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Abstract. Transparent system support for software fault tolerance reduces 
performance in general and precludes application-specific optimizations in 
particular.  In contrast, explicit support – especially at the language level – 
allows application-specific tailoring.  However, current techniques that 
extend languages to support software fault tolerance lead to interwoven code 
addressing functional and non-functional requirements.  Reflection promises 
both significant separation of concerns and a malleability allowing the user to 
customize the language toward the optimum point in a language design space.  
To explore this potential we compare common software fault tolerance 
scenarios implemented in both standard and reflective Ada.  Specifically, in 
addition to backward error recovery and recovery blocks, we explore the 
application of reflection to atomic actions and conversations.  We then 
compare the implementations in terms of expressive power, portability, and 
performance. 
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1 Introduction 

Lives and property increasingly depend on the correct operation of computer 
software.  This dependence may be absolute because older technologies such as 
electromechanical, hydraulic, or pneumatic mechanisms are either inadequate or 
violate other system constraints, typically those of cost, weight, and power 
consumption.  For example, the NASA Space Shuttle fleet is purely “fly-by-wire”; 
there is no (say) hydraulic backup control system.  A larger number of people are 
potentially affected by fly-by-wire commercial aircraft.  For example, the Boeing 
737/300 and the Airbus A320, A330, and A340 aircraft are completely dependent 
upon reliable operation of the control software.    Even more people will be affected 
by “drive-by-wire” automobiles as they become ubiquitous.   

However, software for current and future applications – such as flight control 
systems – is both large and complex, such that full testing is not feasible.  
Furthermore, complete proofs of correctness are at best inherently limited by the 
potential for specification faults.  Indeed, specification faults are considered the cause 
of the majority of safety mishaps [4].  The combination of potential specification 



errors and overall complexity define the problem as one of handling unanticipated 
software faults.  “Software fault tolerance” is the use of software mechanisms to deal 
with these unanticipated software faults [5, Preface].  

Software fault tolerance is expensive and adds to the overall complexity of the 
system (which may even reduce reliability as a result).  Nevertheless, software fault 
tolerance must be explicitly considered for safety-critical applications because 
software faults are unavoidable, as we discussed above, and because the techniques 
used for hardware fault tolerance generally do not handle software faults.  Hardware 
fault tolerance is based on replication, on the grounds that the hardware may 
eventually “wear out” but does not contain permanent design flaws.  Software faults, 
on the other hand, are widely held to be permanent design mistakes.  Replication 
would simply create multiple copies of the same permanent mistake.   

One of the software technologies considered for handling software faults is 
“reflection”.  Reflection is the ability of a computational system to observe its own 
execution and, as a result of that observance, perhaps make changes to that execution  
[6, 11].  Conceptually, software based on reflective facilities is structured into distinct 
levels: the baselevel and one or more metalevels.  The baselevel addresses the 
functional requirements of the application.  The metalevels represent and control the 
baselevel. As such, the metalevels are responsible for the non-functional aspects of 
the system.  The differences in these levels can be illustrated in terms of a stage 
production: the baselevel is everything seen by the audience; the considerable activity 
off-stage occurs in the metalevels [3].  

The metalevel and baselevel are causally related: modification of one affects the 
other.  This relationship may be achieved by making the actual baselevel 
implementation available to the metalevels, such that changes by the metalevels are 
automatically effective at the baselevel.  To the degree that the implementation is 
made available, everything in the implementation and application – the syntax, the 
semantics, and the run-time data structures – is “opened” to the programmer for 
modification via the metalevels. 

Reflection offers a clean separation of concerns with great flexibility and it has, 
therefore, been a focus of research in software fault tolerance.  However, most of 
these research efforts focus on handling hardware faults and those that address 
software fault tolerance use languages that are limited in one respect or another.  
Indeed, reflection has not been applied to a language with the features integrated 
within Ada.  Furthermore, such a language has not been used to address software fault 
tolerance with reflective programming even though Ada is especially appropriate for 
systems in which reliability is critical.   

We have implemented a reflective programming facility for Ada [9] and applied it 
to scenarios not otherwise explored by the fault tolerance community.  Specifically, in 
addition to backward error recovery and recovery blocks, we explore the application 
of reflection to atomic actions and conversations.  Having implemented the scenarios 
using both standard and reflective Ada, we then compare the implementations in 
terms of expressive power, portability, and performance.  In section 2 we describe the 
concept of compile-time reflection as applied to our reflective Ada implementation 
“OpenAda”.  Section 3 compares the results of the scenario implementations using 
both standard Ada and OpenAda, and section 4 provides closing remarks.  

 



2 OpenAda 

The inefficiencies incurred from reflection, especially with interpretive 
implementations, are a significant problem.  These inefficiencies and those imposed 
by reifying the entire processor have led to “open compilers” that allow users to 
change the language’s semantics without necessarily incurring performance penalties.  
In these compilers the internals, including parsing, the data structures, semantic 
analysis, and so forth, are reified such that new functionality and even new syntax 
may be added to the language.  These changes are achieved by subclassing these 
reified internal classes.   

A distinct alternative is to have the translation driven by a specific, individual 
“translator” metaclass rather than by (subclasses of) the reified compiler internals.  A 
metaclass is, in this alternative approach, a specialization of a predefined translator 
class [2].  The input source code contains an annotation that affects the translation by 
specifying the specific metaclass to be used to perform the translation.  As a result, 
the metaclass can be said to customize the translation of the input source code rather 
than customizing the compiler’s internals.  The resulting metaobject protocol is 
referred to as a “compile-time MOP”.  With such a MOP the metalevel code only runs 
during compilation: the metalevel code controls translation of the program and, 
thereby, albeit indirectly, run-time behaviour.  The metaclass can use this MOP to 
inquire about the primitive operations and components of a given type, for example, 
and may add, remove, or arbitrarily change them as required by the goals of the 
metaclass.  As an illustration, these changes could involve invoking an acceptance test 
and, if it fails, restoring state and invoking a secondary variant routine.  Translating 
metaclasses can be reused across applications whenever the corresponding translation 
is required. 

OpenAda is our compile-time reflection facility for Ada 95 using the “translating 
metaclass” approach.  A pragma named Metaclass in the baselevel source code 
specifies the translating metaclass to be applied to that baselevel code.  The metaclass 
alters the baselevel source to implement the non-functional requirements of the 
system, thereby achieving the intended separation of the source code implementing 
the functional and non-functional requirements.   

For example, a metaclass that translates baselevel code into code that incorporates 
recovery blocks could be declared as follows.   
 
… 
with OpenAda.Meta; 
with OpenAda.Syntax.Constructs;  use OpenAda.Syntax.Constructs; 
with Ada.Strings.Wide_Unbounded; use Ada.Strings.Wide_Unbounded; 
 
package Inline_Recovery_Blocks is 
 
  type Class is new OpenAda.Meta.Class with private; 
 
  Failure : exception; 
 
  procedure Finalize_Translator( This : in out Class ); 
 



  procedure Translate_Handled_Statements 
    ( This    : in out Class; 
      Input   : in out Handled_Statements; 
      Control : in out OpenAda.Syntax.Visitation_Controls ); 
 
private 
 
  type Class is new OpenAda.Meta.Class with 
    record 
      Required_Units          : Unbounded_Wide_String; 
      Recovery_Point_Inserted : Boolean := False; 
    end record; 
   … 
end Inline_Recovery_Blocks; 
 

The metaclass Inline_Recovery_Blocks.Class translates any handled-sequence-of-
statements it encounters in the baselevel code.  Specifically, it converts any pragma 
Recovery_Block in the baselevel into a block-statement that implements a recovery 
block.  (See Section 3.2 for more details of the pragma Recovery_Block and the 
expanded block statement it generates.)  The variants and acceptance test for any 
inserted recovery block are specified as pragma Recovery_Block parameters. These 
subprograms need not be local to the translated unit so the translator inserts with-
clauses for them as necessary.  The names of these units are stored in the 
Required_Units component of the class.  Similarly, the translator inserts a with-clause 
for a recovery mechanism named “Recovery_Point” but only does so once for the 
sake of understandability.  Hence a Boolean flag is used to control that insertion and 
is also a component of the class. 

The implementation of procedure Translate_Handled_Statements verifies that the 
statement immediately preceding pragma Recovery_Block is a call to the procedure 
named as the first variant specified to the pragma.  It then removes that procedure call 
and inserts a tailored block statement that implements recovery block semantics for 
the specified variants.  All variant procedure names are captured and have 
corresponding with-clauses inserted by another routine (Finalize_Translator) if 
necessary. 
 
procedure Translate_Handled_Statements 
  ( This    : in out Class; 
    Input   : in out Handled_Statements; 
    Control : in out OpenAda.Syntax.Visitation_Controls ) 
is 
  Iterator      : Parsed_Content.List_Iterator; 
  Next_Item     : Any_Node; 
  Prev_Item     : Any_Node; 
  The_Pragma    : Any_Pragmata; 
  Pragma_Args   : Parsed_Actuals; 
  New_Statement : Any_Node; 
  Statements    : Parsed_Content.List renames  
    Sequence_of_Statements(Input'Access).Content; 
 
  use Parsed_Content, Syntax.Utilities; 



begin 
  Iterator := Make_List_Iterator( Statements ); 
  while More( Iterator ) loop 
    Prev_Item := Next_Item; 
    Next( Iterator, Next_Item ); 
    if Next_Item.all in Pragmata'Class then 
      The_Pragma := Any_Pragmata( Next_Item ); 
      if Image(Pragma_Name(The_Pragma),Lowercase) = 
         "recovery_block"  
      then 
        Pragma_Args := Parsed( Args(The_Pragma) ); 
        -- Any preceeding statement must be a procedure call,  
        -- and must be a call to the first variant listed in the  
        -- pragma Recovery_Block params. 
        Verify_Primary_Call( Prev_Item, Pragma_Args ); 
        -- replace the pragma with the recovery block 
        New_Statement := New_Recovery_Block( Pragma_Args ); 
        Replace( Old_Node => Next_Item, 
                 New_Node => New_Statement, 
                 Within   => Statements ); 
        -- delete the preceeding procedure call 
        Delete_Call( Prev_Item, Within => Statements ); 
        if not This.Recovery_Point_Inserted then 
          Append( This.Required_Units, "Recovery_Point " ); 
          This.Recovery_Point_Inserted := True; 
        end if; 
        Append_Package_Names(This.Required_Units, Pragma_Args); 
      end if; 
    end if; 
  end loop; 
end Translate_Handled_Statements; 

3 Comparing Standard and Reflective Ada 

Compared to other mainstream languages, Ada is unusual due to its integrated support 
for concurrency (especially asynchronous interactions), high-integrity systems, real-
time systems, and object-oriented programming.  Indeed, the language provides 
standardized support for the typical capabilities added to other languages via 
reflection, namely concurrency and distribution.  These integrated facilities make 
expression of a wide assortment of reusable fault tolerance components – particularly 
those involving cooperating threads – easier than in other typical languages.  We have 
implemented a number of scenarios using common software fault tolerance facilities 
to determine the potential advantages offered by reflection for such a language.  
These scenarios are written in both standard Ada 95 and OpenAda and involve 
reusable components implementing backward error recovery, recovery blocks, atomic 
actions, and conversations.  We now compare these scenario implementations in 
terms of expressive power, separation of concerns, and performance. 



3.1 Expressive Power 

Lacking a widely accepted definition, we define expressive power as a matter of 
implementing requirements concisely.  In this subsection we compare the expressive 
power of standard Ada against the combination of the baselevels and the metaclass 
translators.  We do not examine the expressive power of the metaclass code itself, but, 
rather, the result of applying the metaclasses to the baselevels. 

Using Pragmas to Annotate Baselevel Source.  Several of the reflective scenarios 
use metaclass-specific pragmas to annotate the baselevel code for specific treatment 
by the translating metaclass.  The pragma Recovery_Block, for example, is expanded 
into code implementing the corresponding functionality.  Pragmas Atomic_Action 
and Conversation are similarly expanded into interactions with reusable components 
implementing the required services.  Each occurrence of pragma Conversation 
individually enumerates the entire set of variants to be expanded into a conversation 
call.  These variants need not be from the same package and need not be local to the 
unit containing the pragmas – the metaclass determines which variants require with-
clauses and generates them accordingly.  These pragmas thus represent a great deal of 
functionality with a very simple and succinct expression.  One could argue that their 
power exists only in combination with the metaclass translators, but that is also true of 
standard Ada syntax translated by a standard Ada compiler. 

These annotation pragmas also help hide arcane syntax and language rules.  For 
example, the backward error recovery implementation requires a discriminant for 
each recoverable object declaration.  These discriminants link the recoverable 
application object with a controlling “recovery manager” object.  A discriminant is 
used for the sake of robustness because the compiler ensures the linkage is specified 
when the object is declared.  However, discriminants add syntactic weight to the code 
and impose rules beyond those of normal record components.  Moreover, these 
discriminants provide a permanent linkage to a single controlling cache object even 
though different associations might make sense at different points in the program 
execution.  

The reflective version of the scenario carries none of this baggage because the 
baselevel code does not address recovery.  The metaclass programmer is responsible 
for inserting the discriminant specifications, not the baselevel programmer.  Indeed, 
the metaclass could translate the code to use a procedural registration facility instead, 
but neither approach appears in the baselevel. 

However, pragmas are not as expressive as dedicated syntax.  A pragma is no more 
expressive than a procedure call.  The Ada tasking constructs are, in part, a reaction 
the limitations of the expressive power of procedure calls.  Prior to Ada, an 
application programmer made calls into an operating system to achieve concurrency.  
These operating system calls provided neither visibility into thread interactions nor 
compile-time type checking.  In contrast, dedicated syntax provides explicit 
interactions with compile-time checking and is much more expressive than a 
procedural interface (as found in Java, for example).     



Limitations Due To Semantics That Cannot Be Reified.  The expressive power of 
the reflective approach is limited by the fact that some semantics of the Ada language 
cannot be readily reified.  A metaclass cannot alter the semantics of task activation or 
general object creation, for example, because there is no corresponding syntax to 
translate.  In a reflective programming context these limitations do not compare well 
with other languages that use explicit syntax, such as constructors for object creation 
or explicit method calls for task activation, either of which are easily translated by a 
metaclass. 

These limitations did not affect our scenario implementations because such 
translations were not necessary.  However, had we been required to alter object 
creation or task activation and completion these restrictions would have been onerous.  
For example, one could imagine a requirement to register each task’s activation for 
the sake of debugging. 

Expressing Otherwise Inexpressible Requirements.  Atomic actions and 
conversions are meant to be indivisible, such that no internal state changes are 
discernable outside the action until the action completes.  “Information smuggling” 
occurs when these internal state changes are inadvertently leaked.  Prevention is 
critical because system recovery cannot be reduced to atomic action recovery if action 
recovery is not complete.  Smuggling cannot be fully prevented in Ada because of the 
visibility rules [10]. 

A significant feature of compile-time reflective programming is the ability to do 
complex semantic analysis during compilation.  This analysis can be applied to 
enforce language restrictions to a project-defined subset, for example.  In the case of 
atomic actions and conversations, we apply such analysis to enforce the semantic 
requirement against information smuggling.  Wellings and Burns mention the use of 
pragma Pure as a means of precluding smuggling by rejecting with-clauses that name 
library units containing state [12].  Unfortunately, using pragma Pure is neither 
sufficient nor entirely desirable.  It is not desirable because the “purity” is required of 
the library units referenced, not in the unit itself where the pragma would be placed.  
It is not sufficient because a devious programmer could import any arbitrary Ada unit 
via pragma Import – including one that leaks internal state to an impure unit – thereby 
circumventing pragma Pure.   

In our reflective implementation the metaclass explicitly checks the library units in 
the transitive closure of the specified baselevel unit for object declarations.  However, 
this approach is not sufficient for the same reason that the semantics of pragma Pure 
are not capable of detecting potential leaks: pragma Import can be used to create an 
undetected leak.  Therefore, the metaclass also checks for pragma Import occurrences 
and rejects the package if any are found.  Information smuggling is thus prevented. 

3.2 Separation of Concerns 

In the context of this comparison, “separation of concerns” is a matter of the 
separation between the code meeting the functional requirements and the code 
meeting the non-functional requirements. 



Standard Ada has extensive support for separation of interface from 
implementation in the form of abstract data types, physically separate interfaces and 
implementations, and dynamic binding.  But separating interface from 
implementation is not the goal.  We wish to separate the code meeting the functional 
requirements from the code meeting the non-functional requirements. 

Reflection promises a significant degree of this separation – potentially complete 
transparency – unless explicit interaction is intended, but in practice there are 
impediments to complete separation.  We analyze these impediments in this 
subsection. 

Baselevel Annotations.  In some scenarios, the translating metaclass detects and 
expands metaclass-defined pragmas in the baselevel “inline” to implement the 
corresponding fault tolerance facility.  For example, pragma Recovery_Block 
specifies the checkpoint manager object, the acceptance test function, and an 
unbounded list of procedures to be called as variants.  The pragma is placed 
immediately after a procedure call that occurs in the baselevel to implement the 
functional requirements.  For example: 
… 
Calculate_New_Position; 
pragma Recovery_Block( Checkpoint, 
                       Reasonable, 
                       Calculate_New_Position, 
                       Estimate_New_Position, 
                       Reuse_Old_Position ); 
… 
 

The metaclass removes both the pragma and the baselevel procedure call and then 
inserts code to implement a recovery block using the specified recovery object [8], 
acceptance test, and variants, with the original procedure called as the primary 
variant. 
… 
declare 
  Variant_Failure : exception; 
  Recovery_Block_Failure : exception; 
  Num_Variants : constant := 3; 
  use Recovery_Point; 
begin 
  Establish( Recovery_Data'Class(Checkpoint) ); 
  for Variant in 1 .. Num_Variants loop 
    begin 
      case Variant is 
        when 1 => 
          Calculate_New_Position; 
        when 2 => 
          Estimate_New_Position; 
        when 3 => 
          Reuse_Old_Position; 
      end case; 



      if not Reasonable then 
        raise Variant_Failure; 
      else 
        exit; 
      end if; 
    exception 
      when others => 
        Restore(Recovery_Data'Class(Checkpoint)); 
        if Variant = Num_Variants then 
          Discard( Recovery_Data'Class(Checkpoint) ); 
          raise Recovery_Block_Failure; 
        end if; 
    end; 
  end loop; 
  Discard( Recovery_Data'Class(Checkpoint) ); 
end; 
… 
 

As can be seen, the annotation pragmas in the baselevel indicate what operations 
are required and where they are required, but do not indicate how those operations are 
to be provided.  This is the very essence of abstraction and separation of concerns.  
However, the pragmas do exist in the baselevel code, introducing a coupling between 
the baselevel and the metalevels.  Essentially the pragmas are another form of explicit 
reference. 

An alternative to the annotations is to have the metaclass automatically recognize 
the baselevel code to alter.  In some cases the metaclasses do take this approach, for 
example with type and object declarations.  This approach only makes sense, 
however, when either all such code is intended for transformation or the metaclass 
can distinguish between those occurrences that should be altered and those that should 
not.  That distinction cannot be guaranteed in all cases.   

Counter-intuitive Baselevel Type Declarations.   In the standard Ada version of the 
backward error recovery scenario, a type used for simple counting was necessarily 
defined as an extension to a base type providing backward recovery.  In the reflective 
version we wanted to hide recovery from the baselevel programmers for the sake of 
separation of concerns.  To that end we removed the recovery code from the baselevel 
– the type is no longer derived from a recoverable base type – but the baselevel type 
must still be declared as a record type because the translated usage will be as a type 
extension rather than a numeric type.  One must wonder whether the baselevel 
programmer would, in practice, declare a simple numeric counter as a record type.   

The intuitive reflective approach would be to declare the type in the baselevel as a 
simple numeric type and alter it by the metaclass to become a tagged extension type.  
That approach is not viable.  Although overloaded operators could be declared by the 
metaclass, numeric literals would no longer be available within clients and value 
assignment would require aggregates.  A metaclass could conceivably make these 
translations within clients but the effort is difficult to justify. 



3.3 Performance 

Using compile-time reflection, the reflective implementations will ideally be at least 
as efficient as the standard Ada versions.  The reflective versions may even be more 
efficient than those using standard Ada due to tailored translations taking advantage 
of application-specific knowledge.  Our benchmark programs show this expectation is 
valid, although performance will vary with the specific translation strategies chosen.  
In other words, compile-time reflection need not impose performance penalties but a 
poor metaclass translation may very well generate source code exhibiting lower 
performance. 

Backward Error Recovery and Atomic Actions.  After translation, the sources for 
the reflective versions of both the backward error recovery and atomic actions 
scenarios are semantically equivalent to the standard Ada versions and, as a result, the 
average execution times are essentially identical.  This result demonstrates that 
reflective techniques need not impose any performance penalty whatsoever, while 
nonetheless providing complete separation of concerns. 

Conversations.  The conversations benchmarks illustrate the fact that the reflective 
version may be slower than the non-reflective version; in this case, about five percent 
slower.  However, the performance penalty is not inherent in the use of reflection – it 
is due to the translation scheme implemented by the metaclass programmer.  In this 
case, the source code for the two versions is not semantically equivalent.  The 
metaclass implements a translation that is relatively easy to produce but is not as fast 
as the non-reflective version.  This difference was not intentional, although in 
hindsight the implemented translation scheme is clearly not optimal.  Rather than 
revise the metaclass, however, we left it unchanged for the sake of illustrating the 
potential for deleterious effects. 

Specifically, the standard Ada version makes better use of generic instantiations 
than does the reflective version.  The standard version instantiates a generic 
conversation role procedure template at the outermost level of the enclosing package 
and shares this instance across the routines exported to the calling tasks.  The shared 
instance is, consequently, instantiated and elaborated only once.  In contrast, the 
reflective version (after translation by the metaclass) instantiates the generic 
procedure within the role procedures themselves and elaborates the instances on each 
invocation by the tasks.   This approach is necessary because the metaclass can not 
“know” that a single shared instance is applicable. 

Recovery Blocks.  The recovery blocks benchmarks provide the best illustration of 
performance improvements due to source tailoring based on application-specific 
knowledge.  The reflective version is approximately 30% faster than the standard Ada 
version. 

The speed difference is primarily due to the fact that the reusable component 
applied by the standard Ada version protects itself against aborts, including both task 
abort and aborts due to asynchronous select statements.  The reflective version is 
tailored to ignore aborts and, as a result, does not pay the price of the unnecessary 



protection.  (Certainly another client might need protection from abort, requiring a 
different translation.)   

We created another standard Ada reusable recovery block component to verify that 
the performance difference is due to the abort protection.  This component does not 
protect itself from aborts.  The resulting performance profile is essentially identical to 
that of the reflective version (approximately one percent difference, i.e., within the 
margin of measurement uncertainty). 

3.4 Comparison Conclusions 

The expressive power of the reflective approach allowed the metalevel programmer to 
verify properties of the baselevel that cannot be expressed with standard Ada.  As to 
separation of concerns, ample separation was achieved, although the reflective 
approach typically involved some degree of coupling between the baselevel and the 
metaclass.  The code addressing non-functional requirements was, in general, both 
extensive and complex but did not appear in the baselevel.  Finally, we saw that 
performance was at least that of standard Ada, given a reasonable metaclass 
translation approach. 

Based on these comparisons we conclude that a compile-time implementation of 
reflective Ada does indeed provide enhanced expressive power and separation of 
concerns, with comparable or better performance, over that of standard Ada. 

4 Concluding Remarks 

We note that formal certification is a typical requirement for systems that might 
employ software fault tolerance techniques.  Our implementations used the full Ada 
language, including tasks (which are inherent in atomic actions and conversations), 
exceptions, access types, access-to-subprogram types, dynamic dispatching, and other 
constructs that probably would not be allowed in certified application code.  These 
constructs occurred both in the reusable components written in Ada 95 and the 
reflective and standard scenario implementations.  Some of both the reflective and 
standard Ada scenario versions applied those reusable components as well.   We have 
no insight into how to resolve the general conflict between certification and language 
subsets, other than to note that these subsets are expanding slowly over time  (e.g., the 
ARINC-653 API [1] defines processes) and that a less reuse-oriented “inline” pragma 
expansion could probably have avoided prohibited features in some of the scenarios.  
We used the full language to avoid imposing a priori restrictions that could have 
unintentionally affected the later comparisons. 

Finally, note that complete details about the compiler and the application to fault 
tolerance may be found in the Ph.D. thesis upon which this paper is based [7].  An 
electronic copy is available for download from the University of York as 
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2003-10.pdf.  The sources for the 
compiler, the fault tolerance components, and the benchmarks are available at 
http://www.classwide.com/OpenAda/. 
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