
Vector Processing in Ada

Franco Gasperoni

ACT Europe, 8 rue de Milan, 75009 Paris, France
gasperon@act-europe.com

Abstract. To handle signal processing algorithms such as the Fast Four-
rier Transform (FFT) or the Discrete Cosine Transform (DCT) system
designers have traditionally resorted to specialized hardware with built-
in vector-processing capabilities. With the advent of the Altivec vector
extensions for the general-purpose PowerPC processor, developers have
the ability to write efficient signal processing code in C and C++. Using
Altivec-enabled PowerPCs as an example, this paper explains what can
and should be done to write not only efficient, but also clean and reliable
vector processing code in Ada.

1 Introduction

In the 80s fast execution of signal processing algorithms such as the Fast Four-
rier Transform (FFT) [1] or the Discrete Cosine Transform (DCT) was relegated
to expensive vector supercomputers such as the Crays. The 90s have seen the
growth of specialized Digital Signal Processing (DSP) chips to lower the ac-
cessibility and cost of these algorithms in general-purpose embedded and non-
embedded systems. The advent of modern video/audio signal compression algo-
rithms in MPEG-1, MP3, MPEG-2, and their ubiquitous use in general purpose
PCs have fostered the adjunction of vector-like capabilities in conventional gen-
eral purpose processors such as the PowerPC which is used both in Apple Macs
and embedded systems. QuickTime, for instance, has been modified to take ad-
vantage of AltiVec extensions that come with the G4 PowerPC microprocessor
on the Mac.

To allow developers to code in high-level languages (instead of assembly),
Motorola has proposed a C/C++ language interface for Altivec-enabled Power-
PCs as well as an Altivec API (Application Programming Interface). With this
interface one can write efficient vector processing code in C/C++ but is rather
low-level and error-prone. Can Ada help? Can Ada provide an efficient, clean,
and reliable way to write vector processing software?

2 The Altivec PowerPC Vector Extensions

The Altivec extension adds Single-Instruction Multiple-Data (SIMD) computing
capabilities to the PowerPC, namely:

– 32 vector registers of 128-bits;

– Each vector register can be used as a vector of: 16 signed/unsigned 8-bit
integers, or 8 signed/unsigned 16-bit integers, or 4 signed/unsigned 32-bit
integers, or 4 IEEE-754 32-bit floats, plus a couple of additional data types
such as pixel;

– Well over 70 generic vector processing instructions have been added to ma-
nipulate the above Altivec vectors.

The Altivec extensions are described in [2] and their C/C++ interface is sum-
marized below.

3 Summary of Altivec C/C++ Language Interface

3.1 Altivec Data Types Available in C/C++

The Altivec data types that are made available in Motorola’s C/C++ program-
ming language extensions are descrived in the following table:

New C/C++ Type Interpretation Component Values
vector signed char 16 signed char -128 .. 127
vector signed short 8 signed short -32768 .. 32767
vector signed int 4 signed int -2**31 .. 2**31-1
vector unsigned char 16 unsigned char 0 .. 255
vector unsigned short 8 unsigned short 0 .. 65535
vector unsigned int 4 unsigned int 0 .. 2**32-1
vector bool char 16 unsigned char 0 (False), 255 (True)
vector bool short 8 unsigned short 0 (False), 65535 (True)
vector bool int 4 unsigned int 0 (False), 2**32-1 (True)
vector float 4 float IEEE-754 values
vector pixel 8 unsigned short 1/5/5/5 pixel

3.2 Alignment Considerations

An Altivec vector object should be aligned on 16-byte boundaries. However, the
Altivec technology does not generate alignment exceptions. If the address of an
Altivec vector object does not align on a 16-byte boundary, a vector load/store
ignores the low-order bits of the address. As a result developers must determine
whether and when vector data becomes unaligned.

Fortunately, the Altivec extensions to the PowerPC ABI (Application Binary
Interface) provide a number of guarantees to make developers’ life easier.

The purpose of the PowerPC ABI is to establish a standard binary interface
(register usage conventions, calling conventions, stack frame layout, setjmp(),
longjmp(), etc.) for applications on PowerPC systems.

In the context of Altivec-enabled PowerPCs, some useful extensions to the
core PowerPC ABI are:

– The compiler is responsible for aligning vector data types on 16-byte bound-
aries;

– Records, arrays and unions containing vector types must be aligned on a
16-byte boundaries and their internal organization padded, if necessary, so
that each internal vector type is aligned on a 16-byte boundary.

Note that an array of components to be loaded into vector registers need not be
aligned but will have to be accessed taking alignment into consideration. Special
instructions in the Altivec API are provided to this end. As an example, suppose
you have an arbitrary, and potentially non 16-byte aligned array called input of
signed char (i.e. integers spanning -128 .. 127), that needs to be loaded into a
vector v. That needs to be written as:

signed char *input;
// Possibly unaligned array of signed char

vector signed char v;
// Output vector containing input[0] through input[15]

vector signed char *temp;
vector signed char shift;
// Temporaries used to align input’s data into v

// Figure out the alignment correction. ‘vec_lvsl’ below
// computes the number of bytes we need to shift the data
// pointed by ‘temp’ so that it becomes 16-byte aligned.

temp = (vector signed char *) input;
shift = vec_lvsl (0, temp);

// Here ‘shift’ contains the permutation vector to do
// the appropriate shifting so that vector ‘v’ is
// 16-byte aligned and contains a copy of ‘input’.
// ‘vec_perm’ does the actual permutation by taking two
// 16-byte memory chunks so that the actual vector is
// inside the union of the two memory chunks.

v = vec_perm (temp[0], temp[1], shift);

3.3 Motorola’s Altivec C/C++ Language Extensions

Motorola has extended C/C++ as described below. In all the following cases
the compiler is required to generate the appropriate Altivec vector handling
instructions. Motorola’s C/C++ extensions are:

– Assigning two vectors of the same type is allowed. For instance the following
code snipet is valid:

vector signed int a, b;
a = b;

– The comparison operator (==), however, is not available for vector types.

– It is possible to initialize a vector with a vector literal. For instance in GCC
one can write:

vector signed int a = (vector signed int) {1,2,3,4};

– One can take the address of a vector object (&a) and can dereference a
pointer to a vector object. A vector pointer dereference *p implies a 128-bit
vector load or store from the address obtained by clearing the low order bits
of p. Access to unaligned memory must be carried out explicitely by the
programmer using routines defined in the Altivec API.

– Casts between vector types are allowed. None of the casts performs a con-
version: the bit pattern of the result is the same as the bit pattern of the
argument that is cast. Casts between vector types and scalar types are illegal.

3.4 Motorola’s Altivec API

Motorola has defined an intrinsic API to access all the functionalities provided
by the Altivec architecture. There are about 70 generic functions defined in this
API which give rise to over 200 unique function names and over 900 overloaded
C++ functions once all possible parameter combinations are factored in.

The key point about this API is that although its routines look like regu-
lar function calls, in reality these operations are intrinsic to the compiler and
generate direct Altivec processor instructions. The mapping is predominantly
1-to-1. As an example the following code snipet gives the profiles of the “Vector
Absolute Value” routine available in the intrinsic Altivec API for C++:

inline vector signed char vec_abs (vector signed char a1);
inline vector signed short vec_abs (vector signed short a1);
inline vector signed int vec_abs (vector signed int a1);
inline vector float vec_abs (vector float a1);

4 Programming the Altivec in Ada

The purpose of this section is to propose a semantic model to make the Altivec
PowerPC extensions directly available to Ada developers. Several options are
available:

1. Make available in Ada Motorola’s C/C++ programming language exten-
sions.

2. Have the compiler recognize computation-intensive loops involving arrays
and by using the Altivec vector instructions implement optimizations found
in vectorizing compilers as described, for instance, in [4].

3. Create a high-level Ada package that provides general vector processing func-
tionalities such as vector add, multiply, permute, etc. with which developers
could easily write FFTs, DCTs, . . . that use the underlying vector processing
hardware efficiently.

Given what is involved in vectorizing compilers and the amount of work and the
limitations involved in approach 2 we will discuss approach 1 in the following
sub-sections. Approach 3 will be addressed in the conclusion of this paper.

4.1 Altivec Data Types in Ada

It is tempting to define the Altivec data types as public array types in Ada.
This is not the model that is put forth by Motorola and it would mean that all
array operations, parameter passing, and attributes would have to be handled
explicitely in the Ada compiler which would, for instance, have to convert array
indexing operations into a sequence of Altivec calls. This would not only sprinkle
Ada front-ends with Altivec specific code, it would be a large undertaking that
would go beyond the programming model put forth by Motorola for C/C++.

Semantically Altivec vectors are really 128-bit “blobs” than can only be ma-
nipulated through the series of routines provided in the Motorola API. This
means that vector types should all be private types. For example:

type Vector_Float is private;
-- Corresponds to C/C++ "vector float"

These private vector types do not have to be limited since the Motorola spec
allows assignment. Direct vector equality could be made abstract to mimic Mo-
torola spec.

For equality Motorola provides a number of vector comparaison routines that
should be used for equality depending on whether the vector comparison should
return a vector of booleans or a single boolean.

Because of C++’s inability to overload functions on the return type Motorola
has probably decided that it would be less confusing that all vector comparisons
appear explicitely by means of the corresponding function call in the Altivec
API. Thus, in Ada, we could have

type Vector_Float is private;
-- Corresponds to C/C++ "vector float"

function "=" (X, Y: Vector_Float) return Boolean is abstract;

It would, however, be perfectly reasonable and actually desireable to provide
“=” in a higher-level Altivec Ada package, where “=” would be implemented in
terms of the vector routines provided by Motorola. For instance one could write:

function "=" (X, Y: Vector_Float) return Boolean is
begin

return Vec_All_Eq (X, Y);
-- Vec_All_Eq is intrinsic. The compiler maps it
-- directly to an Altivec machine instruction.

end "=";

function "=" (X, Y: Vector_Float) return Vector_4_Boolean is
begin

return Vec_Cmpeq (X, Y);
end "=";

where Vector 4 Boolean corresponds to C/C++’s type “vector bool int”.
The above is a good example of how Ada’s powerful semantic model offers a
clear advantage over what is currently available in C/C++.

4.2 Alignment Considerations

Ada’s alignment clauses provide a big help and relief to the programmer. Yet
another area where, unlike their C/C++ colleagues, Ada programmers get help
from the language. In the definition of each Ada vector type the alignment clause
will be set to 16. For example we would have:

type Vector_Float is private;
for Vector_Float’Alignment use 16;

Furthermore every time an Ada developer desires to go back and forth betwen
an Altivec vector and a corresponding array it can use a representation clause on
the array type and be relieved from tedious alignment fiddling. As an example
one could write:

type Arr_Float is array (Integer range 0 .. 3) of Float;
for Arr_Float’Alignment use 16;

function UC is new Ada.Unchecked_Conversion (Arr_Float, Vector_Float);
VF : Vector_Float := UC (Arr_Float’(0 .. 3 => 3.141));

4.3 Motorola’s Altivec API

Doing a clean Ada translation of Motorola’s C/C++ API is not completely
straightforward since, for instance, to load an array of components into an Altivec
vector in C/C++ pointers are used systematically. As an example:

inline vector float vec_ld (int a1, float *a2);

is used in C++ to load an array of 4 single-precision floats into a vector which
is then returned. a2 is a pointer to a stream of floats and a1 is an index in this
stream from which the copy operation is started. Before doing the copy, address
a2+a1 is 16 byte aligned, which means that if it is not, low-order bits are silently
dropped. A similar function in Ada could look like:

function Vec_Ld (A1 : Integer; A2 : System.Address)
return Vector_Float;

pragma Import (Intrinsic, Vec_Ld, "__builtin_altivec_lvx");

It would be helpful to also have a version with an array as a parameter, something
like:

type Arr_Float is array (Integer range <>) of Float;
for Arr_Float’Alignment use 16;

function Vec_Ld (A : Arr_Float; I : Integer)
return Vector_Float;

function Vec_Ld (A : Arr_Float) return Vector_Float;
pragma Inline (Vec_Ld);

In the second version the first parameter has been dropped because one can pass
a slice. Of course when doing the above care must be taken that array bounds
do not get in the way when making the actual call to the actual Altivec routine.
The second routine could for instance be implemented as follows:

function Vec_Ld (A : Arr_Float) return Vector_Float is
begin

pragma Assert (A’Address mod 16 = 0);
-- No code is generated for this pragma when assertion
-- checking is off.

return Vec_Ld (0, A’Address);
-- Vec_Ld is intrinsic. The compiler maps it
-- directly to an Altivec machine instruction.

end Vec_Ld;

Note that Ada offers the opportunity to use explicit operators such as “+” or
“<=” to define an alias for the corresponding routines in the API. Thus while
the API will contain:

function Vec_Add (A1, A2: System.Address) return Vector_Float;
pragma Import (Intrinsic, Vec_Add, "__builtin_altivec_vaddfp");

function Vec_Add (A1, A2: Vector_Float) return Vector_Float;
pragma Inline (Vec_Add);

function Vec_Add (A1, A2: Vector_Float) return Vector_Float is
begin

pragma Assert (A1’Address mod 16 = 0 and
A2’Address mod 16 = 0);

-- No code is generated for this pragma when assertion
-- checking is off.

return Vec_Add (A1’Address, A2’Address);
-- Vec_Add is intrinsic. The compiler maps it
-- directly to an Altivec machine instruction.

end Vec_Ld;

the Ada API should also contain:

function "+" renames Vec_Add;

The best way to organize the Ada implementation of the Altivec API would be
to have a low-level Altivec package which is a one to one mapping to Motorola’s
API and have a higher-level package containing the Ada routines and renamings
mentioned above that are not directly required by Motorola’s API but are a
convenient abstraction of the low-level Altivec routines provided by Motorola.

4.4 Ada 05 Unions

To have the ability to view a vector as both a vector and an array of components
it is possible to use Ada unions. Unions are currently supported in GNAT and
will probably be available in Ada’s future revision: Ada 05. As an example a
developer could write:

type Arr_Float is array (Integer range 0 .. 3) of Float;
for Arr_Float’Alignment use 16;

type Vector_Rec (Dont_Care : Boolean := False) is record
case Dont_Care is

when False =>
A : Arr_Float;

when True =>
V : Vector_Float;

end case;
end record;
pragma Unchecked_Union (Vector_Rec);

X : Vector_Rec := (A => (10.0, 11.0, 12.0, 13.0));

VF : Vector_Float := X.V;

Another way to achive the same effect would be to write something like:

A : Arr_Float;
V : Vector_Float;
for V’Address use A’Address;

Which is definitely in the clever-but-not-suggested category.

4.5 Vector Initialization

To initialize vector types we can either use the unchecked conversion approach
demonstrated in a previous example, or the unchecked union, or directly provide
an initialization routine. For instance we could have:

function Vec_Init (E1, E2, E3, E4: Float) return Vector_Float;
pragma Inline (Vec_Init);

and then write:

VF : Vector_Float := Vec_Init (10, 11, 12, 13);

4.6 Performance Issues

The main reason for using the Altivec extension in a PowerPC is to improve
computational performance. As a result an Ada implementation of the PowerPC
API must preserve efficiency. The mapping described above achieves that since
the Altivec primitives are wrapped in a layer of Ada code that performs align-
ment checks only when assertions are enabled and otherwise maps the routine
directly to the corresponding Altivec machine instruction. For example when a
programmer writes:

procedure Proc (A, B : Vector_Float) is
C : Vector_Float;

begin
if not A = B then

C = A + B;
...

end if;
...

end Proc;

the comparison and the addition are compiled straight into Altivec machine
instructions (when assertion cheks are off).

Thus programmers can objtain the same performance for the Altivec in Ada
as they do in C, while retaining all of Ada’s advantages mentioned in the previous
sections.

5 Conclusion

The previous section explains how the Motorola Vector processing specification
can be written in Ada to provide a safe and higher-level way to program Altivec-
enabled PowerPCs which is as efficient as C.

However, depending on the signal procesing algorithm, the previous approach
will still require a fairly low-level of coding for algorithms such as FFTs or DCTs
which combine vector data in a non-local fashion. In the FFT, for instance, the
famous butterfly permutation combines, in the first iteration, the 0-th element
with the n/2-th element. Because vector processing hardware basically chops an
n-element array into an array of n/s components, where each component fits
into a vector register holding s elements, efficiently combining the 0-th array
element with the n/2-th becomes a low-level programming feat. As an example
the last two stages of an FFT must be handcrafted as follows [3]:

Data : array (0 .. N) of Vector_Float;

V_11, V_12, V_13, V_14, V_15 : Vector_Float;
V_21, V_22, V_23, V_24, V_25 : Vector_Float;
V_31, V_32, V_33, V_34, V_35 : Vector_Float;
V_41, V_42, V_43, V_44, V_45 : Vector_Float;

Permutation_0101 : constant Vector_Byte
:= Vec_Init (0,1,2,3,4,5,6,7, 0,1,2,3,4,5,6,7);

Permutation_2301 : constant Vector_Byte
:= Vec_Init (8,9,10,11,12,13,14,15, 0,1,2,3,4,5,6,7);

Permutation_3232 : constant Vector_Byte
:= Vec_Init (12,13,14,15,8,9,10,11, 12,13,14,15,8,9,10,11);

X : constant Vector_Float := Vec_Init (1.0, 1.0, -1.0, -1.0);
Y : constant Vector_Float := Vec_Init (1.0, -1.0, -1.0, 1.0);

Block : Unsigned_Integer := 0;
...
loop

exit when Block >= (N + 1)/2;

V_13 := Data (Block) - Data (Block+1);
V_11 := Data (Block) + Data (Block+1);
V_23 := Data (Block+2) - Data (Block+3);
V_21 := Data (Block+2) + Data (Block+3);
V_33 := Data (Block+4) - Data (Block+5);
V_31 := Data (Block+4) + Data (Block+5);
V_43 := Data (Block+6) - Data (Block+7);
V_41 := Data (Block+6) + Data (Block+7);

V_15 := Vec_Permute (V_13, V_13, Permutation_3232);
V_14 := Vec_Permute (V_13, V_13, Permutation_0101);
V_12 := Vec_Permute (V_11, V_11, Permutation_2301);
V_25 := Vec_Permute (V_23, V_23, Permutation_3232);
V_24 := Vec_Permute (V_23, V_23, Permutation_0101);
V_22 := Vec_Permute (V_21, V_21, Permutation_2301);
V_35 := Vec_Permute (V_33, V_33, Permutation_3232);
V_34 := Vec_Permute (V_33, V_33, Permutation_0101);
V_32 := Vec_Permute (V_31, V_31, Permutation_2301);
V_45 := Vec_Permute (V_43, V_43, Permutation_3232);
V_44 := Vec_Permute (V_43, V_43, Permutation_0101);
V_42 := Vec_Permute (V_41, V_41, Permutation_2301);

Data (Block) := Vec_Multiply_Add (V_11, X, V_12);
Data (Block+1) := Vec_Multiply_Add (V_15, Y, V_14);
Data (Block+2) := Vec_Multiply_Add (V_21, X, V_22);
Data (Block+3) := Vec_Multiply_Add (V_25, Y, V_24);
Data (Block+4) := Vec_Multiply_Add (V_31, X, V_32);
Data (Block+5) := Vec_Multiply_Add (V_35, Y, V_34);
Data (Block+6) := Vec_Multiply_Add (V_41, X, V_42);
Data (Block+7) := Vec_Multiply_Add (V_45, Y, V_44);

Block := Block + 8;
end loop;

This code is more readable than the corresponding C code, but remains low-level.
As a result an interesting research question is whether it is possible to write an
Ada vector package with a number of high-level vector operators which, when
combined, allow the simple writing of efficient signal processing algorithms such
as FFTs, and DCTs on the Altivec.

References

1. Cormen, Leiserson, Rivest, Introduction to Algorithms, the MIT Press, 1990.
2. Motorola, AltiVec Technology - Programming Interface Manual,

http://e-www.motorola.com/files/32bit/doc/ref manual/ALTIVECPIM.pdf.
3. Motorola, Complex Floating Point Fast Fourier Transform Optimization for AltiVec,

Application Note AN2115/D Rev. 2.1, 6/2003.
4. Wolfe, Optimizing Supercompilers for Supercomputers, the MIT Press, 1989.

