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Abstract: 
 
The object model of Ada 2005 is well-suited for 
applications that have to meet certification at various 
levels. We review the use of Ada in the context of 
certification, and show that the object-oriented 
facilities of the current language standard, properly 
restricted to avoid dynamic dispatching, can already 
be used without problems under current DO-178B 
guidelines. We then examine the complications to 
certification that are presented by dynamic 
dispatching in a single inheritance model, and show 
implementation-specific ways of addressing these 
complications. Finally, we discuss the problems 
introduced by the use of multiple inheritance. We 
conclude by showing how, regardless of the extent 
to which object-oriented idioms are used, Ada 
provides a safe and efficient vehicle to create 
certifiable systems. 

Keywords: Ada, DO-178B, Certification, Object-
Oriented Programming. 

1. Introduction 

Software construction has evolved considerably in 
the last two decades. One of the most notable 
advances is the use of object-oriented techniques in 
commercial applications. The enhancement of 
reusability, adaptability and maintenance has led to 
wide deployment of these techniques in many 
application domains. 
 
Languages such as C++, Java, and C# have 
evolved over the last decade and, thanks to them, 
object-oriented programming has become a widely 
used paradigm. Over the same period Ada has 
evolved to incorporate object-oriented features into 
its original type model. The Ada 95 standard added 
to Ada 83 tagged types, single inheritance, 
polymorphism, and dynamic dispatching. The latest 
revision of the language, known as Ada 2005, adds 
multiple inheritance of interfaces and numerous 
other object-oriented programming idioms. 
 
There is currently a trend towards the use of object- 
oriented techniques in the construction of high- 
integrity software systems, such as in avionics 
airborne systems. In this particular domain, the 
integration of best practices in software construction 

must also be balanced with the need to increase 
confidence in the safety of the system. A further 
feature to note is that Avionics software has a 
significantly longer life-cycle than software in other 
application areas. 
 
The aim of the RTCA DO-178B [5] standard is to 
provide guidelines for building airborne systems that 
perform their intended functions with the appropriate 
level of safety. Developed in the 1980s and finalized 
in the early 90s, DO-178B is based on the waterfall 
software process that was considered best-practice 
at the time the standardization process in this field 
began.  One of the objectives of the forthcoming 
revision of this standard, DO-178C [7] (still in the 
early stages of development), is to take into account 
object-oriented techniques and their associated 
development processes. A preliminary document, 
the Handbook for Object Oriented Technology in 
Aviation (OOTiA) [1], already provides a 
comprehensive analysis and specific guidelines on 
how to address the safety concerns associated with 
object-oriented techniques in the context of DO-
178B [5]. 
 
This paper reviews the most relevant features of the 
Ada language for certification and summarizes the 
evolution of object-oriented features in Ada. it then 
shows how Ada is ideally suited for use in certified 
applications that use object-oriented features, in 
particular when complemented with certification-
oriented facilities of the development environment. 

2. Ada and Certification 

 
Since the emergence of the RTCA DO-178B 
standard [5], Ada has been one of the few 
languages of choice for the construction of airborne 
systems thanks to its clear semantic definition and 
strong typing model. It has been used successfully in 
many major aeronautics projects (Boeing 777, A340, 
and more recently Boeing 787, A380 and A400M). 
Clear semantic definition is considered a desirable 
precondition for minimizing non-determinism by DO-
248B [6] FAQ#32  (What are Defensive practices), 
where one can read: 
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Avoidance of non-determinism: Non-determinism 
may be reduced through one or more of the 
following practices: 
1. Choose a language with a well-defined 

standard. 
 

Not many languages besides Ada can claim a well- 
defined official standard. Fewer can claim that all 
major implementations fully adhere to the standard. 
And fewer still have an official and standardized test 
suite [19] supporting validation of this claim.  It is 
also notable that Ada has several guides for its use 
in high-integrity systems [10], [17]. 
 
Ada’s clear semantic definition has also fostered the 
wide use of ASIS [16], which considerably eases the 
creation of semantics-oriented verification tools. 
Such tools can be qualified in order to produce 
evidence that will help meet the DO-178B objective 
6.3.4d: 
 

d. Conformance to standards: The objective is to 
ensure that the Software Code Standards were 
followed during the development of the code, 
especially complexity restrictions and code 
constraints that would be consistent with the 
system safety objectives. 

 
For example, consider a tool that is part of the 
standard GNAT toolset: gnatmetric computes 
industry-standard source metrics such as McCabe 
cyclomatic and essential complexity [13]. Another 
example is gnatcheck, an ASIS-based tool, whose 
purpose is to produce certification evidence that 
specific semantic rules are followed; or when they 
are not followed, that violations are clearly identified 
so they can be justified. This tool is designed to be 
easily extensible for specific project standards. It 
already implements dozens of local rules, such as 
“no goto statements” as well as several more global 
ones such as “no side effects in functions” (i.e., no 
direct or indirect modification of a variable whose 
scope is wider than the function body) and “no 
recursion” (i.e., no cycles in the subprogram call 
graph). 
 
Ada’s pragma Restrictions ([2] 13.12) is also a 
significant aid for enforcing the “Conformance to 
standards” objective mentioned above. For instance, 
dynamic memory allocation, whether implicit or 
explicit, can be excluded from the application by 
simply specifying: 
 
  pragma Restrictions (No_Allocators); 
  pragma Restrictions  
                  (No_Implicit_Heap_Allocation); 
 
Furthermore, the compiler can take advantage of 
pragma Restrictions to produce simpler and more 
efficient code. For instance, in the presence of  

 
  pragma Restrictions (No_Abort_Statements); 
  pragma Restrictions 
     (Max_Asynchronous_Select_Nesting => 0);  
 
A good implementation will not generate the abort-
deferral code that is otherwise mandated by the 
language. Not only can performance improvements 
be expected, but more importantly, deactivated 
compiler-generated code can be reduced, thus 
easing the effort of code verification and justification 
for high levels of certification.  
 
There are several interesting subsets of Ada for 
high-integrity systems. One of them is the Ravenscar 
profile [18], a subset of the tasking features of Ada 
which is powerful enough for real-time programming 
but simple enough to be amenable to static analysis 
for certification, and that can be supported by a 
small, reliable run-time system. Another notable 
example is SPARK [11] that includes Ada constructs 
regarded as essential for the construction of complex 
software, but removes all the features that may 
jeopardize the requirements of verifiability, bounded 
space and time, and minimal run-time system. 
 
Thanks to Ada’s strong typing and subtyping model, 
run-time checks are generated that can help detect 
malfunctions earlier, during the testing phase. At 
high levels of certification, some projects choose not 
to insert run-time checks in the executable to be 
certified. This choice can be justified if static analysis 
tools such as SPARK [11] have been used to 
provide proof that specific run-time errors cannot 
occur. Check elimination can also be motivated by 
the desire to minimize deactivated compiler-
generated code, or by the difficulty of implementing a 
reliable recovery mechanism, as shown by the 
Ariane 5 launch disaster analysis [14]: 
 

Although the source of the operand error has 
been identified, this in itself did not cause the 
mission to fail. The specification of the exception-
handling mechanism also contributed to the 
failure.  

 
Even when compiler checks are not generated in the 
final executable, they can play a beneficial role, 
together with pragma Normalize_Scalars ([1] H.1), 
for satisfying objective 6.3.4f of DO-178B [5] (use of 
uninitialized variables or constants). Pragma 
Normalize_Scalars instructs the compiler to 
initialize scalar variables that do not have explicit 
initialization with a deterministic value (outside its 
range when possible), in order to increase the 
likelihood of generating a repeatable run-time fault 
when the variable is read before receiving a value. 
Specific compilers can provide more extensive and 
comprehensive run-time checks to maximize this 
possibility. [9] describes such an implementation and 
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its successful use in an industrial non-safety-critical 
context (Air Traffic Flow Management). Running a 
full requirements-based and structural-based testing 
campaign in such a mode is likely to significantly 
raise confidence in attaining objective 6.4.3f. For the 
results of such a process to be acceptable as 
certification evidence, this compiler functionality 
does not require full certification since it is not 
involved in the production of the final code. It only 
needs to be qualified according to DO-178B section 
12.2.2 [5].  
 
Finally, it is worth mentioning that Ada’s strong 
typing system is also known to offer useful 
capabilities for tools such as static stack-usage 
analyzers. In particular, [8] mentions how 
appropriate type information can be used to compute 
the maximum stack allocation requirements for 
variable size objects. It can also help computing 
complete call graphs even in the presence of indirect 
calls. 

3. Brief Review of the Ada Object Model 

Ada is a general-purpose language that has added 
support over time for a range of programming 
paradigms: procedural programming, functional 
programming, object-based programming, and 
object-oriented programming with both single 
inheritance (type extension and dispatching 
operations in Ada 95) and multiple inheritance 
(inheritance of interfaces in Ada 2005). 
 
In Ada 83, the object model was limited to data 
encapsulation and information hiding, using private 
types and packages to separate specification from 
implementation. For example, the DisplayElement 
class of [1] (pp. 3-77) could be represented as: 
 
package P is 
   type Element is private; 
   procedure Draw      (X : Element); 
   procedure Highlight (X : Element); 
   procedure Hide      (X : Element); 
private 
   type Element is record 
      … 
   end record; 
end P; 
 
Here the client interface to the Element abstraction 
is given in the visible part of the package by a private 
type and a set of operations. The details of the 
implementation are given separately in the private 
part and body of the package, effectively insulating 
the user of the abstraction from the representation 
and implementation of the type and its operations. 
 
In Ada 95, the language was revised by adding full-
fledged object-oriented support in the form of single 
inheritance, with type extension and dynamic 

dispatching. This was done in an upward-compatible 
way, building on Ada 83's existing framework for 
package encapsulation and derived types. By 
declaring a type to be tagged and defining a set of 
primitive operations for the type, the type can 
subsequently be extended. Such a type extension 
inherits the data components and primitive 
operations of the parent type, and can extend the 
parent type by adding components and operations, 
as well as by overriding any inherited operations. 
The notion of type classes was also introduced, to 
provide polymorphism of objects and operations. 
Each tagged type T thus serves as the 
representative root type of a potential hierarchy of 
the types that extend it, where this set of types is 
designated T'Class. 
 
The Element abstraction could be represented by 
the following tagged type: 
 
package P is 
   type Element is tagged private; 
   subtype Any_Element is Element’Class; 
   procedure Draw (X : Element); 
   … 
end P; 
 
The keyword tagged in the declaration of type 
Element identifies the type as being extensible. 
Element is the root type of a class of types that could 
be derived from it, while Element'Class denotes 
the entire set of types in that class. The type 
Element can now be extended, for example by 
defining a specialization: 
 
package Pictures is 
   type Picture_Element is 
      new P.Element with private; 
 
   procedure Draw (X : Picture_Element); 
   procedure Brighten 
    (X : Picture_Element; Y : Intensity); 
   ... 
private 
   type Picture_Element is new P.Element  
      with record 
         Brightness : Intensity; 
      end record; 
end Pictures; 
 
The type Picture_Element is an extension of 
Element. In this case the new type is declared as a 
private extension whose full type adds a single new 
component (hidden from clients of the type). The 
operation Draw, inherited from the parent type, is 
overridden by an implementation specialized for the 
new type (though that implementation might also 
invoke the parent type's operation). Other operations 
of the parent type can be inherited as is or 
overridden, and additional primitive operations can 
be declared for the type extension (such as the 
procedure Brighten in this example). 
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Subprograms declared together with a tagged type 
in the same package and having at least one 
parameter (or result) of the tagged type are called 
dispatching operations of the type. A call to such an 
operation is not necessarily dispatching however. 
The call will only dispatch when invoked with an 
actual parameter whose type is the class-wide type 
of the associated type class. 
 
As an example of dynamic dispatching, consider the 
following class-wide subprogram (called class-wide 
because its parameter will accept arguments of any 
type in the class, such as Element, 
Picture_Element, etc.): 
 
procedure Draw_Any (X : Any_Element) is 
begin 
   Draw (X);            -- dispatching call 
   Draw (Element (X));  -- normal call 
end Draw_Any; 
declare 
   Elt   : Element; 
   Pixel : Picture_Element; 
begin 
   Draw_Any (Elt); 
   Draw_Any (Pixel); 
end; 
 
The first call to Draw from within Draw_Any will 
dispatch to the appropriate implementation of Draw 
associated with the underlying value of the 
parameter X, which might be of any type in the class 
of types rooted at Element. The second call involves 
a conversion of the class-wide parameter X to the 
specific root type Element, and so will directly invoke 
the procedure Draw associated with type Element 
(even though the underlying value might be of some 
other type in the class). 
 
As an extension to the basic capability for type 
classes, Ada 95 also added a facility for declaring 
so-called "controlled types". A controlled type allows 
overriding of three special operations for 
initialization, finalization, and adjustment (as part of 
an assignment) of objects. This feature provides the 
designer of an abstraction with additional control and 
flexibility in managing objects of the type by ensuring 
that any resources associated with an object are 
properly initialized upon creation and cleaned up 
when the object is no longer needed. 
 
The most recent revision of the language, known as 
Ada 2005, introduces several new capabilities that 
enhance the existing object-oriented features. These 
include: 
 

• the ability to conveniently define mutually 
dependent types in separately compiled 
packages (limited with clauses) 

• generalized uses of Ada 95's anonymous 
access types to reduce the need for explicit 
conversions between access types 

• allowing type extensions to occur at deeper 
nesting levels than the parent type, 
extending their usefulness without 
compromising safety 

• the ability to differentiate new operations 
explicitly from overriding ones, as in this 
example: 

 
with P; 
package Q is 
   type Textual_Element is  
      new Element with private; 
    
   overriding procedure  
     Draw (X : Textual_ Element); 
   not overriding function  
     Get_Displayed_Value (X : Textual_Element) 
       return String; 
   ... 
end P; 
  
Textual_Element derives from Element and thus 
inherits its primitive operations. It can override some 
of them, such as Draw, as well as define new ones, 
such as Get_Displayed_Value. The keyword 
overriding makes the choice clear to the reader 
and allows the compiler to detect inadvertent typos 
that could otherwise be interpreted as overloaded 
operations. 
 
Ada 2005 also introduces the conventional object 
prefix notation for invoking operations on objects, 
permitting programmers to use object.method 

(param); as an alternative to the Ada 95 functional 
form method (object, param);, as illustrated by 
the following calls: 
 
   X.Draw; 
   Put_Line (X.Get_Displayed_Value); 

 
Finally, Ada 2005 introduces a Java-like limited form 
of multiple inheritance through the keyword 
interface. The interface feature enables 
inheritance of specifications (roles) rather than 
implementations, avoiding the complexity and 
danger of the more general forms of multiple 
inheritance. 
 
An interface as defined in Ada 2005 is very similar to 
an Ada 95 abstract tagged type which has no 
components and each of whose operations is either 
abstract or null. The type extension rules are 
enhanced to allow tagged types (as well as 
interfaces) to inherit from any number of interfaces. 
In order to preserve single inheritance of 
implementations, a tagged type extension must still 
derive from a single tagged type ancestor. When a 
tagged type inherits from one or more interfaces, it 
must override any abstract operations inherited from 
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those interfaces (unless the tagged type itself is 
abstract). 

4. Simple Object Model (without Dispatching) 

In their current form, certification standards such as 
DO-178B [5] are wary of dynamic dispatching. If its 
use is not formally banned, it is strongly discouraged 
by the afore-mentioned FAQ 34 in DO-248B [6] 
which explicitly states: 
 

Avoidance of non-determinism: Non-determinism 
may be reduced through one or more of the 
following practices: 

 …  
4. Avoid use of dynamic binding… 

 
Dynamic binding is a synonym for dispatching (see 
[1] 1.3.5). Non-determinism introduced by 
dispatching will be discussed in the next section 
along with issues related to proper testing of such 
constructs. Although solutions to these issues are 
emerging, they are not yet fully established. The 
same wariness caused dispatching to be excluded 
from the first version of the Ada standard. Now that a 
complete object-oriented paradigm is supported in 
Ada, the question arises: can it be of any use to 
those who prefer not to have to deal with the 
certification difficulties related to dispatching? Ada’s 
answer is clearly “yes”. Type extension and 
inheritance are powerful mechanisms for defining 
closely related abstractions and can be used without 
dispatching. 
 
The “object.method” notation is also considered a 
significant syntactic improvement in some situations, 
particularly when it simplifies the source code and 
thus enhances its readability. This is especially true 
where local coding standards prohibit use clauses. 
This is the case in SPARK [11], which requires that 
any entity always be referenced using exactly the 
same syntactic form thus entailing the use of fully 
qualified names. When a method defined in a 
different package is called on a local object, the 
difference of notation can result in substantial 
simplification: 
 
Parent.Child.Grandchild.Method (Obj, Param); 
 
compared to the much simpler:  
 
Obj.Method (Param); 
 
In Ada 2005, this prefixed notation is only available 
for primitive or class-wide operations of tagged 
types, which encourages their use even when 
dispatching is prohibited. Such a prohibition can 
easily be enforced by using the standard restriction: 
 
Pragma Restrictions (No_Dispatch); 
 

This is a configuration pragma applying to all units in 
a partition. Such a restriction can also be used by 
certification-friendly implementations to avoid 
generating all the implicit code required to support 
dispatching properly. For instance, the so-called 
“tag” component no longer needs to be materialized 
in tagged records. Dispatch tables do not need to be 
generated, nor filled during type elaboration. Implicit 
dispatching operations such as “=”, ‘Size, 

‘Read, and ‘Write can be avoided. These 
operations usually need to be created 
unconditionally for each tagged type, in order to 
support potential dispatching calls from different 
units. Such simplification of the generated code 
reduces the need for localizing and potentially 
needing to justify deactivated compiler-generated 
code as already alluded to in section 2.  
 

5. Towards Certification of Dispatching Calls 

Section 3 showed that the programmer can choose 
whether a given call to a primitive operation will 
dispatch. This flexibility can be used to limit the 
number of dispatching calls, thereby limiting their 
associated certification cost.  This flexibility is not 
available in Java, where all operation invocations are 
dispatching (unless a routine is declared as final – 
similar to an Ada class-wide operation). It is 
available in C++, but at the cost of forcing the 
programmer to indicate whether an operation itself 
(not a specific call) is virtual. A virtual operation will 
potentially always dispatch while a non-virtual one 
will never dispatch. C++ implementations are 
allowed to optimize dispatching calls into regular 
calls when the context permits, but this is not under 
the control of the developer. 
 
It is also worth noting that most OOTiA [1] guidelines 
in 3.3 (Single Inheritance and Dynamic Dispatch) are 
easily met when using Ada 2005: 

• the Simple Overriding rule and the Simple 
Dispatch rule are guaranteed by the 
language 

• the Accidental Overriding rule can be met by 
systematic use of the overriding keyword 
(this again can easily be checked with an 
ASIS tool) 

• the Dispatch Time rule is a characteristic of 
the implementation that can be expected to 
be met provided that the semantics of the 
language allow constant-time dispatching 
through compiler generated dispatch tables. 

 
It has often been observed that dispatching calls are 
equivalent to case statements. This is of course not 
the case at the conceptual level of the application 
developer, since the point of using dynamic 
dispatching is that the programmer invoking an 
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operation at any particular point does not need to 
know the set of possible method destinations. In fact 
nowhere in the entire source set does anyone have 
to know the set of destinations. That is at once the 
strength and weakness of the dynamic 
polymorphism model. The programmer does not 
know what the flow of control will be, and the flow of 
control is not known until run time. This is true for all 
conditional constructs. What distinguishes the 
dispatching case is that the programmer does not 
even know statically the set of possible control flows. 
Since an important element of certification is static 
testing of all possible control flow paths, there is a 
fundamental contradiction between the aims and 
requirements of the programmer at the source level, 
and the aims and requirements of certification. 
Dispatching is all about not having to know the 
possible control flow. Certification is all about 
needing to know it. 
 
However, once a program has been written, there 
are indeed transformations that can convert 
dispatching to the equivalent of case statements. 
These transformations can be implemented as 
source-to-source transformations, or can be 
performed as linker-level activities. We will describe 
the transformations in terms of source rewrites. The 
first step is to observe that although during the 
writing of any particular component of the program, 
the final set of possible destinations of a dispatching 
call is unknown, this set is well known by the time 
the program is linked. 
 
In this discussion we assume that a static linking 
step produces the executable for a given program. If 
we consider the realm of highly dynamic object 
oriented environments which are common with 
Smalltalk or Java, but can also exist in Ada (see 
[16]), where new classes can be introduced during 
the execution of the program, then the situation is 
much more difficult. We do not attempt to address 
the issue of certification in such environments. Given 
that we know the possible set of destinations, the 
idea is to replace a dynamic call: 
 
   Object.Operation;  
 

by a proper Ada case statement 
 
case Object’Tag’Index is 
   when Subtype1’Tag’Index => 
      Subtype1 (Object).Operation; 
   when subtype2’Tag’Index => 
      Subtype2 (Object).Operation; 
   … 
   when others => 
      raise Program_Error with “invalid tag”; 
end case; 
  
Here the calls are not dispatching since the Object is 
converted to its actual subtype. The set of possible 

cases is complete since such a transformation is 
done with a view of the entire program. 
 
There are two ways to replace dispatching calls with 
case statements. First, we can directly replace each 
call by such a case statement. Hence, if there are 
multiple calls to the same operation there will be 
multiple case statements. Second, we can make a 
single procedure containing the case statement, and 
then replace each dynamic call with a call to this 
procedure. 
 
OOTiA [1], in section 3.12.5, provides a good 
discussion of the amount of testing required for 
adequately covering dispatching calls. It proposes 
four possible levels of coverage. The most stringent 
is equivalent to traditional covering of the first 
suggested transformation, that is to say, covering all 
methods that can be dispatched to at all call points. 
It is considered a “pessimistic approach” and would 
probably generate an immense burden on 
applications that use dispatching extensively. The 
most optimistic approach is equivalent to the 
coverage of the second transformation. It is 
considered to be a relatively weak approach to 
testing for safety-critical applications. Intermediate 
approaches based on mathematically significant 
subsets or equivalence classes amount to selectively 
using one or the other transformation. At the time of 
writing, the most fitting approach remains open. 
Specific guidelines are expected to appear as part of 
the current work on DO-178C [7]. 
 
Note that doing an actual transformation of the code 
into case statements (rather than just arguing for 
equivalence at a tool level) offers substantial 
advantages. First, the usual implementation of 
dispatching is to issue an indirect call. This means 
that if the tag of an object is corrupted, we get a 
worst case erroneous execution involving a random 
jump. For a case statement, if the tag is corrupted, 
the effect is much more strictly bounded, since the 
“when others” branch is taken and a well-known 
error condition is raised. Second, case statements 
are known constructs, completely familiar to existing 
tools for producing certification evidence in non-OO 
contexts, so the potential for reuse of such toolsets 
without substantial redesign is attractive. 
 
An enhancement planned for GNAT will implement 
both schemes for rewriting case statements. The 
way this will work is that there will be a compiler 
option to generate appropriate calls, and a binder 
option to generate the source of the case statements 
(one per call, or one per operation, depending on the 
option chosen). These will be generated as normal 
Ada source and will therefore be fully processable by 
any normal tools, including the debugger and 
certification tools. Comments added to generated 
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case statements will provide traceability back to the 
original calls in the application source units. 

6. What about Multiple Inheritance? 

OOTiA’s[1] purpose is to define a safe path for the 
introduction of OO techniques in safety critical 
software. As shown in previous sections, safety 
issues related to single inheritance, especially in 
strongly typed languages, are relatively well 
understood and are amenable to known and proven 
approaches. On the other hand, the document is 
much more circumspect with respect to multiple 
inheritance and hints several times at doubts as to 
its usability in a safety-critical context. See, in 
particular, section 2.3.1.3: 
 

…. For example, ANSI C++ has some language 
features, such as multiple inheritance, that may 
make it difficult to meet some DO-178B 
objectives…. 

 
However, OOTiA makes a strong distinction between 
multiple inheritance of implementation as provided 
by C++, and delegation, or interface inheritance as is 
provided by Java and Ada 2005. If the avionics 
community does not seem ready to go so far as to 
allow the former, the secure use of the latter does 
not seem out of reach. See for instance 3.4.3: 
 
Although use of these guidelines helps us deal with 
the issues raised with respect to ambiguity and 
complexity, delegation is still considered preferable 
to the use of multiple implementation inheritance for 
most systems (as recommended by the AVSI Guide 
[12]). 
 
One of the major guidelines in [1] is the repeated 
interface inheritance rule, whose intent is to avoid 
potential ambiguities introduced by inheriting the 
same operation from different parent interfaces. This 
condition is guaranteed by Ada 2005 semantics. The 
other guidelines related to multiple inheritance of 
interfaces are either not relevant to Ada or can be 
easily checked by ASIS-based tools such as the 
ones mentioned in section 2. Therefore, this is 
another domain where Ada provides what seems to 
be the appropriate level of support for a feature that 
may become accepted in safety-critical contexts in 
the not-too-distant future. 

7. Conclusion 

The latest revision of the Ada language includes a 
complete scalable object-oriented model that mixes 
well with Ada’s strong typing tradition. This model is 
well suited to answer the challenge of introducing 
various object-oriented techniques into the 
development of applications requiring various levels 
of certification. Its most restricted object model can 

be used with today’s most strict certification 
practices. If dynamic dispatching creates difficulties 
with current certification practices, Ada is well 
positioned to offer safe alternatives to overcome 
those difficulties. 
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10. Glossary 

ASIS: Ada Semantic Interface Specification 
EUROCAE : European Organization for Civil Aviation 
Equipment 
DO-178B: Software Consideration in Airborne Systems 
and Equipment certification 
DO-248B: Final report for clarification of DO-178B 
OO: Object-Oriented 
OOTiA: Handbook for Object-Oriented Technology in 
Aviation 
RTCA :  Association of aeronautical organizations of the 
USA from both government and industry. 


