-- T and R range over the same ranges

(T'First (1) = R'First (1) and then T'Last (1) = R'Last (1)
and then T'First (2) = R'First (2) and then T'Last (2) = R'Last (2)

-- They contain the same values except at position L, C where R
-- contains S and A.

and then L in T'Range (1) and then C in T'Range (2)
and then To_String (R (L, C).Content) = S
and then R (L, C).Align = A
and then (for all I in T'Range (1) =>

(for all J in T'Range (2) =>
(if I /= L and J /= C then R (I, J) = T (I, J)))))

with Ghost;

Using this function, we can rephrase the comment of Put_Cell as a simple postcondition:

procedure Put_Cell
(T : in out Table;
S : String;
Align : Alignment_Type := Right_Align)

with
Global => null,
Pre => T.Cur_Line <= T.L and then T.Cur_Col <= T.C

and then S'Length <= Max_Size,

-- S has been printed inside the current cell with alignment Align

Post => Is_Set (T => T.Content'Old,
L => T.Cur_Line'Old,
C => T.Cur_Col'Old,
S => S,
A => Align,
R => T.Content)

-- We have moved to the next cell, but not moved to the next line,
-- even if needed.

and T.Cur_Line = T.Cur_Line'Old
and T.Cur_Col = T.Cur_Col'Old + 1;
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For GNATprove to verify this postcondition, we had to introduce yet another assumption relating the result of
To_String on an instance of To_Unbounded_String to its input:

pragma Assume (To_String (To_Unbounded_String (S)) = S,
String'("If S is a String, then "

& "To_String(To_Unbounded_String(S)) = S."));

In the same way, we translated the comments provided on every subprogram dealing with the creation of the table.
We didn’t supply any contract for the subprogram responsible for dumping the table into a file because it’s modeled in
SPARK as having no effect.

These contracts are all verified by GNATprove. We thus reached Gold level on this unit.
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REFERENCES

The e-learning website AdaCore University proposes a freely available course on SPARK in five lessons at http:
//university.adacore.com/courses/spark-2014/

The SPARK User’s Guide is available at http://docs.adacore.com/spark2014-docs/html/ug/

The SPARK Reference Manual is available at http://docs.adacore.com/spark2014-docs/html/lrm/

The official book on SPARK is “Building High Integrity Applications with SPARK” by McCormick and Chapin,
edited by Cambridge University Press. It is sold online by Amazon and many others.

For a historical account of the evolution of SPARK technology and its use in industry, see the article “Are We There
Yet? 20 Years of Industrial Theorem Proving with SPARK” by Chapman and Schanda, at http://proteancode.com/
keynote.pdf

The website http://www.spark-2014.org/ is a portal for up-to-date information and resources on SPARK, including an
active blog detailing the latest evolutions.

The document “AdaCore Technologies for CENELEC EN 50128:2011” presents the usage of AdaCore’s technology
in conjunction with the CENELEC EN 50128:2011 standard. It describes in particular where the SPARK technology
fits best and how it can best be used to meet various requirements of the standard. See: http://www.adacore.com/
knowledge/technical-papers/adacore-technologies-for-cenelec-en-501282011/

A similar document “AdaCore Technologies for DO-178C/ED-12C” will be available soon, presenting the usage of
AdaCore’s technology in conjunction with the DO-178C/ED-12C standard, and describing in particular the use of
SPARK in relation with the Formal Methods supplement DO-333/ED-216.
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