
Compile-time stack requirements analysis with GCC
Motivation, Development, and Experiments Results

Eric Botcazou, Cyrille Comar, Olivier Hainque
AdaCore

{botcazou, comar, hainque}@adacore.com

Abstract

Stack overflows are a major threat to many
computer applications and run-time recovery
techniques are not always available or appro-
priate. In such situations, it is of utmost value
to prevent overflows from occurring in the first
place, which requires evaluating the worst case
stack space requirements of an application prior
to operational execution time. More generally,
as run-time stack areas need memory resources,
information on the stack allocation patterns in
software components is always of interest.

We believe that specialized compiler outputs
can be of great value in a stack usage analy-
sis framework and have developed GCC exten-
sions for this purpose. In this paper, we first
expand on the motivations for this work, then
describe what it consists of so far, future direc-
tions envisioned, and experiments results.

1 Motivation

1.1 Need for stack requirements analysis

Unlike dynamic heap allocations, stack alloca-
tions are most often implicit from the program-
mer’s standpoint and there is no standard no-
tion of easy to check stack allocation failures.

Besides, stack areas have to be sized before-
hand in many cases, and when the amount of
stack actually used by an execution thread ex-
ceeds an anticipated size, nasty events happen.
This is a “stack overflow” condition, the exact
consequences of which depend on the operating
environment and on the execution context. In
the worst cases, random memory is clobbered
with arbitrary follow-on effects. Run-time de-
tection techniques a-la GCC -fstack-check limit
the most catastrophic effects but leave the pro-
gram in an uncomfortable state. Even with lan-
guages such as Ada offering recovery mecha-
nisms to the programmer for such events, the
situation is far from perfect: very little can be
done when an execution thread does not have
access to the stack space it needs for proper op-
eration.

In many situations, it is of utmost value to pre-
vent overflow conditions from occurring in the
first place, which requires a way to evaluate the
worst case stack space requirements of an ap-
plication. In any case, having ways to evaluate
those requirements early avoids hitting erratic
run-time behaviors with high implied costs be-
cause uncovered late in the development pro-
cess and often hard to characterize. It also al-
lows developers to communicate on the stack
consumptions of the interface points they pro-
vide, which allows later analysis to proceed
even if the module sources are not available.

1

There are two broad categories of approaches to
address the high level issue outlined here : Test-
ing based and Static Analysis based [11, 12],
which often complement each other. We be-
lieve that GCC can play a major role in a stack
analysis framework of the latter category.

We will now describe the two categories of ap-
proaches and why we believe that a compiler
based solution is sensible.

1.2 Testing based approaches

Testing based approaches consist in measuring
the maximum amount of memory actually used
in deliberately oversized stack areas while run-
ning or simulating the application. One possi-
ble technique is to initialize the areas with a re-
peated pattern and measure the size of the parts
clobbered.

A positive aspect is that the measurements pro-
vide live data from actual executions or simu-
lations of the code. Every software has to be
tested for numerous reasons anyway, and get-
ting additional feedback from the testing cam-
paign is always valuable. Furthermore, the
set of testing scenarios is usually augmented
for the specific measurement purposes and this
benefits the software general robustness.

Testing based approaches suffer a number of
weaknesses, however.

To start with, the testing scenarios most of-
ten cover only a subset of the possible execu-
tion paths, and so do not expose the absolute
worst case consumption. This is especially true
when interrupt handlers are involved, as they
make the system worst case behavior very tim-
ing and environment dependent, hence an ex-
tremely improbable and hard to produce event.

Then, it is crucial to exercise as many exe-
cution paths as possible, and significant costs

are entailed because working out and running a
proper set of tests requires a lot of resources.

In addition, the technical mechanisms required
to perform the measurements may have unde-
sired side effects, such as subtle timing influ-
ences twisting the observation or with critical
consequences in the case of a real-time system.
It may also happen that the target environment
is not easily suited to these technical require-
ments, as in some typical cases of embedded
systems where the available resources are re-
ally scarce.

Finally, as implied by the previous point, test-
ing based approaches often need to be as non-
intrusive as possible to avoid perturbing the ob-
served execution and wasting precious run-time
resources. To satisfy that constraint, only re-
stricted feedback is allowable, with very little
information on the observed worst case context,
and this does not help much the development
process.

1.3 Static Analysis based approaches

Static Analysis based approaches consist in
using tools to analyze the application stack
space consumption patterns and possibly com-
pute worst case bounds prior to execution time.
They usually perform some local stack con-
sumption analysis combined with control-flow
graph traversals. The bound computation is ac-
tually a small subset of a wide category of re-
source bounding analysis problems, focus of a
lot of research activity over the years. See [2]
for an example set of publications in this area,
or [9] for a specific instance.

Static Analysis schemes operate over a rich va-
riety of technical grounds, the choice of which
influences a lot the contexts in which they may
be used. Consider for example [13], describ-
ing formal transformations of functional pro-
grams into resource usage functions returning

2

bounds on the stack or heap usage of the orig-
inal program. Although presented as adaptable
to imperative languages, this approach would
require a large amount of work to become ap-
plicable to general purpose languages like C,
C++, Java or Ada. Actually, all the analysis
schemes we know of are able to operate only
within a comprehensive set of assumptions on
the target environment and on the programs to
be analyzed.

When available, static analysis approaches ad-
dress the whole set of concerns expressed in
the previous section about testing based ap-
proaches. They can provide precise results
without much effort, rapidly and early in the
development process. They also have no run-
time side effects and are not constrained by the
target resources so have more room to offer as
much and various feedback as desired.

Regarding hard bounds computation, they all
hit a common set of challenges:

• Cycles in the Control Flow Graph: In
presence of control flow cycles involving
stack consumption, the worst case bound
is a function of the maximum number of
cycle iterations. When bounds on such it-
eration counts are unknown, the amount of
potential stack usage is infinite. Bounding
the iteration count is very often difficult or
impossible.

• Indirect jumps or subprogram calls: De-
termining where such transfers of control
lead is often not achievable, and the corre-
sponding stack usage is then unknown.

• Unresolved calls: These are calls to sub-
programs for which no stack usage in-
formation is available, introducing an un-
known amount of stack usage in a call
chain.

• Dynamic stack allocations: For instance
from alloca with a variable argument in
C, or from dynamically sized local objects
in Ada. They introduce potentially diffi-
cult to bound variable amounts of stack us-
age on the paths where they appear.

• Possible interrupt events: When inter-
rupt (hardware or signal) handlers run on
the currently active stack, their consump-
tion has to be accounted for when siz-
ing the various areas in which they may
run. When they run on their own dedicated
stack, this one has to be properly sized too.
In any case, how interrupts may preempt
each other greatly affects the associated
possible stack usage and is not easy to de-
termine automatically. [7, 10, 8] and [11]
are examples of research literature on this
matter.

• Dynamic global behavior: Analysis tools
typically include in their evaluations many
paths that can never be taken at run-time,
referenced as False Paths in [6] or [5].
Excluding some of such paths on safe
grounds may, for instance, allow cutting
some control flow cycles or the production
of tighter worst-case bounds, saving run-
time resources. [11] illustrates the use of
such techniques to automatically compute
the hardware interrupt preemption graph
for an AVR target. This is a hard problem
in the general case.

1.4 Compilers as a static stack require-
ments analysis framework component

Despite the set of challenging issues enumer-
ated in the previous section, static analysis
based approaches to stack requirements eval-
uation remain very appealing for a number of
reasons.

3

As already pointed out, they alleviate a number
of weaknesses of the testing based approaches
when strong guarantees are required and all the
constraints to allow such guarantees are satis-
fied. Actually, avoiding challenging program
constructs like recursive/indirect calls or dy-
namic stack allocations is often part of already
established coding guidelines in environments
where preventing stack overflows is a real con-
cern. Moreover, the challenging constructs for
a static analyzer most often also are challenging
for a testing based approach, and potentially not
even identified as such. Finally, even when ab-
solute bounds may not be computed, analysis
tools are still able to provide very useful feed-
back on the analyzed stack usage patterns.

The few existing practical solutions we know of
[1, 3, 11, 6, 8] work as binary or assembly level
analyzers, which gets them a very precise view
of what the code is doing and opens specific op-
portunities. For example, [11] exposes a binary
level “abstract interpretation” scheme for AVR
microcontrollers, analyzing the operations on
the hardware interrupt control bits to infer an
interrupt preemption graph. This allows the de-
tection in the interrupt preemption graph of un-
desired cycles that could have been introduced
by programming mistakes, and minimizes the
amount of extra stack space to add for poten-
tial interrupts at any point. The scheme is in
theory adaptable to other target architectures,
provided the development of a comprehensive
machine code parser and instruction classifier
to distinguish calls, jumps, stack pointer adjust-
ments and so forth. [6] develops similar ideas
for Z86 targets.

We suggest an alternate kind of scheme here :
develop dedicated compiler extensions to pro-
duce specialized outputs for stack requirements
analysis purposes. This is what we have imple-
mented in GCC together with a prototype an-
alyzer to process the outputs, as described in
section 2.

One limitation is that a compiler cannot pro-
vide information on elements it doesn’t pro-
cess, such as COTS operating system services
for which sources are not available or very low
level routines developed in assembly language.
When worst case bounds are a strong concern,
not having the sources of some components is
rare, however, and the stack usage in assem-
bly routines is usually simple enough to be ac-
counted for manually.

The compilation process may also not be able
to grasp the interrupt handling bits necessary to
size the worst case amount of interrupt related
stack, be it for hardware interrupt or signal han-
dlers. Interrupt handling always requires very
careful design and coding, though, so the in-
formation could at least also be provided to the
framework by the user, or accounted for sepa-
rately.

Leveraging on a compiler’s internals has a
number of advantages:

• Reduced effort for new target architec-
tures: A compiler typically knows every-
thing about stack allocations for the code
it processes. When already structured to
support multiple target architectures, this
knowledge may be used for each and al-
leviates the need of an associated compre-
hensive machine instruction parser, poten-
tially difficult and error-prone for complex
processors.

• User level guards: A compiler can be
tailored with options to raise warnings or
errors on user level constructs known to
trigger stack allocation patterns that may
cause troubles to a stack analysis frame-
work involved later on. This points di-
rectly at the user level construct, and so
very early in the development process,
both being of precious value.

4

• Access to high level information: A com-
piler has visibility on semantic informa-
tion that can help tackle some of the chal-
lenging issues we have previously identi-
fied. Consider an AdaInteger subtype
with range1..5 for example. If a vari-
able of this subtype is used to size a local
array, the range knowledge may be used
to compute a bound on the array size, and
so on the corresponding stack allocation.
Potential targets of an indirect calls are
another example. Based on subprogram
profiles and actual references to subpro-
grams, the compiler can provide a limited
but exhaustive list of subprograms possi-
bly reached by an indirect call. In both
cases, the compiler information at hand is
extremely hard, if not impossible, to infer
from a machine level representation.

• Scalability : Support for stack usage out-
puts is unlikely to change how a compiler
scales up against application sizes, so a
compiler-based stack analysis component
will scale up as well as the initial compiler
did. Besides, a compiler has the opportu-
nity to output no more than what is really
relevant for later analysis purposes, which
makes this output easier to digest than a
huge machine level representation of the
code.

2 Compile-time stack requirements
analysis with GCC

2.1 Basic principles

We have developed a simple call graph based
model from two new GCC command line op-
tions. They respectively generate per-function
stack usage and per-unit call graph information,
from which we build a multi-units call graph in-
formally defined as comprising:

• One node per subprogram definition, val-
ued with the maximum amount of stack
the subprogram may ever allocate. For
nodes performing dynamic stack alloca-
tion not trivially bounded, the valuein-
cludes an unknown part, denoted by a
symbolic variable named after the subpro-
gram for later analysis purposes. We call
such a node adynamicnode.

• One node per subprogram referenced from
the set of processed compilation units,
without being defined. Since the com-
piler has not processed the corresponding
body, the associated stack usage value is
unknown and also denoted by a symbolic
variable for later analysis purposes. We
call such node aproxynode.

• Directed edges to materialize amay_call
relationship, where the source subprogram
may_callthe destination subprogram. In-
direct calls with potentially unknown tar-
gets are represented as calls to a dummy
proxy node.

We value the worst case stack consumption
over any path in this graph as the sum of the
values associated with each node on the path.
As implicit from the graph informal descrip-
tion, this sum includes symbolic variables for
paths with proxy or dynamic nodes.

This is a coarse grained representation, with the
advantage of simplicity. As described later in
section 2.5, obtaining tighter worst case values
is possible with finer grained representations
and we already have tracks for future refine-
ments on that account.

There is no special consideration for potential
interrupt events at this point. As previously
mentioned, they may either be included into the
graph manually or accounted for separately.

5

2.2 New GCC command line options

We have implemented two new GCC com-
mand line options : -fstack-usage and
-fcallgraph-info .

2.2.1 -fstack-usage

Compiling a unit X with -fstack-usage
produces a text file X.su containing one line of
stack allocation information for each function
defined in the unit, each with three columns. In
column 1 is the function name and source lo-
cation. In column 2 is an integer bound to the
amount of stack allocated by the function, to
be interpreted according to column 3. In col-
umn 3 is a qualifier for the allocation pattern,
with three possible values.static means that
only constant allocations are made, the sum
of which never exceeds the value in column
2. dynamic,bounded means that dynamic
allocations may occur in addition to constant
ones, for a sum still never larger than the value
in column 2. This typically occurs for aligning
dynamic adjustments fromexpand_main_
function . Finally,dynamic means that dy-
namic allocations may occur in addition to con-
stant ones, for a sum possibly greater than the
value in column 2 up to an unknown extent.

This can be illustrated from the following C
code in, say,fsu.c :

#include <alloca.h>

static void foo (void)
{ char buffer [1024]; }

static void bar (int n)
{ void * buffer = alloca (n); }

int main (void)
{ return 0; }

Compiling fsu.c on an x86-linux host with
-fstack-usage yieldsfsu.su as follows:

fsu.c:4:foo 1040 static
fsu.c:7:bar 16 dynamic
fsu.c:10:main 32 dynamic,bounded

2.2.2 -fcallgraph-info

For a unit X,-fcallgraph-info produces
a text file X.ci containing the unit call graph in
VCG [4] form, with a node for each subpro-
gram defined or called and directed edges from
callers to callees. With-fstack-usage in
addition, the stack usage of the defined func-
tions is merged into the corresponding node de-
scriptions, then qualified asannotated.

To illustrate, for the followingfci.c :

typedef struct
{ char data [128]; } block_t;

block_t global_block;

void b (block_t block)
{ int x; }

void c ()
{ block_t local_blocks [2]; }

void a ()
{ int x;

c ();
b (global_block);

}

We obtain the annotated graph below :

6

2.3 Processing the outputs

There is a wide panel of possible applications
using the new options outputs. Evaluating
worst case allocation chains is one, and we have
prototyped a command line tool for that pur-
pose.

Our prototype analyzer merges a set of anno-
tatedci files and reports the maximum stack
usage down a provided set of subprograms, as-
sorted with a call-chain. It is essentially a
depth first traversal engine tailored for the kind
of graphs we produce. Paths including proxy
or dynamic nodes are always reported, as they
trigger unknown amounts of stack allocation at
run-time. The analysis currently stops at the
first cycle and reports it.

For the ’a’ entry point in thefci.c example,
we get :

a: total 416 bytes
+-> a : 144 bytes
+-> c : 272 bytes

That is : “the worst case stack consumption
down ’a’ is 416 bytes, after ’a’, which may use
up to 144 bytes, calls ’c’ which may use up to
272 bytes”.

Although still experimental, this framework al-
lowed conducting a number of instructive ex-
periments, as we will describe in section 3.

2.4 Implementation

We are only going to give a sketch of the im-
plementation of the two new command line op-
tions. The bulk of the work and experimenta-
tion has been conducted on a modified 3.4.x
code base, but we think the approach is eas-
ily adaptable to a 4.x code base. The options
are independent from each other although they
produce the most interesting results when used
in conjunction.

2.4.1 -fstack-usage

The general principle is as follows: we directly
leverage the long existing infrastructure for cal-
culating the frame size of functions, made up
of both a generic part and a target back-end
dependent part, to report the amount of static
stack usage for the function being compiled. As
the back-end dependent part already needs to
gather the final result of the calculation before
emitting the assembly code, the actual imple-
mentation essentially boils down to modifying
every back-end so as to be able to easily retrieve
this result by means of a “target hook”.

We found that, at least for the most common
architectures, the changes to be made are very
localized. The “target hook” implementation
model proved to be a very efficient device and
really minimizes the effort required to add sup-
port for a new target. x86, powerpc, sparc, al-
pha, mips and hppa have been covered up to
now. The only challenge is to make sure that
every single byte allocated on the stack by the
calling sequence, even if it is not formally part
of the frame, is taken into account.

In this context, one interesting technical point
is of note: the difference in treatment be-
tweenACCUMULATE_OUTGOING_ARGSand
PUSH_ARGStargets. In the former case, the
arguments of called functions are accounted
for in the final frame size, whereas they are
not in the latter case; moreover, another sub-
tlety comes into play in the latter case, in the
form of the-fdefer-pop command line op-
tion, which instructs the compiler to not pop the
pushed arguments off the stack immediately af-
ter the call returns. This may result in increased
stack usage and requires a special circuitry to
be properly dealt with at compile-time.

The remaining task is then to detect the dy-
namic stack usage patterns, much like what
is implemented to support-fstack-check .

7

For this initial implementation, we mainly op-
erate in the Tree to RTL expander by inter-
cepting the requests for dynamic stack alloca-
tion. Moreover, as we are primarily interested
in bounding them, we also try to deduce from
the IL (here RTL) limits easily evaluated at
compile-time. A technical detail that must not
be overlooked here is that the compiler may
generate code to dynamically align the stack
pointer. While the amount of stack usage is eas-
ily bounded in that case, it must not be forgot-
ten in the final result.

There is certainly room for improvement in ei-
ther direction on the axis of compiler passes:
by working later down the RTL optimization
passes, one should be able to obtain additional
constant bounds for dynamic allocation cases
that are not inherently bounded; by working
closer to the trees handed down by the front-
end, one should be able to recognize inherently
static allocation patterns that happen to require
a dynamic-like treatment for specific reasons,
as is the case for big objects when -fstack-check
is enabled for example.

2.4.2 -fcallgraph-info

We again leverage an existing infrastructure of
the compiler to implement this command line
option, but a much more recent one, that is the
"callgraph" machinery introduced in the 3.4.x
series. We only use this machinery to gather
information all the way through the compila-
tion. We don’t drive the compilation with it
or attempt to rely on it for any code genera-
tion purpose, so our approach is not tied to one
of the compilation modes supported by GCC
3.4.x. In particular, it works with the unit-at-a-
time mode (C and C++ compilers at -O2), with
the function-at-a-time mode (C and C++ com-
pilers at -O0/-O1) and finally the statement-at-
a-time mode (Ada compiler).

The general principle is straightforward: we
record every direct function call the compiler
has to process, either at the Tree level in unit-at-
a-time mode or at the RTL level in non unit-at-
a-time modes, and every indirect function call
at the RTL level. Of course some of these func-
tion calls may end up being optimized away at
one stage of the compilation but, as we aim at
computing a worst case scenario, this conserva-
tive stance is appropriate.

However, an optimization technique relating
to function calls is particularly of note since
it can bring about huge differences in results
for any types of callgraph-based analysis, de-
pending on whether it is accounted for or not,
that is function inlining. We therefore do ar-
range for eliminating or not registering in the
first place in the call graph edges that corre-
spond to function calls for which the callee is
inlined in the caller in the assembly code emit-
ted by the compiler. For the example of the
-fstack-usage option, the immediate ben-
efit is that the static stack usage of the callee is
guaranteed not to be counted twice in the final
calculation.

When additional analysis-oriented command
line options are passed to the compiler, nodes
in the call graph can be annotated with addi-
tional information gathered all the way through
the compilation.

The final step is to generate an output suited to
the kind of post-processing callgraph-based an-
alyzes are naturally likely to require. In partic-
ular, as the process of merging .ci files is some-
what akin to linking object files, the problem of
the uniqueness of the identifiers for the merge
points has to be addressed. The VCG for-
mat for the output was chosen as a simple and
natural medium to convey compiler-generated,
callgraph-based information. It goes without
saying that targeting any other (text-based) for-
mat is easily doable and would only command
modifications at the very end of the chain.

8

2.5 Possible enhancements

This is a non exhaustive set of enhancements
we are considering at various levels.

There is first large room for improvements
in the post-compilation processing tool, which
currently stops at the first cycle it sees and is
not yet able to provide a rich variety of results.

Then, on the compiler side, the current imple-
mentation is low level to have visibility on ev-
ery detail, and misses high level semantic infor-
mation which would be useful to better handle
a number of challenging constructs.

Finally, the current graph model could be re-
fined to convey finer grained information on the
stack allocation within subprograms, to let later
analyzers compute tighter bounds. Let us con-
sider the code for ’a’ infci.c to illustrate this
point. Out of GCC 3.4.4 on x86-linux, with
accumulate-outgoing-args turned off
we see :

a: pushl %ebp
movl %esp, %ebp
subl $8, %esp
call c
addl $-128, %esp <--
[...]
call b <--
subl $-128, %esp <--
[...]

Although the reported maximum stack usage,
still 144, is correct for the function as a whole,
128 bytes are allocated only around the call to
’b’, and the maximum at the call to ’c’ is actu-
ally 16. Accounting for that would significantly
lower the worst case sum, and such effects cur-
rently accumulate on deeper call graphs. A
possible approach would be to have the graph
convey context oriented information on edges,
such as a value representing the maximum
amount of stack used in the caller when the
edge may be taken.

3 Experiments results

3.1 General description

We have first compared the compilation time
of a large Ada system with a compiler hav-
ing the support included and unused against the
time with a compiler not having the support in-
cluded. The difference was hardly noticeable
on an unloaded average x86-GNU/Linux PC (a
couple of seconds out of a 46+ minutes total
time), showing that there is no visible compila-
tion time impact from the support infrastructure
when it is not used.

We have then performed various experiments
with the new options, the prototype analyzer
and a couple of “devices” to measure/observe
the actual stack allocation at run-time. Those
devices are afillup scheme, filling oversized
stack areas with repeated patterns then looking
for the latest altered, and a GDB basedobser-
vationscheme using watchpoints.

We have experimented this framework in dif-
ferent contexts for different purposes :

• On a large piece of an existing Ada appli-
cation, to see if the approach scales up.

• On a set of Ada tests initially written for
the GNAT High Integrity profiles and ex-
pected to fit the constraints for a static
bound computation scheme, to confront
computed worst cases with run-time ob-
servations.

• On a simplified Ada parser, much larger
than individual tests in the previous set, to
confront computed and measured values
again and see how hard it is to adjust the
coding style to fit a static analysis scheme.

All the framework experiments were conducted
on an average PC running Windows.

9

3.2 On a large piece of Ada

This large piece of Ada is a significant part of
an existing multi-tasking application running
on HP-UX hosts and not at all written with
the static stack analysis purposes in mind. The
code base is approximately 1.280 million lines
spread over 4624 units. There are very complex
Ada constructs all over, and numerous reasons
for a static analysis not to be able to provide a
useful upper bound on the stack consumptions
for the various Ada tasks.

Still, after having compiled this whole piece
with the two new options, we have been able
to produce a global annotated call graph in a
matter of seconds, for 377905 edges and 99379
nodes. We were also able to evaluate the con-
sumption down specific entry points in a few
seconds.

This experiment told us that the approach does
scale up very well, both performance and in-
terface wise. We are able to efficiently get
very useful text oriented feedback out of a large
graph involving thousands of units, while a vi-
sual representation was clearly not adequate.

3.3 On a set of Ada tests for the GNAT
High Integrity profiles

This experiment was to exercise the framework
against a number of tests and compare com-
puted worst case values with run-time observa-
tions. The set of tests is a selection among a
series initially devised for the GNAT High In-
tegrity profiles and expected to fit a static anal-
ysis experiment. In particular :

• They make a very restricted usage of run-
time library components, thus avoiding
complex constructs which can make static
stack analysis difficult.

• They feature no indirect calls and very few
call graph cycles or dynamically sized lo-
cal variables.

• They are inputless, have a very stable be-
havior over different runs, and so are easy
to study.

We ended up with over 10_000 lines of Ada
in 14 separate tests together with their support
packages.

Table 1 summarizes the first comparison we
have been able to make between fillup mea-
sured consumptions and statically computed
worst case values.

Test Fillup Static Delta

01a 328 328 0.00%
02a 488 240 -50.82%
06a 8112 8288 +2.17%
08a 7932 8092 +2.02%
10a 7868 8032 +2.08%
11a 56 56 0.00%
12a 8040 8208 +2.09%
13a 5280 5452 +3.26%
16a 6732 6896 +2.44%
17a 8 8 0.00%
18a 272 272 0.00%
19a 88 88 0.00%
20a 832 896 +7.69%
21a 1584 400 -74.75%

Table 1: Fillup Measured vs Statically Com-
puted worst case stack amounts (in bytes) on a
set of High Integrity Ada tests

For most tests, the statically computed worst
case is equal or only slightly greater than the
observed maximum usage, as expected. We
haven’t investigated the detailed reasons for all
those differences. A number of factors can
come into play:

10

• The fillup instrumentation code only de-
clares “used” the area up to the lastclob-
beredword, possibly not as far as the last
allocatedword.

• All the experiments were performed with-
out accumulate-outgoing-args ,
so overestimates by lack of context may
appear as described in section 2.5.

• The reported worst case code path might
never actually be taken during the test ex-
ecution.

One big anomaly shows up from this table,
though : for two tests (02a and 21a), the stat-
ically computed worst case is lower than the
observed actual consumption, which we would
expect never to happen. This was triggered by
shortcomings in our first version of the pro-
totype analyzer, which silently assimilated the
variable amounts for proxy and dynamic nodes
to a null value.

Test 21a turned out to involve a couple of dy-
namic nodes, making the comparison meaning-
less. Test 02a simply missed to account for a
proxy node corresponding to a run-time cosine
entry point, and obtaining a better estimate (640
bytes) was easy after recompiling the library
units with the new options.

All in all, we obtain a very sensible static worst
case evaluation for all the relevant tests, with
run-time observations/measurements equal or
lower by only small factors.

3.4 On a simplified Ada parser

Here the goal was to evaluate the stack analysis
framework on a moderately large single appli-
cation, written in Ada and not designed with
static analysis in mind although believed to be

close to match the required criteria. The appli-
cation is a simplified Ada parser without recur-
sion, used for text colorization purposes in an
IDE editor module. Unlike the previous set of
testcases, this one is input sensitive and evalu-
ating its worst case stack consumption with a
testing based approach is not easy.

The first analysis attempts stumbled on dy-
namic allocations for common Ada constructs,
easily rewritten in a more efficient manner.

The second difficulty was calls to the sys-
tem heap memory allocator. It turned out to
consume significant and not easily predictable
amounts of stack on our platform, so we have
replaced it with in-house Ada Storage_Pool.

Eventually, we found that indirect calls were
used in numerous places and that properly ac-
counting for them was a hard prospect. For
the sake of the experiment, we assigned a null
value to the fake indirect call proxy node and
were then able to compute a worst case. Of
course, the so computed value was expected
not to be a reliable upper bound. Running an
instrumented version of the parser over 2047
files from the GNAT source tree indeed re-
vealed one case of measured stack consumption
greater than the statically computed value. The
other tests also provided interesting statistical
figures: more than 60% of the tests revealed
a measure within 98% of the computed value
and the overwhelming majority of the remain-
ing tests got measures above 80% of the com-
puted value.

This experiment confirmed that static analysis
of stack depths requires a lot of factors to allow
the computation of reliable upper bounds, and
that it should be anticipated early in the devel-
opment process. It also shows that even when
reliable upper bounds may not be obtained, per-
forming the analysis is instructive and is a very
helpful development instrument.

11

It is also interesting to notice that in none of our
experiments to date, have we found a case of a
computed max value unreasonably bigger than
the measured values. Admittedly, our experi-
ments have been limited and thus are not fully
representative. Nonetheless, it is an encourag-
ing result which would tend to indicate that re-
finements in the maximum computation are not
immediately urgent.

4 Conclusion

Static analysis of stack allocation patterns is
of great value in many situations and even a
requirement in some specific software devel-
opment processes. We have explained why a
compiler can play a key role as a component
in an analysis framework, and described two
new GCC command line options implemented
for this purpose. We obtained very encourag-
ing results from several experiments with these
options and a prototype analyzer to process the
outputs, reporting on the worst case paths down
provided entry points. As we have shown, the
approach scales up well and is adaptable to new
target architectures with only little efforts. It
is already able to produce very valuable feed-
back early in the development process and still
leaves a lot of room for refinements and exten-
sions in the future.

References

[1] Absint - StackAnalyzer.http://www.
absint.com/stackanalyzer .

[2] Survey Workshop on Resource Bound
Checking. Part of the Research On Pro-
gram Analysis System (ROPAS) initiative
at the Seoul National Universtity -http:
//ropas.kaist.ac.kr/survey .

[3] The AVR Simulation and Analysis
Framework. http://compilers.
cs.ucla.edu/avrora .

[4] Visualization of Compiler Graphs (VCG).
http://rw4.cs.uni-sb.de/
users/sander/html/gsvcg1.
html .

[5] Peter Altenbernd. On the False Path Prob-
lem in Hard Real-Time Programs. InPro-
ceedings of the 8th Euromicro Workshop
on Real-Time Systems, June 1996.

[6] Dennis Brylow. Static Checking of Inter-
rupt Driven Software. PhD thesis, Purdue
University, August 2003.

[7] Dennis Brylow, Niels Damgaard, and Jens
Palsberg. Static Checking of Interrupt
Driven Software. In IEEE Computer So-
ciety Press, editor,Proceedings of the
23rd International Conference on Soft-
ware Engineering, May 2001.

[8] Krishnendu Chatterjee, Di Ma, Rupak
Majumdar, Tian Zaho, Thomas Hen-
zinger, and Jens Palsberg. Stack Size
Analysis for Interrupt-Driven Programs.
In Springer Verlag, editor,Proceedings
of the 10th International Static Analy-
sis Symposium, volume 2694 ofLecture
Notes in Computer Science, June 2003.

[9] Karl Crary and Stephanie Weirich. Re-
source Bound Certification. InProceed-
ings of the 27th ACM SIGPLAN-SIGACT
symposium on Principles of programming
languages. ACM Press, 2000.

[10] Jens Palsberg and Di Ma. A Typed Inter-
rupt Calculus. In Springer Verlag, editor,
Proceedings of the 7th International Sym-
posium on Formal Techniques in Real-
Time and Fault Tolerant Systems, volume
2469 of Lecture Notes in Computer Sci-
ence, September 2002.

12

[11] John Reghr. Eliminating stack overflow
by abstract interpretation. In Springer
Verlag, editor, Proceedings of the 3rd
International Conference on Embedded
Software, volume 2855 ofLecture Notes
in Computer Science, October 2003.

[12] John Reghr. Say No to Stack Overflow.
September 2004. Article #47101892 at
http://www.embedded.com .

[13] Leena Unnikrishnan, Scott D. Stoller, and
Yanhong A. Liu. Automatic Accurate
Stack Space and Heap Space Analysis for
High-Level Languages. Technical Re-
port 538, Computer Science Dept., Indi-
ana University, April 2000.

13

