
John Barnes

Containers

Rationale for Ada 2012: 6a Containers
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

2 Template for Ada User Journal

Abstract
This paper describes improvements to the predefined container library in Ada 2012.

Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] specifically says that attention should be paid to

 improving the use and functionality of the predefined containers.

The predefined containers were introduced in Ada 2005 and experience with their use revealed a
number of areas where they could be improved.

The following Ada Issues cover the relevant changes and are described in detail in this paper.

  1 Bounded containers and other container issues

 69 Holder container

136 Multiway tree container

139 Syntactic sugar for access, containers & iterators

159 Queue containers

184 Compatibility of streaming of containers

212 Accessors and iterators for Ada.Containers

251 Problems with queue containers

These changes can be grouped as follows.

The existing containers are unbounded and generally require dynamic storage management to be
performed behind the scenes. However, for high-integrity systems, such dynamic management is
often unacceptable. Accordingly, bounded versions of all the existing containers are added (1).

A number of facilities are added to make important operations on containers more elegant. These are
the updating of individual elements of a container and iteration over a container (139, 212).

Ada 2005 introduced containers for the manipulation of lists and it was expected that this would
provide a basis for manipulating trees. However, this proved not to be the case, so specific
containers are added for the manipulation of multiway trees (136). There are versions for unbounded
indefinite and unbounded definite trees and for bounded definite trees.

A further new kind of container is just for single indefinite objects and is known as the holder
container (69).

A range of containers are added for manipulating queues with defined behaviour regarding multiple
task access to the queues (159, 251).

The Ada 2005 container library also introduced sorting procedures for constrained and
unconstrained arrays. An additional more general sorting mechanism is added in Ada 2012 (1).

Finally, an oversight regarding the streaming of containers is corrected (184).

2 Bounded and unbounded containers
It is perhaps worth starting this discussion by summarizing the containers introduced in Ada 2005.
First, there is a parent package Ada.Containers which simply declares the types Hash_Type and
Count_Type.

 3

Then there are six containers for definite objects, namely (abbreviating the prefix Ada.Containers to
just A.C)

A.C.Vectors
A.C.Doubly_Linked_Lists
A.C.Hashed_Maps
A.C.Ordered_Maps
A.C.Hashed_Sets
A.C.Ordered_Sets

The declarations of these six containers all start with

generic
 ...
 type Element_Type is private;
 ...
package Ada.Containers.XXX...

and we see that the type Element_Type has to be definite. There are also containers for the
manipulation of indefinite types whose names are

A.C.Indefinite_Vectors
A.C.Indefinite_Doubly_Linked_Lists
A.C.Indefinite_Hashed_Maps
A.C.Indefinite_Ordered_Maps
A.C.Indefinite_Hashed_Sets
A.C.Indefinite_Ordered_Sets

and these are very similar to the definite containers except that the formal type Element_Type is now
declared as

 type Element_Type(<>) is private;

so that the actual type can be indefinite such as String.

Finally, there are two generic packages for sorting arrays namely

A.C.Generic_Array_Sort
A.C.Generic_Constrained_Array_Sort

which apply to unconstrained and constrained arrays respectively.

The first change in Ada 2012 is that the parent package Ada.Containers now includes the declaration
of the exception Capacity_Error so that it becomes

package Ada.Containers is
 pragma Pure(Containers);

 type Hash_Type is mod implementation-defined;
 type Count_Type is range 0 .. implementation-defined;
 Capacity_Error: exception;

end Ada.Containers;

The names of the new containers with bounded storage capacity are

A.C.Bounded_Vectors
A.C.Bounded_Doubly_Linked_Lists

4 Rat ionale for Ada 2012: 6a Containers

A.C.Bounded_Hashed_Maps
A.C.Bounded_Ordered_Maps
A.C.Bounded_Hashed_Sets
A.C.Bounded_Ordered_Sets

The facilities of the bounded containers are almost identical to those of the original unbounded ones
so that converting a program using one form to the other is relatively straightforward. The key point
of the bounded ones is that storage management is guaranteed (implementation advice really) not to
use features such as pointers or dynamic allocation and therefore can be used in high-integrity or
safety-critical applications.

The major differences between the packages naturally concern their capacity. In the case of the
bounded packages the types such as Vector have discriminants thus

type Vector(Capacity: Count_Type) is tagged private;

whereas in the original packages the type Vector is simply

type Vector is tagged private;

The other types in the bounded packages are

type List(Capacity: Count_Type) is tagged private;

type Map(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

type Map(Capacity: Count_Type) is tagged private;

type Set(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

type Set(Capacity: Count_Type) is tagged private;

Note that the types for hashed maps and sets have an extra discriminant to set the modulus; this will
be explained in a moment.

Remember that the types Count_Type and Hash_Type are declared in the parent package
Ada.Containers shown above.

When a bounded container is declared, its capacity is set once and for all by the discriminant and
cannot be changed. If we subsequently add more elements to the container than it can hold then the
exception Capacity_Error is raised.

If we are using a bounded container and want to make it larger then we cannot. But what we can do
is create another bounded container with a larger capacity and copy the values from the old
container to the new one. Remember that we can check the number of items in a container by calling
the function Length.

So we might have a sequence such as

My_List: List(100);
... -- use my list
if Length(My_List) > 90 then -- Gosh, nearly full
...
 declare
 My_Big_List: List := Copy(My_List, 200);
 begin
 ...

The specification of the function Copy is

function Copy(Source: List; Capacity: Count_Type := 0) return List;

 5

If the parameter Capacity is not specified (or is given as zero) then the capacity of the copied list is
the same as the length of Source.

If the given value of Capacity is larger than (or equal to) the length of the Source (as in our
example) then the returned list has this capacity and the various elements are copied. If we foolishly
supply a value which is less than the length of Source then Capacity_Error is naturally raised.
Remember that a discriminant can be set by an initial value.

Note that if we write

declare
 My_Copied_List: List := My_List;
begin

then My_Copied_List will have the same capacity as My_List because discriminants are copied as
well as the contents.

In order to make it easier to move from the bounded form to the unbounded form, a function Copy is
added to the unbounded containers as well although it does not need a parameter Capacity in the
case of lists and ordered maps and sets. So in the case of the list container it is simply

function Copy(Source: List) return List; -- unbounded

Similar unification between bounded and unbounded forms occurs with assignment. In Ada 2005, if
we have two lists L and M, then we can simply write

L := M;

and the whole structure is copied (including all its management stuff). Note that this will almost
certainly require that the value of L be finalized which might be a nuisance. Such an assignment
with discriminated types needs to check the discriminants as well (and raises Constraint_Error if
they are different). This is a nuisance because although the capacities might not be the same, the
destination L might have plenty of room for the actual elements in the source M.

This is all rather bothersome and so procedures Assign are added to both unbounded and bounded
containers which simply copy the element values. Thus in both case we have

procedure Assign(Target: in out List; Source: in List);

In the bounded case, if the length of Source is greater than the capacity of Target, then
Capacity_Error is raised. In the unbounded case, the structure is automatically extended.

It might be recalled that in Ada 2005, lists and ordered maps and sets do not explicitly have a notion
of capacity. It is in their very nature that they automatically extend as required. However, in the case
of vectors and hashed maps and sets (which have a notion of indexing) taking a purely automatic
approach could lead to lots of extensions and copying so the notion of capacity was introduced. The
capacity can be set by calling

procedure Reserve_Capacity(Container: in out Vector; Capacity: in Count_Type);

and the current value of the capacity can be ascertained by calling

function Capacity(Container: Vector) return Count_Type;

which naturally returns the current capacity. Note that Length(V) cannot exceed Capacity(V) but
might be much less.

If we add items to a vector whose length and capacity are the same then no harm is done. The
capacity will be expanded automatically by effectively calling Reserve_Capacity internally. So the
user does not need to set the capacity although not doing so might result in poorer performance.

6 Rat ionale for Ada 2012: 6a Containers

The above refers to the existing unbounded forms and is unchanged in Ada 2012. For uniformity the
new bounded forms for vectors and hashed maps and sets also declare a procedure
Reserve_Capacity. However, since the capacity cannot be changed for the bounded forms it simply
checks that the value of the parameter Capacity does not exceed the actual capacity of the container;
if it does then Capacity_Error is raised and otherwise it does nothing. There is of course also a
function Capacity for bounded vectors and hashed maps and sets which simply returns the fixed
value of the capacity.

Many operations add elements to a container. For unbounded containers, they are automatically
extended as necessary as just explained. For the bounded containers, if an operation would cause the
capacity to be exceeded then Capacity_Error is raised.

There are a number of other differences between the unbounded and bounded containers. The
original unbounded containers have pragma Preelaborate whereas the new bounded containers have
pragma Pure.

The bounded containers for hashed maps and hashed sets are treated somewhat differently to those
for the corresponding unbounded containers regarding hashing.

In the case of unbounded containers, the hashing function to be used is left to the user and is
provided as an actual generic parameter. For example, in the case of hashed sets, the package
specification begins

generic
 type Element_Type is private;
 with function Hash(Element: Element_Type) return Hash_Type;
 with function Equivalent_Elements(Left, Right: Element_Type) return Boolean;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Hashed_Sets is
 pragma Preelaborate(Hashed_Sets);

What the implementation actually does with the hash function is entirely up to the implementation
The value returned is in the range of Hash_Type which is a modular type declared in the root
package Ada.Containers. The implementation will typically then map this value onto the current
range of the capacity in some way. If the unbounded container becomes nearly full then the capacity
will be automatically extended and a new mapping will be required; this in turn is likely to require
the existing contents to be rehashed. None of this is visible to the user.

In the case of the new bounded containers, these problems do not arise since the capacity is fixed.
Moreover, the modulus to be used for the mapping is given when the container is declared since the
type has discriminants thus

type Set(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

The user can then choose the modulus explicitly or alternatively can use the additional function
Default_Modulus whose specification is

function Default_Modulus(Capacity: Count_Type) return Hash_Type;

This returns an implementation defined value for the number of distinct hash values to be used for
the given capacity. Thus we can write

My_Set: Set(Capacity => My_Cap; Modulus => Default_Modulus(My_Cap));

Moreover, for these bounded hashed maps and sets, the function Copy has an extra parameter thus

function Copy(Source: Set; Capacity: Count_Type := 0; Modulus: Hash_Type := 0)

return Set;

 7

If the capacity is given as zero then the newly returned set has the same capacity as the length of
Source as mentioned above. If the modulus is given as zero then the value to be used is obtained by
applying Default_Modulus to the new capacity.

As mentioned in the paper on the Predefined Library, Ada 2012 introduces additional functions for
hashing strings (fixed, bounded and unbounded) to provide for case insensitive, wide and wide wide
situations.

Finally, note that there are no bounded containers for indefinite types. This is because the size of an
object of an indefinite type (such as String) is generally not known and so indefinite types need
some dynamic storage management. However, the whole point of introducing bounded containers
was to avoid such management.

3 Iterating and updating containers
This topic was largely covered in the paper on Iterators and Pools which introduced the generic
package Ada.Iterator.Interfaces whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator) return Cursor is abstract;
 function Next(Object: Forward_Iterator; Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and Forward_Iterator;
 function Last(Object: Reversible_Iterator) return Cursor is abstract;
 function Previous(Object: Reversible_Iterator; Position: Cursor) return Cursor is abstract;

end Ada.Iterator_Interfaces;

This generic package is used by both existing and new container packages. For illustration we
consider the list container Ada.Containers.Doubly_Linked_Lists. Here is its specification giving all
new and changed material in full (marked -- 12) and identifying most existing entities by comment
only.

with Ada.Iterator_Interfaces; -- 12
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 pragma Preelaborate(Doubly_Linked_Lists);
 pragma Remote_Types(Doubly_Linked_Lists) -- 12

 type List is tagged private -- 12
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(List);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_List: constant List;
 No_Element: constant Cursor;

8 Rat ionale for Ada 2012: 6a Containers

 function Has_Element(Position: Cursor) return Boolean; -- moved 12

 package List_Iterator_Interfaces is -- 12
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

 ... -- functions "=", Length, Is_Empty, Clear, Element
 ... -- procedures Replace_, Query_, Update_Element

 type Constant_Reference_Type -- 12
 (Element: not null access constant Element_Type) is private
 with Implicit_Dereference => Element;

 type Reference_Type -- 12
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference -- 12
 (Container: aliased in List; Position: in Cursor)
 return Constant_Reference_Type;

 function Reference -- 12
 (Container: aliased in out List; Position: in Cursor)
 return Reference_Type;

 procedure Assign(Target: in out List; Source: in List); -- 12

 function Copy(Source: List) return List; -- 12

 ... -- Move, Insert, Prepend, Append,
 ... -- Delete, Delete_First, Delete_Last,
 ... -- Reverse_Elements, Swap, Swap_Links, Splice,
 ... -- First, First_Element, Last, Last_Element,
 ... -- Next, Previous, Find, Reverse_Find,
 ... -- Contains, Iterate, Reverse_Iterate

 function Iterate(Container: in List) -- 12
 return List_Iterator_Interfaces.Reversible_Iterator'Class;

 function Iterate(Container: in List; Start: in Cursor) -- 12
 return List_Iterator_Interfaces.Reversible_Iterator'Class;

 ... -- generic package Generic_Sorting

private
 ... -- not specified by the language
end Ada.Containers.Doubly_Linked_Lists;

Note that the function Has_Element has been moved. In Ada 2005 it was declared towards the end
between Contains and Iterate. It has been moved so that it can be used as an actual parameter in the
declaration of List_Iterator_Interfaces using the instantiation of Ada.Iterator_Interfaces.

It will be recalled from the paper on Iterators and Pools that in Ada 2012 we can simply write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

or even

 9

for E of The_List loop
 ... -- do something to Element E
end loop;

rather than the laborious and error prone

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Note that in the case of

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

we are not permitted to assign to C since that would upset the mechanism of the loop. There is an
analogy with the traditional loop statement. If we write

for K in A'Range loop
 A(K) := 0;
end loop;

then the language prevents us from making a direct assignment to the loop parameter K.

If we write

for E of The_List loop
 ... -- do something to Element E
end loop;

then we can change the element E unless The_List has been declared as constant.

It will be recalled that subprograms Replace_Element, Query_Element and Update_Element are
defined for all containers in Ada 2005. Query_Element and Update_Element permit in situ
operations. Thus in order to find the value of some component Q of an element of The_List
identified by cursor C we can write either

X := Element(C).Q;

or we can first declare a slave procedure

procedure Get_Q(E: in Element_Type) is
begin
 X := E.Q;
end Get_Q;

and then call Query_Element thus

Query_Element(C, Get_Q'Access);

10 Rat ionale for Ada 2012: 6a Containers

The advantage of the former is that it is easy but it could be slow because it copies the whole
element which could be enormous. The advantage of the latter is that it does not copy the element;
its disadvantage is that it is somewhat incomprehensible.

In Ada 2012, we can do much better. The type List now has new functions Reference and
Constant_Reference, so we can write for example

X := The_List.Constant_Reference(C).Q;

This works because the function Constant_Reference returns a value of Constant_Reference_Type
and this moreover has aspect Implicit_Dereference whose value is Element.

However, we can simplify this even more because the type List has aspects Constant_Indexing and
Variable_Indexing which refer to the functions Constant_Reference and Reference. The result is
that we can simply write

X := The_List(C).Q; -- gosh that's better

which is a lot better than calling Query_Element.

Similarly, if we just want to update the component Q of some element given by a cursor C, then in
Ada 2005 we either have to create a whole new element with the new value for Q and then use
Replace_Element thus

Temp: E_Type := Element(C);
...
Temp.Q := X;

Replace_Element(The_List, C, Temp);

or declare a slave procedure and use Update_Element thus

procedure Put_Q(E: in out Element_Type) is
begin
 E.Q := X;
end Put_Q;

Update_Element(The_List, C, Put_Q'Access);

Again the first is slow, the second is gruesome (well, they are both gruesome really).

In Ada 2012 we simply write

The_List(C).Q := X; -- gosh again

which implicitly uses the aspect Variable_Indexing to call the function Reference which gives access
to the element.

It will be remembered that there are dire warnings in Ada 2005 about tampering with elements and
cursors. Thus we must not use Update_Element (that is via Put_Q in the example above) to do other
things such as add new elements.

Although tampering is still possible in Ada 2012; the new features discourage it. Thus if we write

The_List(C).Q := X;

rather than calling Update_Element then no tampering can occur (unless X is some gruesome
function).

Similarly if we write

for C in My_Container loop
 ...

 11

 Delete(My_Container, Position => C); --illegal
 ...
end loop;

then we are prevented from madness since the parameter Position of Delete is of mode in out and
this is not matched by the loop parameter C which is a constant. However, if we write the loop out
using First and Next as illustrated earlier then we could get into trouble.

4 Multiway tree containers
Three new containers are added for multiway trees; two correspond to the existing unbounded
definite and unbounded indefinite forms for existing structures such as Lists and Maps in Ada 2005.
There is also a bounded form corresponding to the newly introduced bounded containers for the
existing structures discussed above. As expected their names are

A.C.Multiway_Trees
A.C.Indefinite_Multiway_Trees
A.C.Bounded_Multiway_Trees

These containers have all the operations required to operate on a tree structure where each node can
have multiple child nodes to any depth. Thus there are operations on subtrees, the ability to find
siblings, to insert and remove children and so on. It will be noted that many of the operations on
trees are similar to corresponding operations on lists.

We will look in detail at the unbounded definite form by giving its specification interspersed with
some explanation. It starts with the usual generic parameters.

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Multiway_Trees is
 pragma Preelaborate(Multiway_Trees);
 pragma Remote_Types(Multiway_Trees);

 type Tree is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(Tree);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_Tree: constant Tree;
 No_Element: constant Cursor;

 function Has_Element(Position: Cursor) return Boolean;
 package Tree_Iterator_Interfaces is
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

This is much as expected and follows the same pattern as the start of the list container in the
previous section.

 function Equal_Subtree(Left_Position: Cursor; Right_Position: Cursor) return Boolean;
 function "=" (Left, Right: Tree) return Boolean;

 function Is_Empty(Container: Tree) return Boolean;

12 Rat ionale for Ada 2012: 6a Containers

 function Node_Count(Container: Tree) return Count_Type;
 function Subtree_Node_Count(Position: Cursor) return Count_Type;

 function Depth(Position: Cursor) return Count_Type;

 function Is_Root(Position: Cursor) return Boolean;
 function Is_Leaf(Position: Cursor) return Boolean;
 function Root(Container: Tree) return Cursor;
 procedure Clear(Container: in out Tree);

A tree consists of a set of nodes linked together in a hierarchical manner. Nodes are identified as
usual by the value of a cursor. Nodes can have one or more child nodes; the children are ordered so
that there is a first child and a last child. Nodes with the same parent are siblings. One node is the
root of the tree. If a node has no children then it is a leaf node.

All nodes other than the root node have an associated element whose type is Element_Type. The
whole purpose of the tree is of course to give access to these element values in a structured manner.

The function "=" compares two trees and returns true if and only if they have the same structure of
nodes and corresponding nodes have the same values as determined by the generic parameter "=" for
comparing elements. Similarly, the function Equal_Subtree compares two subtrees.

The function Node_Count gives the number of nodes in a tree. All trees have at least one node, the
root node. The function Is_Empty returns true only if the tree consists of just this root node. Note
that A_Tree = Empty_Tree, Node_Count(A_Tree) = 1 and Is_Empty(A_Tree) always have the same
value. The function Subtree_Node_Count returns the number of nodes in the subtree identified by
the cursor. If the cursor value is No_Element then the result is zero.

The functions Is_Root and Is_Leaf indicate whether a node is the root or a leaf respectively. If a tree
is empty and so consists of just a root node then that node is both the root and a leaf so both
functions return true.

The function Depth returns 1 if the node is the root, and otherwise indicates the number of ancestor
nodes. Thus a node which is an immediate child of the root has depth equal to 2. The function Root
returns the cursor designating the root of a tree. The procedure Clear removes all elements from the
tree so that it consists just of a root node.

 function Element(Position: Cursor) return Element_Type;

 procedure Replace_Element(Container: in out Tree;
 Position: in Cursor;
 New_Item: in Element_Type);

 procedure Query_Element(Position: in Cursor;
 Process : not null access procedure (Element: in Element_Type));

 procedure Update_Element(Container: in out Tree; Position: in Cursor;
 Process: not null access procedure (Element: in out Element_Type));

These subprograms have the expected behaviour similar to other containers.

 type Constant Reference_Type(Element: not null access constant Element_Type)

is private
 with Implicit_Dereference => Element;

 type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 13

 function Constant_Reference(Container: aliased in Tree; Position: in Cursor)
 return
Constant_Reference_Type;

 function Reference(Container: aliased in out Tree; Position: in Cursor)
 return
Reference_Type;

These types and functions are similar to those for the other containers and were explained in the
paper on Iterators and Pools and also in the previous section.

 procedure Assign(Target: in out Tree; Source: in Tree);

 function Copy(Source: Tree) return Tree;

 procedure Move(Target: in out Tree; Source: in out Tree);

The subprograms Assign and Copy behave as expected and were explained in the section on
Bounded and Unbounded containers. The procedure Move moves all the nodes from the source to
the target after first clearing the target; it does not make copies of the elements so after the operation
the source only has a root node.

 procedure Delete_Leaf(Container: in out Tree; Position: in out Cursor);

 procedure Delete_Subtree(Container: in out Tree; Position: in out Cursor);

 procedure Swap(Container: in out Tree; I, J: in Cursor);

The procedures Delete_Leaf and Delete_Subtree check that the cursor value designates a node of
the container and raise Program_Error if it does not. Program_Error is also raised if Position
designates the root node and so cannot be removed. In the case of Delete_Leaf, if the node has any
children then Constraint_Error is raised. The appropriate nodes are then deleted and Position is set to
No_Element.

The procedure Swap interchanges the values in the two elements denoted by the two cursors. The
elements must be in the given container (and must not denote the root) otherwise Program_Error is
raised.

 function Find(Container: Tree; Item: Element_Type) return Cursor;

 function Find_In_Subtree(Item: Element_Type; Position: Cursor) return Cursor;

 function Ancestor_Find(Item: Element_Type; Position: Cursor) return Cursor;

 function Contains(Container: Tree; Item: Element_Type) return Boolean;

These search for an element in the container with the given value Item. The function Contains
returns false if the item is not found; the other functions return No_Element if the item is not found.
The function Find searches the whole tree starting at the root node, Find_In_Subtree searches the
subtree rooted at the node given by Position including the node itself; these searches are in depth-
first order. The function Ancestor_Find searches upwards through the ancestors of the node given by
Position including the node itself.

Depth-first order is explained at the end of the section.

 procedure Iterate(Container: in Tree;
 Process: not null access procedure (Position: in Cursor));

 procedure Iterate_Subtree(Position: in Cursor;
 Process: not null access procedure (Position: in
Cursor));

14 Rat ionale for Ada 2012: 6a Containers

These apply the procedure designated by the parameter Process to each element of the whole tree or
the subtree. This includes the node at the subtree but not at the root; iteration is in depth-first order.

 function Iterate(Container: in Tree) return Tree_Iterator_Interfaces.Forward_Iterator'Class;

 function Iterate_Subtree(Position: in Cursor)
 return
Tree_Iterator_Interfaces.Forward_Iterator'Class;

The first of these is called if we write

for C in The_Tree.Iterate loop
 ... -- do something via cursor C
end loop;

and iterates over the whole tree in the usual depth-first order. In order to iterate over a subtree we
write

for C in The_Tree.Iterate(S) loop
 ... -- do something via cursor C
end loop;

and this iterates over the subtree rooted at the cursor position given by S.

If we use the other new form of loop using of thus

for E of The_Tree loop
 ... -- do something to element E
end loop;

then this also calls Iterate since the aspect Default_Iterator of the type Tree (see above) is Iterate.
However, we cannot iterate over a subtree using this mechanism.

 function Child_Count(Parent: Cursor) return Count_Type;

 function Child_Depth(Parent, Child: Cursor) return Count_Type;

The function Child_Count returns the number of child nodes of the node denoted by Parent. This
count covers immediate children only and not grandchildren.

The function Child_Depth indicates how many ancestors there are from Child to Parent. If Child is
an immediate child of Parent then the result is 1; if it is a grandchild then 2 and so on.

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Position: out Cursor;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: out Cursor;
 Count: in Count_Type := 1);

 15

These three procedures enable one or more new child nodes to be inserted. The parent node is given
by Parent. If Parent already has children then the new nodes are inserted before the child node
identified by Before; if Before is No_Element then the new nodes are inserted after all existing
children. The second procedure is similar to the first but also returns a cursor to the first of the added
nodes. The third is like the second but the new elements take their default values. Note the default
value of one for the number of new nodes.

 procedure Prepend_Child(Container: in out Tree;
 Parent: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Append_Child(Container: in out Tree;
 Parent: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type:= 1);

These insert the new children before or after any existing children.

 procedure Delete_Children(Container: in out Tree;
 Parent: in Cursor);

This procedure simply deletes all the children, grandchildren, and so on of the node designated by
Parent.

 procedure Copy_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in Cursor);

This copies the complete subtree rooted at Source into the tree denoted by Tree as a subtree of
Parent at the place denoted by Before using the same rules as Insert_Child. Note that this makes a
complete copy and creates new nodes with values equal to the corresponding existing nodes. Note
also that Source might be within Tree but might not. There are the usual various checks.

 procedure Splice_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Position: in out Cursor);

 procedure Splice_Subtree(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: in Cursor);

 procedure Splice_Children(Target: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Source_Parent: in Cursor);

 procedure Splice_Children(Container: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source_Parent: in Cursor);

16 Rat ionale for Ada 2012: 6a Containers

These are similar to the procedures Splice applying to lists. They enable nodes to be moved without
copying. The destination is indicated by Parent or Target_Parent together with Before as usual
indicating where the moved nodes are to be placed with respect to existing children of Parent or
Target_Parent.

The first Splice_Subtree moves the subtree rooted at Position in the tree Source to be a child of
Parent in the tree Target. Note that Position is updated to be the appropriate element of Target. We
can use this procedure to move a subtree within a tree but an attempt to create circularities raises
Program_Error.

The second Slice_Subtree is similar but only moves a subtree within a container. Again, circularities
cannot be created.

The procedures Splice_Children are similar but move all the children and their descendants of
Source_Parent to be children of Target_Parent.

 function Parent(Position: Cursor) return Cursor;
 function First_Child(Parent: Cursor) return Cursor;
 function First_Child_Element(Parent: Cursor) return Element_Type;
 function Last_Child(Parent: Cursor) return Cursor;
 function Last_Child_Element(Parent: Cursor) return Element_Type;
 function Next_Sibling(Position: Cursor) return Cursor;
 function Previous_Sibling(Position: Cursor) return Cursor;
 procedure Next_Sibling(Position: in out Cursor);
 procedure Previous_Sibling(Position: in out Cursor);

Hopefully, the purpose of these is self-evident.

 procedure Iterate_Children(Parent: in Cursor;
 Process: not null access procedure (Position: in
Cursor));

 procedure Reverse_Iterate_Children(Parent : in Cursor;
 Process: not null access procedure (Position: in
Cursor));

These apply the procedure designated by the parameter Process to each child of the node given by
Parent. The procedure Iterate_Children starts with the first child and ends with the last child whereas
Reverse_Iterate_Children starts with the last child and ends with the first child. Note that these do
not iterate over grandchildren.

 function Iterate_Children(Container: in Tree; Parent: in Cursor) return

 Tree_Iterator_Interfaces.Reversible_Iterator'Class;

This is called if we write

for C in Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

and iterates over all the children from Parent.First_Child to Parent.Last_Child. Note that we could
also insert reverse thus

for C in reverse Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

 17

in which case the iteration goes in reverse from Parent.Last_Child to Parent.First_Child. The
observant reader will note that this function returns Reversible_Iterator'Class and so can go in either
direction whereas the functions Iterate and Iterate_Subtree described earlier use
Forward_Iterator'Class and cannot be reversed.

private
 ... -- not specified by the language
end Ada.Containers.Multiway_Trees;

The above descriptions have not described all the situations in which something can go wrong and
so raise Constraint_Error or Program_Error. Generally, the former is raised if a source or target is
No_Element; the latter is raised if a cursor does not belong to the appropriate tree. In particular, as
mentioned above, an attempt to create an illegal tree such as one with circularities using
Splice_Subtree raises Program_Error. Remember also that every tree has a root node but the root
node has no element value; attempts to remove the root node or read its value or assign a value
similarly raise Program_Error.

The containers for indefinite and bounded trees are much as expected.

In the case of the indefinite tree container the generic formal type is

type Element_Type(<>) is private;

The other significant difference is that the procedure Insert_Child without the parameter New_Item
is omitted; this is because indefinite types do not have a default value.

In the case of the bounded tree container the changes are similar to those for the other containers.
One change is that the package has pragma Pure; the other changes concern the capacity. The type
Tree is

type Tree(Capacity: Count_Type) is tagged private;

and the function Copy is

function Copy(Source: Tree; Capacity: Count_Type := 0) return Tree;

And of course the exception Capacity_Error is raised in various circumstances.

Applications of trees are usually fairly complex. The tree structure for depicting the analysis of a
program for a whole language such as even Ada 83 has an enormous variety of nodes corresponding
to the various syntactic structures. And trees depicting human relationships are complex because of
multiple marriages, divorces, illegitimacy and so on. So we content ourselves with a couple of small
examples.

A tree representing a simple algebraic expression involving just the binary operations of addition,
subtraction, multiplication and division applied to simple variables and real literals is
straightforward. Nodes are of three kinds, those representing operations have two children giving the
two operands, and those representing variables and literals have no children and so are leaf nodes.

We can declare the element type thus

type Operator is ('+', '–', '×', '/');
type Kind is (Op, Var, Lit);

type El(K: Kind) is
 record
 case K is
 when Op =>
 Fn: Operator;
 when Var =>

18 Rat ionale for Ada 2012: 6a Containers

 V: Character;
 when Lit =>
 Val: Float;
 end case;
 end record;

Note that the variables are (as typically in mathematics) represented by single letters. So the
expression

 (x + 3) × (y – 4)

is represented by nodes with elements such as

(Op, '×')
(Var, 'x')
(Lit, 3.0)

So now we can declare a suitable tree thus

package Expression_Trees is
 new Ada.Containers.Multiway_Trees(El);

use Expression_Trees;

My_Tree: Tree := Empty_Tree;

C: Cursor;

and then build it by the following statements

C := Root(My_Tree);

Insert_Child(Container => My_Tree,
 Parent => C,
 Before => No_Element,
 New_Item => (Op, '×'),
 Position => C);

This puts in the first real node as a child of the root which is designated by the cursor C. There are
no existing children so Before is No_Element. The New_Item is as mentioned earlier. Finally, the
cursor C is changed to designate the position of the newly inserted node.

We can then insert the two children of this node which represent the mathematical operations +
(plus) and – (minus).

Insert_Child(My_Tree, C, No_Element, (Op, '+'));
Insert_Child(My_Tree, C, No_Element, (Op, '–'));

These calls are to a different overloading of Insert_Child and have not changed the cursor. The
second call also has Before equal to No_Element and so the second child goes after the first child.
We now change the cursor to that of the first newly inserted child and then insert its children which
represent x and 3. Thus

C := First_Child(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'x'));
Insert_Child(My_Tree, C, No_Element, (Lit, 3.0));

And then we can complete the tree by inserting the final two nodes thus

C := Next_Sibling(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'y'));
Insert_Child(My_Tree, C, No_Element, (Lit, 4.0));

 19

Of course a compiler will do all this recursively and keep track of the cursor rather more neatly than
we have in this manual illustration.

The resulting tree should be as in Figure 1.

Figure 1 The expression tree

We can assume that the variables are held in an array which might be as follows

subtype Variable_Name is Character range 'a' .. 'z';

Variables: array (Variable_Name) of Float;

We can then evaluate the tree by a recursive function such as

function Eval(C: Cursor) return Float is
 E: El := Element(C);
 L, R: Float
begin
 case E.K is
 when Op =>
 L := Eval(First_Child(C));
 R := Eval(Last_Child(C));
 case E.Fn is
 when '+' => return (L+R);
 when '–' => return (L–R);
 when '×' => return (L*R);
 when '/' => return (L/R);
 end case;
 when Var =>
 return Variables(E.V);
 when Lit =>
 return E.Val;
 end case;
end Eval;

Finally, we obtain the value of the tree by

X := Eval(First_Child(Root(My_Tree)));

Remember that the node at the root has no element so hence the call of First_Child.

An alternative approach would be to use tagged types with a different type for each kind of node
rather than the variant record. This would be much more flexible and would have required the use of
the unbounded indefinite container Ada.Containers.Indefinite_Multiway_Trees.

20 Rat ionale for Ada 2012: 6a Containers

As a more human example we can consider the family tree of the Tudor Kings and Queens of
England. We start with Henry VII, who had four children, Arthur, Margaret, Henry VIII and Mary.
See Figure 2.

Figure 2 The Tudor tree

Arthur died young, Margaret married James IV of Scotland and had James (who was thus James V
of Scotland), Henry VIII had three children, namely Edward VI, Mary I and Elizabeth I. And Mary
had Frances. Henry VII was succeeded by Henry VIII and he was succeeded by his three children.

Remember the rules of primogeniture. The heir is the eldest son if there are sons; if not then the heir
is the eldest daughter. If there are no offspring at all then we go back a generation and try again.
Hence Edward VI became king despite being younger than Mary.

Since Edward, Mary and Elizabeth had no children we go back to the descendants of the other
children of Henry VII. Margaret, her son James, and his daughter Mary Queen of Scots were all
dead by then, so the throne of England went to the son of Mary who became James I of England and
VI of Scotland and thus united the two thrones. So the Tudor line died with Elizabeth (Good Queen
Bess).

Incidentally, Frances, the daughter of Mary, the fourth child of Henry VII, had a daughter, Lady Jane
Grey; she was Queen for 9 days but lost her head over a row with Mary I.

Representing this is tricky, especially with people such as Henry VIII having so many wives. But the
essence could be represented by a tree with a simple element type thus

type Person is
 record
 Name: String(1 .. 10);
 Sex: Gender;
 Birth: Date;
 Death: Date;
 end record;

With such a structure and the dates, starting from Henry VII and using the rules of primogeniture,
one should be able to trace the monarchs (apart from poor Lady Jane Grey who would I am sure
much rather not have been involved).

The overall tree structure is shown in Figure 2.

With the obvious connections we can define useful functions such as

 21

function Are_Cousins(A, B: Cursor) return Boolean is
 (Parent(A) /= Parent (B) and then Parent(Parent(A)) = Parent(Parent(B)));

More of a challenge is to define a function Is_Successor using the rules described above. The reader
can contemplate these and other family relationships and attempt to construct the Tudor tree.

Finally, an explanation of depth-first order. The general principle is that child nodes are visited in
order before their parent. We can symbolically write this as

procedure Do_Node(N) is
begin
 for CN in N.First_Child .. N.Last_Child loop
 Do_Node(CN);
 end loop;
 if not N.Is_Root then
 Do_Element(N);
 end if;
end Do_Node;

and the whole thing is triggered by calling Do_Node(Root). Remember that the root node has no
element. The result is that the first element to be processed is that of the leftmost leaf.

Thus in the tree illustrated below in Figure 3, the elements are visited in order A, B, C, D, and so on.
Note that the root has no element and so is not visited.

Figure 3 A tree showing depth-order first

5 The holder container
As mentioned in the Introduction, it is not possible to declare an object of an indefinite type that can
hold any value of that type since the object becomes constrained by the mandatory initial value.
Thus we can write

Pet: String := "dog";

We can assign "cat" to Pet but we cannot assign "rabbit" because it is too long.

This is overcome in Ada 2012 by the introduction of the holder container which can hold a single
indefinite object. Its specification is

generic
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Indefinite_Holders is

22 Rat ionale for Ada 2012: 6a Containers

 pragma Preelaborate(Indefinite_Holders);
 pragma Remote_Types(Indefinite_Holders);

 type Holder is tagged private;
 pragma Preelaborable_Initialization(Holder);

 Empty_Holder: constant Holder;

 function "=" (Left, Right: Holder) return Boolean;

 function To_Holder(New_Item: Element_Type) return Holder;

 function Is_Empty(Container: Holder) return Boolean;

 procedure Clear(Container: in out Holder);

 function Element(Container: Holder) return Element_Type;

 procedure Replace_Element(Container: in out Holder; New_Item: in Element_Type);

 procedure Query_Element(Container: in Holder;
 Process: not null access procedure (Element: in Element_Type));

 procedure Update_Element(Container: in out Holder;
 Process: not null access procedure (Element: in out
Element_Type));

 type Constant_Reference_Type(Element: not null access constant Element_Type)
 is
private
 with Implicit_Dereference => Element;

 type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference(Container: aliased in Holder)
 return
Constant_Reference_Type;

 function Reference(Container: aliased in out Holder) return Reference_Type;

 procedure Assign(Target: in out Holder; Source: in Holder);

 function Copy(Source: Holder) return Holder;

 procedure Move(Target: in out Holder; Source: in out Holder);

private
 ... -- not specified by the language
end Ada.Containers.Indefinite_Holders;

Hopefully, the purpose of the facilities provided by this container are obvious given an
understanding of the use of the existing containers. It would be possible to use a list container with
just a single element to act as a holder but it seems better to have an explicit container with probably
less overhead and risk of confusion.

A trivial example of its use might be to provide a holder for pets. We write

package Strings is
 new Ada.Containers.Indefinite_Holders(String);

Kennel: Strings.Holder := To_Holder("cat");

 23

This declares an object Kennel which is a wrapper for a string and initializes it with the string "cat".
We can replace the cat with a rabbit by writing

Kennel := To_Holder("rabbit");

However, using To_Holder in this way could be a bit slow since this will create a new object which
has to be destroyed after the assignment. It is better to write

Replace_Element(Kennel, "rabbit");

If we want to print out the contents of the kennel we just write

Put(Element(Kennel));

Operations such as Update_Element are provided partly for uniformity but also because the object
might be large so that it is better to update it in situ. Alternatively, we can use the functions such as
Reference as explained earlier.

6 Queue containers
When the goals of the revision to Ada 2005 were discussed, one of the expectations was that it
would be possible to improve the containers, or maybe introduce variants, that would be task safe.
However, further investigation revealed that this would not be practicable because the number of
ways in which several tasks could interact with a container such as a list or map was large.

However, one data structure that is amenable to controlled access by several tasks is the queue. One
or more tasks can place objects on a queue and one or more can remove them. Moreover, the
existing container library did not include queues as such so we were not tied to any existing
structures.

There are in fact four different queue containers in Ada 2012. These are all for elements of a definite
type. Two are bounded and two are unbounded. And there are priority and synchronized queues. The
names are

A.C.Unbounded_Synchronized_Queues
A.C.Bounded_Synchronized_Queues
A.C.Unbounded_Priority_Queues
A.C.Bounded_Priority_Queues

At one stage it was also planned to have unbounded containers for elements of an indefinite type.
This would then have been similar to the other containers which have unbounded definite,
unbounded indefinite and bounded definite forms. However, there were significant problems with
the Dequeue operation to remove an indefinite object related to the fact that Ada does not have entry
functions. This is easily overcome by making the elements of the queue a holder container as
described in the previous section.

These four different queue containers are all derived from a single synchronized interface declared
in a generic package whose specification is as follows

generic
 type Element_Type is private; -- definite
package A.C.Synchronized_Queue_Interfaces is
 pragma Pure(Synchronized_Queue_Interfaces);

 type Queue is synchronized interface;

 procedure Enqueue(Container: in out Queue; New_Item: in Element_Type) is abstract
 with Synchronization => By_Entry;

24 Rat ionale for Ada 2012: 6a Containers

 procedure Dequeue(Container: in out Queue; Element: out Element_Type) is abstract
 with Synchronization => By_Entry;

 function Current_Use(Container: Queue) return Count_Type is abstract;
 function Peak_Use(Container: Queue) return Count_Type is abstract;
end A.C.Synchronized_Queue_Interfaces;

This generic package declares the synchronized interface Queue and four operations on queues.
These are the procedures Enqueue and Dequeue to add items to a queue and remove items from a
queue respectively; note the aspect Synchronization which ensures that all implementations of these
abstract procedures must be by an entry. There are also functions Current_Use and Peak_Use which
can be used to monitor the number of items on a queue.

The four queue containers are generic packages which themselves declare a type Queue derived in
turn from the interface Queue declared in the package above. We will look first at the synchronized
queues and then at the priority queues.

The package for unbounded synchronized queues is as follows

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new A.C.Synchronized_Queue_Interfaces(<>);
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Synchronized_Queues is
 pragma Preelaborate(Unbounded_Synchronized_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element: out Queue_Interfaces.Element_Type);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Synchronized_Queues;

Note that there are two generic parameters. The first (Queue_Interfaces) has to be an instantiation of
the interface generic Synchronized_Queue_Interfaces; remember that the parameter (<>) means that
any instantiation will do. The second parameter concerns priority and has a default value so we can
ignore it for the moment.

 25

Inside this package there is a protected type Queue which controls access to the queues via its
entries Enqueue and Dequeue. This protected type is derived from Queue_Interfaces.Queue and so
promises to implement the operations Enqueue, Dequeue, Current_Use and Peak_Use of that
interface. And indeed it does implement them and moreover implements Enqueue and Dequeue by
entries as required by the aspect Synchronization.

As an example suppose we wish to create a queue of some records such as

type Rec is record ... end record;

First of all we instantiate the interface package (using named notation for clarity) thus

package Rec_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Rec);

This creates an interface from which we can create various queuing mechanisms for dealing with
objects of the type Rec.

Thus we might write

package Unbounded_Rec_Package is
 new A.C.Unbounded_Synchronized_Queues(Queue_Interfaces => Rec_Interface);

Finally, we can declare a protected object, My_Rec_UQ which is the actual queue, thus

My_Rec_UQ: Unbounded_Rec_Package.Queue;

To place an object on the queue we can write

Enqueue(My_Rec_UQ, Some_Rec);

or perhaps more neatly

My_Rec_UQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_UQ.Dequeue(The_Rec);

where The_Rec is some object of type Rec which thereby is given the value removed.

The statement

N := Current_Use(My_Rec_UQ);

assigns to N the number of items on the queue when Current_Use was called (it could be out of date
by the time it gets into N) and similarly Peak_Use(My_Rec_UQ) gives the maximum number of
items that have been on the queue since it was declared.

This is all task safe because of the protected type; several tasks can place items on the queue and
several, perhaps the same, can remove items from the queue without interference.

It should also be noticed that since the queue is unbounded, we never get blocked by Enqueue since
extra storage is allocated as required just as for the other unbounded containers (I suppose we might
get Storage_Error).

The observant reader will note the mysterious local package called Implementation. This enables the
implementation to declare local types to be used by the protected type. It will be recalled that there
is an old rule that one cannot declare a type within a type. These local types really ought to be within
the private part of the protected type; maybe this is something for Ada 2020.

The package for bounded synchronized queues is very similar. The only differences (apart from its
name) are that it has an additional generic parameter Default_Capacity and the protected type Queue
has an additional discriminant Capacity. So its specification is

26 Rat ionale for Ada 2012: 6a Containers

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new A.C.Synchronized_Queue_Interfaces(<>);
 Default_Capacity: Count_Type;
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Bounded_Synchronized_Queues is
 pragma Preelaborate(Bounded_Synchronized_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Capacity: Count_Type := Default_Capacity,
 Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 ... -- etc as for the unbounded one

end A.C.Bounded_Synchronized_Queues;

So using the same example, we can use the same interface package Rec_Interface. Now suppose we
wish to declare a bounded queue with capacity 1000, we can write

package Bounded_Rec_Package is
 new A.C.Bounded_Synchronized_Queues
 (Queue_Interfaces => Rec_Interface, Default_Capacity => 1000);

Finally, we can declare a protected object, My_Rec_BQ which is the actual queue, thus

My_Rec_BQ: Bounded_Rec_Package.Queue;

And then we can use the queue as before. To place an object on the queue we can write

My_Rec_BQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_BQ.Dequeue(The_Rec);

The major difference is that if the queue becomes full then calling Enqueue will block the calling
task until some other task calls Dequeue. Thus, unlike the other containers, Capacity_Error is never
raised.

Note that having given a value for Default_Capacity, it can be overridden when the queue is
declared, perhaps

My_Rec_Giant_BQ: Bounded_Rec_Package.Queue(Capacity => 100000);

These packages also provide control over the ceiling priority of the protected type. By default it is
Priority'Last. This default can be overridden by our own default when the queue package is
instantiated and can be further specified as a discriminant when the actual queue object is declared.
So we might write

My_Rec_Ceiling_BQ: Bounded_Rec_Package.Queue(Ceiling => 10);

In the case of the bounded queue, if we do not give an explicit capacity then the ceiling has to be
given using named notation. This does not apply to the unbounded queue which only has one
discriminant, so to give that a ceiling priority we can just write

My_Rec_Ceiling_UQ: Unbounded_Rec_Package.Queue(10);

 27

But clearly the use of the named notation is advisable.

Being able to give default discriminants is very convenient. In Ada 2005, this was not possible if the
type was tagged. However, in Ada 2012, it is permitted in the case of limited tagged types and a
protected type is considered to be limited. This was explained in detail in the paper on Structure and
Visibility.

If we wanted to make a queue of indefinite objects, then as mentioned above, there is no special
container for this because Dequeue would be difficult to use since it is a procedure and not a
function. So the actual parameter would have to be constrained which means knowing before the
call the value of the discriminant, tag, or bound of the object which is unlikely. However, we can use
the holder container to wrap the indefinite type so that it looks definite.

So to create a queue for strings, using the example of the previous section, we can write

package Strings is
 new Ada.Containers.Indefinite_Holders(String);

package Strings_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Strings.Holder);

package Unbounded_Strings_Package is
 new A.C.Unbounded_Synchronized_Queues(Queue_Interfaces => Strings_Interface);

and then finally declare the actual queue

My_Strings_UQ: Unbounded_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UQ.Enqueue(To_Holder("rabbit"));

My_Strings_UQ.Enqueue(To_Holder("horse"));

or even

My_Strings_UQ.Enqueue(Element(Kennel));

We now turn to considering the two other forms of queue which are the unbounded and bounded
priority queues.

Here is the specification of the unbounded priority queue

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new
 A.C.Synchronized_Queue_Interfaces(<>);

 type Queue_Priority is private;
 with function Get_Priority(Element : Queue_Interfaces.Element_Type)
 return Queue_Priority
is <>;
 with function Before(Left, Right : Queue_Priority) return Boolean is <>;

 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Priority_Queues is
 pragma Preelaborate(Unbounded_Priority_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

28 Rat ionale for Ada 2012: 6a Containers

 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element: out Queue_Interfaces.Element_Type);

 not overriding
 procedure Dequeue_Only_High_Priority(At_Least: in Queue_Priority;
 Element: in out
Queue_Interfaces.Element_Type;
 Success: out Boolean);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Priority_Queues;

The differences from the synchronized bounded queue are that there are several additional generic
parameters, namely the private type Queue_Priority and the two functions Get_Priority and Before
which operate on objects of the type Queue_Priority, and also that the protected type Queue has an
additional operation, the protected procedure Dequeue_Only_High_Priority.

The general idea is that elements have an associated priority which can be ascertained by calling the
function Get_Priority. The meaning of this priority is given by the function Before.

When we call Enqueue, the new item is placed in the queue taking due account of its priority with
respect to other elements already on the queue. So it will go before all less important elements as
defined by Before. If existing elements already have the same priority then it goes after them.

As expected Dequeue just returns the first item on the queue and will block if the queue is empty.

The new procedure Dequeue_Only_High_Priority (note that it is marked as not overriding unlike
the other operations) is designed to enable us to process items only if they are important enough as
defined by the parameter At_Least. The priority of the first element E on the queue is P as given by
Get_Priority(E). And so if Before(At_Least, P) is false, then the item on the queue is indeed
important enough and so is removed from the queue and the Boolean parameter Success is set to
true. On the other hand if Before(At_Least, P) is true then the item is not removed and Success is
set to false. Note especially that Dequeue_Only_High_Priority never blocks. If the queue is empty,
then Success is just set to false; it never waits for an item to be put on the queue.

As an (unrealistic) example, suppose we decide to make the queue of strings into a priority queue
and that the priority is given by their length so that "rabbit" takes precedence over "horse".
Remember that the type of the elements is Strings.Holder. We can define the priority as given by the
attribute Length so we might as well make the actual type corresponding to Queue_Priority as
simply Natural. Then we define

 29

function S_Get_Priority(H: Strings.Holder) return Natural is
 (H.Element'Length);

function S_Before(L, R: Natural) return Boolean is
 (L > R);

Note the convenient use of expression functions for this sort of thing.

The instantiation now becomes

package Unbounded_Priority_Strings_Package is
 new A.C.Unbounded_Priority_Queues(Queue_Interfaces => Strings_Interface,
 Queue_Priority => Natural,
 Get_Priority => S_Get_Priority,
 Before => S_Before);

and we then declare a queue thus

My_Strings_UPQ: Unbounded_Priority_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UPQ.Enqueue(To_Holder("rabbit"));

My_Strings_UPQ.Enqueue(To_Holder("horse"));

My_Strings_UPQ.Enqueue(To_Holder("donkey"));

My_Strings_UPQ.Enqueue(To_Holder("gorilla"));

The result is that "gorilla" will have jumped to the head of the queue despite having been put on last.
It will be followed by "rabbit" and "donkey" and the "horse" is last.

If we do

My_Strings_UPQ.Dequeue_Only_High_Priority(7, Kennel, OK);

then the "gorilla" will be taken from the queue and placed in the Kennel and OK will be true. But if
we then do it again, nothing will happen because the resulting head of the queue (the "rabbit") is not
long enough.

Finally, we need to consider bounded priority queues. They are exactly like the unbounded priority
queues except that they have the same additional features regarding capacity as found in the
synchronized queues. Thus the only differences (apart from the name) are that there is an additional
generic parameter Default_Capacity and the protected type Queue has an additional discriminant
Capacity.

As a final example we will do a bounded priority queue of records. Suppose the records concern
requests for servicing a dishwasher. They might included usual information such as the model
number, name and address of owner and so on. They might also have a component indicating degree
of urgency, such as

Urgent – machine has vomited dirty water all over floor; housewife/husband having a tantrum,

Major – machine won't do anything; husband refuses to help with washing up,

Minor – machine leaves some dishes unclean, mother-in-law is coming next week,

Routine – machine needs annual service.

So we might have

type Degree is (Urgent, Major, Minor, Routine);

30 Rat ionale for Ada 2012: 6a Containers

type Dish_Job is
 record
 Urgency: Degree;
 Name: ...
 ...
 end record;

First we declare the interface for this type

package Dish_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Dish_Job);

and then we declare the two slave functions for the priority mechanism thus

function W_Get_Priority(X: Dish_Job) return Degree is
 (X.Urgency);

function W_Before(L, R: Degree) return Boolean is
 (Degree'Pos(L) < Degree'Pos(R));

The instantiation is then

package Washer_Package is
 new A.C.Bounded_Priority_Queues(Queue_Interfaces => Dish_Interface,
 Queue_Priority => Degree,
 Get_Priority => W_Get_Priority,
 Before => W_Before,
 Default_Capacity => 100);

and we declare the queue of waiting calls thus

Dish_Queue: Washer_Package.Queue;

which gives a queue with the default capacity of 100.

The staff taking requests then place the calls on the queue by

Dish_Queue.Enqueue(New_Job);

To cope with the possibility that the queue is full, they can do a timed entry call; remember that this
is possible because the procedure Enqueue in the interface package has Synchronization =>
By_Entry.

And then general operatives checking in and taking the next job do

Dish_Queue.Dequeue(Next_Job);

However, at weekends we can suppose that just one operative is on call and deals with only Urgent
and Major calls. He might check the queue from time to time by calling

Dish_Queue.Dequeue_Only_High_Priority(Major, My_Job, Got_Job);

and if Got_Job is false, he can relax and go back to digging the garden or playing golf.

7 Sorting
Ada 2005 provides two containers for sorting arrays; one is for unconstrained array types and one is
for constrained array types. The specification of the unconstrained one is

 31

generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is array (Index_Type range <>) of Element_Type;
 with function "<" (Left, Right: Element_Type) return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort(Container: in out Array_Type);
pragma Pure(Ada.Containers.Generic_Array_Sort);

This does the obvious thing. It sorts the array Container so that the components are in the order
defined by the generic parameter "<".

We could for example sort the letters in a string into alphabetical order. We would declare

procedure String_Sort is
 new Ada.Containers.Generic_Array_Sort(Positive, Character, String);

and then if we had a string such as

Bigpet: String := "rabbit";

we could apply String_Sort to it thus

String_Sort(Bigpet);

and the value in Bigpet will now be "abbirt".

That is all in Ada 2005. However, sorting doesn't just apply to arrays and Ada 2012 provides a much
more flexible approach. An additional container is provided whose specification is

generic
 type Index_Type is (<>);
 with function Before(Left, Right: Index_Type) return Boolean;
 with procedure Swap(Left, Right: in Index_Type);
procedure Ada.Containers.Generic_Sort(First, Last: Index_Type'Base);
pragma Pure(Ada.Containers.Generic_Sort);

This can be used to sort any indexable structure and not just arrays. The generic parameters define
the required ordering through the parameter Before much as expected. The cunning trick however, is
that the means of interchanging two items in the structure is provided by the parameter Swap.

As an illustration we can use this on the array Bigpet. We can use an expression function for
BP_Before and so we write

function BP_Before(L, R: Positive) return Boolean is
 (Bigpet(L) < Bigpet(R));

procedure BP_Swap(L, R: in Positive) is
 Temp: Character;
begin
 Temp := Bigpet(L);
 Bigpet(L) := Bigpet(R);
 Bigpet(R) := Temp;
end BP_Swap;

procedure BP_Sort is
 new Ada.Containers.Generic_Sort(Positive, BP_Before, BP_Swap);

and then we actually do the sort by

BP_Sort(Bigpet'First, Bigpet'Last);

32 Rat ionale for Ada 2012: 6a Containers

That may seem to be rather a struggle but the key point is that the technique can be used to sort
items in any indexable structure such as a vector container.

Suppose we have a number of records of a type Score which might be

type Score is
 record
 N: Natural := 0;
 OS: Other_Stuff;
 end record;

and we declare a vector container to hold such objects thus

package Scores is
 new Ada.Containers.Vectors(Natural, Score);

My_Vector: Scores.Vector;

Now assume that we have added various objects of the type Score to our vector and that we decide
that we would like them sorted into order determined by their component N.

We write

function MV_Before(L, R: Natural) return Boolean is
 (Scores.Element(My_Vector, L).N < Scores.Element(My_Vector, R).N);

procedure MV_Swap(L, R: in Natural) is
begin
 Scores.Swap(My_Vector, L, R);
end MV_Swap;

procedure MV_Sort is
 new Ada.Containers.Generic_Sort(Natural, MV_Before, MV_Swap);

and then we do the sort by

MV_Sort(Scores.First_Index(My_Vector), Scores.Last_Index(My_Vector));

Note that the vectors container package conveniently already has a procedure Swap.

This vector example is not very exciting because it might be recalled that the vectors containers
already have their own internal generic sort. To use it on this example we would have to write

package MV_Sorting is
 new Scores.Generic_Sorting(MV_Before);

MV_Sorting.Sort(My_Vector);

which is somewhat simpler. However, note that this sorts the whole vector. If we only wanted to sort
part of it, say from elements in index range P to Q then it cannot be used. But that would be easy
with the new one since we would simply write

MV_Sort(P, Q);

Note that curiously this does not need to mention My_Vector.

8 Streaming
Ada 2005 was somewhat unclear regarding streaming values from and to containers. This is clarified
in Ada 2012. Thus if V is a vector container then V'Write writes Length(V) elements to the stream
concerned.

 33

An important point is that in order to simplify the interchange between containers, we are assured
that we can stream between them using 'Write and 'Read. Thus we can stream between a bounded
and an unbounded container as well as between two bounded or two unbounded containers provided
of course that the elements all have the same subtype.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions to the Ada Rapporteur Group from SC22/

WG9 for Preparation of Amendment 2 to ISO/IEC 8652.

© 2013 John Barnes Informatics.

34 Rat ionale for Ada 2012: 6a Containers

