
THEGNATIMPLEMENTATIONOFCONTROLLEDTYPES

Cyrille Comar Gary Dismukes
comar @ gnat.com dismukes @ gnat.com

Ada Core Techwlogies Ada Core Technologies
73 F$th A \vemre IO3 97 A venida Magr@ca

New York, MY 10003 San Diego, CA 92131

Franc0 Gasperoni
gasperon @ enst.fr

Telecom Paris-ENST
Dep. INF, 46 rue Barranlt,

75634 Paris, Cede.r 13. France

1. Abstract.

This paper discusses the implementation model for support-
ing Ada 95 controlled npes in the GNAT compiler [I].
After reviewing the semantics of controlled types, we out-
line the associated implementation problems and describe
their solution in GNAT. The design addresses the manage-
ment of controlled operations on various entities, including
dynamically allocated objects, transient objects (function
results and aggregates), and composite objects containing
controlled components. The interaction of the controlled
type features with exceptions is also covered. Finally, we
discuss alternative implementation approaches and possible
enhancements to the current model.

2. Controlled Types

Ada 95 [2] provides direct support for user-defined initial-
ization, assignment, and finalization. These capabilities are
important for the support of abstract data types because they
permit fill control over the creation, update, and clean-up of
objects and their associated resources. In Ada 83 such con-
trol could only be partially achieved through the
mechanisms of private types, default initialization, and by
the use of limited types. In any event, the clean-up of re-
sources upon scope exit was not possible.

In Ada 95, these operations are made available by means of
“controlled types”. Ada 95 provides two predefined tagged
types, Controfled and Limited-Controlled, whose primitive op-

erations are shown in figure I. The dispatching operations
Initialize. Finalize, and Adjust are used to provide default ini-
tialization. clean-up, and copying respectively.

type Controlled is abstract taqqed private;
procedure Initialize (Object : in out Controlled);
procedure Ad 1 US II (Object : in out Controlled);
procedure Finalize fOb]ect : in out Concrolledl;

Permission to copy without Fee all or part of this material is granted

provided that the copies are not made oc distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise or republish,

requires a fee and/or specific permission.

type LimiteUantrolLed is abstract taqqed limitad private;
procedure Initialize (Object : in out Limited-Controlled);
procedure Finalize (Object : in out Limited-Controlled);

Figure 1: Primitive operations for types Controlled and
Limited-Controlled.

By default, the procedures Initialize, Adjust, and Finalize have

no effect, but this behavior can be overridden by the user.
Specifically, every controlled type (that is, types derived di-
rectly or indirectly from Controlled or Limited-Controlled) can
be provided with implicit initialization, adjustment. and
clean-up that apply to objects of the type:

- Initialization: Initialize is automatically invoked upon
object creation, if there is no explicit initialization.

- Clean-up: Finalize is automatically invoked when the
scope of the object is completed, to perform whatever
clean-up is desired (for example, deallocation of indi-
rect stmctures, release of locks, etc.).

- Adjustment:
During an assignment OBJI := OBJZ (only for nonlimited
controlled types), OBJl is first finalized, the new value
OKl2 is copied into OBJl, and then Adjust is automatical-

ly invoked on OBJl.

Adjust can be used to specify whatever actions are needed to
complete the construction of the new value for OBJ2. For ex-
ample, it can effect the copying of any indirect data
structures associated with OBJ2. This enables the designer to
provide what is sometimes called a deep copy of the object,
where a new copy of the indirect data is created for the tar-
get. This is in contrast to the shallow copy semantics that
happen on normal assignment where attached structures are
shared after the copy of pointers within the object.

Since Limited-Controlled is just a special cxic of Controlled
(with no assignment or aggregates). in the remainder of this
paper we will only talk in terms of the type Controlled.

When a scope contains scvernl objects of controlled types.
each object is initialized in the order of its dcclara.tion with-
in the scope. Upon scope exit the objects are finalized in the
reverse order. The reverse order is important since later ob-

01995 ACM 0-89791-705-7/95/0011--0467 3.50
467

jects may contain references to earlier objects. If an
exception occurs during initialization, then only those con-
trolled objects that have been initialized thus far will be
finalized.

For instance. consider the following package that imple-
ments a set of integers:

package Int-Set is
type Set is private;
function Empty return Set;
procedure Insert (Elmt : Int; Into : in out Set);
function Exists (Elmt : Int; Into : Set)

return Boolean;
private

type Set is new Controlled with
procedure Initialize (S : in out Set);
procedure Adjust (S : in out Set);
procedure Finalize (S : in out Set);

end Int-Set:

with Ix-&-Set; use Int-Set;
procedure Try is

$1 : Set; -- implicit call: Initialize (Sl)

s2 : Set; -- implicit call: Initialize (S2)

begin
Insert (1, Sl);
s2 := Sl; -- Finalize (S2) before the copy

-- A@rst (S2) after the copy

end Try: -- Finalize (SZ): Finalize (Sl) ;

Figure 2: The Set Abstraction Example

Note that in this example, the finalization mechanism is hid-
den from the client, which only sees a regular private type.
Alternatively, it could have been made apparent by defining
Set as a private extension of Controlled.

The special operations of controlled types apply not only to
stand-alone declared objects, but also to dynamically allo-
cated objects and controlled components of composite
objects. A dynamically allocated object is finalized either
when the scope of its associated access type is exited, or
when the programmer explicitly deallocates it.

An object that contains components of a controlled type is
finalized in a manner similar to other objects: the compo-
nents are finalized in the reverse order of their initialization
within the containing object. The Adjust operation occurs
for components when they are assigned individually, or
upon assignment to their enclosing object.

If a controlled object includes controlled components, Initial-
ize or Adjust is first invoked on the components and then on
the enclosing object. Finalization is done in the reverse or-
der. Finalization actions also occur for anonymous objects
such as aggregates and function results. For these special
objects. the finalization will occur upon completion of exe-
cution of the smallest enclosing construct, once the value of
the aggregate or function result is no longer needed.

3. Implementation Problems

Not surprisingly, there are some tricky interactions between
finalization and other languages features. In this section we
discuss the most interesting of these issues.

l Exceptional Block Exit

In the event of an abnormal block termination, such as when
an exception is raised or when the task containing the block
is aborted, there may exist objects which have not yet been
created and received proper initialization. For these objects.
Finalize should not be called. For instance in the follo.wing
code:

declare
Sl : Set;
X : Pos := Random (0,l); - - Constraint-Error is

- - randomly raised
S2, : Set;

begin
null:

end;
Figure 3: Simple Use of Sets

Sl is initialized, but S2 might not be. Consequently finaliza-
tion should always occur for Sl whereas S2 should be
finalized only if it has been initialized. Thus an itnplemen-
tation cpnsisting of a simple-minded insertion of explicit
calls to Finalize at the end of the block is inadequate. Note
that exceptions may be raised during initialization of com-
posite object containing controlIed components, in which
case only the initialized part of the object needs finalization:

l Finalization of Anonymous Objects

Finalization actions for anonymous objects have to occur
upon completion of execution of the smallest enclosing con-
struct, that is, as soon as their value is no longer needed.
This mechanism has to work even if an exception is raised
in the middle of such a construct. In the following code,
Empty is a function returning a controlled object that is kept
in an anonymous object during the execution of the enclos-
ing call to Exists:

declare
X : Boolean := Exists (1, Into => Empty);
-- The result qf the call to Empc is kept irt uu ano~~~*mo~r.s
-- object during the e.recution of Exists. ami Finulix ,shotrld
-- be ittvoked no later than the semicolon .

begin
if Exists (2, Into => Empty) then . . .
else . . .
end if;
- - Here the unot~~wo~~s object has to he,/itwli:ed hq$we
. _ the ewcutioti of’ either branchc qf’the ~fstatemertt

end:
Figure 4: Controlled Anonymous Objects Case

468

l Finalization of Dynamically Allocated Objects

In contrast to other similar languages, Ada 95 requires dy-
namically allocated objects to be finalized even if they are
not deallocated explicitly. This default finalization occurs
when the scope containing the access type is left. That is to
say, in the following code, all objects allocated for type
Set-f%, and not yet deallocated, must be finalized exactly
between the finalization of Obj2 and Objl :

declare
Objl : Set;
type Set-Ptr is access Set;
Obj2 : Set;

begin . . . end;

Figure 5: Access to Controlled Objects Case

l Problems Related to Mutable Objects

A variable of a discriminated type with defaulted discrimi-
nants may contain differing numbers of controlled
components at different times. This possibility introduces
an asymmetry between elaboration and finalization. In the
following example no controlled components are present at
the beginning of the execution, but after the assignment, X
will contain three components:

declare
type Sets is array (Natural range <>I of Set:
subtype Index is Natural range 0 . . 10;
type Ret (N : Index := 0) is record

T : Sets (1 . . N):
end record;
X : Ret; -- 0 controlled components

begin
x := (3, (1..3 => Empty)); - - 3 controlled components

end;
Figure 6: Mutable Objects Case

It is not easy to find a way to manage controlled operations
for an object which may have a varying number of compo-
nents during its lifetime.

l Controlled Class-Wide Objects

Type extensions can introduce additional controlled compo-
nents. In general it’s not possible to know, at compile time,
whether a class-wide object will contain controlled compo-
nents. If such an object contains controlled components, its
initialization requires these components to be adjusted as
shown in the next figure. A worst-case approach seems
unavoidable.

package Test is
type T is tagged null record;
function F return TIClass is separate;

end Test;

with Test; use Test;
procedure Try is

V : T'Class := F; -- does Fyield a value containing
-- controlled components ?

begin
. . . .

and Try;

Figure 7: Class-wide Objects Case

4. Management of Controlled Types in GNAT

4.1. Basic Scheme

For each block that contains controlled objects, GNAT de-
fines a Finalization Chain. When a controlled object is
elaborated, it is first Initialized or Adjusted (depending on
whether an initial value was present or not), then attached at
the beginning of this chain. The following example gives an
idea of the code generated. The following declarations:

X : Ensemble;
Y : Ensemble := X;

are transformed into:

X : Ensemble;
Initialize IX);
Attach-To-Final-List (F, Finalizable IX));
Y : Ensemble := X;
Adjust (Yl;
Attach-To-Final-List IF, Finalizable 09);

Finalizable is the name of the class representing all controlled
objects, limited or not, and is defined in the GNAT library
as follows:

subtype Finalizable is Root-Controlled'Class;

Upon scope exit, the scope’s finalization chain is traversed
and Finalize is called on each element. Note that, since ob-
jects are inserted at the beginning of the list, the ordering of
the chain is just right for the required sequence of tinaliza-
tion. The fact that the chain is dynamically built ensures that
only successfully elaborated objects are dealt with in case of
exceptional exit.

To ensure that finalization happens regardless of how the a
scope is left, we have introduced an “At-End” construct in
the compiler. This mechanism consists of a call to a param-
eterless subprogram executed unconditionally upon scope
exit. This routine performs all clean-up actions required by
the semantics of the language, such as waiting for subtask
completion. The next figure shows the simple clean-up pro-
cedure that is generated for scope finalization and its point
of call:

declare
Final-Chain : Finalizable-Ptr;
procedure -Clean is
begin

Finalize-List (Final-Chain);

469

end-clean;
begin

<user code using controlled objects>
at end

-Clean; -- executed before leaving the scope
end:

Figure 8: The AT END Mechanism

Finalize-List is a library routine that finalizes all objects on
the list referenced by its parameter, regardless of any excep-
tion that could be raised during the process. The list is
heterogeneous because Finalize-Ptr is an access-to-class-
wide type, and any object whose type is derived from Con-

trolled can be attached to this list. This is handled by a call of
the form “Finalize (Ptr.ait)” in the Finalize-List procedure,
.which will dispatch to the appropriate user-defined finaliza-
tion procedure.

Finakation Chain

\

private part inherited
from controlled

-A

’ Estensions

Figure 9: A Finalization Chain

Finalization chains are bidirectional to ease the removal of
a single object from the middle of the list. The predefined
types Controlled and Limited-Controlled both include two hid-
den pointers. Removing an element from the middle of a
finalization list occurs during the deallocation of dynami-
cally allocated objects. However, user driven deallocation
can happen in an order that is not related to allocation.

Regular- Finalization Chain

i!z O&l

List Controllei- for Set-Pfi

To ensure that objects that are not explicitly deallocated are
finalized at the right time, the finalization chain on which
they are attached is implicitly defined at the point of the ac-
cess type definition. This finalization chain is itself enclosed
in a controlled object (a List-Controller) whose finalization

consists of calling Finalize-List on its associated internal list.
The previous figure shows the finalization structures asso-
ciated with the block defined in figure 5.

4.2. Assignment of Controlled Objects

A simple-minded implementation of the assignment opera-
tion Set1 := Set2; discussed in section 2, might be:

Finalize (Setl) ;
Set1 := SetZ;
Adjust (Setl);

There are various problems that make such an implementa-
tion unworkable: first, Set1 may refer to objects present in
Set2 and thus cannot be finalized before Set2 is evaluated;
second, the assignment itself must be specialized since
copying the hidden pointers that hook objects to a finaliza-
tion list doesn’t make any sense; third, the self assignment
(X := X;), although not a particularly useful construct, has to
be addressed specially, either by introducing a temporary
object or by avoiding the production of any finalization ac-
tions. Here is a model that works in the general case and can
be optimized in many cases:

Anon1 : Ctrl-Typ renames Setl;
Anon2 : Ctrl-Typ_Access := Eva1 (Seta);
if Anonl'address /= Access-To-Address Qnon2/ then

Finalize (Anonl);
Copy-Explicit-Part (Anon2.all. To => Anonl);
Adjust (Anonl);

end if;

Figure 11: Code for controlled assignment

Note that the target object, even though it has been final-
ized, remains in the finalization list because it still need to
be finalized upon scope exit.

Figure .lO: Finalization Lists for Dynamically Allocated
Objects

470

4.3. Management of Anonymous Objects

Some constructs such as aggregates and functions generate
anonymous objects that are used to store an intermediate re-
sult. When such objects are controlled, they must be
finalized as soon as they are no longer needed, that is to say
before the beginning of the next statement. GNAT defines
“transient blocks” to handle this. Such a block is expanded
around the construct that uses the intermediate objects. For
instance, in the following example. the function Empty
yields a controlled value that is only used during the execu-
tion of Exists:

declare
X : Boolean;

begin
. . .

('--%--Exists71 inside => Empty). ' 1. ,,,,,.,,,.,,..., : ,.,,,~C..~~.~.,,.,,, _ ,..._.._._..__. ..! ..___..._.._._._..................~.~.....-.~.-
. .

end;
a~sl~~~ -.-...--...............

I

....-. * .._. J

!

..---....__.. "__ __....__.-.--.I-._-......- _..._ ..-..-.

Anon : Set := Empty;
begin

X := Exists (1, inside => Anon);
end; _._....._... __ _......_..._............. ,..^- - ..__....__.- --.--_---- --.

Figure 12: Expansion of a Transient Block around a Statement

An intermediate block can be introduced without changing
the semantics of the program in order to make the anony-
mous object explicit. This new block contains a controlled
object and thus will be expanded using the scheme present-
ed in section 4. I. The same kind of mechanism can be
extended to deal with anonymous objects that appear in the
Boolean expressions of control structures such as if and while
statements. For instance:

2 i
While Exists (Elmt, Empty) loop i

[end%o,;
._" _.._. - _.__,...-....._._._-..........~.......

$

j
._...._.__..I_..._... - ..- -.-.-'

,~~~~'-' _ ._...........................,.....................,,,.,.,~~~~..~,...~ .._........... _.-_

declare
Anon : Set := Empty:

I
begin

Res := Exists (Elmt, Anon);
end;
exit when not Res;

. . .

r .tz - -....._ "- ._.. ".".". ,,.,_. "..."" ,....., *_.,........................ "...~ -....-.-...." ..-..... j

Figure 13: Expansion of a Transient Block around an
Expression

The problem is a bit more complex when controlled anony-
mous objects appear in a declaration since transient blocks
are not allowed in such a context: if such blocks were al-
lowed in declarative parts, they would make the declaration
they are enclosing local to their scope, which is obviously
improper. To handle this case, the anonymous object is cre-
ated in the original enclosing scope but it is attached to an
intermediate finalization list, represented by the same
List-Controller that was used for the dynamic allocation case,
and which is finalized right after the declaration. For
example:

a : Boolean := Exists (1, Empty);

is transformed into:

L : List-Controller:
Anon :,Set := Empty;
Adjust (Anon);

Attach-To-Final-List (L, Anon):
B : Boolean := Exists (1, Anon);
Finalize (L);

List-Controller is itself a controlled type. Thus, an object of
that type is attached to the enclosing scope’s finalization
chain, ensuring that the anonymous object will be finalized
even if an exception is raised between its definition and the
finalize call. In the normal case, the List-Controller is final-
ized twice, once right after the declaration, and once upon
scope exit, So the Finalize routine makes sure that the second
finalization has no effect.

4.4. Management of Objects with Controlled
Components

Composite type such as records (tagged or not) and arrays
can contain controlled components. Objects of these types
require specific actions that take care of calling the proper
lnitializd, Adjust, and Finalize routines on their components.
These actions are carried out in implicit procedures called
-Deep-Initialize, -Deep-Adjust and Jeep-Finalize that are used
in a manner similar to their counterparts for regular con-
trolled types. Here is the body of Jeep-Adjust for a type T
that is a one-dimensional array of controlled objects:

procedure-Deep-Adjust (V : in out T;
C : Final-List;
B : Boolean) is

begin
for J in V'range loop

Adjust (V (J));
if B then

Attach-To-Final-List fC, V IJI):
end if;

end loop:
end;

Figure 14: Adjustment of Array’s Controlled Components

Note that the deep procedures have a conditional mecha-
nism to attach objects to the finalization chain’s0 that the
same procedure can be used in a context where attachment
is required, such as explicit initialization, as well as when it
is not needed, such as in the assignment case. Note also the
recursive nature of the above definition: Deep-Adjust on an
array is defined in term of Deep-Adjust of its components.
Ultimately, if the component type is a simple controlled
type with no controlled components Deep-Adjust ends up
just being a call to the user-defined Adjust subprogram.

471

Finalization Chain

array of
controIled
objects

record controller

record with
controlled
components

Figure 15: Finalization Chain of Objects with Con&oiled
Components

A similar method could have been used for records. In that
case, deep procedures would have been implicitly defined to
perform the finalization actions on the controlled compo-
nents in the right order, depending of the structure of the
type itself. The controlled components would have been
stored on the finalization list of the enclosing scope. Unfor-
tunately such a model makes the assignment of mutable
objects quite difficult: the number of objects on the finaliza-
tion list may be different before and after the assignment, so
all the controlled components of the target would need to be
removed from it before the assignment and afterwards put
back at the same place on the list. To avoid such a problem
as well as to simplify the definition of deep procedures for
records a different approach has been used. Records are
considered as scopes and they have their own internal final-
ization chain on which all controlled components are
chained. This is achieved by inserting a hidden component,
the Record-Controller within the record itself. The next figure
shows the compiler’s transformation of the mutable record
Ret presented in figure 6:

type Ret (N : Index := 0) is record

-Controller : Record-Con troller;
T : Sets (1 . . N);

end record;

Record-Controller plays a role equivalent to List-Controller: it
introduces an indirection in the enclosing finalization list.
The finalization list of controlled components is local to the
object. So, upon assignment the number of controlled com-
ponents may vary without affecting the enclosing
finalization list. This provides a simple solution to the mu-
table record problem. In GNAT, finalization pointers are
absolute and when they are part of a local component list,
they have to be adjusted after a copy. This action is carried
out by the Adjust subprogram associated with the Record
Controller type which uses for this purpose its own compo-
nent my-address that is initialized with the original address

and is used to compute the displacement:

type Record-Controller is new Root-Controlled with
record

Component-List : Finalizable-Ptr;
MyJddress : System.Address;

end record;

Class-wide objects present an interesting challenge since
the compiler doesn’t know how many, if any, controlled
components are present in such objects. To address this
problem, class-wide types are considered “potentially” con-
trolled and calls to the deep procedures are always
generated for initializations and assignments. Dispatching
is used to ensure that the appropriate deep procedure is
called. Thus, such deep procedures must be defined as hid-
den primitive operations for all tagged types.

5. An Alternative Implementation: The Mapping
Approach

The solution presented in the previous section is one of sev-
eral possible approaches. Its storage costs are fairly high
since every controlled object contains two additional point-
ers and the size of a record with N controlled components is
increased by 2*N+4 pointers.

There exists another approach to implementing finalization,
sometimes called PC mapping. This method is often used in
C++ compilers.

The method derives its name from the way in which abnor-
mal block exits are handled. More specifically, if, during an
abnormal block exit, it were possible to determine the pro-
gram counter (PC) where the abnormal exit occurred, it
would be possible to figure out the precise list of objects that
need to be finalized.

In what follows we explain a simplified version of the PC
map approach which actually does not use any PC informa-
tion. Albeit less efficient, this simpler method is hardware
independent and hence more bortable than the full-blown
PC map.

The idea is to build a map for every scope (be it for a block,
procedure, or record) containing controlled objects. Every
entry in this map represents the state of a controlled object
created in the block. If the entry for a given object is true.
then the object has been initialized and hence must be tinal-
ized upon block exit.

This map can be implemented as a packed Boolean array. In
the absence of anonymous objects, the map of a given scope
is sequentially updated to true during elaboration.

The presence of anonymous objects may create holes in a
map (see example below). This is why we need a full-
fledged map rather than a simple counter.

The following example shows how the map is initialized

472

and how finalization is carried out. Here is a simple user
program that uses a few of the controlled types features de-
scribed in this paper:

declare
Sl : Set;
V : Integer;
B : Boolean := Exists (2, Into => Empty);
Obj : Ret-With,Ctrl;

begin
mull;

aa;

Here is a possible transformation of this program fragment
that illustrates the use of the maps for finalization:

declare
Map: array (1..3) of Boolean := (others=>False);
$1 : Set;
Initialize fS1):
Map (1) := True;
V : Integer;
Anon : Set := Empty:
Map (2) := True;
B : Boolean := Exists (2, Into =7 Anon);
Finalize IAnan);
Map (2) := False;
Obj : Ret-With-Ctrl;
-DeepJni tialize (Objj:
Map (3) := True;

procedure Clean is
begin

for I in Map'range loop
if Map (II then

case I is
when 1 => Finalize (Sl/;
when 2 => Finalize (Anon);
when 3 => -Deep-Finalize (Objl;

end case;
end if:

end loop;
end;

begin
null:

AT-EhD: Clean;
end;

Records containing controlled components have their own
(internal) initialization map as an additional field. For each
array of controlled objects we need to add a specific map
with as many entries as there are elements in the array.

The mapping model looks fairly attractive from the storage
point of view since it only’requires an additional bit per con-
trolled object. On the down side. this method requires more
complex deep finalization and clean-up procedures and the
space gained in the objects is paid by an increase in object
code size.

The major drawback of the mapping approach is its inability
to cope with dynamically allocated controlled objects. For
that case. the linked list implementation seems to be the

only possible choice.

6. Conclusion

This paper explains the implementation of Ada 95 con-
trolled types in the GNAT compiler. Even though the
implementation method described in this paper entails some
space overhead at run time (compared to the map-based im-
plementation described in section 4), the method is very
portable (in contrast to PC maps) and the machinery that is
embedded in the user code by GNAT is modest. Indeed a
good part of this-machinery is implemented once and for all
in the GNAT library and can therefore be shared by all con-
trolled types.

One possible improvement in our implementation would be
to omit the hidden backward pointer for statically allocated
controlled objects. The only purpose of this pointer is to
support user deallocation. This would necessitate special-
ized allocation of dynamic objects requiring finalization.

7. Bibliography

[I] E. Schonberg, B. Banner, “The GNAT Project: A
GNUAda9X Compiler”, in Conference Proceedings
of TRI-Ada 94, 1994.

[2] Ada 9X Mapping/Revision Team, “Programming
Language Ada--Language and Standard Libraries”,
Version 6.0, Intermetrics, January 1995.

[3] A. Appel, “Garbage Collection”, in “Topics in
Advanced Language Implementation”, MIT Press,
1991, pp. 89-100.

[4] N. Sankaran, “A Bibliography on Garbage collection
and Related Topics”, SlGPLAN Notices, vol. 29, no.
9, September 1994, pp. 149- 158.

PI P.R. Wilson, “Uniprocessor Garbage Collection
Techniques”, in “International Workshop on
Memory Management”, Lecture Notes in Computer
Science no. 637, Springer-Verlag, 1992, pp. l-42.

473

