
A Comparison of the Mutual Exclusion Features in
Ada and the Real-Time Specification for JavaTM

Benjamin M. Brosgol

AdaCore
Belmont, Massachusetts USA

brosgol@adacore.com

Abstract. A concurrent program generally comprises a collection of threads1

that interact cooperatively, either directly or through shared data objects. In the
latter case the sharing needs to be implemented by some mechanism that ensures
mutually exclusive access, or possibly “concurrent read / exclusive write”. Ada
and the Real-Time Specification for Java have taken different approaches to mu-
tual exclusion. This paper analyzes and compares them with respect to program-
ming style (clarity, encapsulation, avoidance of errors such as deadlock), priority
inversion management, expressibility/generality, and efficiency. It also looks at
interactions with exceptions and asynchronous transfer of control.

1 Introduction

Mutual exclusion is a fundamental requirement in a concurrent program, and over the
years a number of different approaches have been proposed, studied, and implemented,
ranging from low-level primitives to higher-level features. This paper shows how Ada
[1] and the Real-Time Specification for Java (“RTSJ”)2 [2] [3] approach this issue.
The basic problem that each must address, especially with respect to meeting real-
time requirements, is how to provide mutual exclusion in a way that offers sufficient
generality, supports sound software engineering practice, prevents unbounded priority
inversion, and allows efficient implementations.

In brief, mutual exclusion in Ada is obtainable via three mechanisms, listed in order
of increasing generality:

– Atomically accessible data objects, so designated via a pragma
– Protected objects, with an associated locking policy
– “Passive tasks” sequentializing accesses via rendezvous

The RTSJ captures mutual exclusion in two ways:

– Atomically accessible variables so marked via the volatile modifier

1 We use the term “thread” generically to refer to a concurrent activity. When discussing a par-
ticular language’s mechanism we use that language’s terminology (e.g., “task” in Ada).

2 The RTSJ is the product of the Java Community Process’s Java Specification Request 00001.
It adds real-time functionality to the Java platform through the javax.realtime class library
together with constraints on certain behaviors that are implementation dependent in Java.

– Methods or blocks that are “synchronized” on an object, with priority inversion
management based on the object’s “monitor control policy”

The second mechanism basically extends and makes more deterministic the seman-
tics of Java’s “synchronized” facility.

It is also possible to simulate Ada’s passive task style in Java (and thus in the RTSJ),
but this is not a typical idiom.

The following sections discuss and contrast the Ada and RTSJ approaches, with a
particular focus on priority inversion management. Given the context for this paper, it
is assumed that the reader is more familiar with Ada than with Java or the RTSJ. Thus
more background information and technical detail are provided for Java and especially
the RTSJ than for Ada.

2 Mutual Exclusion in Java

Since the RTSJ builds directly on the Java [4] mechanisms, this section summarizes
and evaluates Java’s facilities for mutual exclusion. A more comprehensive analysis of
Java’s concurrency model may be found in [5], [6], and [7].

2.1 volatile variables

In simple cases two threads may need to communicate via a shared variable, but Java’s
memory model [8] allows the compiler to cache the value of the variable in each thread’s
local memory. To prevent this unwanted optimization, the programmer can declare the
variable as volatile. Because of Java’s pointer-based semantics, volatile never ap-
plies to an entire object, but only to either a scalar variable or a reference to an object.
The intent is that any access to the variable is atomic with respect to thread context
switches. Indeed, when volatile is specified then atomicity is required, but with two
exceptions: variables of type long or double, which take 64 bits. In these cases the
language rules encourage but do not require atomic accesses. Further, volatile can
not be specified for array components. It can be specified for an array variable, but then
it applies only to the array reference and not to the components.

2.2 synchronized code

Java’s mutual exclusion facility is based on the concept of “object locks”. Concep-
tually, each object (including class objects3) has an associated lock. The program can
attempt to acquire a lock on an object referenced by a variable ref either by executing a
statement synchronized(ref)�...� or by invoking an instance method ref.func(...)
where func is declared as synchronized. (A static method may also be declared as
synchronized, in which case the lock in question applies to the corresponding class
object.)

3 A class object is an instance of class Class and serves as a run-time manifestation of a Java
class.

When a thread holds a lock on an object, any other thread attempting to synchronize
on that object will be prevented from running 4 until the lock has been released, at which
point it becomes ready and competes with other threads that were similarly stalled. Java
does not dictate how the stalling is to be implemented.

An object lock is not simply a boolean, it needs to have a non-negative count asso-
ciated with it to handle situations when a thread acquires a lock on an object for which
it already holds the lock. When a thread exits from synchronized code, either normally
or through exception propagation, the count is decreased. If/when it becomes zero, the
lock is released.

The synchronized mechanism is rather general; there are no restrictions on the
statements that can be executed inside synchronized code. In particular, a thread can
block (e.g., via the sleep() method) while holding the lock. Some blocking methods
(specifically wait) release the lock; others do not.

Java’s synchronized mechanism has several problems:

– It is susceptible to the “nested monitors” problem: if two threads attempt to syn-
chronize on different objects in different orders, they may deadlock.

– The language semantics do not specify how priorities affect lock acquisition. If
low- and high-priority threads are competing for the same object lock, there is
no guarantee that preference is given to the high-priority thread. If a low-priority
thread owns a lock that is needed by a high-priority thread, there is no requirement
for priority inheritance, and thus unbounded priority inversion may result.

– Java’s synchronized construct is not fully integrated with state-based mutual ex-
clusion (i.e., when a thread not only needs mutually exclusive access to an ob-
ject but also needs to wait until the object is in a particular state). The wait /
notify / notifyAll mechanism basically supports just one condition variable per
object, which makes it somewhat error-prone to express classical idioms such as
the bounded buffer. Further, there is a run-time check to ensure that when one of
these methods is invoked, the calling thread holds the lock on the object.

– Methodologically, the presence of synchronized methods in a class does not mean
that uses of objects in that class are “thread safe”. For example, even though one
thread has “locked” an object through a synchronized method, another thread can
corrupt the object by invoking a non-synchronized method or by directly accessing
the object’s fields.

These last two issues imply that Java’s use of the term “monitor” to denote the
object lock mechanism is somewhat of a misnomer, since the classical monitor construct
includes condition variables and data encapsulation. Indeed, Brinch Hansen’s rather
scathing critique of Java’s thread model [9] was due to a large extent to Java’s failure to
provide a safe mutual exclusion mechanism as the basis for its concurrency model.

Java has no notion of synchronized code being immune to asynchronous interrup-
tion. This caused some anomalous interactions with several methods in the Thread
class:

4 We use the term stalled to denote the state of a thread that has attempted to synchronize on an
object that has been locked by some other thread. It is useful to differentiate the stalled state
from the blocked state that results from invocation of methods such as sleep and wait.

– If t.stop() is invoked while t is inside code that is synchronized on some object
obj, then t will suffer the throwing of a ThreadDeath exception. If not handled
inside the synchronized code, the exception will be propagated and the lock on obj
will be released, possibly leaving obj in an inconsistent state.

– If t.destroy() is invoked while t is inside code that is synchronized on some
object obj, then t is terminated “immediately” without propagating any exceptions
or releasing the lock on obj. Thus threads that later attempt to synchronize on obj
will be deadlocked.

Because of such anomalies, the Thread.stop and Thread.destroy methods have
been deprecated.

In summary, Java’s synchronized mechanism can best be regarded as a low-level
building block. It is a flexible construct that offers quite a bit of generality, but needs to
be used with care. The Java designers made no pretext of attempting to support real-time
requirements, and indeed the semantics are too loose to be depended upon.

More recently, an attempt has been made to enhance the basic facilities with higher-
level constructs: the concurrency utilities from JSR-166 [10]. Their development was in
parallel with the RTSJ and had different objectives; JSR-166 did not attempt to address
real-time requirements but rather sought to define a common set of idioms for general-
purpose concurrent programming. In the interest of minimizing its assumptions about
the underlying Java platform, the RTSJ makes no use of the JSR-166 facilities, and thus
they will not be further considered in this paper.

3 A Note on Priority Inversion

A priority inversion5 occurs when a ready or stalled thread is prevented from running
while a lower priority thread is running. Some priority inversions are necessary and
desirable; for example, stalling a high priority thread that attempts to acquire a lock
owned by a lower priority thread. A major issue for real-time programming, which is
affected by both language semantics and programming style, is to ensure that priority
inversions are anticipated and that their durations are predictable and sufficiently short
/ bounded.

4 RTSJ Summary

The RTSJ needed to address several major issues that make Java unsuitable for real-time
applications:

– The implementation-dependent nature of the thread semantics, making it impossi-
ble to write portable code that manages priority inversions and ensures that dead-
lines will be met

– The reliance on heap allocation and garbage collection for storage reclamation,
resulting in unpredictable space and/or time behavior

5 See [11] for further background information.

– Inadequate functionality in areas such as low-level programming and asynchrony

The RTSJ provides a class library, together with implementation constraints, that
are designed to overcome these problems.

It offers a flexible scheduling framework based on the Schedulable interface and
the Thread subclass RealtimeThread that implements this interface. The latter class
overrides various Thread methods with versions that add real-time functionality, and
supplies new methods for operations such as periodic scheduling. The Schedulable
interface is introduced because certain schedulable entities (in particular, handlers for
asynchronous events) might not be implemented as dedicated threads.

The RTSJ mandates a default POSIX-compliant preemptive priority-based sched-
uler – the so-called base scheduler – that supports at least 28 distinct priority levels
beyond the 10 that are defined by Java’s thread model. The implementation can provide
other schedulers (e.g., Earliest Deadline First). For priority inversion management the
RTSJ provides Priority Inheritance (required) and Priority Ceiling Emulation (optional).

To deal with Garbage Collection issues, the RTSJ defines various “memory areas”
that are not subject to Garbage Collection: immortal memory, which persists for the du-
ration of the application; and scoped memory, which is a generalization of the run-time
stack. Restrictions on assignment, enforced in general at run time, prevent dangling
references. The RTSJ also provides a NoHeapRealtimeThread class; instances of this
class never reference the heap, may preempt the Garbage Collector at any time (even
when the heap is in an inconsistent state), and thus do not incur Garbage Collector
latency except in specialized circumstances as described below. A NoHeapRealtime-
Thread can reference objects in memory areas not subject to garbage collection (im-
mortal or scoped memory).

Java’s asynchrony issues are addressed through two main features. First, the RTSJ
allows the definition of asynchronous events and asynchronous event handlers – these
are basically a high-level mechanism for handling hardware interrupts or software sig-
nals. Secondly, the RTSJ extends the effect of Thread.interrupt() to apply not
only to blocked threads, but also to real-time threads and asynchronous event handlers
whether blocked or not.

The RTSJ supports absolute and relative high-resolution time, as well as one-shot
and periodic timers. It also provides several classes for low-level programming. “Peek”
and “poke” facilities for integral and floating-point data are available for raw mem-
ory, and physical memory may be defined with particular characteristics (such as flash
memory) and used for general object allocation.

The RTSJ does not provide any specialized support for multiprocessor architectures.

5 Mutual Exclusion in the RTSJ

It would have been outside the scope of the RTSJ to introduce a new mutual exclusion
facility, so the approach was to make the standard Java mechanism suitable for real-time
applications. This entailed addressing two main issues:

– Managing priority inversions
– Dealing with asynchronous interruptibility

5.1 Managing Priority Inversions

The RTSJ offers a general, extensible, and somewhat ambitious approach to solving
the priority inversion problem. It provides an abstract class MonitorControl and non-
abstract subclasses PriorityInheritance and PriorityCeilingEmulation. Prio-
rityInheritance is a singleton class; PriorityCeilingEmulation has distinct in-
stances, one per ceiling level. The program can assign a MonitorControl instance
(referred to as a monitor control policy) to any object, and can dynamically change
the assignment. (Thus dynamic ceiling changes are allowed.) A default policy can also
be established system-wide, so that it governs all objects subsequently constructed. The
initial default policy is Priority Inheritance, but this can be overridden at system startup.

At any point in time a thread has a set of priority sources, namely its base priority
(which reflects explicitly-invoked dynamic priority changes) and also other values de-
pending on the monitor control policies governing the objects that the thread has locked.
For example the ceiling of a PriorityCeilingEmulation instance is a priority source
for any thread that has locked an object governed by this policy. A thread’s active pri-
ority is the maximum of the values of its priority sources. Entering synchronized code
adds a priority source; leaving synchronized code removes a priority source. Thus both
actions affect the thread’s active priority. Priority sources may be added/removed either
synchronously or asynchronously.

The integration of both Priority Inheritance and Priority Ceiling Emulation into a
common framework, with well-defined semantics, is new. (Posix includes both mecha-
nisms but in an underspecified manner.) As will be pointed out below, the interactions
between the two protocols led to an interesting formalization of the Priority Ceiling
Emulation policy.

Under the base scheduler, access to synchronization locks is controlled by priority
ordered queues, FIFO within priority. Thus a thread attempting to acquire a lock that is
in use goes to the tail of the “stalled” queue associated with that lock.

Priority Inheritance If an object obj is governed by the PriorityInheritance in-
stance and is currently locked by a thread t1, and a thread t2 attempts to synchronize
on obj, then t2 becomes a priority source for t1. If t1 has an active priority less than
t2’s, then t1’s active priority will be boosted to that of t2. When t1 releases the lock
on obj, t2 ceases serving as a priority source for t1, and t1’s active priority is adjusted
accordingly.

Full (recursive) priority inheritance is required by the RTSJ. In the above descrip-
tion, if t1 is stalled, waiting for an object locked by thread t0, then t0’s active priority
will be boosted to that of t2 as a result of t2 attempting to synchronize on obj.

An interesting issue arises when a NoHeapRealtimeThread t2 at high-priority
p2 attempts to synchronize on a Priority Inheritance-governed object (in immortal or
scoped memory) locked by a heap-using thread t1 at low priority p1 while the Garbage
Collector (“GC”) is in progress. (We assume that the GC is running at a priority higher
than p1 but lower than p2). Ordinarily, t1 would have its priority boosted to p2, but if
this were the sole effect then t1 would preempt the GC, thus leaving the heap inconsis-
tent. The solution is to postulate a Priority Inheritance-governed lock on the heap. When
t1, executing at inherited priority p2, attempts to access the heap, it fails because the

lock on the heap is in use by the GC. The GC inherits t1’s active priority p2 and then
runs until it reaches a safe preemption point, at which time it relinquishes the lock, al-
lowing t1 to continue. The effect is to induce a GC-induced latency for t2 (and also for
NoHeapRealtimeThreads executing at priorities higher than the GC’s base priority and
lower than p2). Since this somewhat defeats the purpose of NoHeapRealtimeThreads,
the RTSJ provides “wait-free queues” as the recommended mechanism for communi-
cation between heap-using threads and NoHeapRealtimeThreads.

A wait-free queue is a data structure that allows concurrent “writers” and “readers”
to store / retrieve items without interference but without blocking (on one side). The
RTSJ supplies two classes to obtain this effect:

– A WaitFreeWriteQueue is intended for access by a single writer (generally a
NoHeapRealtimeThread) and multiple readers (arbitrary threads). The write oper-
ations are non-synchronized and non-blocking (one method returns a status value,
another method overwrites an existing element when the queue is full). The read
operation is synchronized and will block when the queue is empty.

– A WaitFreeReadQueue is intended for access by a single reader (generally a NoHeap-
RealtimeThread) and multiple writers (arbitrary threads). The read operation is
non-synchronized and non-blocking (if the queue is empty a special value is re-
turned). The write operation is synchronized and will block when the queue is full.

Priority Ceiling Emulation Informally, Priority Ceiling Emulation (also known as
Highest Lockers Protocol) is a technique in which a thread holding a lock executes at a
ceiling priority associated with the lock. The ceiling value, which the application must
define for the lock, is the highest priority of any thread that could hold that lock. The
benefits of Priority Ceiling Emulation, compared with Priority Inheritance, are that it
reduces the blocking time from priority inversions, and it prevents “nested monitor”
deadlocks. Moreover, as exemplified by protected objects in Ada, in specialized cir-
cumstances (when blocking cannot occur while holding a lock) an especially efficient
implementation is possible; this point will be further addressed below.

In order for Priority Ceiling Emulation to have the desired effect in terms of avoid-
ing unbounded priority inversion, the priority of the locking thread must be no higher
than the lock’s ceiling, a condition that in general requires a run-time check. (On the
other hand, once a lock is acquired, increasing the priority of the locker above the ceil-
ing does not risk priority inversion, and indeed nested locking where the ceiling of the
inner lock exceeds the ceiling of the outer lock will result in the thread’s executing the
inner code at a priority higher than the ceiling of the outer lock.)

This informal description omits an important detail: when an application assigns
a ceiling value to a lock (and when the implementation checks that a thread’s priority
does not exceed the ceiling), which priority should be used: the active priority, or the
base priority? Historically, and in fact in the initial release of the RTSJ, it is the active
priority. However, this led to some subtle interactions between Priority Inheritance and
Priority Ceiling Emulation. As an example, suppose low-priority thread t holds a Pri-
ority Inheritance lock and (asynchronously) inherits priority p from another thread that
attempts to acquire that lock. If t then attempts to lock an object governed by Priority
Ceiling Emulation with ceiling c, and p exceeds c, then t will suffer a ceiling violation

exception. If t does not provide a handler, then synchronized code (for the lock gov-
erned by Priority Inheritance) will be abruptly terminated, possibly leaving the object
in an inconsistent state. This may be regarded as a design error – the programmer needs
to understand the global locking behavior and assign priority ceilings accordingly – but
the asynchronous nature of priority inheritance makes this difficult to solve in practice.

The RTSJ is being updated (in early 2005) to address such issues. The likely ap-
proach, inspired by suggestions from [12], consists of several main points: 6

1. In the ceiling violation check, use the thread’s base priority (or the ceiling of the
most recently acquired Priority Ceiling Emulation lock, if there is such a lock)
rather than the active priority

2. Treat a busy Priority Ceiling Emulation lock with Priority Inheritance semantics
when a thread that owns a Priority Inheritance lock attempts to acquire it

Here’s an example that shows the effect of these rules. Suppose thread t1 at prior-
ity 10 locks an object objPI governed by Priority Inheritance. It then locks an object
objPCE15 governed by Priority Ceiling Emulation, with ceiling 15. The active priority
for t1 is 15. Another thread t2, at priority 20, attempts to lock objPI. This causes t1’s
active priority to be boosted to 20. Suppose t1 then attempts to lock object objPCE17,
governed by Priority Ceiling Emulation with ceiling 17. Since t1’s base priority is used
in the ceiling check, t1 is allowed to obtain the lock, and it is still running at priority
20. If it then attempted to acquire a Priority Ceiling Emulation lock with ceiling 16 it
would fail, since it is currently holding a lock at a higher ceiling.

Now suppose thread t3 at base priority 11 and active priority 30 (via Priority In-
heritance) preempts t1 and attempts to acquire the lock on objPCE15. Since t3’s base
priority is less than the ceiling, there is no ceiling violation. If the rules simply provided
for enqueueing t3 on objPCE15’s lock, then we could have an unbounded priority in-
version, since threads at priorities in the range 21 through 29 could preempt t1 and
run to completion while t3 is waiting for the lock on objPCE15. This is where the 2nd
rule above comes in. Since a thread that holds a Priority Inheritance lock is attempting
to obtain the lock on objPCE15, the latter lock has Priority Inheritance semantics. In
particular, the active priority of the thread t1 that owns the Priority Ceiling Emulation
lock is boosted to 30, thus avoiding the priority inversion.

Dynamic ceiling changes are permitted – this is a special case of the general princi-
ple that an object’s monitor control policy may be updated – by assigning to the object
a monitor control policy with a different ceiling value. This is only permitted for the
thread that currently owns the lock on the object. There are some subtleties lurking in
the details – for example, a thread may acquire a lock at ceiling c1, block on a call of
wait(), and then be awakened to reacquire the lock after the ceiling has been lowered
to c2. Should the ceiling violation check be performed? This issue is currently under
discussion.

Support for the PriorityCeilingEmulation class is optional. The RTSJ designers
felt that it was not as prevalent as Priority Inheritance in existing RTOSes or in real-time
practice.

6 These are captured more formally in the rules for a thread’s priority sources and in the seman-
tics for the PriorityCeilingEmulation class.

Example The following fragment illustrates several concepts:

– Defining a class’s constructor to provide a Priority Ceiling Emulation policy for the
new object, with the ceiling value passed as a constructor parameter

– Changing an object’s monitor control policy dynamically, to be Priority Inheritance

public class Resource{
public Resource(int ceiling){

synchronized(this){
MonitorControl.setMonitorControl(

this,
PriorityCeilingEmulation.instance(ceiling));

}
}
...

}

class MyRealtimeThread extends RealtimeThread{
public void run(){

Resource r = new Resource(20);
// r is governed by Priority Ceiling Emulation with ceiling 20

...
synchronized(r){

MonitorControl.setMonitorControl(
r,
PriorityInheritance.instance());

}
// r is now governed by Priority Inheritance
...

}
}

Note that the invocation of setMonitorControl needs to be in code that is syn-
chronized on the target object.

“Lock-Free” Priority Ceiling Emulation During the maintenance phase of the RTSJ,
the Technical Interpretations Committee7 considered adding support for “lock free”
(queueless) Priority Ceiling Emulation, along the lines of the Ada 95 model. The main
idea was that a thread that was synchronized on an object governed by a lock-free
Priority Ceiling Emulation policy would not be allowed to block. Several designs were
considered. The simplest scheme was to introduce a PriorityCeilingEmulation sub-
class, say LockOptimizedPCE. A thread that blocks while holding such a lock would
suffer the throwing of an exception. However, this scheme interacts poorly with the

7 After the RTSJ was approved, it went into a maintenance phase administered by a group known
as the Technical Interpretations Committee.

dynamic nature of the RTSJ’s monitor control policies. An object of a class with syn-
chronized code that was not written under the lock-free assumption (i.e., which could
block) might be assigned a LockOptimizedPCE policy. The consequential exception
propagation could leave the object in an inconsistent state; this was considered unac-
ceptable.

An alternative approach was also contemplated: a “marker interface” 8 LockOpti-
mizable. A class that implemented this interface would need to ensure that all synchro-
nized methods were non-blocking; if it blocked, an exception would be thrown. (This
is different from the situation above, since here the author of the lock optimizable class
knows in advance that synchronized code should not block.) An implementation could
optimize such a class, Ada style, by using priority instead of actual locks / mutexes to
enforce mutual exclusion. However, this raises several issues:

– An implementation that did not want to bother with the lock-free optimization could
not simply ignore the fact that a class implemented the LockOptimizable inter-
face, since the semantics required throwing an exception on blocking in synchro-
nized code.

– Capturing the optimization on a class-wide basis was judged too coarse; in practice,
it might be desirable to specify the lock-free optimization on a per-instance basis.

Since there was no consensus on how to best model lock-free Priority Ceiling Em-
ulation, it was omitted from the RTSJ.

5.2 Interactions with Asynchronous Transfer of Control

A complete discussion of asynchronous transfer of control (“ATC”) in the RTSJ and
Ada is given in [13]. Here we consider only the issues related to mutual exclusion.

The RTSJ solves the problem of ATC out of synchronized code by defining it out
of existence: synchronized code is simply not asynchronously interruptible (“AI”). If
t.interrupt() is invoked while t is (lexically) inside synchronized code, the inter-
rupt stays pending until the next time t attempts to execute AI code. This may occur
during a later invocation of an AI method from within the synchronized code. This in-
vocation will throw an AsynchronouslyInterruptedException (“AIE”), but such an
exception occurrence is considered to be synchronous in this context, since in general
a method invoked from synchronized code may throw any exception identified in its
throws clause. Indeed, it would be good RTSJ style for a synchronized block to pro-
vide a handler for AIE if it calls any AI methods, since that will explicitly show that
it anticipates such situations and will provide the necessary cleanup. (Such style is re-
quired if the synchronized code is the body of a synchronized method, since AIE is a
checked9 exception.)

8 A marker interface is an empty interface. A common style in Java is to use a marker interface
to define a boolean property for a class: a class has the property if and only if it implements
the interface.

9 Recall that a “checked” exception in Java is one for which the throwing method must explicitly
provide either a handler or a throws clause.

6 Mutual Exclusion in Ada

This section discusses Ada’s approach to managing priority inversions and also summa-
rizes its handling of the interaction between mutual exclusion and asynchronous transfer
of control.

6.1 Managing Priority Inversions

Ada has a mixed approach to priority inversion, depending on whether protected objects
or passive tasks are used. In the former situation, the Ceiling Locking policy prevents
unbounded priority inversions; indeed, a task attempting to invoke a protected opera-
tion is deferred at most once by a lower-priority task. The assumption that blocking
does not occur within a protected operation allows an extremely efficient (“lock free”)
implementation.

The situation with rendezvous is different, however. The rule that an accept state-
ment is executed at the higher of the priorities of the calling and the called tasks is only
part of what would be required for priority inheritance. This was a well-known issue
in Ada 83, but the solution (full, recursive priority inheritance) was judged to impose
too high an overhead and was intentionally omitted from Ada 95 [14]. As a result, it
is possible to incur unbounded priority inversions. For example, if a high-priority task
T2 calls an entry of a low-priority server task S while S is serving a task T1 at priority
lower than T2’s, then T2’s priority is not required to be inherited by the server task. Thus
T2 can suffer an unbounded priority inversion from intermediate-priority tasks (higher
than T1’s but lower than T2’s). The typical programming style to deal with this issue is
to assign to each server task a priority at least as high as that of any of its callers, which
effectively simulates the Priority Ceiling Emulation policy.

6.2 Interactions with Asynchronous Transfer of Control

The Ada model for ATC in code that is executed with mutual exclusion is similar in
its basic approach to the RTSJ’s – not surprising, since the RTSJ model was directly
inspired by Ada’s – but differs in detail. The similarity is that protected operations and
accept statements are defined to be “abort deferred”. The difference is that in Ada the
abort deferral is “inherited” by invoked subprograms. In principle, this results in lower
latency for RTSJ programs, since asynchronous interruptions are detected earlier. In
practice this will likely not be an issue with protected objects, since protected operations
are generally short.

7 Comparison

In the area of mutual exclusion it is useful to regard Ada 95 and the RTSJ as each
addressing real-time issues that arose in the languages they were based on / extend-
ing, Ada 83 and Java, respectively. Ada 83 semantics were not strong enough to avoid
unbounded priority inversions, and the “passive task” idiom was widely criticized by
users as being inefficient and stylistically clumsy. The protected object / locking policy

mechanism was basically a completely new feature, though designed to fit in smoothly
with existing Ada syntax. In contrast, the RTSJ introduced an API rather than a new
language feature, constraining the Java semantics for synchronized code to help realize
real-time behavior. In fact, such an approach was mandated by the Java Community
Process, which prohibited syntactic extensions.

7.1 Generality

The RTSJ offers more generality than Ada’s protected objects:

– There are no restrictions on what can be executed from synchronized code, whereas
an Ada implementation may assume that potentially blocking operations are absent
from protected operations.

– Both Priority Inheritance and Priority Ceiling Emulation are provided; Ada defines
only the latter policy.

The RTSJ model is highly dynamic. Some objects may be governed by Priority In-
heritance, others by Priority Ceiling Inheritance; indeed, the same object may be gov-
erned by different monitor control policies at different times. Ada’s model is much more
static; the object locking policy is established on a per-partition basis. An implementa-
tion may (but is not required to) provide locking control at a finer granularity.

In Ada 95, priority ceilings are constant. This is an inconvenient restriction, and one
of the proposed revisions for Ada 2005 [15] provides additional generality by allowing
a ceiling to be modified as a protected action on the affected object.

Both the RTSJ and Ada are extensible: the RTSJ through an API (subclassing
MonitorControl) and Ada through pragmas.

Ada offers more generality in the area of volatile / atomic data, for example by
allowing array components to be so specified and also by allowing whole arrays and
records to be marked as volatile.

7.2 Software Engineering

Ada’s approach enforces encapsulation: accesses to protected data are only permitted
inside the implementation of protected operations. In contrast, the synchronized mecha-
nism in Java and the RTSJ is independent of the encapsulation facility, and it is certainly
possible to have unsynchronized access to an object’s data even when all of the methods
are synchronized.

The low-level nature of synchronized code and the wait / notify / notifyAll
mechanism makes the expression of state-based mutual exclusion rather error prone in
Java and thus also in the RTSJ. Ada’s protected object/type model is a more reliable ba-
sis for mutual exclusion, with state notification automatic in the entry barrier evaluation
semantics.

A drawback to Ada is that the error of executing a potentially blocking operation
from protected code is a bounded error, not guaranteed to be caught at either compile
time or run time. The looseness of the language standard thus results in implementation-
dependent effects, although restricted profiles for high-integrity systems define deter-
ministic behavior. For example, the Ravenscar profile [16] requires that Program Error
be raised.

A portability issue in the RTSJ is that Priority Ceiling Emulation is an optional
feature.

7.3 Management of Priority Inversion

Both the RTSJ and Ada deal effectively with Priority Inversion, although some sub-
tleties arise in both approaches. In the case of the RTSJ, an interaction between a
NoHeapRealtimeThread and a heap-using thread attempting to synchronize on a shared
object can result in GC-induced latencies for NoHeapRealtimeThreads. Further, the
provision of both Priority Inheritance and Priority Ceiling Emulation, with specific se-
mantics on their interactions, is an ambitious undertaking; some rules (for example the
definition of priority inheritance semantics for priority ceiling emulation locks under
some circumstances) may seem surprising. In Ada, the uses of server tasks may lead
to priority inversion for callers unless a specific programming style is used (assigning
high priorities to servers).

7.4 Efficiency

Comparing the performance of a specific feature in different languages is a challenge,
since it is difficult to separate the implementation of that feature from other elements.
Nevertheless it is possible to offer a qualitative analysis based on the anticipated run-
time cost of the features and the practicality of optimizations.

Several factors give an efficiency advantage to Ada:

– Its static (per partition) approach to locking policies
– Its potential for lock-free priority ceiling emulation
– Its ability to specify that array components are atomically accessible
– Its efficiency in accessing protected data, which are always declared in protected

specifications rather than bodies and thus can be referenced without a level of indi-
rection

The much more dynamic Java model makes optimizations difficult, as evidenced by
the problems in trying to capture lock-free priority ceiling emulation.

8 Conclusions

Both Ada and the RTSJ can be regarded as solving the underlying issues with mu-
tual exclusion: arranging safe accesses, providing well defined semantics, and allow-
ing priority inversion management and predictable performance. They achieve these
goals rather differently, however, with both languages consistent with their respective
underlying philosophies. Ada, especially through its protected type mechanism, offers
encapsulation, freedom from certain kinds of deadlock, and the opportunity for effi-
cient implementation; it achieves these at the expense of generality. The RTSJ trades
off in the other direction. It reflects Java’s highly dynamic nature by providing com-
plete flexibility (for example, dynamic replacement of monitor control policies). On the
other hand, optimization will likely be more difficult. Further, the low-level nature of

the RTSJ approach (defined in terms of lock acquisition and release) comes somewhat
at the expense of program understandability.

Interestingly, both the RTSJ and Ada approaches to mutual exclusion have benefited
from “cross fertilization”. This is perhaps more evident in the case of the RTSJ design,
which has directly borrowed some Ada ideas such as abort deferral in synchronized
code. Also, the success of the Priority Ceiling Emulation policy in Ada was one of
the reasons that it has been included in the RTSJ. The influence in the other direction
has been more subtle, but several facilities proposed for Ada 2005 (such as dynamic
ceiling priorities) may be due to the realization that flexibility and generality are often
important in real-time systems, a fact that is one of the underpinnings of the RTSJ.

Acknowledgements

Anonymous referees provided many useful suggestions that helped improve this paper.
I am also grateful to my colleagues on the RTSJ Technical Interpretations Committee
for their many stimulating discussions of priority inversion management issues in the
RTSJ: Rudy Belliardi, Greg Bollella, Peter Dibble, David Holmes, Doug Locke, and
Andy Wellings.

References

1. S.T. Taft, R.A.Duff, R.L. Brukardt, and E. Ploedereder; Consolidated Ada Reference Man-
ual, Language and Standard Libraries, International Standard ISO/IEC 8652/1995(E) with
Technical Corrigendum 1; Springer LNCS 2219; 2000

2. Java Community Process; JSR-001: Real-Time Specification for Java; March 2004;
www.jcp.org/en/jsr/detail?id=1

3. G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull; The Real-
Time Specification for Java, Addison-Wesley, 2000

4. J. Gosling, B. Joy, G. Steele, G. Bracha; The Java Language Specification (2nd ed.); Addison
Wesley, 2000

5. B. Brosgol; A Comparison of the Concurrency and Real-Time Features of Ada 95 and Java;
Ada UK Conference; Bristol, UK; 1998.

6. S. Oaks and H. Wong; Java Threads (3rd Edition); O’Reilly, 2004.
7. A. Wellings; Concurrent and Real-Time Programming in Java; John Wiley & Sons; 2004.
8. Java Community Process; JSR-133: Java Memory Model and Thread Specification; March

2004; www.jcp.org/aboutJava/communityprocess/review/jsr133/
9. P. Brinch Hansen; “Java’s Insecure Parallelism”; ACM SIGPLAN Notices, V.34(4), April 1999.
10. Java Community Process; JSR-166: Java Concurrency Utilities; December 2003;

www.jcp.org/aboutJava/communityprocess/review/jsr166/
11. L. Sha, R. Rajkumar, and J. Lehoczky; “Priority Inheritance Protocols: An Approach to Real-

Time Synchronization”, IEEE Transaction on Computers; Vol.39, pp.1175-1185; 1990.
12. A. Wellings and A. Burns; Informal communication; December 2004.
13. B. Brosgol and A. Wellings; “A Comparison of the Asynchronous Transfer of Control Fa-

cilities in Ada and the Real-Time Specification for Java”, Proc. Ada Europe 2003, June 2003,
Toulouse, France.

14. Intermetrics, Inc.; Ada 95 Rationale; January 1995.
15. ISO/IEC JTC1 / SC22 / WG9; AI-327, Dynamic Ceiling Priorities; November 2004;

www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00327.TXT?rev=1.13
16. A. Burns; “The Ravenscar Profile”, Ada Letters, XIX (4), pp.49-52, 1999.

