
ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

Certification & Object Orientation: The New Ada Answer
 Cyrille Comar1, Robert Dewar2, Gary Dismukes3
1: comar@adacore.com, AdaCore, 8, rue de Milan, 75009, Paris, FRANCE
2 : dewar@adacore.com, AdaCore, 104 Fifth Ave., New York, NY 10011, USA
3 : dismukes@adacore.com, AdaCore, 104 Fifth Ave., New York, NY 10011, USA

Abstract:

The object model of Ada 2005 is well-suited for
applications that have to meet certification at various
levels. We review the use of Ada in the context of
certification, and show that the object-oriented
facilities of the current language standard, properly
restricted to avoid dynamic dispatching, can already
be used without problems under current DO-178B
guidelines. We then examine the complications to
certification that are presented by dynamic
dispatching in a single inheritance model, and show
implementation-specific ways of addressing these
complications. Finally, we discuss the problems
introduced by the use of multiple inheritance. We
conclude by showing how, regardless of the extent
to which object-oriented idioms are used, Ada
provides a safe and efficient vehicle to create
certifiable systems.

Keywords: Ada, DO-178B, Certification, Object-
Oriented Programming.

1. Introduction

Software construction has evolved considerably in
the last two decades. One of the most notable
advances is the use of object-oriented techniques in
commercial applications. The enhancement of
reusability, adaptability and maintenance has led to
wide deployment of these techniques in many
application domains.

Languages such as C++, Java, and C# have
evolved over the last decade and, thanks to them,
object-oriented programming has become a widely
used paradigm. Over the same period Ada has
evolved to incorporate object-oriented features into
its original type model. The Ada 95 standard added
to Ada 83 tagged types, single inheritance,
polymorphism, and dynamic dispatching. The latest
revision of the language, known as Ada 2005, adds
multiple inheritance of interfaces and numerous
other object-oriented programming idioms.

There is currently a trend towards the use of object-
oriented techniques in the construction of high-
integrity software systems, such as in avionics
airborne systems. In this particular domain, the
integration of best practices in software construction

must also be balanced with the need to increase
confidence in the safety of the system. A further
feature to note is that Avionics software has a
significantly longer life-cycle than software in other
application areas.

The aim of the RTCA DO-178B [5] standard is to
provide guidelines for building airborne systems that
perform their intended functions with the appropriate
level of safety. Developed in the 1980s and finalized
in the early 90s, DO-178B is based on the waterfall
software process that was considered best-practice
at the time the standardization process in this field
began. One of the objectives of the forthcoming
revision of this standard, DO-178C [7] (still in the
early stages of development), is to take into account
object-oriented techniques and their associated
development processes. A preliminary document,
the Handbook for Object Oriented Technology in
Aviation (OOTiA) [1], already provides a
comprehensive analysis and specific guidelines on
how to address the safety concerns associated with
object-oriented techniques in the context of DO-
178B [5].

This paper reviews the most relevant features of the
Ada language for certification and summarizes the
evolution of object-oriented features in Ada. it then
shows how Ada is ideally suited for use in certified
applications that use object-oriented features, in
particular when complemented with certification-
oriented facilities of the development environment.

2. Ada and Certification

Since the emergence of the RTCA DO-178B
standard [5], Ada has been one of the few
languages of choice for the construction of airborne
systems thanks to its clear semantic definition and
strong typing model. It has been used successfully in
many major aeronautics projects (Boeing 777, A340,
and more recently Boeing 787, A380 and A400M).
Clear semantic definition is considered a desirable
precondition for minimizing non-determinism by DO-
248B [6] FAQ#32 (What are Defensive practices),
where one can read:

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

Avoidance of non-determinism: Non-determinism
may be reduced through one or more of the
following practices:
1. Choose a language with a well-defined

standard.

Not many languages besides Ada can claim a well-
defined official standard. Fewer can claim that all
major implementations fully adhere to the standard.
And fewer still have an official and standardized test
suite [19] supporting validation of this claim. It is
also notable that Ada has several guides for its use
in high-integrity systems [10], [17].

Ada’s clear semantic definition has also fostered the
wide use of ASIS [16], which considerably eases the
creation of semantics-oriented verification tools.
Such tools can be qualified in order to produce
evidence that will help meet the DO-178B objective
6.3.4d:

d. Conformance to standards: The objective is to
ensure that the Software Code Standards were
followed during the development of the code,
especially complexity restrictions and code
constraints that would be consistent with the
system safety objectives.

For example, consider a tool that is part of the
standard GNAT toolset: gnatmetric computes
industry-standard source metrics such as McCabe
cyclomatic and essential complexity [13]. Another
example is gnatcheck, an ASIS-based tool, whose
purpose is to produce certification evidence that
specific semantic rules are followed; or when they
are not followed, that violations are clearly identified
so they can be justified. This tool is designed to be
easily extensible for specific project standards. It
already implements dozens of local rules, such as
“no goto statements” as well as several more global
ones such as “no side effects in functions” (i.e., no
direct or indirect modification of a variable whose
scope is wider than the function body) and “no
recursion” (i.e., no cycles in the subprogram call
graph).

Ada’s pragma Restrictions ([2] 13.12) is also a
significant aid for enforcing the “Conformance to
standards” objective mentioned above. For instance,
dynamic memory allocation, whether implicit or
explicit, can be excluded from the application by
simply specifying:

 pragma Restrictions (No_Allocators);
 pragma Restrictions
 (No_Implicit_Heap_Allocation);

Furthermore, the compiler can take advantage of
pragma Restrictions to produce simpler and more
efficient code. For instance, in the presence of

 pragma Restrictions (No_Abort_Statements);
 pragma Restrictions
 (Max_Asynchronous_Select_Nesting => 0);

A good implementation will not generate the abort-
deferral code that is otherwise mandated by the
language. Not only can performance improvements
be expected, but more importantly, deactivated
compiler-generated code can be reduced, thus
easing the effort of code verification and justification
for high levels of certification.

There are several interesting subsets of Ada for
high-integrity systems. One of them is the Ravenscar
profile [18], a subset of the tasking features of Ada
which is powerful enough for real-time programming
but simple enough to be amenable to static analysis
for certification, and that can be supported by a
small, reliable run-time system. Another notable
example is SPARK [11] that includes Ada constructs
regarded as essential for the construction of complex
software, but removes all the features that may
jeopardize the requirements of verifiability, bounded
space and time, and minimal run-time system.

Thanks to Ada’s strong typing and subtyping model,
run-time checks are generated that can help detect
malfunctions earlier, during the testing phase. At
high levels of certification, some projects choose not
to insert run-time checks in the executable to be
certified. This choice can be justified if static analysis
tools such as SPARK [11] have been used to
provide proof that specific run-time errors cannot
occur. Check elimination can also be motivated by
the desire to minimize deactivated compiler-
generated code, or by the difficulty of implementing a
reliable recovery mechanism, as shown by the
Ariane 5 launch disaster analysis [14]:

Although the source of the operand error has
been identified, this in itself did not cause the
mission to fail. The specification of the exception-
handling mechanism also contributed to the
failure.

Even when compiler checks are not generated in the
final executable, they can play a beneficial role,
together with pragma Normalize_Scalars ([1] H.1),
for satisfying objective 6.3.4f of DO-178B [5] (use of
uninitialized variables or constants). Pragma
Normalize_Scalars instructs the compiler to
initialize scalar variables that do not have explicit
initialization with a deterministic value (outside its
range when possible), in order to increase the
likelihood of generating a repeatable run-time fault
when the variable is read before receiving a value.
Specific compilers can provide more extensive and
comprehensive run-time checks to maximize this
possibility. [9] describes such an implementation and

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

its successful use in an industrial non-safety-critical
context (Air Traffic Flow Management). Running a
full requirements-based and structural-based testing
campaign in such a mode is likely to significantly
raise confidence in attaining objective 6.4.3f. For the
results of such a process to be acceptable as
certification evidence, this compiler functionality
does not require full certification since it is not
involved in the production of the final code. It only
needs to be qualified according to DO-178B section
12.2.2 [5].

Finally, it is worth mentioning that Ada’s strong
typing system is also known to offer useful
capabilities for tools such as static stack-usage
analyzers. In particular, [8] mentions how
appropriate type information can be used to compute
the maximum stack allocation requirements for
variable size objects. It can also help computing
complete call graphs even in the presence of indirect
calls.

3. Brief Review of the Ada Object Model

Ada is a general-purpose language that has added
support over time for a range of programming
paradigms: procedural programming, functional
programming, object-based programming, and
object-oriented programming with both single
inheritance (type extension and dispatching
operations in Ada 95) and multiple inheritance
(inheritance of interfaces in Ada 2005).

In Ada 83, the object model was limited to data
encapsulation and information hiding, using private
types and packages to separate specification from
implementation. For example, the DisplayElement
class of [1] (pp. 3-77) could be represented as:

package P is
 type Element is private;
 procedure Draw (X : Element);
 procedure Highlight (X : Element);
 procedure Hide (X : Element);
private
 type Element is record
 …
 end record;
end P;

Here the client interface to the Element abstraction
is given in the visible part of the package by a private
type and a set of operations. The details of the
implementation are given separately in the private
part and body of the package, effectively insulating
the user of the abstraction from the representation
and implementation of the type and its operations.

In Ada 95, the language was revised by adding full-
fledged object-oriented support in the form of single
inheritance, with type extension and dynamic

dispatching. This was done in an upward-compatible
way, building on Ada 83's existing framework for
package encapsulation and derived types. By
declaring a type to be tagged and defining a set of
primitive operations for the type, the type can
subsequently be extended. Such a type extension
inherits the data components and primitive
operations of the parent type, and can extend the
parent type by adding components and operations,
as well as by overriding any inherited operations.
The notion of type classes was also introduced, to
provide polymorphism of objects and operations.
Each tagged type T thus serves as the
representative root type of a potential hierarchy of
the types that extend it, where this set of types is
designated T'Class.

The Element abstraction could be represented by
the following tagged type:

package P is
 type Element is tagged private;
 subtype Any_Element is Element’Class;
 procedure Draw (X : Element);
 …
end P;

The keyword tagged in the declaration of type
Element identifies the type as being extensible.
Element is the root type of a class of types that could
be derived from it, while Element'Class denotes
the entire set of types in that class. The type
Element can now be extended, for example by
defining a specialization:

package Pictures is
 type Picture_Element is
 new P.Element with private;

 procedure Draw (X : Picture_Element);
 procedure Brighten
 (X : Picture_Element; Y : Intensity);
 ...
private
 type Picture_Element is new P.Element
 with record
 Brightness : Intensity;
 end record;
end Pictures;

The type Picture_Element is an extension of
Element. In this case the new type is declared as a
private extension whose full type adds a single new
component (hidden from clients of the type). The
operation Draw, inherited from the parent type, is
overridden by an implementation specialized for the
new type (though that implementation might also
invoke the parent type's operation). Other operations
of the parent type can be inherited as is or
overridden, and additional primitive operations can
be declared for the type extension (such as the
procedure Brighten in this example).

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

Subprograms declared together with a tagged type
in the same package and having at least one
parameter (or result) of the tagged type are called
dispatching operations of the type. A call to such an
operation is not necessarily dispatching however.
The call will only dispatch when invoked with an
actual parameter whose type is the class-wide type
of the associated type class.

As an example of dynamic dispatching, consider the
following class-wide subprogram (called class-wide
because its parameter will accept arguments of any
type in the class, such as Element,
Picture_Element, etc.):

procedure Draw_Any (X : Any_Element) is
begin
 Draw (X); -- dispatching call
 Draw (Element (X)); -- normal call
end Draw_Any;
declare
 Elt : Element;
 Pixel : Picture_Element;
begin
 Draw_Any (Elt);
 Draw_Any (Pixel);
end;

The first call to Draw from within Draw_Any will
dispatch to the appropriate implementation of Draw
associated with the underlying value of the
parameter X, which might be of any type in the class
of types rooted at Element. The second call involves
a conversion of the class-wide parameter X to the
specific root type Element, and so will directly invoke
the procedure Draw associated with type Element
(even though the underlying value might be of some
other type in the class).

As an extension to the basic capability for type
classes, Ada 95 also added a facility for declaring
so-called "controlled types". A controlled type allows
overriding of three special operations for
initialization, finalization, and adjustment (as part of
an assignment) of objects. This feature provides the
designer of an abstraction with additional control and
flexibility in managing objects of the type by ensuring
that any resources associated with an object are
properly initialized upon creation and cleaned up
when the object is no longer needed.

The most recent revision of the language, known as
Ada 2005, introduces several new capabilities that
enhance the existing object-oriented features. These
include:

• the ability to conveniently define mutually
dependent types in separately compiled
packages (limited with clauses)

• generalized uses of Ada 95's anonymous
access types to reduce the need for explicit
conversions between access types

• allowing type extensions to occur at deeper
nesting levels than the parent type,
extending their usefulness without
compromising safety

• the ability to differentiate new operations
explicitly from overriding ones, as in this
example:

with P;
package Q is
 type Textual_Element is
 new Element with private;

 overriding procedure
 Draw (X : Textual_ Element);
 not overriding function
 Get_Displayed_Value (X : Textual_Element)
 return String;
 ...
end P;

Textual_Element derives from Element and thus
inherits its primitive operations. It can override some
of them, such as Draw, as well as define new ones,
such as Get_Displayed_Value. The keyword
overriding makes the choice clear to the reader
and allows the compiler to detect inadvertent typos
that could otherwise be interpreted as overloaded
operations.

Ada 2005 also introduces the conventional object
prefix notation for invoking operations on objects,
permitting programmers to use object.method

(param); as an alternative to the Ada 95 functional
form method (object, param);, as illustrated by
the following calls:

 X.Draw;
 Put_Line (X.Get_Displayed_Value);

Finally, Ada 2005 introduces a Java-like limited form
of multiple inheritance through the keyword
interface. The interface feature enables
inheritance of specifications (roles) rather than
implementations, avoiding the complexity and
danger of the more general forms of multiple
inheritance.

An interface as defined in Ada 2005 is very similar to
an Ada 95 abstract tagged type which has no
components and each of whose operations is either
abstract or null. The type extension rules are
enhanced to allow tagged types (as well as
interfaces) to inherit from any number of interfaces.
In order to preserve single inheritance of
implementations, a tagged type extension must still
derive from a single tagged type ancestor. When a
tagged type inherits from one or more interfaces, it
must override any abstract operations inherited from

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

those interfaces (unless the tagged type itself is
abstract).

4. Simple Object Model (without Dispatching)

In their current form, certification standards such as
DO-178B [5] are wary of dynamic dispatching. If its
use is not formally banned, it is strongly discouraged
by the afore-mentioned FAQ 34 in DO-248B [6]
which explicitly states:

Avoidance of non-determinism: Non-determinism
may be reduced through one or more of the
following practices:

 …
4. Avoid use of dynamic binding…

Dynamic binding is a synonym for dispatching (see
[1] 1.3.5). Non-determinism introduced by
dispatching will be discussed in the next section
along with issues related to proper testing of such
constructs. Although solutions to these issues are
emerging, they are not yet fully established. The
same wariness caused dispatching to be excluded
from the first version of the Ada standard. Now that a
complete object-oriented paradigm is supported in
Ada, the question arises: can it be of any use to
those who prefer not to have to deal with the
certification difficulties related to dispatching? Ada’s
answer is clearly “yes”. Type extension and
inheritance are powerful mechanisms for defining
closely related abstractions and can be used without
dispatching.

The “object.method” notation is also considered a
significant syntactic improvement in some situations,
particularly when it simplifies the source code and
thus enhances its readability. This is especially true
where local coding standards prohibit use clauses.
This is the case in SPARK [11], which requires that
any entity always be referenced using exactly the
same syntactic form thus entailing the use of fully
qualified names. When a method defined in a
different package is called on a local object, the
difference of notation can result in substantial
simplification:

Parent.Child.Grandchild.Method (Obj, Param);

compared to the much simpler:

Obj.Method (Param);

In Ada 2005, this prefixed notation is only available
for primitive or class-wide operations of tagged
types, which encourages their use even when
dispatching is prohibited. Such a prohibition can
easily be enforced by using the standard restriction:

Pragma Restrictions (No_Dispatch);

This is a configuration pragma applying to all units in
a partition. Such a restriction can also be used by
certification-friendly implementations to avoid
generating all the implicit code required to support
dispatching properly. For instance, the so-called
“tag” component no longer needs to be materialized
in tagged records. Dispatch tables do not need to be
generated, nor filled during type elaboration. Implicit
dispatching operations such as “=”, ‘Size,

‘Read, and ‘Write can be avoided. These
operations usually need to be created
unconditionally for each tagged type, in order to
support potential dispatching calls from different
units. Such simplification of the generated code
reduces the need for localizing and potentially
needing to justify deactivated compiler-generated
code as already alluded to in section 2.

5. Towards Certification of Dispatching Calls

Section 3 showed that the programmer can choose
whether a given call to a primitive operation will
dispatch. This flexibility can be used to limit the
number of dispatching calls, thereby limiting their
associated certification cost. This flexibility is not
available in Java, where all operation invocations are
dispatching (unless a routine is declared as final –
similar to an Ada class-wide operation). It is
available in C++, but at the cost of forcing the
programmer to indicate whether an operation itself
(not a specific call) is virtual. A virtual operation will
potentially always dispatch while a non-virtual one
will never dispatch. C++ implementations are
allowed to optimize dispatching calls into regular
calls when the context permits, but this is not under
the control of the developer.

It is also worth noting that most OOTiA [1] guidelines
in 3.3 (Single Inheritance and Dynamic Dispatch) are
easily met when using Ada 2005:

• the Simple Overriding rule and the Simple
Dispatch rule are guaranteed by the
language

• the Accidental Overriding rule can be met by
systematic use of the overriding keyword
(this again can easily be checked with an
ASIS tool)

• the Dispatch Time rule is a characteristic of
the implementation that can be expected to
be met provided that the semantics of the
language allow constant-time dispatching
through compiler generated dispatch tables.

It has often been observed that dispatching calls are
equivalent to case statements. This is of course not
the case at the conceptual level of the application
developer, since the point of using dynamic
dispatching is that the programmer invoking an

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

operation at any particular point does not need to
know the set of possible method destinations. In fact
nowhere in the entire source set does anyone have
to know the set of destinations. That is at once the
strength and weakness of the dynamic
polymorphism model. The programmer does not
know what the flow of control will be, and the flow of
control is not known until run time. This is true for all
conditional constructs. What distinguishes the
dispatching case is that the programmer does not
even know statically the set of possible control flows.
Since an important element of certification is static
testing of all possible control flow paths, there is a
fundamental contradiction between the aims and
requirements of the programmer at the source level,
and the aims and requirements of certification.
Dispatching is all about not having to know the
possible control flow. Certification is all about
needing to know it.

However, once a program has been written, there
are indeed transformations that can convert
dispatching to the equivalent of case statements.
These transformations can be implemented as
source-to-source transformations, or can be
performed as linker-level activities. We will describe
the transformations in terms of source rewrites. The
first step is to observe that although during the
writing of any particular component of the program,
the final set of possible destinations of a dispatching
call is unknown, this set is well known by the time
the program is linked.

In this discussion we assume that a static linking
step produces the executable for a given program. If
we consider the realm of highly dynamic object
oriented environments which are common with
Smalltalk or Java, but can also exist in Ada (see
[16]), where new classes can be introduced during
the execution of the program, then the situation is
much more difficult. We do not attempt to address
the issue of certification in such environments. Given
that we know the possible set of destinations, the
idea is to replace a dynamic call:

 Object.Operation;

by a proper Ada case statement

case Object’Tag’Index is
 when Subtype1’Tag’Index =>
 Subtype1 (Object).Operation;
 when subtype2’Tag’Index =>
 Subtype2 (Object).Operation;
 …
 when others =>
 raise Program_Error with “invalid tag”;
end case;

Here the calls are not dispatching since the Object is
converted to its actual subtype. The set of possible

cases is complete since such a transformation is
done with a view of the entire program.

There are two ways to replace dispatching calls with
case statements. First, we can directly replace each
call by such a case statement. Hence, if there are
multiple calls to the same operation there will be
multiple case statements. Second, we can make a
single procedure containing the case statement, and
then replace each dynamic call with a call to this
procedure.

OOTiA [1], in section 3.12.5, provides a good
discussion of the amount of testing required for
adequately covering dispatching calls. It proposes
four possible levels of coverage. The most stringent
is equivalent to traditional covering of the first
suggested transformation, that is to say, covering all
methods that can be dispatched to at all call points.
It is considered a “pessimistic approach” and would
probably generate an immense burden on
applications that use dispatching extensively. The
most optimistic approach is equivalent to the
coverage of the second transformation. It is
considered to be a relatively weak approach to
testing for safety-critical applications. Intermediate
approaches based on mathematically significant
subsets or equivalence classes amount to selectively
using one or the other transformation. At the time of
writing, the most fitting approach remains open.
Specific guidelines are expected to appear as part of
the current work on DO-178C [7].

Note that doing an actual transformation of the code
into case statements (rather than just arguing for
equivalence at a tool level) offers substantial
advantages. First, the usual implementation of
dispatching is to issue an indirect call. This means
that if the tag of an object is corrupted, we get a
worst case erroneous execution involving a random
jump. For a case statement, if the tag is corrupted,
the effect is much more strictly bounded, since the
“when others” branch is taken and a well-known
error condition is raised. Second, case statements
are known constructs, completely familiar to existing
tools for producing certification evidence in non-OO
contexts, so the potential for reuse of such toolsets
without substantial redesign is attractive.

An enhancement planned for GNAT will implement
both schemes for rewriting case statements. The
way this will work is that there will be a compiler
option to generate appropriate calls, and a binder
option to generate the source of the case statements
(one per call, or one per operation, depending on the
option chosen). These will be generated as normal
Ada source and will therefore be fully processable by
any normal tools, including the debugger and
certification tools. Comments added to generated

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

case statements will provide traceability back to the
original calls in the application source units.

6. What about Multiple Inheritance?

OOTiA’s[1] purpose is to define a safe path for the
introduction of OO techniques in safety critical
software. As shown in previous sections, safety
issues related to single inheritance, especially in
strongly typed languages, are relatively well
understood and are amenable to known and proven
approaches. On the other hand, the document is
much more circumspect with respect to multiple
inheritance and hints several times at doubts as to
its usability in a safety-critical context. See, in
particular, section 2.3.1.3:

…. For example, ANSI C++ has some language
features, such as multiple inheritance, that may
make it difficult to meet some DO-178B
objectives….

However, OOTiA makes a strong distinction between
multiple inheritance of implementation as provided
by C++, and delegation, or interface inheritance as is
provided by Java and Ada 2005. If the avionics
community does not seem ready to go so far as to
allow the former, the secure use of the latter does
not seem out of reach. See for instance 3.4.3:

Although use of these guidelines helps us deal with
the issues raised with respect to ambiguity and
complexity, delegation is still considered preferable
to the use of multiple implementation inheritance for
most systems (as recommended by the AVSI Guide
[12]).

One of the major guidelines in [1] is the repeated
interface inheritance rule, whose intent is to avoid
potential ambiguities introduced by inheriting the
same operation from different parent interfaces. This
condition is guaranteed by Ada 2005 semantics. The
other guidelines related to multiple inheritance of
interfaces are either not relevant to Ada or can be
easily checked by ASIS-based tools such as the
ones mentioned in section 2. Therefore, this is
another domain where Ada provides what seems to
be the appropriate level of support for a feature that
may become accepted in safety-critical contexts in
the not-too-distant future.

7. Conclusion

The latest revision of the Ada language includes a
complete scalable object-oriented model that mixes
well with Ada’s strong typing tradition. This model is
well suited to answer the challenge of introducing
various object-oriented techniques into the
development of applications requiring various levels
of certification. Its most restricted object model can

be used with today’s most strict certification
practices. If dynamic dispatching creates difficulties
with current certification practices, Ada is well
positioned to offer safe alternatives to overcome
those difficulties.

8. Acknowledgement

Many thanks to John Barnes, Kathy Fairlamb,
Ed Falis, Jose Ruiz and Ed Schonberg for their
invaluable reviews and comments.

9. References

[1] FAA: “Handbook for Object-Oriented Technology in
Aviation (OOTiA)”, FAA 2004, available at
http://www.faa.gov/aircraft/air_cert/design_approval
s/air_software/oot/.

[2] ISO: “Ada 95 Reference Manual: Language and
Standard Libraries. International Standard”
ANSI/ISO/IEC-8652:1995. Available from Springer-
Verlag, LNCS n°1246.

[3] Barnes J.: “Rationale for Ada 2005”. Draft available
at http://www.adacore.com/ada_2005.php

[4] Barnes J.: “Programming with Ada 95”. Addison-
Wesley, 1998. (ISBN 0-201-34293-6)

[5] RTCA: “Software Consideration in Airborne
Systems and Equipment certification”. RTCA/DO-
178B, Dec 1rst, 1992.

[6] RTCA: Final report for clarification of DO-178B:
“Software Consideration in Airborne Systems and
Equipment Certification”. RTCA/DO-248B, Oct 12,
2001.

[7] RTCA: “SC-205, Software Considerations”
(preparation of DO-178C).
http://www.rtca.org/comm/Committee.cfm?id=55

[8] Botcazou E., Comar C., Hainque O.: “Compile-

Time Evaluation of Stack Size Requirements with
GCC”, GCC Developer Summit, Ottawa, June
2005.

[9] Dewar R., Hainque O., Craeynest Dirk, Waroquiers

P. : “Exposing Uninitialized Variables :
Strengthening and Extending Run-Time Checks in
Ada”.
http://www.cs.kuleuven.ac.be/~dirk/papers/ae02cfm
u-paper.pdf

[10] ISO: “Guide for the use of the Ada programming
language in high integrity systems”. ISO/IEC TR
15942.

[11] Barnes J.: “High Integrity Software: The SPARK
Approach to Safety and Security", Addison-Wesley,
2003.

[12] AVSI: “Guide to the Certification of Systems with
Embedded Object-Oriented Software”. from the
Aerospace Vehicle Systems Institute (AVSI).

[13] AdaCore: ”GNAT Pro User’s Guide”.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

[14] SIAM: “Inquiry Board Traces Ariane 5 Failure to
Overflow Error”,
http://www.siam.org/siamnews/general/ariane.htm

[15] Comar C., Rogers P.: “On Dynamic Plug-in Loading
with Ada 95 and Ada 2005”, ACM SIGAda Ada
letters, Volume 25, Issue 2 (Jun 2005).

[16] ISO: “Ada Semantic Interface Specification (ASIS)”,
ISO/IEC 15291:1999 Information technology --
Programming languages.
http://www.iso.org/iso/en/CatalogueDetailPage.Cat
alogueDetail?CSNUMBER=27169&ICS1=35&ICS2
=60&ICS3=

[17] ARG: “Ravenscar profile for high-integrity systems”,
Technical report, ISO/IEC/JTC1/SC22/WG9.
Available at http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/AIs/AI-00249.TXT

[18] Burns A.: ”The Ravenscar Profile”, Technical
report, University of York, 2002. Available at
http://www.cs.york.ac.uk/~burns/ravenscar.ps

[19] ACAA: “Ada Conformity Assessment Test Suite
(ACATS)”, 2005, ACAA. Available at
http://www.ada-auth.org/acats.html

10. Glossary

ASIS: Ada Semantic Interface Specification
EUROCAE : European Organization for Civil Aviation
Equipment
DO-178B: Software Consideration in Airborne Systems
and Equipment certification
DO-248B: Final report for clarification of DO-178B
OO: Object-Oriented
OOTiA: Handbook for Object-Oriented Technology in
Aviation
RTCA : Association of aeronautical organizations of the
USA from both government and industry.

