
Exposing Memory Corruption
and Finding Leaks:

Advanced Mechanisms in Ada

Emmanuel Briot1, Franco Gasperoni1, Robert Dewar2,
Dirk Craeynest3, and Philippe Waroquiers3

1 ACT Europe, 8 rue de Milan, 75009 Paris, France
{briot,gasperon}@act-europe.fr

2 Ada Core Technologies
104 Fifth Avenue, New York, NY 10011, USA

dewar@gnat.com
3 Eurocontrol/CFMU, Development Division
Rue de la Fusée, 96, B-1130 Brussels, Belgium

{dirk.craeynest,philippe.waroquiers}@eurocontrol.int

Abstract. This article discusses the tools that Ada offers to deal with
dynamic memory problems. The article shows how the storage pools
mechanism of Ada 95 can be extended to enpower developers when track-
ing memory leaks and memory corruption in their code. This Ada ex-
tension rests on the notion of “checked pools”, i.e. storage pools with an
additional Dereference operation. The paper describes how a particular
instance of the checked pool, called the “debug pool”, is implemented in
the GNAT technology. Performance measurements for the use of debug
pools are provided in the context of the Air Traffic Flow Management
application at Eurocontrol.

1 Introduction

1.1 About Garbage Collection

Any system confronted with the possibility of memory leaks and memory corrup-
tion has to consider why garbage collection (GC) cannot be used as a solution to
its potential dynamic memory problems. While it is true that, when practical,
GC removes incorrect deallocations and dangling pointer problems, it is not a
systematic panacea. For one thing, GC cannot deal completely with the problem
of memory leaks. Consider, for instance, the following Java code:

global = new Huge (100000000);

If global is a static class field that is never set to null or updated with another
reference, the memory allocated in new Huge (...) cannot be freed until the
class in which global is declared is finalized, even though the data allocated in
new Huge (...) may never be accessed.

Another potential and more serious problem with GC exists for systems
requiring a guaranteed (predictable) response time. We will come back to the
issue of GC in the conclusion.



1.2 Dynamic Memory Allocation and Ada Safety Nets

Ada provides a number of safety nets to help programmers catch some common
dynamic memory handling mistakes. All pointers are, for instance, set to null
upon creation or deallocation and an exception is raised if a program tries to
dereference a null pointer. Furthermore, the accessibility rules of access types
of Ada 95 are designed to prevent dangling references when the scope of the
pointee is inside that of the access type. These rules help to ensure that the
most obvious cases of memory corruption are avoided.

When it comes to memory deallocation, Ada makes it possible to allocate on
the stack (and hence automatically deallocate) all objects created through an
access type local to a subprogram. In GNAT, for instance, the storage allocated
for type String Access in the following code excerpt, will be allocated on P’s
stack and automatically freed upon P’s return.

procedure P is
type String_Access is access all String;
for String_Access’Storage_Size use 100_000;
A : String_Access := new String (1 .. 1_000);

begin
...

end P;

1.3 User-Defined Storage Managment in Ada 95

Ada 95 gives the programmer complete freedom for the allocation/deallocation
algorithms to use for a given access type through the mechanism of storage
pools [1]. A storage pool is an abstract limited controlled type with 3 addi-
tional abstract operations: Allocate, Deallocate, and Storage Size. In a con-
crete storage pool type SP Type, the programmer must define the bahavior of
Allocate, Deallocate, Storage Size, and possibly Initialize and Finalize.
Then when the programmer writes

Pool : SP_Type;
type A_Type is access ...;
for A_Type’Storage_Pool use Pool;

it requests the Ada compiler to use SP Type’s Allocate and Deallocate every
time memory is allocated or deallocated for A Type. See section 13.11 in [1] for
details.

Ada implementations are free to provide specialized storage pools in addition
to the standard (default) one. GNAT, for instance, provides 2 specialized pools:

– System.Pool Size.Stack Bounded Pool, a stack-bounded pool where dy-
namic memory allocation is done on the stack and memory is globally re-
claimed by normal stack management. GNAT uses this pool for access types
with a Storage Size representation clause as shown in the example of the
previous section.



– System.Pool Local.Unbounded Reclaim Pool, a scope-bounded pool where
dynamic memory allocation is done using the system malloc() routine but
which is automatically freed when the scope where the storage pool object is
declared is exited. A programmer can use this pool for access types that are
locally declared and for which he is not in a position to provide a maximum
Storage Size, or whose maximum Storage Size would exceed the overall
stask size.

When writing user-defined storage pools the main catch is the issue of alignment,
i.e. how to ensure that the portion of memory returned by Allocate is aligned
on a given byte boundary [2]. Note that the requested byte boundary could be
greater than the maximum memory alignement for the underlying processor.
If the programmer is trying to allocate data to be placed in a data cache, for
instance, he may wish to specify the data cache line size as the alignment.

2 Extending Ada’s Storage Pools

Despite the help and safety checks that Ada 95 provides, there are three type of
programming problems that Ada does not address in full generality:

– Memory leaks (i.e. forgetting to deallocate dynamically allocated storage);
– Incorrect deallocation (i.e. deallocating unallocated memory);
– Dangling references (i.e. accessing deallocated or unallocated memory).

Because storage pools provide no means to check dereferences, GNAT offers a
special type of storage pool, called a “checked pool”, with an additional abstract
primitive operation called Dereference. Dereference has the same parameter
profile as the subprograms Allocate and Deallocate and is passed the same
information. Dereference is invoked before dereferencing an access type using a
checked pool. Its intended role is to do some checking on the reference, e.g. check
that the reference is valid.

Checked pools are abstract types. They only act as a framework which other
tagged types must extend. A concrete implementation is provided in the GNAT
library package GNAT.Debug Pools. This package was developed in collaboration
with Eurocontrol.

3 Debug Pools

The goal of a debug pool is to detect incorrect uses of memory, specifically:
incorrect deallocations, access to invalid memory, and memory leaks. To use a
debug pool developers need to instrument their code for each access type they
want to monitor, as shown below in the lines marked with the special comment
-- Add. The debug pool reports errors in one of two ways: either by immediately
raising an exception, or by logging a message that can be printed on standard
output, which is what we have decided to do in the following example. Thye
example contains a number of typical errors that the debug pool will point out.



File p.ads
----------
1. with GNAT.Debug_Pools; use GNAT.Debug_Pools; -- Add
2. with Ada.Unchecked_Deallocation;
3. with Ada.Unchecked_Conversion; use Ada;
4.
5. procedure P is
6. D_Pool : GNAT.Debug_Pools.Debug_Pool; -- Add
7.
8. type IA is access Integer;
9. for IA’Storage_Pool use D_Pool; -- Add
10.
11. procedure Free is new Unchecked_Deallocation (Integer, IA);
12. function Convert is new Unchecked_Conversion (Integer, IA);
13.
14. Bogus : IA := Convert(16#0040_97AA#);
15. A, B : IA;
16. K : Integer;
17.
18. procedure Nasty is
19. begin
20. A := new Integer;
21. B := new Integer;
22. B := A; -- Error: Memory leak
23. Free (A);
24. K := B.all; -- Error: Accessing deallocated memory
25. K := Bogus.all; -- Error: Accessing unallocated memory
26. Free (B); -- Error: Freeing deallocated memory
27. Free (Bogus); -- Error: Freeing unallocated memory
28. end Nasty;
29.
30. begin
31. Configure (D_Pool, Raise_Exceptions => False); -- Add
32. Nasty;
33. Print_Info_Stdout (D_Pool, Display_Leaks => True); -- Add
34. end P;

For each faulty memory use the debug pool will print several lines of information
as shown below1:

Accessing deallocated storage, at p.adb:24 p.adb:32
First deallocation at p.adb:23 p.adb:32

Accessing not allocated storage, at p.adb:25 p.adb:32
Freeing already deallocated storage, at p.adb:26 p.adb:32

1 The actual output shows full backtraces in hexadecimal format that we have post-
processed with the tool addr2line to display the information in symbolic format.



Memory already deallocated at p.adb:23 p.adb:32
Freeing not allocated storage, at p.adb:27 p.adb:32

Total allocated bytes: 8
Total logically deallocated bytes: 4
Total physically deallocated bytes: 0
Current Water Mark: 4
High Water Mark: 8

List of not deallocated blocks:
Size: 4 at: p.adb:21 p.adb:32

The debug pool reports an error in the following four cases:

1. Accessing deallocated storage
2. Accessing not allocated storage
3. Freeing already deallocated storage
4. Freeing not allocated storage

As the reader can see the debug pool displays the traceback for each faulty
memory access, memory free, and potential memory leaks. The depth of the
traceback is programmer-configurable. Note how the information reported when
accessing deallocated storage or when freeing already deallocated storage is much
richer than what one can get with a debugger since the debug pool indicates the
backtrace of the program location where the original deallocation occurred.

In addition to the above, the debug pool prints out the traceback for all
memory allocations that have not been deallocated. These are potential memory
leaks. The debug pool also displays the following memory usage information :

1. High water mark: The maximum amount of memory that the application
has used at the point where Print Info Stdout is called.

2. Current water mark: The current amount of memory that the application is
using at the point where Print Info Stdout is called.

3. The total number of bytes allocated and deallocated by the application at
the point where Print Info Stdout is called.

4. Optionally the tracebacks of all the locations in the application where allo-
cation and deallocation takes place (this information is not displayed in the
previous output). This can be used to detect places where a lot of allocations
are taking place.

It is worth noting that debug pools can be used in several important situations:

– One does not have to wait for the program to terminate to collect memory
corruption information, since the debug pool can log problems in a file and
developers can look at this file periodically to ensure that no problems have
been detected so far by the debug pool mechanism.



– Various hooks are provided so that the debug pool information is available
in the debugger. A developper can, for instance, interactively ask the status
of a given memory reference: is the reference currently allocated, where has
it been allocated, is the reference logically deallocated, where has it been
deallocated, etc.

4 Debug Pool Implementation

The debug pools package was designed to be as efficient as possible, but has an
impact on the code performance. This depends on the number of allocations,
deallocations and, somewhat less, dereferences that the application performs.

4.1 Debug Pool Memory Release Strategy

Physical allocations and deallocations are done through the usual system calls.
However, in order to provide proper checks, the debug pool will not immediately
release a memory block when asked to. The debug pool marks the memory block
as “logically deallocated” but keeps the released memory around (the amount
kept around is configurable) so that it can distinguish between memory that has
not been allocated and memory that has been allocated but freed. This allows
detection of dangling references to freed memory, which would not be possible
if memory blocks were immediately released as this memory could be reused by
a subsequent call to the system malloc().

Retaining memory could be a problem for long-lived applications or applica-
tions that do a lot of allocations and deallocations. To address this the following
parameters were added to the debug pool:

1. Maximum Logically Freed Memory: This parameter sets the limit of
the amount of memory that can be logically deallocated, but not released
to the system. When this limit is reached, the debug pool will start freeing
memory.

2. Minimum to Free: This parameter indicates how much memory the debug
pool should try to release to the system at once. For performance reasons it
is better to free several blocks of memory at the same time.

The debug pool can use one of two algorithms to select the memory blocks to
hand back to system memory:

1. First deallocated - First released: The first block that was deallocated
by the application is the first to be released to the system.

2. Advanced block scanning: This more expensive algorithm parses all the
blocks currently allocated, and finds all values that look like pointers. If these
values match a currently deallocated block, that block will not be physically
released. This ensures that dangling pointers are properly detected when the
access type is dereferenced. This algorithm is only a good approximation: it
is not guaranteed to detect all dangling pointers since it doesn’t check task
stacks or CPU registers.



4.2 Data Structures

The debug pool will respect all alignments specified in the user code by aligning
all objects using the maximum machine alignment. This limits the performance
impact of using the debug pool and, as we will show below, allows to quickly
compute the validity of a memory reference.

Global Structures The debug pool contains a packed boolean array. Each
entry in this array matches a location in memory to indicate whether the corre-
sponding address is under control of the debug pool (1 bit per address). Because
all the addresses returned by the debug pool are aligned on the Maximum Alignment
of the underlying machine, the array index of each memory address Addr can be
quickly computed as follows:

array index = (Addr - Heap_Addr) / Maximum_Alignment

where Heap Addr is the address of the beginning of the application’s heap.
The initial size of the global array is small. During program execution the

array grows, doubling its size every time more room is needed.

Local Structures For each allocated memory block, the debug pool stores the
following data in a header, located just before the memory block returned by
the debug pool. The overall size of this header is a total of 16 bytes on 32-bit
machines and includes:

1. The size of the allocated memory block. This is needed for the advanced block
scanning algorithm described in the previous section. This value is negated
when the block of memory has been logically freed by the application but
has not yet been physically released.

2. A pointer to the next allocated or logically deallocated memory block.
3. A pointer to the allocation traceback, i.e. the traceback of the program

location where this block was allocated.
4. A pointer to the first deallocation traceback. For memory blocks that are

still allocated this pointer is used to point back to the previously allocated
block for algorithmic convenience.

To save memory, the tracebacks are not stored in the header itself, but in a
separate hash table. That way, only one instance of the traceback is stored no
matter how many allocation are done at that program location.

All the allocated blocks are stored in a double-linked list, so that the advanced
block scanning algorithm can find all of them and look for possible dangling
pointers. This list is also used to report potential memory leaks.

When a block is deallocated by the application code, it is removed from the
allocated blocks linked list and moved to the deallocated blocks list. This is the
list from which, if needed, memory blocks will be returned to system memory.

The debug pool must be usable in a multi-tasking application, and has there-
fore been made thread-safe. Any time a new memory block is allocated or an
existing block deallocated, the GNAT runtime is locked for concurrent accesses.



5 Debug Pool and General Access Types

A debug pools is a powerful mechanism to help debugging memory problems
in an application. There is, currently, a limitation with general access types. As
shown in the following example access to local variables can not be properly
handled by debug pools:

with GNAT.Debug_Pools; use GNAT.Debug_Pools;
procedure Q is

D_Pool : GNAT.Debug_Pools.Debug_Pool;
type IA is access all Integer;
for IA’Storage_Pool use D_Pool;

Ptr : IA;
K : aliased Integer;

begin
Configure (D_Pool);
Ptr := K’Access;
Ptr.all := 4;
-- Exception GNAT.Debug_Pools.Accessing_Not_Allocated_Storage raised

end Q;

Because the memory pointed by Ptr wasn’t allocated on the heap, the debug
pool will consider this as an invalid dereference, and will report an error.

6 Partition-Wide Storage Pool

The intention of the storage pool design is that an access type without a storage
pool clause use a default storage pool with appropriate characteristics. An ob-
vious idea is to provide a facility for changing this default, and indeed given the
usefulness of debug pools in finding memory corruption problems, wanting to use
a partition-wide debug pool by default would be sensible. There are, however, a
number of difficulties in providing this feature.

The first difficulty is that this requires the entire run-time and third party
libraries to be recompiled for consistency. This is because an object allocated
with a given allocator must be deallocated with the matching deallocator. This
can only be guaranteed if all the application libraries are compiled in the same
configuration, e.g. using a debug pool as the default. In the case of third party
libraries this may not be possible since the sources of such libraries may not be
available.

Another issue is that certain new operations may malfunction when the de-
fault pool is changed. A most obvious and notable example is that the body
of the debug pool itself contains allocators, so if the wish is to change the de-
fault storage pool to be this debug pool there will be an infinite recursion. This
can be fixed by making the pool to be used for each of these types within the
implementation of the debug pool explicit.



However, again the issue of third party libraries arises in an even fiercer form.
It may be quite impractical to analyze a third party library to find those cases
(e.g. performance requirements) where the use of the debug pool would disrupt
the correct operation of the third party library, even if sources were available.

The design of the GNAT runtime has introduced the System.Memory ab-
straction partly to allow a completely different approach to replacing the default
storage pool, which is to essentially replace the interface to the system malloc()
and free() by a set of user-supplied routines.

7 Debug Pools in a Real Application

The development of the debug pool was sponsored by Eurocontrol. The CFMU
(Central Flow Management Unit) is in charge of the European flight plan pro-
cessing and air traffic flow management.

The total down-time for the CFMU has to be kept to a strict minimum, and
therefore it is important to eliminate as many memory leaks in the application
as possible.

In addition, access to invalid blocks of memory has proved to be difficult to
find in more than 1.5 million lines of code. For example, several years ago such
a bug took approximately 3 person-weeks of work to isolate; another one early
last year required roughly 3 person-days.

To detect such problems as early as possible, a specialized build environment
is now set up by CFMU using a common debug pool for all access types.

7.1 Use of Debug Pools

To give an idea of the CFMU development environment: at the time of writing,
the set of Ada sources for TACT, one of the CFMU applications, consists of over
4,354 files: 1,993 specifications and 2,362 bodies and subunits. The total size of
these sources is roughly 1.25 million lines of code. In these units, 675 access types
are defined in 427 different files.

As the use of the GNAT debug pools has a performance impact, we obviously
want to make it optional when building the TACT application. An emacs script
was developed to automatically insert the appropriate code snippets to activate
the debug pool.

7.2 Special Cases

For a small subset of all access types in the TACT code, the use of GNAT debug
pools is not appropriate. This is because the access type is used for:

1. access to parts of untyped memory chunks (5 access types);
2. conversion to untyped memory (1 type);
3. access to memory allocated by C code in the OS or by system calls (13

types);



4. access to shared memory (4 types);
5. access to objects allocated in block via an array (1 type);
6. test code of a reference counting package (1 type), which was created to

enable the detection of dangling pointers before the debug pool mechanism
was available.

In retrospect, only 25 of the 675 access types in our application (less than 4%)
cannot be associated to the debug pool.

7.3 Impact on Executable Size

One of the build options in the TACT development environment, is to create
one executable for the whole system instead of creating separate executables
for each logical processing. This configuration contains all code of the complete
system and gives us a good measure of the impact of debug pools on the size of
executables. The impact on the size of executables and on the image of processes
is only in the order of 5 percent and hence negligible.

Table 1. Size of Executables (sizes are in bytes, bss = uninitialized data)

file size section sizes - ’size’
’ls’ text data bss total

no debug pool 195, 904, 512 76, 192, 889 12, 199, 776 70, 560 88, 463, 225

debug pool 201, 839, 848 80, 988, 283 12, 343, 312 70, 560 93, 402, 155
increase +3.0% +6.3% +1.2% 0.00% +5.6%

7.4 Run-Time Performance Impact

To get an indication of the run-time performance impact of debug pools, a
realistic test is used. The test consists of running the TACT application and
setting up its normal environment including meteo forecast data for the complete
pan-European airspace. Furthermore, 853 flight plans are injected in the system,
and 55 regulations are created all over Europe to force several of these flights
being delayed.

Then, the arrival of a large number of radar reports is simulated over time,
who, just as in real operations, provide real-time corrections to the predicted
positions of these flights. These radar reports were generated to induce different
kinds of shifts, such as in position, flight level or time of overflying a point. Each
of these reports implies a new calculation of the remaining flight profile of that
specific flight, which could mean a change of the load distribution in the different
airspaces and eventually a reallocation of flight slots for several flights.

This is a rather heavy test which exercises a reasonably large part of the
TACT system. The Unix “time” system call is used to measure the perfor-
mance: “real” is the elapsed clock time in seconds, “user” is the CPU time spent



executing user code and “system” is the CPU time spent in the OS itself (I/O op-
erations, memory allocations, etc.). Typically, user + system is a good measure
of the time needed for a job, regardless of the system load (within reason).

With the default CFMU debug pool configuration, the test runs roughly 4
times slower, hence the impact of extensively using debug pools on the perfor-
mance is quite large.

Table 2. Execution times averaged over multiple runs

real user system user+system

no debug pool 1689.49 1213.90 17.54 1231.44

debug pool 5670.13 3766.97 1400.99 5167.96
increase ∗3.36 ∗3.10 ∗79.87 ∗4.20

Depth of Stack Traces An important element in this slow-down is the com-
putation of backtraces in the debug pool implementation. This is controllable
with the Stack Trace Depth parameter, described as:

-- Stack_Trace_Depth. This parameter controls the maximum depth
-- of stack traces that are output to indicate locations of
-- actions for error conditions such as bad allocations. If set
-- to zero, the debug pool will not try to compute backtraces.
-- This is more efficient but gives less information on problem
-- locations.

The CFMU default value for this parameter is 10. When set to 0 or to the GNAT
default of 20, respectively, the timing results of the test are given in the following
table.

Table 3. Impact of Stack Trace Depth

real user system user+system

no debug pool 1689.49 1213.90 17.54 1231.44

debug pool (stack=0) 1898.30 1635.51 17.20 1652.71
increase ∗1.12 ∗1.35 ∗0.98 ∗1.34

debug pool (stack=20) 8575.56 5442.96 2553.74 7996.70
increase ∗5.08 ∗4.48 ∗145.60 ∗6.49

These results clearly show the majority of the slow-down is due to the com-
putation of backtraces. When backtraces are disabled in the debug pool imple-
mentation, execution time only goes up one third. On the other hand, when the



maximum depth of backtraces is set to the GNAT default of 20, execution time
increases with a factor of more than six!

So a compromise needs to be found. Depending on the performance of an
application without debug pools and on the available resources, it can be in-
teresting to have regular tests with debug pools enabled but without backtrace
computation. If these indicate a heap problem, the test can then be rerun with
a large value for the Stack Trace Depth parameter.

Scanning Memory before Releasing Another useful configuration parame-
ter is Advanced Scanning, described as:

-- Advanced_Scanning: If true, the pool will check the contents
-- of all allocated blocks before physically releasing
-- memory. Any possible reference to a logically free block will
-- prevent its deallocation.

CFMU sets this parameter to the non-default value of True. To get an idea of
the overhead this entails, the same tests are run but now with the GNAT-default
value of False. The timing results are given in the following table.

Table 4. Impact of No Advanced Scanning

real user system user+system

debug pool (stack=0) 1825.70 1507.33 17.32 1524.65
vs. with scanning −72.60 −128.18 +0.12 −128.06

96.2% 92.2% 100.7% 92.3%

debug pool (stack=10) 5507.90 3621.19 1397.66 5018.85
vs. with scanning −118.18 −142.73 −3.60 −146.34

97.9% 96.2% 99.7% 97.7%

debug pool (stack=20) 8385.11 5301.28 2530.61 7831.89
vs. with scanning −190.45 −141.68 −23.13 −164.81

97.8% 97.4% 99.1% 97.9%

This shows that the performance cost of “Advanced Scanning” is quite small:
it only requires between 2% of the user plus system time, if the Stack Trace Depth
parameter is set to the default GNAT value of 20, and less than 8% if the com-
putation of backtraces is disabled completely. For these test runs, this accounts
for roughly 2-3 minutes of CPU time on a total between 25 and 130 minutes.

7.5 Results Obtained

One of the important results obtained through the use of debug pools, is that
its extensive reporting has indicated some bizarre heap usage in our application,
which caused a serious performance drain.



All processes on the TACT server and all MMIs on various workstations
need access to a large amount of changing environment data (definitions of aero-
dromes, points, routes, etc.). Each of these processes maintains a local cache
of the data it needs, and these caches are kept synchronised by inter-process
communication via encoded buffer transfers.

Closer examination showed that due to an incorrectly set boolean variable,
the encoding and decoding of these buffers was not done in the intended compact
binary format but in the bulky textual format (intended for easy human inter-
pretation, though approx. two orders of magnitude larger). This not only implied
a lot of unneeded heap usage, detected through the debug pool reporting, but
also very inefficient inter-process communication.

Another important result of running our large suite of regression tests with
the debug pool enabled, is that our code now is shown to be free of heap cor-
ruptions.

And as our system builds always include the systematic execution of the full
regression test suite, regular builds with the debug pool enabled offer a protection
against the introduction of new heap corruptions in our code.

There are some limitations. Allocations in non-Ada code fall outside the scope
of the GNAT debug pools. Nor are allocations on the stack through general access
types taken into account: a possible future enhancement?

8 Conclusion

This paper has shown how the notion of checked pools, an extension of the
storage pools concept of Ada 95, can be put to profit to implement debug pools to
track down memory corruptions and possible memory leaks in a user application.
Are debug pools the ultimate solution to dynamic memory problems in Ada
code?

Probably not: like for all things if all you have is a hammer all your problems
look like a nail and it is important to offer developers a choice of tools and
approaches when tackling memory managment issues.

Ada was designed to allow garbage collection. Currently no native Ada im-
plementation offers it. Wouldn’t it be nice to combine the power of debug pools
with the flexibility of a real-time garbage collecting implementation?

References

1. Taft, S.T., Duff, R.A., Brukardt, R.L. and Pldereder, E.; Consolidated Ada Ref-
erence Manual. Language and Standard Libraries, ISO/IEC 8652:1995(E) with
COR.1:2000, Lecture Notes in Computer Science, vol. 2219, Springer-Verlag, 2001.

2. Barnes, J.; Storage Pool Alignment, Ada User Journal, pp. 182-187, vol. 19, number
3, October 2001.


