
䨀攀愀渀ⴀ䰀漀甀椀猀 䈀漀甀氀愀渀最攀爀 愀渀搀
儀甀攀渀琀椀渀 伀挀栀攀洀Ⰰ 昀漀爀 䄀搀愀䌀漀爀攀

瘀 ⸀　

䌀䔀一䔀䰀䔀䌀 䔀一
㔀　㈀㠀㨀㈀　

䄀搀愀䌀漀爀攀 吀攀挀栀渀漀氀漀最椀攀猀 昀漀爀

ADACORE
TECHNOLOGIES
FOR CENELEC
EN 50128:2011
VERSION 1.0

JEAN-LOUIS BOULANGER
AND QUENTIN OCHEM, FOR
ADACORE

October 06, 2015

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

ii

CONTENTS

1 Foreword 1

2 CENELEC EN 50128 3

3 Tools and Technologies Overview 7

4 AdaCore Contributions to the
Software Quality Assurance Plan

27

5 Technology Usage Guide 43

6 Technology Annex 65

 References 71

1

CHAPTER 1

Foreword

This document presents the usage of AdaCore’s technology in conjunction with
the CENELEC EN 50128:2011 standard. It describes where the technology fits best
and how it can best be used to meet various requirements of the standard.

AdaCore’s technology revolves around programming activities, as well as the
closely-related design and verification activities. This is the bottom of the V
cycle as defined by chapter 5.3. It is based on the features of the Ada language
(highly recommended by table A.15), in particular its 2012 revision, which adds
some significant capabilities in terms of specification and verification.

AdaCore’s technology brings two main benefits to a CENELEC EN 50128 process:
first, the ability to write software interface specification and software
component specification directly in the source code. Interfaces can be formally
expressed in such forms as strong typing, parameter constraints, and subprogram
contracts. This specification can be used to clarify interface documentation,
enforce certain constraints while programming, and to provide an extensive
foundation for software component and integration verification.

The other benefit targets the verification activities. Bringing additional
specification at the language level allows verification activities to run earlier in
the process, during the software component implementation itself. Tools
provided by AdaCore support this effort and are designed to be equally usable
by both the development team and the verification team. Allowing developers
to use verification tools greatly reduces the number of defects found at the
verification stage and thus reduces costs related to change requests identified
in the ascending stages of the cycle.

AdaCore’s technology can be used at all levels, from SIL0 to SIL4. At lower levels,
the full Ada language is suitable, independent of platform. At higher levels,
specific subsets will be needed, in particular the Ravenscar [BUN 04; MCC 11]
subset for concurrent semantics or the Zero-Footprint profile [GNA 01] to reduce
the language to a subset with no run-time library requirements. At the highest
level, the SPARK language [MCC 15], along with the SPARK verification toolsuite,
allows mathematical proof of properties ranging from absence of run-time
exceptions to correctness of the implementation against a formally defined
specification.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

2

The following tools and technology will be presented:

• The Ada 2012 language, which is a compilable imperative language with
strong specification and verification features. We’ll refer to this version of
the language simply as Ada;

• The SPARK 2014 language, a subset of Ada allowing formal verification.
We’ll refer to this version of the language simply as SPARK;

• The SPARK 2014 verification toolset, performing formal proof and
verification on code written in SPARK. We’ll refer to this version of the
toolset simply as the SPARK toolset;

• The GNAT compiler, which compiles the Ada (and thus SPARK) languages;

• CodePeer - a static analysis tool that identifies potential run-time errors in
Ada code;

• GNATmetric - a metric computation tool;

• GNATcheck - a coding standard checker;

• GNATdashboard - a metric integration and management platform;

• GNATtest - a unit testing framework generator;

• GNATemulator - a processor emulator;

• GNATcoverage - a structural code coverage checker;

• QGen - a Matlab Simulink ® / Stateflow ® code generator;

Figure 1.1: Contributions of AdaCore tools to the V cycle See [WWW 01] for
a description of the high integrity product line for railway software

3

CHAPTER 2

CENELEC EN 50128

2.1 Introduction to the Standard
Today, railway projects are subject to a legal framework (laws, decrees, etc.)
and also a normative process based on certification standards (CENELEC EN 50126
[CEN 00], EN 50129 [CEN 03] and EN 50128 [CEN 01; CEN 11]) that define certain
objectives in terms of RAMS (Reliability, Availability, Maintainability and Safety).

The three standards are concerned with the safety-related aspects of the system,
down to the hardware and/or software elements used. Figure 2 depicts the scope
of the various CENELEC standards.

 Figure 2.1: Main standards applicable to railway systems

CENELEC EN 50128 [CEN 11] specifies the procedures and prerequisites
(organization, independency and competencies management, quality
management, V&V team, etc.) applicable to the development of programmable
electronic systems used in railway control and protection applications. CENELEC

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

4

EN 50128 therefore may apply to some software applications in the rail sector
but not necessarily to all.

CENELEC EN 50128 is used in both safety-related and non-safety-related domains
– for this reason, CENELEC EN 50128 introduces Software Safety Integrity Level
SSIL 0, which pertains to non-safety-related software applications – and applies
exclusively to software and the interaction of a software application with the
whole system. This standard recommends the implementation of a V-lifecycle,
from the software specification to the overall software testing. One of the
distinctive points of CENELEC EN 50128 is its requirement to justify the
implementation of the resources. For this reason, it is said to be a “resources
standard”.

CENELEC 50128 explicitly introduces the concept of assessment. As shown in
[BOU 07], for software applications the assessment process involves
demonstrating that the software application achieves its associated safety
objectives.

Figure 2.2: Structure of CENELEC EN 50128:2011

Figure 2.2 illustrates the structure of the 2011 version of CENELEC 50128. This
standard introduces (chapter 6) the concept of software assurance (SwA), whose
goal is to achieve a software package with a minimum level of error. Software
assurance involves Quality Assurance, skill evaluation, verification and
validation, and independent assessment. EN 50128 makes a clear separation

AdaCore Technologies for CENELEC EN 50128:2011

5

between the application data (chapter 8) and the software (chapter 7), which is
then called the generic software. One of the important points in the 2011 version
of CENELEC 50128 is the addition of Clause 9, which is concerned with the
software’s maintenance and deployment. CENELEC 50128:2001 introduced a
requirement that the compilers be purpose-certified, but did not give any clear
indication of what precisely was expected. CENELEC 50128:2011 formally
introduces the need to demonstrate the qualification for the tools employed for
a project (see section 6.7 of the standard). Three classes of tools are introduced:
T1, T2 and T3.

The T1 category is reserved for tools which affect neither the verification nor
the final executable file. T2 applies to tools where a fault could lead to an error
in the results of the verification or validation. Examples from category T2 are
tools used for verifying compliance with a coding standard, generating quantified
metrics, performing static analysis of the source code, managing and executing
tests, etc. The category T3 applies to tools which, if faulty, could have an impact
on (and, for example, introduce errors into) the final executable software. This
class includes compilers, code generators, etc.

Section 6.7 of CENELEC 50128:2011defines a set of recommendations for each
category; these affect the content of the tool qualification report.

Class of Tools Applicable sections(s) Step

T1 6.7.4.1 Identification

T2 6.7.4.1 Identification

6.7.4.2 Justification

6.7.4.3 Specification

6.7.4.10, 6.7.4.11 Version management

T3 6.7.4.1 Identification

6.7.4.2 Justification

6.7.4.3 Specification

((6.7.4.4 and 6.7.4.5) or
6.7.4.6)

Conformity proof

(6.7.4.7 or 6.7.4.8) and 6.7.4.9 Requirement fulfillment

6.7.4.10, 6.7.4.11 Version management

CENELEC 50128:2011 identifies 12 requirements (numbered from 6.7.4.1 to
6.7.4.12) concerning tool qualification. Requirement 6.7.4.12 is linked to Table
1, which a correction of the published version. The steps shown in Table 1
indicate the requirements to be met and reflect the additional effort needed as
the tool level increases (for more information see [BOU 15 – Chapter 9].

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

6

2.2 AdaCore Qualification Methodology
Tool qualification is a requirement of CENELEC EN 50128:2011 (6.4.x).
Verification tools are required to be qualified at the T2 level. Code generators
and compilers need to be qualified at the T3 level.

Similar qualification can be found in avionics: TQL-5 or TQL-4 for verification
tools and TQL-5 to TQL-1 for code generators.

AdaCore qualification packs contain information required by CENELEC EN 50128,
such as documentation, history, infrastructure, user references, recommended
usage, validation strategy, configuration management and change tracking.

In addition to the above, tools can be provided in a special subscription, called
“sustained”. In this mode, a specific version of the tools can be put into special
maintenance, where AdaCore retains the ability to investigate known problems
and fix potential issues on these branches for several years.

7

CHAPTER 3

TOOLS AND TECHNOLOGIES
OVERVIEW

3.1 Ada
Ada is a modern programming language designed for large, long-lived
applications – and embedded systems in particular – where reliability and
efficiency are essential. It was originally developed in the early 1980s (this
version is generally known as Ada 83) by a team led by Dr. Jean Ichbiah at CII-
Honeywell-Bull in France. The language was revised and enhanced in an upward
compatible fashion in the early 1990s, under the leadership of Mr. Tucker Taft
from Intermetrics in the U.S. The resulting language, Ada 95, was the first
internationally standardized (ISO) Object-Oriented Language. Under the auspices
of ISO, a further (minor) revision was completed as an amendment to the
standard; this version of the language is known as Ada 2005. Additional features
(including support for contract- based programming in the form of subprogram
pre- and postconditions and type invariants) were added in the most recent
version of the language standard, Ada 2012 [ADA 12; BAR 13; BAR 14].

The name “Ada” is not an acronym; it was chosen in honor of Augusta Ada
Lovelace (1815-1852), a mathematician who is sometimes regarded as the
world’s first programmer because of her work with Charles Babbage. She was
also the daughter of the poet Lord Byron.

Ada is seeing significant usage worldwide in high-integrity / safety-critical / high-
security domains including commercial and military aircraft avionics, air traffic
control, railroad systems, and medical devices. With its embodiment of modern
software engineering principles Ada is an excellent teaching language for both
introductory and advanced computer science courses, and it has been the
subject of significant university research especially in the area of real-time
technologies.

AdaCore has a long history and close connection with the Ada programming
language. Company members worked on the original Ada 83 design and review
and played key roles in the Ada 95 project as well as the subsequent revisions.
The initial GNAT compiler was essential to the growth of Ada 95; it was delivered
at the time of the language’s standardization, thus guaranteeing that users
would have a quality implementation for transitioning to Ada 95 from Ada 83 or

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

8

other languages.

3.1.1 Language Overview

Ada is multi-faceted. From one perspective it is a classical stack-based general-
purpose language, not tied to any specific development methodology. It has a
simple syntax, structured control statements, flexible data composition
facilities, strong type checking, traditional features for code modularization
(“subprograms”), and a mechanism for detecting and responding to exceptional
run-time conditions (“exception handling”).

But it also includes much more:

Scalar ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada allows the
programmer to simply and explicitly specify the range of values that are
permitted for variables of scalar types (integer, floating-point, fixed-point, or
enumeration types). The attempted assignment of an out-of-range value causes
a run-time error. The ability to specify range constraints makes programmer
intent explicit and makes it easier to detect a major source of coding and user
input errors.

Programming in the large

The original Ada 83 design introduced the package construct, a feature that
supports encapsulation (“information hiding”) and modularization, and that
allows the developer to control the namespace that is accessible within a given
compilation unit. Ada 95 introduced the concept of “child units,” adding
considerably flexibility and easing the design of very large systems. Ada 2005
extended the language’s modularization facilities by allowing mutual references
between package specifications, thus making it easier to interface with
languages such as Java.

Generic templates

A key to reusable components is a mechanism for parameterizing modules with
respect to data types and other program entities, for example a stack package
for an arbitrary element type. Ada meets this requirement through a facility
known as “generics”; since the parameterization is done at compile time, run-
time performance is not penalized.

Object-Oriented Programming (OOP)

AdaCore Technologies for CENELEC EN 50128:2011

9

Ada 83 was object-based, allowing the partitioning of a system into modules
corresponding to abstract data types or abstract objects. Full OOP support was
not provided since, first, it seemed not to be required in the real-time domain
that was Ada’s primary target, and, second, the apparent need for automatic
garbage collection in an OO language would have interfered with predictable and
efficient performance.

However, large real-time systems often have components such as GUIs that do
not have real-time constraints and that could be most effectively developed
using OOP features. In part for this reason, Ada 95 supplies comprehensive
support for OOP, through its “tagged type” facility: classes, polymorphism,
inheritance, and dynamic binding. Ada 95 does not require automatic garbage
collection but rather supplies definitional features allowing the developer to
supply type-specific storage reclamation operations (“finalization”). Ada 2005
provided additional OOP features including Java-like interfaces and traditional
operation invocation notation.

Ada is methologically neutral and does not impose a “distributed overhead” for
OOP. If an application does not need OOP, then the OOP features do not have to
be used, and there is no run-time penalty.

See [GNA 13] for more details.

Concurrent programming

Ada supplies a structured, high-level facility for concurrency. The unit of
concurrency is a program entity known as a “task.” Tasks can communicate
implicitly via shared data or explicitly via a synchronous control mechanism
known as the rendezvous. A shared data item can be defined abstractly as a
“protected object” (a feature introduced in Ada 95), with operations executed
under mutual exclusion when invoked from multiple tasks. Asynchronous task
interactions are also supported, specifically timeouts and task termination. Such
asynchronous behavior is deferred during certain operations, to prevent the
possibility of leaving shared data in an inconsistent state. Mechanisms designed
to help take advantage of multi-core architectures were introduced in Ada 2012.

Systems programming

Both in the “core” language and the Systems Programming Annex, Ada supplies
the necessary features to allow the programmer to get close to the hardware.
For example, you can specify the bit layout for fields in a record, define the
alignment and size, place data at specific machine addresses, and express
specialized or time-critical code sequences in assembly language. You can also
write interrupt handlers in Ada, using the protected type facility.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

10

Real-time programming

Ada’s tasking features allow you to express common real-time idioms (periodic
tasks, event-driven tasks), and the Real-Time Annex provides several facilities
that allow you to avoid unbounded priority inversions. A protected object locking
policy is defined that uses priority ceilings; this has an especially efficient
implementation in Ada (mutexes are not required) since protected operations
are not allowed to block. Ada 95 defined a task dispatching policy that basically
requires tasks to run until blocked or preempted, and Ada 2005 introduced
several others including Earliest Deadline First.

High-integrity systems

With its emphasis on sound software engineering principles Ada supports the
development of high-integrity applications, including those that need to be
certified against safety standards such as EN 50128 for rail systems and DO-178B
and DO-178C for avionics, and security standards such as the Common Criteria.
For example, strong typing means that data intended for one purpose will not be
accessed via inappropriate operations; errors such as treating pointers as
integers (or vice versa) are prevented. And Ada’s array bounds checking prevents
buffer overrun vulnerabilities that are common in C and C++.

However, the full language is inappropriate in a safety-critical application, since
the generality and flexibility may interfere with traceability / certification
requirements. Ada addresses this issue by supplying a compiler directive, pragma
Restrictions, that allows you to constrain the language features to a well-defined
subset (for example, excluding dynamic OOP facilities).

The evolution of Ada has seen the continued increase in support for safety-
critical and high-security applications. Ada 2005 standardized the Ravenscar
Profile, a collection of concurrency features that are powerful enough for real-
time programming but simple enough to make certification practical. Ada 2012
has introduced contract-based programming facilities, allowing the programmer
to specify preconditions, and/or postconditions for subprograms, and invariants
for encapsulated (private) types. These can serve both for run-time checking and
as input to static analysis tools.

3.1.2 Ada Benefits Summary

• Helps you design safe and reliable code

• Reduces development costs

• Supports new and changing technologies

• Facilitates development of complex programs

AdaCore Technologies for CENELEC EN 50128:2011

11

• Helps make code readable and portable

• Reduces certification costs for safety-critical software

3.1.3 Ada Features Summary

• Object-Orientated programming

• Strong typing

• Abstractions to fit program domain

• Generic programming/templates

• Exception handling

• Facilities for modular organization of code

• Standard libraries for I/O, string handling, numeric computing, containers

• Systems programming

• Concurrent programming

• Real-time programming

• Distributed systems programming

• Numeric processing

• Interfaces to other languages (C, COBOL, Fortran)

In brief, Ada is an internationally standardized language combining object-
oriented programming features, well- engineered concurrency facilities, real-
time support, and built-in reliability. As such it is an appropriate tool for
addressing the real issues facing software developers today, Ada is used
throughout a number of major industries to design software that protects
businesses and lives.

3.2 SPARK
SPARK is a software development technology specifically designed for
engineering high-reliability applications.

It consists of a programming language and a verification toolset designed for
ultra-low defect software, for example where safety and security are key
requirements.

SPARK has an impressive industrial track record. Since its inception in the late

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

12

1980s it has been applied worldwide in a range of industrial applications such as
civil and military avionics, railway signaling, cryptographic and cross-domain
solutions. SPARK 2014 is the most recent version of this leading software
technology, explained in [MCC 11].

3.2.1 Flexibility

SPARK 2014 offers the flexibility of configuring the language on a per-project
basis - applying restrictions that allow the fine-tuning of the permitted language
features as appropriate to coding standards or run-time environments.

SPARK 2014 code can easily be combined with full Ada code or with C, meaning
that new systems can be built on and re-use legacy code bases.

3.2.2 Powerful Static Verification

The SPARK 2014 language supports a wide range of different types of static
verification. At one end of the spectrum is basic data and control flow analysis
ie. exhaustive detection of uninitialized variables and ineffective assignment.
For more critical applications, dependency contracts can be used to constrain
the information flow allowed in an application. Violations of these contracts -
potentially representing violations of safety or security policies - can then be
detected even before the code is compiled.

In addition, the language is designed to support mathematical proof and thus
offers access to a range of verification objectives: proving the absence of run-
time exceptions, proving safety or security properties, or proving that the
software implementation meets a formal specification of the program’s required
behavior.

3.2.3 Ease of Adoption

SPARK 2014 is an easy-to-adopt approach to increasing the reliability of your
software. Software engineers will find the SPARK 2014 language contains the
powerful programming language features with which they are familiar, making
the language easy to learn.

SPARK 2014 converges its contract syntax for functional behavior with that of
Ada 2012. Programmers familiar with writing executable contracts for run-time
assertion checking will find the same paradigm can be applied for writing
contracts that can be verified statically (ie. pre-compilation and pre-test) using
automated tools.

AdaCore Technologies for CENELEC EN 50128:2011

13

3.2.4 Reduced Cost of Unit Testing

The costs associated with the demanding levels of unit testing required for high-
assurance software - particularly in the context of industry standards such as
CENELEC EN 50128 - are a major contribution to high delivery costs for safety-
critical software. SPARK 2014 presents an innovative solution to this problem by
allowing automated proof to be used in combination with unit testing to
demonstrate functional correctness at subprogram level. In the high proportion
of cases where proofs can be discharged automatically the cost of writing unit
tests is completely avoided.

3.3 GNAT Pro Safety-Critical
GNAT Pro is a robust and flexible Ada development environment. It comprises a
full Ada compiler (Ada 2012/2005/95/83 features) based on the GNU GCC
technology, an Integrated Development Environment (GNAT Programming
Studio), a comprehensive toolsuite including a visual debugger, and a set of
libraries and bindings.

3.3.1 Configurable Run-Time Library

Using GNAT Pro Safety-Critical’s configurable run-time capability, you can
specify any level of support for Ada’s dynamic features, from none at all to the
full Ada 95, Ada 2005, Ada 2012 language versions. The units included in the
library may be either a subset of the standard units provided with GNAT Pro, or
they may be specially tailored to the application. This capability is useful, for
example, if one of the predefined profiles provides almost all the features
needed to adapt an existing system to new safety-critical requirements, and
where the costs of adaptation without the additional features are considered
prohibitive.

3.3.2 Full Ada 2005 / 2012 Implementation

GNAT Pro provides a complete implementation of the Ada 2012 language.
Developers of safety-critical and high- security systems can thus take advantage
of features such as contract-based programming.

3.3.3 Simplification of Certification Effort

You can restrict language features that, although not requiring a run-time
library, nevertheless could complicate the test coverage analysis part of the

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

14

certification effort. For example, you can prohibit the use of constructs that
would result in code with implicit loops and conditionals (such as a slice
assignment).

3.3.4 Traceability

Through a compiler switch you can generate a low-level version of the source
program that reveals implementation decisions but stays basically machine
independent. This helps support traceability requirements, and may be used as
a reference point for verifying that the object code matches the source code.
Another compiler switch produces details of data representation (sizes, record
layout, etc.), which is also helpful in traceability.

3.3.5 Safety-Critical Support and Expertise

At the heart of every AdaCore subscription are the consulting and support
services we provide to our customers. AdaCore staff are recognized experts on
the Ada language, certification standards, compilation technologies, and static
and dynamic verification. They have extensive experience in supporting
customers in avionics, railway, energy, space, air traffic management and
military projects.

Every AdaCore product comes with first-hand support provided directly by these
experts, who are also the developers of the technology. This ensures that
customers’ questions (requests for advice on feature usage, suggestions for
technology enhancements, or defect reports) are handled efficiently and
effectively.

Beyond this bundled support, AdaCore also provides Ada language and tool
training as well as on-site consulting on topics such as how to best deploy the
technology and assistance on start-up issues. On-demand tool development or
ports to new platforms are also available.

3.4 CodePeer
CodePeer is an Ada source code analyzer that detects run-time and logic errors.
It assesses potential bugs before program execution, serving as an automated
peer reviewer, helping to find errors efficiently and early in the development
life-cycle. It can also be used to perform impact analysis when introducing
changes to the existing code, as well as helping vulnerability analysis. Using
control-flow, data-flow, and other advanced static analysis techniques,
CodePeer detects errors that would otherwise only be found through labor-

AdaCore Technologies for CENELEC EN 50128:2011

15

intensive debugging.

3.4.1 Detects errors before they grow into expensive
problems

CodePeer’s advanced static error detection finds bugs in programs before
programs are run. By mathematically analyzing every line of software,
considering every possible input, and every path through the program, CodePeer
can be used very early in the development life-cycle to identify problems when
defects are much less costly to repair. It can also be used retrospectively on
existing code bases, to detect latent vulnerabilities.

CodePeer is a standalone tool that may be used with any Ada compiler or fully
integrated into the GNAT Pro development environment. It can detect several of
the “Top 25 Most Dangerous Software Errors” in the Common Weakness
Enumeration: CWE-120 (Classic Buffer Overflow), CWE-131 (Incorrect Calculation
of Buffer Size), and CWE-190 (Integer Overflow or Wraparound). See [BLA 11] for
more details.

3.4.2 Qualified for usage in safety-critical industries

CodePeer has been qualified as a Verification Tool under DO-178B, a software
standard for commercial airborne systems, automating a number of activities
associated with that standard’s objectives for software accuracy and
consistency. CodePeer has also been qualified for CENELEC EN 50128, the highest
international standard for safety integrity concerning software for railway
control and protection. The CENELEC EN 50128 qualification material addresses
boundary value analysis (detecting errors such as buffer overflow), control flow
analysis (detecting errors such as unreachable code), and data flow analysis
(detecting errors such as references to uninitialized variables).

Qualification material for both DO-178B/C and CENELEC EN 50128 is available as
a product option.

3.4.3 How can CodePeer help your software project?

• Finds potential bugs and vulnerabilities early, when they are less expensive
to correct

• Expedites code review and significantly increases the productivity of
human review

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

16

• Detects and removes latent bugs when used retrospectively on existing
code

• Reduces effort needed for safety or security certification

• Improves code quality

• Works on partially complete programs

• Exploits multi-core CPUs for efficiency and allows performance tuning
based on memory and speed of developer’s machine

3.4.4 What makes the CodePeer approach unique?

• CodePeer offers a number of advantages over other tools:

• Ease of use with GNAT Pro, so that no special setup is needed

• Helpful output such as the generation of subprogram summarie

• The ability to analyze a subprogram or a package in isolation: there is no
need for a driver that gives a calling context, whether manually written or
generated

• The ability to detect logic errors such as assigning to a variable that is
never subsequently referenced or testing a condition that always evaluates
to the same true or false value

• Automatic generation of both human-readable and machine-readable
component specifications: preconditions and postconditions, inputs and
outputs, heap allocations

• Automated code reviews

• Warnings ordered by ranking, so that more severe and likely errors are
treated first, with ranking heuristics fully customizable by the user

3.5 Basic Static Analysis tools

3.5.1 ASIS, GNAT2XML

ASIS is a library that gives applications access to the complete syntactic and
semantic structure of an Ada compilation unit. This library is typically used by
tools that need to perform some sort of static analysis on an Ada program.

ASIS, the Ada Semantic Interface Specification, is an international standard
(ISO/IEC 15291:1995), and is designed to be compiler independent. Thus a tool

AdaCore Technologies for CENELEC EN 50128:2011

17

that processes the ASIS representation of a program will work regardless of which
ASIS implementation has been used. ASIS-for-GNAT is AdaCore’s implementation
of the ASIS standard, for use with the GNAT Pro Ada development environment
and toolset.

AdaCore can assist customers in developing ASIS-based tools to meet their
specific needs, as well as develop such tools for them upon request.

Typical ASIS-for-GNAT applications include:

• Static Analysis (property verification)

• Code Instrumentation

• Design and Document Generation Tools

• Metric Testing or Timing Tools

• Dependency Tree Analysis Tools

• Type Dictionary Generators

• Coding Standards Enforcement Tools

• Language Translators (e.g., to CORBA IDL)

• Quality Assessment Tools

• Source Browsers and Formatters

• Syntax Directed Editors

GNAT2XML provides the same information as ASIS, but allows users to manipulate
it through an XML tree.

3.5.2 GNATmetric

The GNATmetric tool analyzes source code to calculate a set of commonly used
industry metrics that allow developers to estimate the size and better
understand the structure of the source code. This information also facilitates
satisfying the requirements of certain software development frameworks.

3.5.3 GNATcheck

GNATcheck is a coding standard verification tool that is extensible and rule-
based. It allows developers to completely define a coding standard as a set of
rules, for example a subset of permitted language features. It verifies a
program’s conformance with the resulting rules and thereby facilitates
demonstration of a system’s compliance with certification standards such as

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

18

CENELEC EN 50128 or DO-178B/C.

Key features include:

• An integrated Ada Restrictions mechanism for banning specific features
from an application. This can be used to restrict features such as tasking,
exceptions, dynamic allocation, fixed or floating point, input/output and
unchecked conversions.

• Restrictions specific to GNAT Pro, such as banning features that result in
the generation of implicit loops or conditionals in the object code, or in
the generation of elaboration code.

• Additional Ada semantic rules resulting from customer input, such as
ordering of parameters, normalized naming of entities, and subprograms
with multiple returns.

• Easy-to-use interface for creating and using a complete coding standard.

• Generation of project-wide reports, including evidence of the level of
compliance to a given coding standard.

• Over30compiletimewarningsfromGNATProthatdetecttypicalerrorsituations,s
uchaslocalvariablesbeing used before being initialized, incorrect
assumptions about array lower bounds, infinite recursion, incorrect data
alignment, and accidental hiding of names.

• Style checks that allow developers to control indentation, casing,
comment style, and nesting level.

3.5.4 GNATstack

GNATstack is a software analysis tool that enables Ada/C/C++ software
development teams to accurately predict the maximum size of the memory stack
required to host an embedded software application.

The GNATstack tool statically predicts the maximum stack space required by
each task in an application. The computed bounds can be used to ensure that
sufficient space is reserved, thus guaranteeing safe execution with respect to
stack usage. The tool uses a conservative analysis to deal with complexities such
as subprogram recursion, while avoiding unnecessarily pessimistic estimates.

This static stack analysis tool exploits data generated by the compiler to compute
worst-case stack requirements. It perform per- subprogram stack usage
computation combined with control flow analysis.

GNATstack is able to analyze object-oriented applications, automatically

AdaCore Technologies for CENELEC EN 50128:2011

19

determining maximum stack usage on code that uses dynamic dispatching in both
Ada and C++. A dispatching call challenges static analysis because the identity
of the subprogram being invoked is not known until run time. GNATstack solves
the problem by statically determining the subset of potential target primitive
operations for every dispatching call. This heavilly reduces the analysis effort
and yields precise stack usage bounds on complex Ada/C++ code.

This is a static tool in the sense that its computation is based on information
known at compile time. It implies that when the tool indicates that the result is
accurate then the computed bound can never overflow.

On the other hand, there may be situations in which the results will not be
accurate (the tool will actually indicate this situation) because of some missing
information (such as subprogram recursion, indirect calls, etc.). We provide the
infrastructure to allow users to specify this missing call graph and stack usage
information.

The main output of the tool is the worst-case stack usage for every entry point,
together with the paths that lead to these stack needs. The list of entry points
can be automatically computed (all the tasks, including the environment task)
or can be specified by the user (a list of entry points or all the subprograms
matching a certain regular expression).

The tool can also detect and display a list of potential problems when computing
stack requirements:

• Indirect (including dispatching) calls. The tool will indicate the number of
indirect calls made from any subprogram.

• External calls. The tool displays all the subprograms that are reachable
from any entry point for which we do not have any stack or call graph
information.

• Unbounded frames. The tool displays all the subprograms that are
reachable from any entry point with an unbounded stack requirements.
The required stack size depends on the arguments passed to the
subprogram.

• Cycles. The tool can detect all the cycles in the call graph.

The tool will allow the user to specify in a text file the missing information, such
as the potential targets for indirect calls, stack requirements for externals calls,
and user-defined bounds for unbounded frames.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

20

3.6 GNATtest, GNATemulator and GNATcoverage

3.6.1 GNATtest 	

The GNATtest tool helps create and maintain a complete unit testing
infrastructure for complex projects. Based on AUnit, it captures the simple idea
that each visible subprogram should have at least one corresponding unit test.
GNATtest takes a project file as input, and produces two outputs:

• The complete harnessing code for executing all the unit tests under
consideration. This code is generated completely automatically.

• A set of separate test stubs for each subprogram to be tested. These test
stubs are to be completed by the user.

GNATtest handles Ada’s Object-Oriented Programming features and can be used
to help verify tagged type substitutability (the Liskov Substitution Principle) that
can be used to demonstrate consistency of class hierarchies. 	

See more at: http://www.adacore.com/labs/gnattest

3.6.2 GNATemulator

GNATemulator is an efficient and flexible tool that provides integrated,
lightweight target emulation.

Based on the QEMU technology, a generic and open source machine emulator and
virtualizer, the GNATemulator tool allows software developers to compile code
directly for their target architecture and run it on their host platform, through
an approach that translates from the target object code to native instructions
on the host. This avoids the inconvenience and cost of managing an actual board,
while offering an efficient testing environment compatible with the final
hardware.

There are two basic types of emulators. The first go far in replacing the final
hardware during development for all sorts of verification activities, particularly
those that require time accuracy. However, they tend to be extremely costly,
and are often very slow. The second, which includes the GNATemulator, do not
pretend to be complete time-accurate target board simulators, and thus cannot
be used for all aspects of testing, but do provide a very efficient, cost-effective
way of executing the target code very early and very broadly in the development
and verification process. They offer a practical compromise between a native
environment that is too far from the actual target, and the final hardware that
might not be available soon enough or in sufficient quantity.

AdaCore Technologies for CENELEC EN 50128:2011

21

3.6.3 GNATcoverage

GNATcoverage is a specialized tool that analyzes and reports program coverage.
Originally developed as part of the Couverture research project, GNATcoverage
allows coverage analysis of both object code (instruction and branch coverage),
and Ada or C language source code (Statement, Decision and Modified
Condition/Decision Coverage - MC/DC).

Unlike most current technologies, the tool works without requiring
instrumentation of the application code. Instead, the code runs directly on a
instrumented execution platform, such as GNATemulator, Valgrind on Linux, or
on a real board monitored by a probe.

See [BOR 10] for more details on the underlying technology.

3.7 IDEs

3.7.1 GPS

GPS is a powerful and simple-to-use IDE that streamlines your software
development process from the initial coding stage through testing, debugging,
system integration, and maintenance. Built entirely in Ada, GPS is designed to
allow programmers to get the most out of GNAT Pro technology.

Tools you can use

GPS’s extensive navigation and analysis tools can generate a variety of useful
information including call graphs, source dependencies, project organization,
and complexity metrics, giving you a thorough understanding of your program at
multiple levels. It allows you to interface with third-party Version Control
Systems, easing both development and maintenance.

Robust, Flexible and Extensible

Especially suited for large, complex systems, GPS lets you import existing
projects from other Ada implementations while adhering to their file naming
conventions and retaining your directory organization. Through its multi-
language capabilities you can also handle components written in C and C++. GPS
is highly extensible; a simple scripting approach lets you plug in additional tools.
It is also tailorable, allowing you to specialize various aspects of the program’s
appearance in the editor.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

22

Easy to learn, easy to use

If you are a new user, you will appreciate GPS’s intuitive menu-driven interface
with extensive online help (including documentation on all the menu selections)
and “tool tips”. The Project Wizard makes it simple to get started, supplying
default values for almost all of the project properties. Experienced users will
appreciate that GPS offers the necessary level of control for advanced uses; e.g.
the ability to run command scripts. Anything you can do on the command line is
achievable through the menu interface.

Remote Programming

Integrated into GPS, Remote Programming provides a secure and efficient way
for programmers to access any number of remote servers running a wide variety
of platforms while taking advantage of the power and familiarity of their local
PC workstations.

GPS Benefits at a glance

• Management of complexity, through tools that provide specialized views of
the program components and their interrelationships

• Ease of learning, through a platform-independent visual interface

• Automation of the program build process, through a project manager tool
that offers complete control over switch settings, file location, etc.

• Ease of debugging, through a fully integrated visual debugger

• Support for configuration management, through an interface to 3rd-party
version control systems

• Adaptability, through facilities that allow GPS to be extended or tailored

• Compatibility of new versions of GPS with older versions of GNAT Pro

3.7.2 Eclipse support - GNATbench

GNATbench is an Ada development plug-in for Eclipse and Wind River’s
Workbench environment. The Workbench integration supports Ada development
on a variety of VxWorks real-time operating systems. The Eclipse version is
primarily for native development with some support for cross development. In
both cases the Ada tools are tightly integrated.

3.7.3 GNATdashboard 	

GNATdashboard essentially serves as a one-stop control panel for monitoring and

AdaCore Technologies for CENELEC EN 50128:2011

23

improving the quality of Ada software. It integrates and aggregates the results
of AdaCore’s various static and dynamic analysis tools (GNATmetric, GNATcheck,
GNATcoverage, CodePeer, SPARK Pro, among others) within a common interface,
helping quality assurance managers and project leaders understand or reduce
their software’s technical debt, and eliminating the need for manual input.

GNATdashboard fits naturally into a continuous integration environment,
providing users with metrics on code complexity, code coverage, conformance
to coding standard,and more. 	

Features of GNATdashboard

• Provides a common interface to view code quality info and metrics such
as:

o Code complexity

o Code coverage

o Conformance

• Fits into a continuous integration environment

• Uses project files to configure, run and analyze the tools output

• Integrates with the SQUORE and SonarQube platforms to visualize the
results

Benefits of GNATdashboard

• Allows QA managers and project leads understand their technical debt

• Allows teams to engage all developers to track and reduce technical debt

• Eliminates the need for manual input

3.8 QGen
QGen is a qualifiable and tunable code generation and model verification tool
for a safe subset of Simulink® and Stateflow® models. It reduces the
development and verification costs for safety-critical applications through
qualifiable code generation, model verification, and tight integration with
AdaCore’s qualifiable simulation and structural coverage analysis tools.

QGen answers one core question: how can I decrease the verification costs when
applying model-based design and automatic code generation with the Simulink®

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

24

and Stateflow® environments? This is achieved by

• Selecting a safe subset of Simulink® blocks

• Ensuring high-performance and tunable code generation

• Relying on static analysis for upfront detection of potential errors, and

• Providing top-class DO-178B/C, CENELEC EN 50128 and ISO 26262
qualification material for both the code generator and the model
verification tools. QGen also decreases tool integration costs by integrating
smoothly with AdaCore’s qualifiable compilation, simulation and structural
coverage analysis products.

3.8.1 Support for Simulink® and Stateflow® models

QGen supports a wide range of features from the Simulink® and Statefow®
environments, including more than 100 blocks, Simulink® signals and parameters
objects and several Matlab operations. The supported feature set from the
Simulink® and Stateflow® environments has been carefully selected to ensure
code generation that is amenable to safety-critical systems. MISRA Simulink®
constraints can be optionally checked with QGen. Features that would imply
unpredictable behavior, or that would lead to the generation of unsafe code,
have been removed. The modeling standard enforced by QGen is then suitable
for DO-178B/C, CENELEC EN 50128 and ISO 26262 development out- of-the-box.

3.8.2 Qualification material

Complete qualification material for QGen is planned; it will demonstrate
compliance with the DO-178C standard at Tool Qualification Level 1 (TQL1,
equivalent to a Development Tool in DO-178B). This will make QGen the only
code generator for Simulink® and Stateflow® models for which a TQL1
qualification kit is available. The QGen qualification kit will show compliance
with DO-330 (the DO-178C technology supplement on Model-Based Development)
and include a Tool Qualification Plan, a Tool Development Plan, a Tool
Verification Plan, a Tool Quality Assurance Plan and a Tool Configuration
Management Plan; it will also include detailed Tool Operational Requirements,
Test Cases and Test Execution Results.

DO-330 is compatible with CENELEC EN 50128 from the point of view of Railway
Assessor. See [BOU 13] for more details.

3.8.3 Support for model static analysis

QGen supports the static verification that three kinds of issues are prevented:

AdaCore Technologies for CENELEC EN 50128:2011

25

run-time errors, logical errors, and safety violations. Run-time errors, such as
division by zero or integer overflow, may lead to exceptions being raised during
system execution. Logical errors, for example a Simulink® “If” block condition
that is always true, imply a defect in the designed model. And safety properties,
which can be modeled using Simulink® Model Verification blocks, represent
safety requirements that are embedded in the design model. QGen is able to
statically verify all these properties and generate run-time checks as well if
configured to do so.

3.8.4 Support for Processor-in-the-Loop testing

QGen can be integrated with AdaCore’s GNATemulator and GNATcoverage tools
to support streamlined Processor-In- the-Loop (PIL) testing. The simulation of
Simulink® models can be tested back-to-back against the generated code, which
is cross-compiled and deployed on a GNATemulator installation on the user
workstation. While conducting PIL testing, GNATcoverage can also perform
structural coverage analysis up to MC/DC without any code instrumentation. Both
GNATcoverage and GNATemulator have been already qualified in an operational
context.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

26

27

CHAPTER 4

ADACORE CONTRIBUTIONS
TO THE SOFTWARE QUALITY
ASSURANCE PLAN

4.1 Software Architecture (A.3)
The Ada language and AdaCore technology do not provide support for software
architecture per se, but rather are more targeted towards software component
design. However, the existence of some capabilities at the lower level may
enable certain design decisions at a higher level. This table contains some hints
of how that can be done.

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Defensive
Programming

HR HR Yes Defensive programming is more a
component or a programming activity
than an architecture activity per se,
but as it is recorded in this table, it’s
worth mentioning that the Ada
language provides several features
addressing various objectives of
defensive programming techniques.
In addition, advanced static analysis
tools such as CodePeer and SPARK
help identifying pieces of code that
should be protected by defensive
code.

Fault Detection &
Diagnosis

R R No

Error Correcting
Codes

- - No

Error Detecting
Codes

R HR No

Failure Assertion
Programming

R HR Yes The Ada language allows formalizing
assertions and contracts in various
places in the code.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

28

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Safety Bag
Techniques

R R No

Diverse Programming R HR Yes Using Ada along with another
language can be used to contribute
to the diverse programming
argument.

Recovery Block R R No

Backward Recovery NR NR No

Forward Recovery NR NR No

Retry Fault Recovery
Mechanisms

R R No

Memorising Executed
Cases

R HR No

Artificial Intelligence
– Fault Correction

NR NR No

Dynamic
Reconfiguration of
software

NR NR No

Software Error Effect
Analysis

R HR No

Graceful Degradation R HR No

Information Hiding - - Yes Information hiding is not
recommended by the standard, as it
makes data non-observable. In Ada,
information encapsulation will be
preferred.

Information
Encapsulation

HR HR Yes The Ada language provides the
necessary features to separate the
interface of a module from its
implementation and enforce respect
of this separation.

Fully Defined
Interface

HR M Yes The Ada language provides the
necessary features to separate the
interface of a module from its
implementation and enforce respect
of this separation.

Formal Methods R HR Yes SPARK can be used to formally define

AdaCore Technologies for CENELEC EN 50128:2011

29

Technique/Measure SIL 2 SIL 3/4 Covered Comment

architecture properties, such as data
flow, directly in the code and provide
means to verify them.

Modelling R HR Yes Ada and SPARK allow defining
certain modeling proper- ties in the
code and provide means to verify
them.

Structured
Methodology

HR HR Yes Structured Methodology designs can
be implemented with Ada.

Modelling supported
by computer aided
design and
specification tools

R HR No

4.2 Software Design and Implementation (A.4)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Formal Methods R HR Yes Component requirements and
interface can can be written in the
form of formal boolean properties,
using the Ada or SPARK language.
These properties are verifiable.

Modelling HR HR Yes Ada and SPARK allow defining certain
modeling proper- ties in the code and
provide mean to verify them.

Structured
methodology

HR HR Yes Structured Methodology designs can
be implemented with Ada.

Modular approach M M Yes A module can be represented as an
Ada package, with a well-defined
functionality, a clear external
interface in the package spec, a
private part to limit the visibility only
to children packages, and a body
containing the implementation which
is not visible to any other module.

Components HR HR Yes A component can be defined as a set
of Ada package, can clearly define the
interface to access the internal data,
and the interfaces can be fully and
unambiguously defined. This set of

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

30

Technique/Measure SIL 2 SIL 3/4 Covered Comment

packages is typically identified within
a project file (GPR file) and can be
put into a version control system.

Design and coding
standard

HR M Yes There are available references for the
coding standard. Verification can be
automated in different ways: The
GNAT compiler can define base coding
standard rules to be checked at
compile-time, GNATcheck
implements a wider range of rules,
and GNAT2XML can be used to
develop specific coding rules.

Analyzable programs HR HR Yes The Ada language provide native
features to improve program analysis,
such as type ranges, parameter
modes, and encapsulations. Tools such
as GNATmetrics and GNATcheck can
help monitor the complexity of the
code and prevent the use of overly
complex code. CodePeer allows
making an assessment of program
analyzability during its development.
For higher levels, the use of SPARK
ensures that the subset of the
language used is suitable for most the
rigorous analysis.

Strongly typed
programming
language

HR HR Yes Ada is a strongly typed language.

Structured
Programming

HR HR Yes Ada supports all the usual paradigms
of structured programming. In
addition to these, GNATcheck can
control additional design properties,
such as explicit control flows, where
subprograms have single entry and
single exit points, and structural
complexity is reduced.

Programming
language

HR HR Yes Ada can be used for most of the
development, with potential
connection to other languages such as
C or assembly.

Language subset - HR Yes The Ada language is designed to be
easily subsetable, possibly under the
control of specific run-times,
GNATcheck, or with SPARK. Another
possibility following the
recommendations made by the Guide
for the Use of the Ada Programming
Language in High Integrity Systems

AdaCore Technologies for CENELEC EN 50128:2011

31

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Object-oriented
programming

R R Yes If needed, Ada supports all the usual
paradigms of object-oriented
programming, in addition to safety-
related features such as Liskov
substitution principle.

Procedural
programming

HR HR Yes Ada supports all the usual paradigms
of procedural programming.

Metaprogramming R R No

4.3 Verification and Testing (A.5)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Formal proofs R HR Yes When Ada pre and post conditions are
used, together with the SPARK subset
of the language, formal methods can
formally verify compliance of the
implementation regarding these
contracts.

Static analysis HR HR Yes See table A.19

Dynamic analysis and
testing

HR HR Yes See table A.13

Metrics R R Yes GNATmetric can retrieve metrics,
such as code size, comment
percentage, cyclomatic complexity,
unit nesting, and loop nesting. These
can then be compared with standards.

Traceability HR M No

Software error effect
analysis

R HR Yes GPS support code display and
navigation. CodePeer can identify
likely errors locations in the code.
This supports potential software error
detection and analysis throughout the
code.

Test coverage for
code

HR HR Yes See table A.21

Functional / black-
box testing

HR HR Yes See table A.14

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

32

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Performance testing HR HR No

Interface testing HR HR Yes The strong typing provided by Ada
together with function contracts
provides increased assurance to
demonstrate that the software
interfaces do not contain any errors at
software level. This can help
improving software-to-software
integration testing.

4.4 Integration (A.6)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Functional and Black-
box testing

HR HR Yes GNATtest can generate a framework
for testing

Performance Testing R HR Yes Stack consumption can be statically
studied using the GNATstack tool.

4.5 Overall Software Testing (A.7)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Performance Testing HR M Yes Stack consumption can be statically
studied using the GNATstack tool.

Functional and Black-
box testing

HR M Yes GNATtest can generate a testing
framework for testing.

Modeling R R No

4.6 Software Analysis Techniques (A.8)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Static Software
Analysis

HR HR Yes See table A.19

AdaCore Technologies for CENELEC EN 50128:2011

33

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Dynamic Software
Analysis

R HR Yes See table A.13 / A.14

Cause Consequence
Diagrams

R R No

Event Tree Analysis R R No

Software Error Effect
Analysis

R HR Yes GPS supports code display and
navigation. CodePeer can identify
likely error locations in the code.
These tools support both detection of
potential software errors and analysis
throughout the code.

4.7 Software Quality Assurance (A.9)
Although AdaCore doesn’t directly provide services for ISO 9001 or configuration
management, it follows standards to enable tool qualification and/or
certification. The following table only lists items that can be useful to third
parties.

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Accredited to EN ISO 9001 HR HR No

Compliant with EN ISO 9001 M M No

Compliant with ISO/IEC 90003 R R No

Company Quality System M M No

Software Configuration Management M M No

Checklists HR M No

Traceability HR M No

Data Recording and Analysis HR M Yes The data produced
by tools can be
written to files and
put in configuration
management
systems.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

34

4.8 Software Maintenance (A.10)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Impact Analysis HR M Yes The CodePeer tool contributes to
identifying the impact of a code
change between two baselines, from
the static analysis point of view.

Data Recording and
Analysis

HR M Yes AdaCore tools are driven from the
command line and produce result files
including the date and version of the
tool used.

4.9 Data Preparation Techniques (A.11)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Tabular Specification
Methods

R R Yes Tables of data can be expressed using
the Ada language, together with type-
wide contracts (predicates or
invariants).

Application specific
language

R R No

Simulation HR HR No

Functional Testing M M No

Checklists HR M No

Fagan inspection HR HR No

Formal design
reviews

HR HR Yes GPS can display code and navigate
through the code as a support for
walkthrough activities.

Formal proof of
correctness

- HR Yes When contracts on tables are
expressed within the SPARK subset,
the correctness of these contracts can
be formally verified.

Walkthrough R HR Yes GPS can display code and navigate
through the code as a support for
walkthrough activities.

AdaCore Technologies for CENELEC EN 50128:2011

35

4.10 Coding Standards (A.12)
There are available referencials for coding standard. Their verification can be
automated through different ways: The GNAT compiler can define base coding
standard rules to be checked at compile-time. GNATcheck implements a wider
range of rules. GNAT2XML can be used to develop specific coding rules.

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Coding Standard HR M Yes GNATcheck allows implementing and
verifying a coding standard.

Coding Style Guide HR HR Yes GNATcheck allows implementing and
verifying a coding style guide.

No Dynamic Objects R HR Yes GNATcheck can forbid the use of
dynamic objects.

No Dynamic Variables R HR Yes GNATcheck can forbid the use of
dynamic variables.

Limited Use of
Pointers

R R Yes GNATcheck can forbid the use of
pointers or force justification of their
usage.

Limited Use of
Recursion

R HR Yes GNATcheck can forbid the use of
recursion or force justification of their
usage.

No Unconditional
Jumps

HR HR Yes GNATcheck can forbid the use of
unconditional jumps.

Limited size and
complexity of
Functions,
Subroutines and
Methods

HR HR Yes GNATmetrics can compute complexity
and GNATcheck can report excessive
complexity.

Entry/Exit Point
strategy for
Functions,
Subroutines and
Methods

HR HR Yes GNATcheck can verify rules related to
exit points.

Limited number of
subroutine
parameters

R R Yes GNATcheck can limit the number of
parameters for subroutines and report
when that number is exceeded.

Limited use of Global
Variables

HR M Yes GNATcheck can flag global variable
usage and enforce their justification.
SPARK can enforce documentation
and verification of functions side

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

36

Technique/Measure SIL 2 SIL 3/4 Covered Comment

effects, including usage of global
variables. GPS cross reference
functions allow analyzing and
verifying global variables usage.

4.11 Dynamic Analysis and Testing (A.13)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Test Case Execution
from Boundary Value
Analysis

HR HR Yes GNATtest can generate and execute a
testing framework for an actual test
written by developers from
requirements.

Test Case Execution
from Error Guessing

R HR No

Test Case Execution
from Error Seeding

R HR No

Performance
Modeling

R HR No

Equivalence Classes
and Input Partition
Testing

R HR Yes Ada and SPARK provide specific
features for partitioning function
input and verifying that this
partitioning is well formed (i.e., no
overlap and no hole).

Structure-Base
Testing

R HR Yes See table A.21

4.12 Functional/Black Box Test (A.14)
GNATtest can generate and execute a testing framework - actual test being
written by developers from requirements.

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Test Case Execution
from Cause
Consequence
Diagrams

- R No

AdaCore Technologies for CENELEC EN 50128:2011

37

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Prototyping/
Animation

- R No

Boundary Value
Analysis

R HR Yes GNATtest can be used to implement
tests coming from boundary value
analysis.

Equivalence Classes
and Input
Partitioning Testing

R HR Yes Ada and SPARK provide specific
features for partitioning function
input and verifying that this
partitioning is well formed (i.e., no
overlap and no hole).

Process Simulation R R No

4.13 Textual Programming Language (A.15)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Ada HR HR Yes GNAT Pro tools support all versions of
the Ada language.

MODULA-2 HR HR No

PASCAL HR HR No

C or C++ R R Yes The GNAT Pro compiler supports C
and C++

PL/M R NR No

BASIC NR NR No

Assembler R R No

C# R R No

Java R R No

Statement List R R No

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

38

4.14 Modelling (A.17)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Data Modelling R HR Yes Ada allows modelling data
constraints, in the form of type
predicates.

Data Flow Diagram R HR Yes SPARK allows defining data flow
dependences at subprogram
specification.

Control Flow Diagram R HR No

Finite State Machine or
State Transition Programs

HR HR No

Time Petri Nets R HR No

Decision/Truth Tables R HR No

Formal Methods R HR Yes Ada and SPARK allow defining
formal properties on the code
that can be verified by the
SPARK toolset.

Performance Modelling R HR No

Prototyping/Animation R R No

Structure Diagrams R HR No

Sequence Diagrams R HR No

4.15 Performance Testing (A.18)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Avalanche/Stress
Testing

R HR No Ada allows modelling data
constraints, in the form of type
predicates.

Response Timing and
Memory Constraints

HR HR Yes GNATstack can statically analyze
stack usage.

Performance
Requirements

HR HR No

AdaCore Technologies for CENELEC EN 50128:2011

39

4.16 Static Analysis (A.19)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Boundary Value
Analysis

R HR Yes CodePeer can computes boundary
values for variables and parameters
from the source code. CodePeer and
SPARK can provide various
verifications looking at potential
values and boundaries values of
variables such as detection of
attempts to dereference a variable
that could be null, values outside the
bounds of an Ada type or subtype,
buffer overflows, numeric overflows
or wraparounds, and divisions by zero.
It can also help confirming expected
boundary values of variables and
parameters coming from the design.

Checklists R R No

Control Flow Analysis HR HR Yes CodePeer and SPARK can detect
suspicious and potentially incorrect
control flows, such as unreachable
code, redundant conditionals, loops
that either run forever or fail to
terminate normally, and subprograms
that never return. GNATstack can
compute maximum amount of memory
used in stacks looking at the control
flow. More generally, GPS provides
visualization for call graphs and call
trees.

Data Flow Analysis HR HR Yes CodePeer and SPARK can detect
suspicious and potentially incorrect
data flow, such as variables being
read before they’re written
(uninitialized variables), values that
are written to variables without being
read (redundant assignments or
variables that are written but never
read).

Error Guessing R R No

Walkthroughs/Design
Reviews

HR HR Yes GPS can display code and navigate
through the code as a support for
walkthrough activities.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

40

4.17 Components (A.20)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Information Hiding - - No Information hiding is not
recommended by the standard, as it
makes data non-observable. In Ada,
information encapsulation is
preferred.

Information
Encapsulation

HR HR Yes Ada provides the necessary features
to separate the interface of a module
from its implementation, and enforce
respect of this separation.

Parameter Number
Limit

R R Yes GNATcheck can limit the number of
parameters for subroutines and report
violations.

Fully Defined Interface HR M Yes Ada offers many features to complete
interface definition, including
behavior specification.

4.18 Test Coverage for Code (A.21)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Statement HR HR Yes GNATcoverage provides statement-
level coverage capabilities.

Branch R HR Yes GNATcoverage provides branch-level
coverage capabilities.

Compound Condition R HR Yes GNATcoverage provides MC/DC
coverage capabilities, which can be
used as an alternative to Compound
Condition.

Data Flow R HR No

Path R NR No

AdaCore Technologies for CENELEC EN 50128:2011

41

4.19 Object Oriented Software Architecture
(A.22)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Traceability of the
concept of the
application domain to
the classes of the
architecture

R HR No

Use of suitable
frames, commonly
used combinations of
classes and design
patterns

R HR Yes The conventional OO design patterns
can be implemented with Ada.

Object Oriented
Detailed Design

R HR Yes See table A.23

4.20 Object Oriented Detailed Design (A.23)

Technique/Measure SIL 2 SIL 3/4 Covered Comment

Class should have only
one objective

R HR Yes It’s possible in Ada to write classes
with a unique objective.

Inheritance used only
if the derived class is
a refinement of its
basic class

HR HR Yes Ada and SPARK can enforce
respecting the Liskov Substitution
Principle, ensuring inheritance
consistency.

Depth of inheritance
limited by coding
standards

R HR Yes GNATcheck can limit inheritance
depth.

Overriding of
operations (methods)
under strict control

R HR Yes Ada can enforce explicit notation for
overriding methods.

Multiple inheritance
used only for interface
classes

HR HR Yes Ada only allows multiple inheritance
from interfaces.

Inheritance from
unknown classes

- NR No

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

42

43

CHAPTER 5

TECHNOLOGY USAGE GUIDE

5.1 Analyzable Programs (D.2)
The Ada language has been designed to increase program specification
expressiveness and verification. Explicit constraints at the code level can be used
as the basis of both manual analysis, such as code reviews, and automatic
analysis, ranging from code verification performed by the compiler to formal
proof.

Examples of these language features include:	

• type ranges and predicates

• parameter modes and subprogram contracts

• encapsulation

• minimal set of implicit or undefined behaviors

Tools such as GNATmetric and GNATcheck allow monitoring the complexity and
quality of the code and identifying potentially problematic situation. These are
done by using such methods as basic code size metrics, cyclomatic complexity,
and coupling analysis.

The CodePeer static analysis tool looks for potential run-time errors in the code.
The number of false positive results depends on the code complexity. A high
number of false positives is often a symptom of overly-complicated code. Using
CodePeer during development allows spotting locations in the code that are
potentially too complex and provides information on what aspects need to be
improved.

The SPARK language is much more ambitious in analyzing program, aiming at full
correctness proofs. It structurally forbids unanalyzable features and constructs.
Such proofs can only be performed if the code if clear and well designed. If not,
it’s unlikely that the proof will be found, even on code that could potentially be
correct. Using SPARK during the development ensures maximum analyzability of
the code from an automatic point of view.

During code review phases, GPS offers a variety of features that can be used for
program analysis, in particular call graphs, reference searches, and other code

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

44

organization viewers.

5.2 Boundary Value Analysis (D.4)
The objective of this technique is to verify and test the behavior of the function
at the limits and boundaries values of its parameters. AdaCore’s technologies
can provide complementary assurance on the quality of this analysis and
potentially decrease the number of tests that need to be performed.

Ada strong typing allows refining types and variables boundaries. For example:

type Temperature is new Float range -273.15 .. 1_000;

V : Temperature;

Additionally, it’s possible to define the specific behavior of values at various
locations in the code. For example, it’s possible to define relationships between
input and output of a subprogram, in the form of a partitioning of the input
domain:

function Compute (I : Integer) return Integer	

			with Contract_Cases => (I = Integer’First => Compute’Result = -1, 	

 I = Integer’Last => Compute’Result = 1,

 others => I - 1); 	

The above shows an input partition of one parameter (but it can also be a
combination of several parameters). The behavior on the boundaries of I is
specified and can then either be tested (for example, with enabled assertions)
or formally proven with SPARK. Further discussion of input partition can be found
in the context of “D.18 Equivalence Classes and Input Partitioning”.

Another possibility is to use CodePeer to identify possible values for variables,
and propagate those values from call to call, constructing lists and/or ranges of
potential values for each variable at each point of the program. These are used
as the input to run-time error analysis. When used in full-soundness mode,
CodePeer provides guarantees that the locations it reports on the code are the
only ones that may have run-time errors, thus allowing a reduction of the scope
of testing and review to only these places.

However, it’s important to stress that CodePeer is only performing this boundary
value analysis with respect to potential exception and robustness. No
information is provided regarding the correctness of the values produced by

AdaCore Technologies for CENELEC EN 50128:2011

45

subprograms.

CodePeer also has the capacity to display the possible values of variables and
parameters. This can be used as a mechanism to increase confidence that testing
has taken into account all possible boundaries for values.

SPARK has the ability to perform similar freedom of exception analysis, thus
reaching the same objectives. In addition to the above, when requirements can
be described in the form of boolean contracts, SPARK can demonstrate
correctness of the relation between input and output on the entire range of
values.

5.3 Control Flow Analysis (D.8)
Control flow analysis requires identifying poor and incorrect data structures.
Including unreachable code and useless tests in the code, such as conditions that
are always true.

GPS can display call graphs between subprograms, allowing visualization and
analysis of control flow in the application.

CodePeer contributes to control flow analysis by identifying unreachable code
as well as conditions being always true or always false. This analysis is partial
and needs to be completed with other techniques such as code review or code
coverage analysis, which together will allow reaching higher levels of
confidence.

GNATmetrics can compute coupling metrics between units, helping to identify
loosely or tightly coupled units.

GNATstack computes worst case stack consumption based on the application’s
call graph. This can help identify poorly structured code which consumes too
much memory on some sequences of calls.

5.4 Data Flow Analysis (D.10)
The GNAT toolchain can be configured to detect uninitialized variables at run-
time through the use of the pragma Initialize_Scalar. When using this pragma,
all scalars are automatically initialized to either an out-of-range value (if such
exist) or to a very large number. This significantly improves detection at test
time.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

46

CodePeer and SPARK can detect suspicious and potentially incorrect data flows,
such as variables read before they are written (uninitialized variables), variables
written more than once without being read (redundant assignments), and
variables that are written but never read. This analysis is partial and needs to be
completed with other techniques such as formal proof, code review or code
coverage analysis, which together allows reaching higher levels of confidence.

SPARK allow going much further, allowing the specification and verification of
data flow. This is used in the following activities:

• verification that all inputs and outputs have been specified, including side
effect

• verification that all dependencies between inputs and outputs are
specified

• verification that the implemented dataflow corresponds to the one
specified

Let’s take one example to illustrate the above:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)

 with Depends => (R1 => (A, B),

 R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is

begin

 R1 := A + B;

 if A = 0 then

 R2 := B + C;

 else

 R2 := B - C;

 end if;

end Compute;

In the above requirement, R1 is required to be computed from A and B and R2
from B and C. However, in the code, R2 depends on the result of the equation
“A = 0”, so its value is actually computed from A, B and C, and not just B and C.
Interestingly, formal proof detects such incorrect code even in the absence of
branches:

AdaCore Technologies for CENELEC EN 50128:2011

47

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is

begin

 R1 := A + B;

 R2 := A + B - C;

end Compute;

This would produce similar results. Similar deductions can be made in presence
of a call, assuming that a subprogram should have an effect (which is
reasonable). Let’s take the example of a logging function that we might forget
in the code. In SPARK, side effects are documented. We would probably have a
global state for it, let’s call it Screen in this example:

procedure Log (V : String)	

			with Global => (Output => Screen),

 Depends => (Screen => V)

Again, slightly modifying our section of code:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)

 with Depends => (R1 => (A, B),

 R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is

begin

 R1 := A + B;

 R2 := B + C;

 if A = 0 then	

 Log ("A is 0");

 end if;

end Compute;

You can see that the data flow does not correspond to the specification: Compute
should declare the fact that it modifies Screen. So the incorrect code is detected.
Similarly to the earlier case, it’s worth noting that this incorrect code is detected
even in the absence of a branch, making this a useful complement to structural
code coverage in many cases.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

48

5.5 Defensive Programming (D.14)
Defensive programming is about reducing anomalous control flow, data flow, or
data values and reacting to these if necessary.

Ada strong typing will structurally remove the need for many situations where
constraints would be expressed in the form of defensive code. However, in some
situations strong typing is not enough. This can be the case, for example, when
accessing an element of an array. In this case, Ada allows expressing constraints
in the specification, through preconditions, postconditions or predicates.

Beyond this, Ada provides specific support for a subset of what’s specified in the
D.14 annex. CodePeer and SPARK will allow the development of defensive
programming in places where it makes the most sense.

Specific defensive code rules can also be defined in the coding standard and their
verification can then be automated through code analysis using, for example,
GNAT2xml.

5.5.1 Data should be ranged checked

Ada offers types and subtypes that are naturally associated with ranges, e.g.:

subtype Percent is Integer range 0 .. 100;

V : Percent;

-- [...]

V := X + Y; -- will raise an exception if the result of X + Y is not in

range.

It’s then the task of the developer to react to potential exceptions.
Alternatively, it’s possible to write explicit verification in the code to ensure
that the expression is within its boundary:

V1 : Integer;

V2 : Percent;

-- [...]

if V1 in Percent then

 V2 := V1;

end if;

Another way to proactively ensure the absence of range check failure is to use

AdaCore Technologies for CENELEC EN 50128:2011

49

tools such as CodePeer or SPARK, which statically identify the only possible
locations in the code where such failures can happen.

Note that all these checks can be deactivated, for example once thorough testing
or formal proof has been performed.

5.5.2 Data should be dimension checked

The GNAT compiler provides a language extension for dimensional consistency
analysis, which ensures that variables are properly typed according to their
dimension. The system is implemented on top of the 7 base dimensions (meter,
kilogram, second, ampere, kelvin, mole, candela), and will check that operations
between these types are consistent. For example, a type Speed can be defined
to represent time per distance. Consistency between these types is checked at
compile time so that dimension errors will be reported as errors. For example:

D : Distance := 10;	

T : Time := 1;	

S : Speed := D / T; -- OK

My_Time : Time := 100;	

Distance_Traveled := S / My_Time;	

-- error, resulting dimension is distance / time ^ 2

-- the expression should be S * My_Time

5.5.3 Read-only and read-write parameters should be
separated and their access checked

In Ada, the parameter mode must be specified in parameter specifications and
are checked by the compiler. For example, a read-only parameter is passed as
mode in and may not be modified. A read-write parameter is passed as mode in
out and is modifiable. The compiler will produce an error for an attempted
modification of in parameters and detect when an in out parameter is not
modified and so could have been passed as in. For example:

procedure P (V : in X) is

begin

 V := 5; -- ERROR, V is mode "in"

end P;

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

50

5.5.4 Functions should treat all parameters as read-only

Ada used to completely forbid non-read-only function parameters. Later versions
allow it, but the behavior can be easily reverted through a GNATcheck rule. The
SPARK Ada subset does forbid function with writable parameters.

5.5.5 Literal constants should not be write-accessible

Ada implements many ways to define literals, through either constants or
enumerations, for example:

type Color is (Red, Blue, Green); Answer : constant Integer := 42;

One_Third : constant := 1.0 / 3.0;

These are read-only as per language definition.

5.5.6 Using CodePeer and SPARK to drive defensive
programming

CodePeer and SPARK identify location where there are potential run-time errors
- in other words, places where code is either wrong or where defensive
programming should be deployed. This helps guide the writing of this defensive
code. Let’s take one example:

procedure P (V : Integer);

procedure P (V : Integer) is

begin

 -- [...]

 Some_Array (V)

 -- [...]

end P;
In the above code, there’s a use of V as an index of Some_Array. CodePeer will
detect the potential for a run-time error here that the code need to be protected
against. This protection can either be in the form of specific tests, as show
below:

procedure P (V : Integer);

procedure P (V : Integer) is

begin

 if V not in Some_Array’Range then

 return;

AdaCore Technologies for CENELEC EN 50128:2011

51

 end if;

 -- [...]

 Some_Array (V)

 -- [...]

end P;

or in the form of a precondition, to issue the error at call time and therefore
protect this very subprogram from the erroneous condition:

procedure P (V : Integer)	

			with Pre => V in Some_Array’Range;

procedure P (V : Integer) is

begin

 -- [...]

 Some_Array (V)

 -- [...]

end P;

The main difference between CodePeer and SPARK in the above example is that
CodePeer may miss some potential run-time errors (except when run only on
small pieces of code if configured in “sound” mode) while SPARK requires the
use of the appropriate Ada subset but will test for all potential run-time errors.

In general, the objective in Ada is to use contracts instead of defensive code.

5.6 Coding Standards and Style Guide (D.15)
Coding standard can be defined using a combination of predefined rules (using
GNAT options and GNATcheck rules) and user-defined rules using either the ASIS
API or XML-based checks on the output of GNAT2XML.

5.7 Equivalence Classes and Input Partition
Testing (D.18)
This technique is about partitioning the various potential inputs of subprograms
and creating a testing and verification strategy based on this partitioning.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

52

Ada extensions included in GNAT can provide support for specifying this partition
at the source code level. The partition is a list of conditions of inputs with their
associated expected output, verifying the following criteria:

• The full spectrum of all potential values is covered

• There is no overlap between partitions

These criteria can be verified either dynamically, by verifying at test time that
all inputs exercised fall into one and only one partition, or formally by SPARK,
proving that the partition are indeed complete and disjoint.

Here’s a simple example of such partitioning with two input variables

function ArcTan (X, Y : Float) return Float with

 Contract_Cases =>

 (X >= 0 and Y >= 0 => ArcTan’Result >= 0 and ArcTan’Result <= PI / 2,	

 X < 0 and Y >= 0 => ArcTan’Result >= PI / 2 and ArcTan’Result <= PI,	

 X < 0 and Y < 0 => ArcTan’Result >= PI and ArcTan’Result <= 3 * PI / 2,

 X>=0andY<0 =>ArcTan’Result>=3*PI/2andArcTan’Result<=2*PI);

The presence of these contracts enable further verification. At run time, they
act as assertions and allow verification that the form of the output indeed
corresponds to the expected input. If SPARK is used, it’s possible to formally
verify the correctness of the relation between the input and properties.

5.8 Failure Assertion Programming (D.24)
Ada offers a large choice of assertions that can be defined in the code. They
start with arbitrary verification within a sequence of statements:

A := B + C;	

pragma Assert (A /= 0);

D := X / A;

Pre-conditions and post conditions can be defined on subprograms:

procedure Double (X : in out Integer)

 with Pre => X < 100,
 Post => X = X’Old * 2;

AdaCore Technologies for CENELEC EN 50128:2011

53

Predicates and invariants can be defined on types:

type Even is new Integer

 with Dynamic_Predicate => Even mod 2 = 0;

These contracts can be checked dynamically, for example, during testing. The
technology allows fine control over which contracts need to remain and which
need to be removed if the architecture requires some of them to be in the code
after deployment. The contracts can be used by the static analysis and formal
proof tools as well. CodePeer uses these to refine its analysis and exploits them
as an assertion, even if it may not be able to demonstrate that they are correct.
In this manner, it’s used as a way to provide additional information on the code
behavior to the tool. SPARK will be able to go further and prove their correctness.

5.9 Formal Methods (D.28)
When using the SPARK language, formal methods can be used to define and check
certain architectural properties, in particular with regards to data coupling
specification and verification. For example:

G : Integer;

procedure P (X, Y : Integer)

with Global => (Output => G),

 Depends => (G => (X, Y));

In the above example, the side-effect of the subprogram are fully defined: P is
modifying G. SPARK will check that this side effect is indeed present and that
no other is. G is defined as being evaluated depending on the values of X and Y.
Again, SPARK will verify that the variable relationships are fully defined and are
correct.

In this example, an actual variable is used to define data flow. It’s also possible
to create an abstract state, implemented by a set of variable. Generally
speaking, although these notations and verification are quite useful on the lower
levels of the architecture, they may not be that pertinent at higher levels. SPARK
is flexible with regards to where this should be checked or and where it should
not.

At the lower level of the design phases, some properties and requirements can

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

54

be refined or specified in the form of boolean expressions. SPARK will allow
expressing these properties including the formalism of logic of the first order
(quantifiers). These properties can be expressed in the form of subprogram
preconditions, postconditions, type invariants and type predicates. For example:

-- P must have a input greater or equal to then, and then has to modify V.

procedure P (V : in out Integer)

with Pre =>V>=10,

 Post => V’Old /= V;

-- Variables of type Even must be even

type Even is new Integer	

			with Dynamic_Predicate => Even mod 2 = 0;

-- This array is always sorted

type Sorted_Array is array (Integer range <>) of Integer

with Dynamic_Predicate =>

 Sorted_Array’Size <= 1	

			or else (for all I in Sorted_Array’First .. Sorted_Array’Last - 1 =>

 Sorted_Array (I) <= Sorted_Array (I + 1));

These properties can be formally verified through the SPARK toolset, using state
of the art theorem proving methodologies. Testing aimed at verifying the
correctness of these properties can then be simplified, if not entirely removed.

5.10 Impact Analysis (D.32)
Identifying the effect of a change on entire software component requires the
combination of various techniques, including reviews, testing and static analysis.
CodePeer has specific features to identify the impact of a change from the
potential run-time errors point of view. It can establish a baseline with regard
to potential failure analysis and filter only the potential problem that have been
introduced or fixed following a change in the code.

GPS can provide call graphs and call trees, allowing the study of how a function
is called in the software. This can be directly used in impact analysis.

AdaCore Technologies for CENELEC EN 50128:2011

55

5.11 Information Encapsulation (D.33)
Information hiding consists of making data unreachable. This is not considered
good practice in EN 50128 as it makes diagnostic very difficult. Instead, Ada
offers means to encapsulate the information in the following ways:

Proxies through exported variables

package body Data is

 G : Integer

 with Convention => C, External_Name => "var_g";

end Data;

Mapping of data in memory

package body Data is

 G : Integer

 with Address => 16#0000_56FF#;

end Data;

Use of accessors or modifiers:

package Data is

 function Get_G return Integer;

 procedure Set_G (Val : in out Integer);

end Data;

package body Data is

 G : Integer;

 function Get_G return Integer is

 begin

 return G;

 end Get_G;

 procedure Set_G (Val : in out Integer) is

 begin

 G := Val;

 end Set_G;

end Data;

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

56

Protection of data through encapsulation, as explained below.

Like many other structured programming languages, Ada allows separating the
user environment from the implementer environment. However, the granularity
is different: although most languages rely on object-oriented patterns to perform
this separation, Ada does it at the package (component) level.

Types can be encapsulated as a whole, whether they’re implemented through
classes or not. The following example demonstrates a small package creating an
abstract counter, along with getters and setters:

package Counters is

 type Counter is private;

 -- we don’t want to give access to the representation of the

 counter here

 procedure Increment (C : in out Counter);

 procedure Print (C : in out Counter);

private

 type Counter is new Integer;

 -- here, counter is an Integer, but it could change to something

 -- else if needed without disturbing the interface.

end Counters;

package body Counters is

 procedure Increment (C : in out Counter) is

 begin

 C := C + 1;

 end Increment;

 procedure Print (C : in out Counter) is

 begin

 Put_Line (C’Img);

 end Print;

end Counters;

AdaCore Technologies for CENELEC EN 50128:2011

57

5.12 Interface Testing (D.34)
Ada allows extending the expressiveness of an interface specification at the code
level, allowing the use of constraints such as:

• parameter passing modes

• pre and post conditions

• input partitioning

• typing

These are each described in other section of this document. These specifications
can help the development of tests around the interface, formalize constraints
on how the interface is supposed to be used, and activate additional dynamic
checking or formal proofs (through SPARK), all ensuring that users are indeed
respecting the expectations of the interface designer.

In addition, GNATtest can generate a testing framework to implement interface
testing.

5.13 Language Subset (D.35)
The Ada language has been designed to be easily subsetable. In its core
definition, it defines a series of restriction that can be applied, deactivating
certain features of the language. GNAT run-times, such as the so-called Zero-
Footprint [GNA 01] (no run-time component) or Ravenscar [BUN 04; MCC 11]
(tasking subset) provide other natural subsets to the language, which have direct
implications in terms of portability, determinism or even safety.

SPARK is another natural Ada language subset, constraining the language in a
more analyzable subset (for example, no aliasing, no pointers, and no
exceptions).

To go one step further, GNATcheck offers a number of feature to verify that
specific constructions are not present in the code and therefor that the code is
in indeed contained in that subset.

5.14 Metrics (D.37)
The GNATmetrics allows retrieving various metrics on the code, from simple
structural metrics such as lines of code or number of entities to more complex

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

58

computations such as cyclomatic complexity or coupling.

Custom metrics can be computed based on these first level metrics. In particular,
the GNATdashboard environment allows gathering all metrics into a database
that can then accessed through python or SQL.

These metrics are eventually pushed into various interfaces, such as the
SonarQube UI, shown below.

5.15 Modular Approach (D.38)

5.15.1 Connections between modules shall be limited and
defined, coherence shall be strong

Ada provide native functionaries to define group of packages that have strong
coupling, in particular through the notion of child packages and private
packages. In addition, the GNAT technology provides the notion of project, which
defines a group of packages, possibly with a defined interface. These constructs
can be used to defined a tool-supported notion of “component” or “module” at
the software level.

A typical example of the above is the implementation of a complex system that
needs to be spread across several packages. Let’s say we have one package,
Communication and one package, Interfaces, that are contributing to the
implementation of a signaling protocol. In Ada, it’s possible to design this in
three (or more) distinct files in the following way:

AdaCore Technologies for CENELEC EN 50128:2011

59

package Signaling is ... private

package Signaling.Communication is .

private package Signaling.Interfaces is ...

The two private packages are defined in external files. They are private children
of Signaling, which means they can only be used by the implementation of
Signaling, and not by any module outside of the hierarchy. This is one of the
several Ada features that allow designing application with strong internal
coupling.

In addition, tools can provide metrics on coupling between packages.
GNATmetrics has built-in support for retrieving these numbers.

On a larger granularity, packages can be grouped together into a GNAT Project
file (GPR), with a clear interface. An application architecture can be defined as
a combination of project files.

5.15.2 Collections of subprograms shall be built providing
several level of modules

Following the above example, it’s possible to create public sub-modules as well,
creating a hierarchy of services. Public children will be accessible to users.

5.15.3 Subprograms shall have a single entry and single exit
only

The GNATcheck tool has specific rules to verify the above property on any Ada
code.	

5.15.4 Modules shall communicate with other modules via
their interface

This is built-in to the Ada language. It’s not possible to bypass a package’s
interface. If a module is implemented using a larger granularity, e.g. a group of
packages or at project level, then the project file description allows identifying
those packages that are part of the interface and those packages that are not.

5.15.5 Module interface shall be fully documented

Although this is mostly the responsibility of the user, it should be noted that Ada
contracts can be used to formalize part of the documentation associated with a
package interface, using a formal notation that can be checked for consistency

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

60

by the compiler. This address, of course, only the part of the documentation that
can be expressed through boolean properties based on the software-visible
entities.

5.15.6 Interface shall contain the minimum number of
parameter necessary

The GNAT compiler will warn about parameters not used by a subprogram
implementation.	

5.15.7 A suitable restriction of parameter number shall be
specified, typically 5

GNATcheck allows specifying a maximum number of parameters per
subprogram.

5.15.18 Unit Proof and Unit Test

GNATtest can be used to generate a unit testing framework for Ada
applications..	

SPARK performs a modular formal verification: it proves the post condition of a
subprogram according to its own precondition and the precondition and positions
of its callees whether or not these callees are themselves proven.

For a complete, 100%, proof, all the subprograms of an application need to be
formally proven. But in situations where this is not possible, one subset can be
proven and the other can be assumed to be true.

These assumptions can then be verified using traditional testing methodology,
allowing for an hybrid test / proof verification system.

5.16 Process Simulation (D.42)
The Matlab Simulink environment allows the development of a mathematical
simulation of the control loop of a program. There are traditionally two parts in
these environments, a simulation model and a control loop which is aimed at
being embedded in the final application.

AdaCore has developed a Simulink code generator, QGen, qualified with regards
to the behavior of this simulation. In other words, the behavior observed during
the simulation phase is identical to the behavior of the code once produced for

AdaCore Technologies for CENELEC EN 50128:2011

61

the final target, ensuring the accurate representation and relevance of early
simulation stages.

5.17 Strongly Typed Programming Languages
(D.49)
Ada is, from its inception, a strongly typed language, which translates both into
static and dynamic verifications.

From a static verification point of view, each type is associated with a
representation and a semantic interpretation. Two types with similar
representations but different semantics will still be considered different by the
compiler. In particular, in creating two types, Kilometer and Miles, the compiler
will not allow mixed operation in the absence of explicit conversion by the user.
Mixing floating point and integer values is similar: the developer is responsible
for deciding where and how conversion should be made.

From a dynamic verification point of view, types can be associated with
constraints, such as value ranges or arbitrary boolean predicates. These types
ranges and predicates will be verified at well-known location in the application,
allowing the detection of inconsistencies as early as possible.

5.18 Structure Based Testing (D.50)
AdaCore provides three tools to support structure based testing:

GNATtest is a unit testing framework generator. It will run on Ada specifications,
and generate a skeleton for each subprogram. The actual test can then be
manually written into that skeleton.

GNATemulator allows emulating of code for a given target (e.g. PowerPC and
Leon) on a host platform such as Windows or Linux. It’s particularly well suited
for running unit tests.

GNATcoverage performs structural coverage analysis from an instrumented
platform (GNATemulator or Valgrind on Linux or directly on a board through a
Nexus probe). It supports statement coverage and decision coverage as well as
MC/DC. Note that although CENELEC EN 50128 requires compound statements,
Modified Condition/Decision Coverage (MC/DC) is usually accepted as a mean of
compliance.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

62

5.19 Structured Programming (D.53)
The Ada language supports all the usual paradigms of structured programming.
Complexity can be controlled with various tools, see “D.2 Analyzable Programs”
for more details.

5.20 Suitable Programming Languages (D.54)
Ada is referred to as “Highly Recommended” in the list of programming
languages. Some features may however not be suitable for the highest level of
software safety. In order to reach those, the language can be subset, see “D.35
Language Subset”.

One of the advantage of the Ada language is that it is formally defined in a
international document, ISO/IEC 8652. This document precisely defines the
expected behavior as well as implementation-defined behavior and includes
specification for the standard Ada libraries.

5.21 Object Oriented Programming (D.57)
Ada offers all the usual constructs for object-oriented programming. In addition
to these, Liskov substitution principles can be verified through class-wide
contracts and SPARK formal verification, allowing the verification of class
hierarchy consistency and safety of dispatching operations.

Ada is particularly well suited to be used in conjunction with safety critical
applications as it allows instantiating objects on the stack. For example:

O : Some_Type’Class := Make_Some_Type;	

In the above code, O is a polymorphic object that can be initialized with any
value of the class Some_Type. It’s allocated on the stack at initialization time.
The booklet [GNA 13] provide additional information on how to use object-
oriented features in certified context.

5.22 Procedural Programming (D.60)
Ada implements all the usual features of procedural programming languages.

AdaCore Technologies for CENELEC EN 50128:2011

63

5.23 Domain Specific Languages (D.71)
Simulink and StateFlow can be used as a domain specific language, using QGen
to generate SPARK or MISRA-C code. The generator can be certified at the SIL4
level. In this contex, development and test activities can be done at the model
level and components tests can be directly deduced from simulation cases. This
allows removing specific test-level components that usually need to be
developed for the code. Code generated by QGen can be automatically exercised
through the simulation cases to verify structural code coverage.

QGen provides verification for safe subsets for Simulink and StateFlow that can
be used as off-the-shelf modeling standards.

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

64

65

CHAPTER 6

TECHNOLOGY ANNEX

6.1 Ada	

6.1.1 Qualification
Although there is no qualification of a language per se, the Ada language is
formalized through an official ISO committee, IEC/ISO 8652. Compilers and tools
have a formal reference manual which precisely describes the expected behavior
and what are the implementation defined characteristics permitted.

6.1.2 Annex D References

• D.2 Analyzable Programs

• D.4 Boundary Value Analysis

• D.14 Defensive Programming

• D.18 Equivalence Classes and Input Partition Testing

• D.24 Failure Assertion Programming

• D.33 Information Hiding / Encapsulation

• D.34 Interface Testing

• D.35 Language Subset

• D.38 Modular Approach

• D.49 Strongly Typed Programming Languages

• D.53 Structured Programming

• D.54 Suitable Programming Languages

• D.57 Object Oriented Programming

• D.60 Procedural Programming

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

66

6.2 SPARK

6.2.1 Qualification

This tool can be qualified as a T2 tool.

6.2.2 Annex D References

SPARK can contribute to the deployment or implementation of the following
techniques:

• D.2 Analyzable Programs

• D.4 Boundary Value Analysis

• D.10 Data Flow Analysis

• D.14 Defensive Programming

• D.18 Equivalence Classes and Input Partition Testing

• D.24 Failure Assertion Programming

• D.28 Formal Methods

• D.29 Formal Proof

• D.34 Interface Testing

• D.35 Language Subset

• D.38 Modular Approach

• D.57 Object Oriented Programming

6.3 GNAT	

6.3.1 Qualification

The GNAT Pro compiler is qualified at the T3 level. AdaCore can provide a
document attesting to various aspects such as service history, development
standard, and testing results. That document has already been used successfully
in past certification activities.

Despite the above, it’s recognized that compilers are usually not free of bugs
and that bugs can be detected after a compiler version has been chosen.

AdaCore Technologies for CENELEC EN 50128:2011

67

Following requirements stated in 6.7.4.11 however, a fixed version of the
compiler cannot be deployed in the absence of specific justification. AdaCore
provides a specific service on a specific version of the technology on which is
offered critical problem fixes as well as detailed description of the changes,
allowing customer to integrated patched versions of the compiler with their
process.

6.3.2 Run-Time Certification

High-Integrity run-times have been certified at the SIL-3/4 level.

6.3.3 Annex D References

• D.10 Data Flow Analysis

• D.15 Coding Standards and Style Guide

• D.18 Equivalence Classes and Input Partition Testing

• D.35 Language Subset

6.4 CodePeer

6.4.1 Qualification

CodePeer can be qualified as a T2 tool. It has a long cross-industry track record
and is qualified in other standards as well, such as DO-178B/C as a verification
tool or TQL5.

6.4.2 Annex D References

CodePeer can contribute to the deployment or implementation of the following
techniques:

• D.2 Analyzable Programs

• D.4 Boundary Value Analysis

• D.8 Control Flow Analysis

• D.10 Data Flow Analysis

• D.14 Defensive Programming

• D.18 Equivalence Classes and Input Partition Testing

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

68

• D.24 Failure Assertion Programming

• D.32 Impact Analysis

6.5 Basic Static Analysis tools

6.5.1 Qualification

These tools can be qualified as a T2 tool. Some of them, such as GNATcheck,
have been qualified under other standards as well, such as DO-178B/C as a
verification tool or TQL5.

6.5.2 Annex D References

• D.2 Analyzable Programs

• D.14 Defensive Programming

• D.15 Coding Standard and Style Guid

• D.35 Language Subset

• D.37 Metrics

6.6 GNATtest, GNATemulator and GNATcoverage

6.6.1 Qualification

These tools can be qualified as a T2 tool. Some of them, such as GNATcoverage,
have been qualified under other standards as well, such as DO-178B/C as a
verification tool or TQL5.

6.6.2 Annex D References

• D.50 Structured Based Testing

AdaCore Technologies for CENELEC EN 50128:2011

69

6.7 QGen - Simulink Code Generator

6.7.1 Qualification

This tool can be qualified as a T3 tool or certified at SIL3/4 level.

6.7.2 Annex D References

• D.42 Process Simulation

• D.71 Domain Specific Languages

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

70

71

REFERENCES

[ADA 12] ISO/IEC, Ada Reference Manual, 2012

[BAR 13] John Barnes and Ben Brosgol, Safe and Secure Software, an invitation
to Ada 2012, AdaCore, 2013

[BAR 14] John Barnes, Programming in Ada 2012 Cambrigde University Press,
2014

[BAR 15] John Barnes, Ben Brosgol: Safe and Secure Software, and invitation to
Ada 2012 AdaCore, 2015

[BLA 11] Paul E. Black, Michael Kass, Michael Koo & Elizabeth Fong, Source Code
Security Analysis Tool Functional Specification, NIST, 2011

[BOU 07] Jean-Louis Boulanger, Walter Schön, Assessment of Safety Railway
Application, ESREL, 2007.

[BOU 13] Jean-Louis Boulanger, Tool qualification for the CENELEC EN
50128:2011, 2013

[BOU 15] Jean-Louis Boulanger, CENELEC 50128 and IEC 62279 standards, ISTE-
WILEY, London, 2015.

[BOR 10] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jerôme Guitton, Olivier
Hainque, Thomas Quinot, Object and Source Coverage for Critical Applications
with the COUVERTURE Open Analysis Framework, ERTS, 2010

[BUN 04] Alan Burns, Brian Dobbing and Tullio Vardanega: Guide for the use of
the Ada Ravenscar Profile in high integrity systems Ada Letters, June 2004

[CEN 00] CENELEC, EN 50126, Railway applications - The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS),
2000

[CEN 03] CENELEC, EN 50129 Railway applications. Communication, signalling
and processing systems. Safety related electronic systems for signalling, 2003

[CEN 01] CENELEC, EN 50128, Railway applications - Communications, signalling
and processing systems - Software for railway control and protection systems,
2001

Jean-Louis Boulanger and Quentin Ochem, for AdaCore

72

[CEN 11] CENELEC, EN 50128, Railway applications – Communications, signalling
and processing systems – Software for railway control and protection systems,
2011

[GNA 01] AdaCore, GNAT User’s Guide Supplement for GNAT Pro Safety-Critical
and GNAT Pro High-Security

[GNA 13] AdaCore, High-Integrity Object-Oriented Programming in Ada, 2013

[MCC 11] John W. McCormick, Frank Singhoff, Jérôme Hugues, Building Parallel,
Embedded, and Real-Time Applications with Ada, Cambridge University Press,
2011

[MCC 15] John W. McCormick and Peter C. Chapin, Building High Integrity
Applications with SPARK, Cambridge University Press, 2015

[WWW 01] http://www.adacore.com/gnatpro-safety-critical/rail/

