

!

John Barnes

Epilogue

! Template for Ada User Journal2

Rationale for Ada 2012: Epilogue
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk !!

 !3

Abstract
This is the last of a number of papers describing the rationale for Ada 2012. In due course it is
anticipated that the papers will be combined (after appropriate reformatting and editing) into a
single volume for formal publication.

This last paper summarizes a small number of general issues of importance to the user such as
compatibility between Ada 2012 and Ada 2005. It also briefly revisits a number of problems that
were considered for Ada 2005 but rejected for various reasons; the important ones have been solved
in Ada 2012.

Finally, it discusses a small number of corrections that have been found necessary since the
standard was approved.

Keywords: rationale, Ada 2012.

1 Compatibility
There are two main sorts of problems regarding compatibility. These are termed Incompatibilities
and Inconsistencies.

An incompatibility is a situation where a legal Ada 2005 program is illegal in Ada 2012. These can
be annoying but not a disaster since the compiler automatically detects such situations.

An inconsistency is where a legal Ada 2005 program is also a legal Ada 2012 program but might
have a different effect at execution time. These can in principle be really nasty but typically the
program is actually wrong anyway (in the sense that it does not do what the programmer intended)
or its behaviour depends upon the raising of a predefined exception (which is generally considered
poor style) or the situation is extremely unlikely to occur.

As mentioned below in Section 2, during the development of Ada 2012 a number of corrections
were made to Ada 2005 and these resulted in some incompatibilities and inconsistencies with the
original Ada 2005 standard. These are not considered to be incompatibilities or inconsistencies
between Ada 2005 and Ada 2012 and so are not covered in this section.

1.1 Incompatibilities with Ada 2005
Each incompatibility listed below gives the AI concerned and the paragraph in the AARM which in
some cases will give more information. Where relevant, the section in this rationale where the topic
is discussed is also given. Where appropriate the incompatibilities are grouped together.

Note that this list only covers those incompatibilities that might reasonably occur. There are a
number of others which are so unlikely that they do not seem worth mentioning.

1 – The word some is now reserved. Programs using it as an identifier will need to be changed.
(AI-176, 2.9)

Adding new reserved words is a very visible incompatibility. Six were added in Ada 95, three in Ada
2005, and now just one in Ada 2012. Perhaps this is the end of the matter. The word some is used
in quantified expressions; it already was reserved in SPARK [1] where it is used in quantified
expressions in proof contexts.

2 – If a predefined package has additional entities then incompatibilities can arise. Thus suppose
the predefined package Ada.Stuff has an additional entity More added to it. Then if an Ada 2005
program has a package P containing an entity More then a program with a use clause for both
Ada.Stuff and P will become illegal in Ada 2012 because the reference to More will become
ambiguous. This also applies if further overloadings of an existing entity are added.

! Rat ionale for Ada 2012: Epi logue 4

This can be overcome by adding child packages of course. However, adding lots of child packages
can be an inconvenience for the user and so in many cases extending a package seemed more
appropriate especially if the identifiers concerned are unlikely to have been used by programmers.

The following packages have been extended with additional entities as listed.

Ada.Characters.Handling – Is_Line_Terminator, Is_Mark, Is_Other_Format, Is_Punctuation_ 
Connector, Is_Space. (AI-185, A.3.2)

Ada.Containers – Capacity_Error. (AI-1, A.18.1)

Ada.Containers.Vectors – Assign, Copy, Constant_Reference, Constant_Reference_Type, Iterate,
Reference, Reference_Type, Vector_Iterator_Interfaces. (AI-1, AI-212, A.18.2)

There are similar additions to the other containers Ada.Containers.Doubly_Linked_Lists etc.

Ada.Directories – Name_Case_Kind, Name_Case_Equivalence. (AI-49, A.16)

Ada.Dispatching – Yield. (AI-166, D.2.1)

Ada.Environment_Variables – Value. (AI-285, A.17)

Ada.Execution_Time – Interrupt_Clocks_Supported, Separate_Interrupt_Clocks_Supported,
Clocks_For_Interrupts. (AI-170, D.14)

Ada.Task_Identification – Environment_Task, Activation_  
Is_Complete. (AI-189, C.7.1)

Ada.Strings.Fixed – Find_Token. (AI-31, A.4.3)

Ada.Strings.Bounded – Find_Token. (AI-31, A.4.4)

Ada.Strings.Unbounded – Find_Token. (AI-31, A.4.5)

There are similar additions to Ada.Strings.Wide_Fixed, Ada.Strings.Wide_Bounded and
Ada.Strings.Wide_Unbounded. (AI-31, A.4.7)

Ada.Tags – Is_Abstract. (AI-173, 3.9)

It seems unlikely that existing programs will be affected by these potential incompatibilities.

3 – Membership tests are no longer allowed as a discrete choice. This is explained in detail in
Section 6 of the paper on Expressions. (AI-158, 3.8.1)

4 – Allowing functions to have parameters of all modes led to the introduction of stricter rules on
aliasing. It is possible that a program that seemed to work in Ada 2005 is illegal in Ada 2012. See
Section 2 of the paper on Structure and Visibility. (AI-144, 6.4.1)

5 – Implicit conversion is now allowed from anonymous access types to general access types. Such
conversions can make calls ambiguous in the presence of overloading where only one call was
permitted in Ada 2005. Consider

type RT is access all T; 
function F return RT;  
function F return access T;

procedure B(R: RT);

and then the call

B(F); -- ambiguous in Ada 2012

 !5

The call of B is ambiguous in Ada 2012 because the call could be to either function F. But in Ada
2005, the implicit conversion is not possible and so the call has to be to the first function F. (AI-149,
8.6)

6 – It is now illegal to declare a formal abstract subprogram whose controlling type is incomplete.
This is related to various improvements to incomplete types described in Section 3 of the paper on
Structure and Visibility. (AI-296, 12.6)

7  –  The pragma Controlled has been removed from the language. It was never implemented
anyway. (AI-229, 13.11.3)

8  –  The package Ada.Dispatching was Pure in Ada 2005 but has been downgraded to
Preelaborable because of the addition of Yield. This is unlikely to be a problem. (AI-166, D.2.1)

1.2 Inconsistencies with Ada 2005
Note that this list only covers those inconsistencies that might reasonably occur. There are a number
of others which are so unlikely that they do not seem worth mentioning.

1  – The definition of character sets can change with time. It is thus possible that the result of
character classification functions for obscure characters might be or become inconsistent. (AI-91,
AI-227, AI-266, 2.1, 2.3)

2 – User defined untagged record equality is now defined to compose and be used in generics.
Code which assumes that predefined equality reemerges in generics and in predefined equals for
composite types could fail. However, it is more likely that this change will fix bugs. (AI-123, 4.5.2)

3 – A stand alone object of an anonymous access type now has dynamic accessibility. This is most
likely to make illegal programs now legal. However, it is possible that a program that raised
Program_Error in Ada 2005 will not do so in Ada 2012. It seems very unlikely that a program would
rely on the raising of this exception. (AI-148, 4.6)

4  –  There is an obscure interaction between the change to the composability of equality and
renaming. Renaming of user-defined untagged record equality is now defined to call the overridden
body so long as the overriding occurred before the renames. Consider

package P is  
 type T is  
 record 
 ...  
 end record; 
 -- (1) consider renaming here 
private  
 function "=" (L, R: T) return Boolean; 
end P;

with P; 
package Q is  
 function Equals renames P."="; 
end Q;

In Ada 2005, Equals refers to the predefined equality, whereas in Ada 2012 it refers to the
overridden user-defined equality in the private part. This is so that composed equality and explicit
calls on "=" give the same answer. However, if the renaming had been at the point (1) then calling
Equal would call the predefined equality. Remember that renaming squirrels away the operation so
that it can be retrieved. (AI-123, 8.5.4)

! Rat ionale for Ada 2012: Epi logue 6

5 – A group budget is now defined to work on a single processor. However, it is unlikely that any
implementation of Ada 2005 managed to implement this on multiprocessors anyway. (AI-169, D.
14.2)

2 Retrospective changes to Ada 2005
In the course of the development of Ada 2012, a number of small changes were deemed to apply
also to Ada 2005 and thus were classified as binding interpretations rather than amendments. Some
were mentioned in previous papers (including that which ensured that package Ada is legal); see
Sections 2 and 6 of the paper on Iterators, Pools etc. Most of these do not introduce incompatibilities
or inconsistencies so will not be discussed further.

A few binding interpretations do introduce minor incompatibilities or inconsistencies and will now
be briefly discussed.

2.1 Incompatibilities with original Ada 2005
There are a small number of incompatibilities between the original Ada 2005 and that resulting from
various corrections.

1 – The rules for full conformance have been strengthened; for example, null exclusions must now
match. (AI-46, AI-134, AI-207, 6.3.1)

2 – When an inherited subprogram is implemented by a protected function, the first parameter has
to be an in parameter, but not an access to variable type. Ada 2005 allowed access to variable
parameters in this case; the parameter will need to be changed to access to constant by the addition
of the constant keyword. (AI-291, 9.4)

3 – A missing rule is added that a limited with clause cannot name an ancestor unit. (AI-40, 10.1.2)

4  – Matching of formal access to subprogram types uses subtype conformance in Ada 2012
whereas it only used mode conformance in original Ada 2005. This change was necessary to avoid
undefined behaviour in some situations. (AI-288, 12.5.4)

5 – An address attribute with a prefix of a subprogram with convention Intrinsic is now illegal. This
is discussed in Section 6 of the paper on Iterators, Pools etc. (AI-95, 13.3)

6 – Stream attributes must be specified by a static subprogram name rather than by a dynamic
expression. (AI-39, 13.13.2)

7 – The use of discriminants on Unchecked_Union types is now illegal in record representation
clauses. It makes no sense to specify the position of something that is not supposed to exist. (AI-26,
B.3.3)

8 – A nonvolatile generic formal derived type precludes a volatile actual type. (AI-218, C.6)

9  –  The restriction No_Relative_Delay has been extended to also prohibit a call of
Timing_Events.Set_Handler with a Time_Span parameter. (AI-211, D.7)

10 – Various restrictions have been reworded to prevent the bypassing of the restriction by calling
the forbidden subprogram via renames. (AI-211, D.7)

2.2 Inconsistencies with original Ada 2005
There are a small number of inconsistencies between the original Ada 2005 and that resulting from
various corrections.

1 – The description of Dependent_Tag has been changed to say that it must raise Tag_Error if there
is more than one type that matches the requirements. (AI-113, 3.9)

 !7

2 – A curious omission regarding checking arrays allows a component in an aggregate whose value
is given as <> even if the component is outside the bounds. It is now clarified that Constraint_Error
is raised. (AI-37, 4.3.3)

3 – The first procedure Split in Ada.Calendar.Formatting raises Time_Error for a value of exactly
86400.0. This was unspecified in Ada 2005. (AI-238, 9.6.1)

4 – An address attribute with a prefix of a generic formal subprogram whose actual parameter has
convention Intrinsic now raises Program_Error. (AI-95, 13.3)

5 – User specified external tags that conflict with other external tags now raise Program_Error or
are illegal. (AI-113, 13.3)

6  –  The definition of Set_Line is corrected. As originally defined in Ada 95 and Ada 2005,
Set_Line(1) could call New_Line(0) which would raise Constraint_Error which is unhelpful. This
was mentioned right at the end of the Postscript in the Rationale for Ada 2005 [2]. (AI-38, A.10.5)

7 – The definitions of Start_Search, Search, Delete_Directory, and Rename are clarified so that
they raise the correct exception if misused. (AI-231, A.16)

8  –  If Count = 0 for a container Insert subprogram that has a Position parameter, the Position
parameter is set to the value of the Before parameter by the call. The original wording remained
silent on this. (AI-257, A.18.3)

3 Unfinished topics from Ada 2005
A number of topics which seemed to be good ideas initially were abandoned during the development
of Ada 2005 for various reasons. Usually the reason was simply that a good solution could not be
produced in the time available and the trouble with a bad solution is that it is hard to put it right
later. This section briefly reconsiders these topics which were discussed in the Rationale for Ada
2005 [2]; some have now been solved in Ada 2012; the others were considered unimportant.

3.1 Aggregates for private types
The <> notation was introduced in Ada 2005 for aggregates to mean the default value if any. A
curiosity is that we can write

type Secret is private;

type Visible is  
 record 
 A: Integer; 
 S: Secret;  
 end record;

X: Visible := (A => 77; S => <>);

but we cannot write

S: Secret := <>; -- illegal

The argument is that this would be of little use since the components take their default values
anyway.

For uniformity it was proposed that we might allow

S: Secret := (others => <>);

for private types and also for task and protected types. One advantage would be that we could then
write

S: constant Secret := (others => <>);

! Rat ionale for Ada 2012: Epi logue 8

whereas it is not possible to declare a constant of a private type because we are unable to give an
initial value.

However, discussion of this issue led into a quagmire in Ada 2005 and so was abandoned. It remains
abandoned in Ada 2012!

3.2 Partial generic instantiation
Certain attempts to use signature packages led to circularities in Ada 95. Consider

generic  
 type Element is private; 
 type Set is private; 
 with function Union(L, R: Set) return Set is <>; 
 with function Intersection(L, R: Set) return Set is <>; 
 ... -- and so on 
package Set_Signature is end;

Remember that a signature is a generic package consisting only of a specification. When we
instantiate it, the effect is to assert that the actual parameters are consistent and the instantiation
provides a name to refer to them as a group.

If we now attempt to write

generic  
 type Elem is private; 
 with function Hash(E: Elem) return Integer; 
package Hashed_Sets is  
 type Set is private; 
 function Union(L, R: Set) return Set; 
 function Intersection(L, R: Set) return Set; 
 ... 
 package Signature is new Set_Signature(Elem, Set); 
private  
 type Set is  
 record 
 ...  
 end record; 
end Hashed_Sets;

then we are in trouble. The problem is that the instantiation of Set_Signature tries to freeze the type
Set prematurely.

After a number of false starts this problem is partially overcome in Ada 2012 by the introduction of
incomplete formal generic parameters. This is discussed in Section 3 of the paper on Structure and
Visibility. See also Section 4.1 of this paper.

3.3 Support for IEEE 559: 1989
The proposal was to provide full support for all aspects of IEEE 559 arithmetic such as NaNs (a
NaN is Not A Number). This would have necessitated adding attributes such as S'Infinity, S'Is_NaN,
S'Finite and so on plus a package Ada.Numerics.IEC_559.

The proposal was abandoned because it would have had a big impact on implementers and it was
not clear that there was sufficient demand. It was not reconsidered for Ada 2012.

 !9

3.4 Defaults for generic parameters
Generic subprogram parameters and object parameters of mode in can have defaults. But other
parameters such as packages and types cannot. This was considered irksome and untidy and efforts
were made to define a suitable notation for all possible generic parameters.

However, it was abandoned partly because an appropriate syntax seemed hard to find and more
importantly, it was not felt to be that important. Again, it was not deemed important enough to be
reconsidered for Ada 2012.

3.5 Pre/post-conditions for subprograms
The original proposal was to add pragmas such as Pre_Assert and Post_Assert. Thus in the case of a
subprogram Push on a type Stack we might write

procedure Push(S: in out Stack; X: in Item); 
pragma Pre_Assert(Push, not Is_Full(S)); 
pragma Post_Assert(Push, not Is_Empty(S));

This was all abandoned in Ada 2005 for various reasons; one being that pragmas are ugly for such
an important matter.

However, this is neatly solved in Ada 2012 by the introduction of aspect specifications so we can
now write

procedure Push(S: in out Stack; X: in Item)  
 with 
 Pre => not Is_Full(S), 
 Post => not Is_Empty(S);

which is really excellent; this is discussed in detail in the paper on Contracts and Aspects.

3.6 Type and package invariants
This defined further pragmas similar to those in the previous proposal but concerned with packages
and types. Thus the pragma Package_Invariant proposed for Ada 2005 identified a function
returning a Boolean result. This function would be implicitly called after the call of each
subprogram in the package and if the result were false the behaviour would be as for an Assert
pragma that failed.

This proposal was also abandoned for Ada 2005. However, Ada 2012 has introduced type invariants
thus

type Stack is private  
 with Type_Invariant => Is_Unduplicated(Stack);

as discussed in the paper on Contracts and Aspects. On the other hand, package invariants remain
abandoned.

3.7 Exceptions as types
This proposal originally arose out of a workshop organized by Ada-Europe. It was quite complex
and considered far too radical a change and probably expensive to implement. As a consequence it
was slimmed down considerably. But having been slimmed down it seemed pointless and was then
abandoned. The only part to survive was the idea of raise with message which became a separate AI
and was incorporated into Ada 2005.

This was not pursued in Ada 2012.

3.8 Sockets operations
This seemed a very good idea at the time but no detailed proposal was forthcoming and so it died. It
has been left dead.

! Rat ionale for Ada 2012: Epi logue 10

3.9 In out parameters for functions
The proposal was to allow functions to have parameters of all modes. The rationale for the proposal
was well summarized thus "Ada functions can have arbitrary side effects, but are not allowed to
announce that in their specifications".

But strangely, this AI was abandoned quite early in the Ada 2005 revision process on the grounds
that it was "too late". (Perhaps too late in this context meant 25 years too late.)

However, in Ada 2012, the bullet has been bitten and functions can indeed now have parameters of
all modes. See the discussion in Section 2 of the paper on Structure and Visibility.

3.10 Application defined scheduling
The International Real-Time Ada Workshops have been a source of suggestions for improvements to
Ada. The Workshop at Oporto suggested a number of further scheduling algorithms [3]. Most of
these such as Round Robin and EDF were included in Ada 2005. But that for application defined
scheduling was not.

No further action on this topic was taken in Ada 2012.

4 Unfinished topics for Ada 2012
A number of topics which seemed to be good ideas initially were abandoned during the development
of Ada 2012 for various reasons. It is interesting to note that there are far fewer of these loose ends
than there were in Ada 2005. The following deserve mention.

4.1 Integrated packages (AI-135)
Difficulties sometimes arise with nested packages. Consider for example a package that needs to
export a private type T and a container instantiated for that type. We cannot write

package P is  
 type T is private; 
 package T_Set is new Ordered_Sets(T); 
private  
 ... 
end P;

because the type T is not frozen. We have to write something like

package P is  
 package Inner is  
 type T is private; 
 private  
 ...  
 end Inner; 
 package T_Set is new Ordered_Sets(Inner.T); 
end P;

What we now want is some way to say that the declarations in Inner are really at the level of P itself
after all. In other words we want to integrate the package Inner with the outer package P.

Various attempts were made to solve this by another kind of use clause or perhaps by putting Inner
in a <> box. But all attempts led to difficulties so this remains unresolved.

4.2 Cyclic fixed point (AI-175)
Measurements in the physical world of Euclid and Newton are either lengths or angles. Angles are
cyclic in nature and so can be mapped with a modular type. However, this leaves scaling in the
hands of the user and is machine dependent. Consideration was given to the possibility of a cyclic
form of fixed point. Sadly, there was much hidden complexity and so no solution was agreed.

 !11

One might have thought that it would be easy to use the natural wrap-around hardware. However,
with a binary machine, if 180 degrees is held exactly then 60 degrees is not which excludes an exact
representation of an equilateral triangle. The whole point about using fixed point is that it is precise
but it just doesn't work unless the hardware uses a base with divisibility by 60. The Babylonians
would have understood. The text of AI-175 includes a generic which might be useful for many
applications.

4.3 Global annotations (AI-186)
The idea here was that the specification of a subprogram should have annotations indicating the
global objects that it might manipulate. For example a function can have side effects on global
variables but this important matter is not mentioned in the specification. This topic has strong
synergy with the information given in contracts such as pre- and postconditions. However, it was
abandoned perhaps because of the complexity arising from the richness of the full Ada language. It
should be noted that such annotations have always featured in SPARK as comments and moreover, at
the time of writing, are being considered using the aspect notation in a new version of SPARK.

4.4 Shorthand for assignments (AI-187)
Consideration was given to having some short of shorthand for assignments where source and target
have commonality as in statements such as

A(I) := A(I) + 1;

But maybe the thought of C++ was too much. In any event no agreement that it was worthwhile was
reached and there was certainly no agreement on what syntax might be acceptable.

5 Postscript
It should also be noticed that a few corrections and improvements have been made since Ada 2012
was approved as a standard. The more important of these will now be discussed.

A new form of expression, the raise expression, is added (AI12-22). This means that by analogy
with

if X < Y then 
 Z := +1; 
elsif X > Y then 
 Z := –1; 
else 
 raise Error; 
end if;

we can also write

Z := (if X<Y then 1 elsif X>Y then –1 else raise Error);

A raise expression is a new form of relation so the syntax for relation (see Section 6 of the paper on
Expressions) is extended as follows

 relation ::=  
 simple_expression [relational_operator simple_expression]  
 | simple_expression [not] in membership_choice_list  
 | raise_expression

 raise_expression ::=  
 raise exception_name [with string_expression]

Since a raise expression is a relation it has the same precedence and so will need to be in parentheses
in some contexts. But as illustrated above it does not need parentheses when used in a conditional
expression which itself will have parentheses.

! Rat ionale for Ada 2012: Epi logue 12

Raise expressions will be found useful with pre- and postconditions. Thus if we have

procedure Push(S: in out Stack; X: in Item)  
 with 
 Pre => not Is_Full(S);

and the precondition is false then Assertion _Error is raised. But we can now alternatively write

procedure Push(S: in out Stack; X: in Item)  
 with 
 Pre => not Is_Full(S) or else raise Stack_Error;

and of course we can also add a message thus

 Pre => not Is_Full(S) or else raise Stack_Error with "wretched stack is full";

On a closely related topic the new syntax for membership tests (also see Section 6 of the paper on
Expressions) has been found to cause ambiguities (AI12-39).

Thus

A in B and C

could be interpreted as either of the following

(A in B) and C -- or 
A in (B and C)

This is cured by changing the syntax for relation yet again to

 relation ::=  
 simple_expression [relational_operator simple_expression]  
 | tested_simple_expression [not] in membership_choice_list 
 | raise_expression

and changing

 membership_choice ::=  
 choice_expression | range | subtype_mark

to

 membership_choice ::=  
 choice_simple_expression | range | subtype_mark

Thus a membership_choice no longer uses a choice_expression. However, the form
choice_expression is still used in discrete_choice.

A curious difficulty has been found in attempting to use the seemingly innocuous package
Ada.Locales described in Section 4 of the paper on the Predefined Library.

The types Language_Code and Country_Code were originally declared as

type Language_Code is array (1 .. 3) of Character range 'a' .. 'z';

type Country_Code is array (1 .. 2) of Character range 'A' .. 'Z';

The problem is that a value of these types is not a string and cannot easily be converted into a string
because of the range constraints and so cannot be a simple parameter of a subprogram such as Put. If
LC is of type Language_Code then we have to write something tedious such as

Put(LC(1)); Put(LC(2)); Put(LC(3));

 !13

Accordingly, these types are changed so that they are derived from the type String and the
constraints on the letters are then imposed by dynamic predicates. So we have

type Language_Code is new String(1 .. 3) 
 with Dynamic_Predicate => (for all E of Language_Code => E in 'a' .. 'z';

with a similar construction for Country_Code (AI12-37).

Readers might like to contemplate whether this is an excellent illustration of some of the new
features of Ada 2012 or simply an illustration of static strong or maybe string typing going astray.

AI12-45 notes that pre- and postconditions are allowed on generic units but they are not allowed on
instances. See Section 3 of the paper on Contracts and Aspects where this topic should have been
mentioned.

Another modification in this area is addressed by AI12-44 which states that type invariants are not
checked on in parameters of functions but are checked on in parameters of procedures. See Section
4 of the paper on Contracts and Aspects. This change was necessary to avoid infinite recursion
which would arise if an invariant itself called a function with a parameter of the type. Note also that
a class wide invariant could not be used at all without this modification.

A further aspect, Predicate_Failure, is defined by AI12-54-2. The expected type of the expression
defined by this aspect is String and gives the message to be associated with a failure. So we can
write

subtype Open_File_Type is File_Type 
 with 
 Dynamic_Predicate => Is_Open(Open_File_Type), 
 Predicate_Failure => "File not open";

If the predicate fails then Assertion_Error is raised with the message "File not open". See Section 5
of the paper on Contracts and Aspects.

We can also use a raise expression and thereby ensure that a more appropriate exception is raised. If
we write

 Predicate_Failure => raise Status_Error with "File not open";

then Status_Error is raised rather than Assertion_Error with the given message. We could of course
explicitly mention Assertion_Error thus by writing

 Predicate_Failure => raise Assertion_Error with "A message";

Finally, we could omit any message and just write

 Predicate_Failure => raise Status_Error;

in which case the message is null.

A related issue is discussed in AI-71. If several predicates apply to a subtype which has been
declared by a refined sequence then the predicates are evaluated in the order in which they occur.
This is especially important if different exceptions are specified by the use of Predicate_Failure
since without this rule the wrong exception might be raised. The same applies to a combination of
predicates, null exclusions and old-fashioned subtypes.

This can be illustrated by an extension of the above example. Suppose we have

subtype Open_File_Type is File_Type 
 with 
 Dynamic_Predicate => Is_Open(Open_File_Type), 
 Predicate_Failure => raise Status_Error;

! Rat ionale for Ada 2012: Epi logue 14

subtype Read_File_Type is Open_File_Type 
 with 
 Dynamic_Predicate => Mode(Real_File_Type) = In_File, 
 Predicate_Failure => raise Mode_Error with "Can't read file: " & Name(Read_File_Type);

The subtype Read_File_Type refines Open_File_Type. If the predicate for it were evaluated first and
the file was not open then the call of Mode would raise Status_Error which we would not want to
happen if we wrote

if F in Read_File_Type then ...

Care is needed with membership tests. The whole purpose of a membership test (and similarly the
Valid attribute) is to find out whether a condition is satisfied. So if we write

if X in S then 
 ... -- do this  
else 
 ... -- do that 
end if;

we expect the membership test to be true or false. However, if the evaluation of S itself raises some
exception then the purpose of the test is violated.

It is important to understand these related topics. Another example might clarify. Suppose we have a
very simple predicate as in Section 5 of the paper on Contracts and Aspects such as

subtype Winter is Month  
 with Static_Predicate => Winter in Dec | Jan | Feb;

where

type Month is (Jan, Feb, Mar, Apr, ..., Nov, Dec);

and we declare a variable W thus

W: Winter := Jan;

If we now do

W := Mar;

then Assertion_Error will be raised because the value Mar is not within the subtype Winter (we
assume that the assertion policy is Check). If, however, we would rather have Constraint_Error
raised then we can modify the declaration of Winter to

subtype Winter is Month  
 with Static_Predicate => Winter in Dec | Jan | Feb, 
 Predicate_Failure => raise Constraint_Error;

and then obeying

W := Mar;

will raise Constraint_Error.

On the other hand suppose we declare a variable M thus

M: Month := Mar;

and then do a membership test

if M in Winter then 
 ... -- do this if M is a winter month 

 !15

else 
 ... -- do this if M is not a winter month 
end if;

then of course no exception is raised since this is a membership test and not a predicate check.

Note however, that we could write something odd such as

subtype Winter2 is Month  
 with Dynamic_Predicate => (if Winter2 in Dec | Jan | Feb then true else raise E);

then the very evaluation of the predicate might raise the exception E so that

M in Winter2

will either be true or raise the exception E but will never be false. Note that in this silly example the
predicate has to be a dynamic one because a static predicate cannot include a raise expression.

So this should clarify the reasons for introducing Predicate_Failure. It enables us to give a different
behaviour for when the predicate is used in a membership test as opposed to when it is used in a
check and it also allows us to add a message.

Finally, it should be noted that the predicate expression might involve the evaluation of some
subexpression perhaps through the call of some function. We might have a predicate describing
those months that have 30 days thus

subtype Month30 is Month  
 with Static_Predicate => Month30 in Sep | Apr | Jun | Nov;

which mimics the order in the nursery rhyme. However, suppose we decide to declare a function
Days30 to do the check so that the subtype becomes

subtype Month30 is Month  
 with Dynamic_Predicate => Days30(Month30);

and for some silly reason we code the function incorrectly so that it raises an exception (perhaps it
accidentally runs into its end and always raises Program_Error). In this situation if we write

M in Month30

then we will indeed get Program_Error and not false.

Perhaps this whole topic can be summarized by simply saying that a membership test is not a check.
Indeed a membership test is often useful in ensuring that a subsequent check will not fail as was
discussed in Section 4 of the paper on Iterators, Pools etc.

On a rather different topic, AI12-28 discusses the import of variadic C functions (that is functions
with a variable number of parameters). In Ada 95, it was expected that such functions would use the
same calling conventions as normal C functions; however, that is not true for some targets today.
Accordingly, this AI adds additional conventions to describe variadic C functions so that the Ada
compiler can compile the correct calling sequence.

Finally, an important modification is made to the topic of dispatching domains by AI12-33. See
Section 3 of the paper on Tasking and Real-Time.

As defined originally, a dispatching domain consists of a set of processors whose CPU values are
contiguous. However, this is unrealistic since CPUs are often grouped together in other ways.
Accordingly, the package System.Multiprocessors.Dispatching_Domains is extended by the addition
of a type CPU_Set and two further functions thus

type CPU_Set is array (CPU range <>) of Boolean;

! Rat ionale for Ada 2012: Epi logue 16

function Create(Set: CPU_Set) return Dispatching_Domain; 
function Get_CPU_Set(Domain: Dispatching_Domain) return CPU_Set;

So if we want to create a domain consisting of processors 0, 4, and 8 we can write

My_Set: CPU_Set(0 .. 8) := (0 | 4 | 8 => true, others => false);

and then

My_Domain: Dispatching_Domain := Create(My_Set);

and so on. The function Get_CPU_Set can be applied to any domain and returns the appropriate
array representing the set of CPUs. Note that this function can be applied to any domain and not just
to one created from a CPU_Set.

6 Acknowledgements
This is the last of the papers in this series and so this seems a good moment to once more thank
Randy Brukardt for his diligence and patience in reviewing various drafts and putting me back on
track when I got lost.

I must also thank AdaCore and the British Standards Institute for financial support for attending
various meetings.

As usual, writing this rationale has been a learning experience for me and I trust that readers will
also have found the material useful in learning about Ada 2012. An integrated description of Ada
2012 as a whole will be found in a forthcoming version of a familiar textbook.

References
1. John Barnes (2012) SPARK – The proven approach to High Integrity Software, Altran Praxis.

2. John Barnes (2008) Ada 2005 Rationale, LNCS 5020, Springer-Verlag.

3. ACM (2003) Proceedings of the 12th International Real-Time Ada Workshop, Ada Letters, Vol
23, No 4.

!
© 2013 John Barnes Informatics.

!
!

