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Abstract
This paper describes the mechanisms for including contracts in Ada 2012.

The main feature is that preconditions and postconditions can be given for subprograms. In 
addition, invariants can be given for types and predicates can be given for subtypes.

In attempting to find a satisfactory way of adding these features it was found expedient to introduce 
the concept of an aspect specification for describing properties of entities in general. It is thus 
convenient to describe aspect specifications in this paper.

Keywords: rationale, Ada 2012.

1   Overview of changes
The WG9 guidance document  [1] identifies very large complex systems as a major application area 
for Ada. It further identifies four areas for improvements, one of which is

 Improving the ability to write and enforce contracts for Ada entities (for instance, via 
preconditions).

The idea of contracts has been a cornerstone of programming for many years. The very idea of 
specifying parameters for subroutines is a simple form of contract  going back to languages such as 
Fortran over half a century ago. More recently the idea of contracts has been brought to the fore by 
languages such as SPARK and Eiffel. 

SPARK is, as many readers will be aware, a subset  of Ada with annotations providing assertions 
regarding state embedded as Ada comments. The subset excludes features such as access types and 
dynamic dispatching but  it does include Ravenscar tasking and generics. The subset was chosen to 
enable the contracts to be proved prior to execution. Thus SPARK  is a very appropriate vehicle for 
real programs that just have to be correct because of concerns of safety and security.

Eiffel, on the other hand, is a language with a range of dynamic facilities much as in Ada and has 
found favour as a vehicle for education. Eiffel includes mechanisms describing contracts which are 
monitored on a dynamic basis at program execution.

The goal of this amendment  to Ada is to incorporate matters such as pre- and postconditions but 
with the recognition that they are, like those in Eiffel, essentially for checking at runtime.

Adding pre- and postconditions and similar features has had quite a wide ranging impact  on Ada and 
has required much more flexibility in many areas such as the form of expressions which will be 
addressed in later papers.

The following Ada issues cover the key changes and are described in detail in this paper:

145  Pre- and postconditions

146  Type invariants

153  Subtype predicates

183  Aspect specifications

191  Aliasing predicates

228  Default initial values for types

229  Specifiable aspects

230  Inheritance of null procedures with precondition

243  Clarification of categorization

247  Preconditions, postconditions, multiple inheritance and dispatching calls
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250  Thoughts on type invariants

254  Do we really have contracts right?

267  Improvements for aspect specifications

287  Some questions on subtype predicates

289  Invariants and in mode parameters

297  First_Valid and Last_Valid attributes

These changes can be grouped as follows.

First we lay the syntactic foundations necessary to introduce features such as preconditions by 
discussing aspect specifications which essentially replace or provide an alternative to pragmas for 
specifying many features (183, 229, 243, 267).

Then we discuss the introduction of pre- and postconditions on subprograms including the problems 
introduced by multiple inheritance (145, 230, 247, 254).

Two other related topics are type invariants and subtype predicates which provide additional means 
of imposing restrictions on types (146, 153, 250, 287, 289, 297).

Finally, two auxiliary features are the ability to provide default  values for scalar types and array 
types (228) and means of checking that aliasing does not occur between two objects (191).

2   Aspect specifications
Although in a sense the introduction of aspect  specifications is incidental to the main themes of Ada 
2012 which are contracts, real-time, and containers, the clarity (and some might say upheaval) 
brought by aspect specifications merits their description first.

An early proposal to introduce preconditions was by the use of pragmas. Thus to give a precondition 
not Is_Full to the usual Push procedure acting on a stack S and a corresponding postcondition not 
Is_Empty, it was proposed that this should be written as

pragma Precondition(Push, not Is_Full(S));
pragma Postcondition(Push, not Is_Empty(S));

But this looks ugly and is verbose since it mentions Push in both pragmas. Moreover, potential 
problems with overloading means that it  has to be clarified to which procedure Push  they apply if 
there happen to be several. As a consequence it was decreed that the pragmas had to apply to the 
immediately preceding subprogram. Which of course is not the case with pragma Inline which with 
overloading applies to all subprograms with the given name. Other curiosities include the need to 
refer to the formal parameters of Push (such as S) so that the expression has to be resolved taking 
heed of these even though it is detached from the actual specification of Push.

Other pragmas proposed were Inherited_Precondition and Inherited_Postcondition for use with 
dispatching subprograms. 

So it was a mess and an alternative was sought. The solution which evolved was to get away from 
wretched pragmas in such circumstances. Indeed, the Ada 83 Rationale [2] says "In addition, a 
program text  can include elements that have no influence on the meaning of the program but are 
included as information and guidance for the human reader or for the compiler. These are: 
Comments; Pragmas..."

So pragmas were meant to have no effect  on the meaning of the program. Typical pragmas in Ada 83 
were List, Inline, Optimize and Suppress. But  in later versions of Ada, pragmas are used for all sorts 
of things. The days when pragmas had no effect are long gone!
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The basic need was to tie the pre- and postconditions syntactically to the specification of Push so 
that there could be no doubt as to which subprogram they applied; this would also remove the need 
to mention the name of the subprogram again. And so, as described in the introductory paper (in the 
previous issue of this esteemed journal) we now have

procedure Push(S: in out Stack; X: in Item)
   with
      Pre => not Is_Full(S),
      Post => not Is_Empty(S);

The syntax for aspect specification is

aspect_specification ::=
   with aspect_mark [ => expression] { ,
           aspect_mark [ => expression] }

and this can be used with a variety of structures, subprogram declaration being the example here.

Note especially the use of the reserved word with. Serious attempts were made to think of another 
word so as to avoid using with again but  nothing better was suggested. It might be thought that it 
would be confusing to use with which is firmly associated with context  clauses. However, recall that 
with has also been used to introduce generic formal subprogram parameters without causing 
confusion since 1983. Thus

generic
   with function This ...
procedure That ...

Moreover, Ada 95 introduced the use of with for type extension as in

type Circle is new Object with
   record
      Radius: Float;
   end record;

So in Ada 95 there were already many distinct uses of with and another one will surely do no harm. 
It's a versatile little word.

Any risk of confusion is easily avoided by using a sensible layout. Thus a with clause should start 
on a new line at  the left and aligned with the following unit to which it applies. A formal generic 
parameter starting with with should be aligned with other formal parameters and indented after the 
word generic. In the case of type extension, with should be at the end of the line. Finally, in the case 
of aspect  specifications, with should be at the beginning of a line and indented after the entity to 
which it applies.

Having introduced aspect  specifications which are generally so much nicer than pragmas, it was 
decided to allow aspect specifications for all those situations where pragmas are used and an aspect 
specification makes sense (typically where it applies to an entity rather than a region of text). And 
then to make most of the pragmas obsolete.

Before looking at the old pragmas concerned in detail, two general points are worth noting.

The usual linear elaboration rules do not apply to the expression in an aspect  specification. It is 
essentially sorted out at  the freezing point  of the entity to which the aspect applies. The reason for 
this was illustrated by an example in the Introduction which was

type Stack is private
   with
      Type_Invariant => Is_Unduplicated(Stack);
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The problem here is that the function Is_Unduplicated cannot be declared before that  of the type 
Stack and yet  it  is needed in the aspect specification of the declaration of Stack. So there is a 
circularity which is broken by saying that the elaboration of aspect specifications is deferred.

The other general point is that some aspects essentially take a Boolean value. For example the 
pragma Inline is replaced by the aspect Inline so that rather than writing

procedure Do_It( ... );
pragma Inline(Do_It);

we now write 

procedure Do_It( ... )
   with Inline;

The aspect Inline has type Boolean and so we could write

procedure Do_It( ... )
   with Inline => True;

To have insisted on this would have been both pedantic and tedious and so in the case of a Boolean 
aspect there is a rule that  says that  => True  can be omitted and True is then taken by default. But this 
does not  apply to Default_Value and Default_Component_Value as explained later in the section on 
default initial values.

Note however that omitting the whole aspect by just writing

procedure Do_It( ... );

results of course in the Inline aspect of Do_It being False.

A mad programmer could even use defaults for preconditions and postconditions. Thus writing

procedure Curious( ... )
   with Pre;

in which by default the precondition is taken to be True, results in the Curious procedure always 
being callable.

We will now consider the fate of the various pragmas in Ada 2005. Some are replaced by aspect 
specifications and the pragmas made obsolete (of course, they can still be used, but should be 
discouraged in new programs). Some are paralleled by aspect  specifications and the user left  with 
the choice. Some are unchanged since for various reasons aspect specifications were inappropriate. 
Some pragmas are new to Ada 2012 and born obsolete.

The following are the obsolete pragmas with some examples of corresponding aspect specifications.

The pragmas Inline, No_Return, and Pack are examples having Boolean aspects. We can now write

procedure Do_It( ... )
   with Inline;

procedure Fail( ... )
   with No_Return;

type T is ...
   with Pack;

Some thought was given as to whether the name of the Pack aspect should be Packing rather than 
Pack because this gave better resonance in English. But the possible confusion in having a different 
name to that of the pragma overrode the thought of niceties of (human) language.
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Curiously enough the old pragmas Inline and No_Return could take several subprograms as 
argument but naturally the aspect specification is explicitly given to each one.

If several aspects are given to a procedure then we simply put them together thus

procedure Kill
   with Inline, No_Return;

rather than having to supply several pragmas (which careless program maintenance might have 
scattered around).

In the case of a procedure without a distinct  specification, the aspect specification goes in the 
procedure body before is thus

procedure Do_It( ... )
   with Inline is
   ...
begin
   ...
end Do_It;

This arrangement is because the aspect  specification is very much part of the specification of the 
subprogram. This will be familiar to users of SPARK where we might have

procedure Do_It( ... )
--# global in out Stuff;
is ...

If a subprogram has a distinct specification then we cannot give a language-defined aspect 
specification on the body; this avoids problems of conformance. If there is a stub but 
no specification then any aspect  specification goes on the stub but not  the body. Thus aspect 
specifications go on the first  of specification, stub, and body but  are never repeated. Note also that 
we can give aspect specifications on other forms of stubs and bodies such as package bodies, task 
bodies and entry bodies but none are defined by the language.

In the case of a stub, abstract  subprogram, and null subprogram which never have bodies, the aspect 
specification goes after is separate, is abstract or is null thus 

procedure Action(D: in Data) is separate
   with Convention => C;

procedure Enqueue( ... ) is abstract
   with Synchronization => By_Entry;

procedure Nothing is null
   with Something;

The above example of the use of Synchronization is from the package Synchronized_Queue_
Interfaces, a new child of Ada.Containers as mentioned in the Introduction.

The same style is followed by the newly introduced expression functions thus

function Inc (A: Integer) return Integer is (A + 1)
    with Inline;

Other examples of Boolean aspects are Atomic, Volatile, and Independent. We now write for 
example

Converged: Boolean := False
   with Atomic;
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The aspects Atomic_Components, Volatile_Components and Independent_Components are similar.

The three pragmas Convention, Import and Export are replaced by five aspects, namely Import, 
Export, Convention, External_Name and Link_Name.

For example, rather than, (see [3] page 702)

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data) is separate;
pragma Convention(C, Action);

we now more neatly write

type Response is access procedure (D: in Data)
   with Convention => C;

procedure Set_Click(P: in Response)
   with Import, Convention => C;

procedure Action(D: in Data) is separate
   with Convention => C;

Note that the aspects can be given in any order whereas in the case of pragmas, the parameters had 
to be in a particular order. We could have written with Import => True but  that  would have been 
pedantic. As another example (see the RM 7.4), instead of

CPU_Identifier: constant String(1 .. 8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");

we now have

CPU_Identifier: constant String(1 .. 8)
   with Import, Convention => Assembler, Link_Name => "CPU_ID";

Observe that we always have to give the aspect  name such as Convention whereas with pragmas 
Import and Export, the parameter name Convention was optional. Clearly it  is better to have to give 
the name.

The pragma Controlled which it  may be recalled told the system to keep its filthy garbage collector 
off my nice access type is plain obsolete and essentially abandoned. It is doubted whether it  was 
ever used. The subclause of the RM (13.11.3) relating to this pragma is now used by a new pragma 
Default_Storage_Pools which will be discussed in a later paper.

The pragma Unchecked_Union is another example of a pragma replaced by a Boolean aspect. So we 
now write

type Number(Kind: Precision) is
   record
      ...
   end record
   with Unchecked_Union;

Many obsolete pragmas apply to tasks. The aspect Storage_Size takes an expression of any integer 
type. Thus in the case of a task type without a task definition part  (and thus without is and matching 
end) we write

8 Rat ionale for  Ada 2012: 1 Contracts and aspects



task type T 
   with Storage_Size => 1000;

In the case of a task type with entries we write

task type T 
   with Storage_Size => 1000 is
   entry E ...
   ...
end T;

The interrupt pragmas Attach_Handler and Interrupt_Handler now become

procedure P( ... )
   with Interrupt_Handler;

which specifies that the protected procedure P can be a handler and

procedure P( ... )
   with Attach_Handler => Some_Id;

which actually attaches P to the interrupt Some_Id.

The pragmas Priority and Interrupt_Priority are replaced by corresponding aspect  specifications for 
example

task T 
   with Interrupt_Priority => 31;

protected Object 
   with Priority => 20 is  -- ceiling priority

Note that  a protected type or singleton protected object  always has is and the aspect  specification 
goes before it.

Similarly, instead of using the pragma Relative_Deadline we can write

task T 
   with Relative_Deadline => RD;

The final existing pragma that is now obsolete is the pragma Asynchronous used in the Distributed 
Systems Annex and which can be applied to a remote procedure or remote access type. It  is replaced 
by the Boolean aspect Asynchronous.

That covers all the existing Ada 2005 pragmas that are now obsolete. 

Two new pragmas in Ada 2012 are CPU and Dispatching_Domain but these are born obsolete. Thus 
we can write either of

task My Task is
   pragma CPU(10);

or

task My_Task 
   with CPU => 10 is

and similarly

task Your_Task is
   pragma Dispatching_Domain(Your_Domain);

or
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task Your_Task 
   with Dispatching_Domain => Your_Domain is

The reason for introducing these pragmas is so that existing tasking programs with copious use of 
pragmas such as Priority can use the new facilities in a similar style. It was considered inelegant to 
write

task My_Task 
   with CPU => 10 is
   pragma Priority(5);

and a burden to have to change programs to

task My_Task 
   with CPU => 10, Priority => 5 is

So existing programs, can be updated to

task My_Task is
   pragma CPU(10);
   pragma Priority(5);

(One other pragma that was never born at  all was Implemented which turned into the aspect 
Synchronization  often used to ensure that an abstract procedure is actually implemented by an entry 
as illustrated earlier.)

A number of existing pragmas are paralleled by aspect specifications but the pragmas are not  made 
obsolete. Examples are the pragmas relating to packages such as Pure, Preelaborate, 
Elaborate_Body and so on.

Thus we can write either of 

package P is
   pragma Pure(P);
end P;

or

package P 
   with Pure is
end P;

The author prefers the former but some avant garde programmers might like to use the latter.

Note that  Preelaborable_Initialization is unusual in that it cannot be written as an aspect specification 
for reasons that need not bother us. The inquisitive reader can refer to AI-229 for the details.

Finally, there are many pragmas that do not relate to any particular entity and so for which an aspect 
specification would be impossible. These include Assert and Assertion_Policy, Suppress and 
Unsuppress, Page and List, Optimize and Restrictions.

As well as replacing pragmas, aspect specifications can be used instead of attribute definition 
clauses. For example rather than

type Byte is range 0 .. 255;

followed (perhaps much later) by

for Byte'Size use 8;

we can now write
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type Byte is range 0 .. 255
   with Size => 8;

Similarly

type My_Float is digits 20
   with Alignment => 16;

Loose_Bits: array (1 .. 10) of Boolean
   with Component_Size => 4;

type Cell_Ptr is access Cell
   with Storage_Size => 500 * Cell'Size / Storage_Unit, Storage_Pool => Cell_Ptr_Pool;

S: Status
   with Address => 8#100#;

type T is delta 0.1 range –1.0 .. +1.0
   with Small => 0.1;

But we cannot use this technique to replace an enumeration representation clause or record 
representation clause. Thus although we can write

type RR is
   record
      Code: Opcode;
      R1: Register;
      R2: Register;
   end record
      with Alignment => 2, Bit_Order => High_Order_First;

the layout information has to be done by writing

for RR use
   record
      Code at 0 range 0 .. 7;
      R1 at 1 range 0 .. 3;
      R2 at 1 range 4 .. 7;
   end record;

It  is interesting to note that  attribute definition clauses were not  made redundant in the way that 
many pragmas were made redundant. This is because there are things that one can do with attribute 
definition clauses that  cannot be done with aspect  specifications. For example a visible type can be 
declared in a visible part and then details of its representation can be given in a private part. Thus we 
might have

package P is
   type T is ...
private
   Secret_Size: constant := 16;
   for T'Size use Secret_Size;
end P;

It's not that convincing because the user can use the attribute T'Size to find the Secret_Size anyway. 
But  some existing programs are structured like that and hence the facility could hardly be made 
redundant.

The examples above have shown aspect specifications with the following constructions: subprogram 
declaration, subprogram body, stub, abstract  subprogram declaration, null procedure declaration, full 
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type declaration, private type declaration, object declaration, package declaration, task type 
declaration, single task declaration, and single protected declaration. In addition they can be used 
with subtype declaration, component declaration, private extension declaration, renaming 
declaration, protected type declaration, entry declaration, exception declaration, generic declaration, 
generic instantiation, and generic formal parameter declaration. 

The appropriate layout should be obvious. In the case of a large structure such as a package 
specification and any body, the aspect specification goes before is. But when something is small and 
all in one piece such as a procedure specification, stub, null procedure, object declaration or generic 
instantiation any aspect  specification goes at the end of the declaration; it  is then more visible and 
less likely to interfere with the layout of the rest of the structure.

In some cases such as exception declarations there are no language defined aspects that  apply but 
implementations might define their own aspects.

3   Preconditions and postconditions
We will look first  at the simple case when inheritance is not involved and then look at  more general 
cases. Specific preconditions and postconditions are applied using the aspects Pre and Post 
respectively whereas class wide conditions are applied using the aspects Pre'Class and Post'Class.

To apply a specific precondition Before and/or a specific postcondition After to a procedure P we 
write

procedure P(P1: in T1; P2: in out T2; P3: out T3)
   with Pre => Before,
           Post => After;

where Before and After are expressions of a Boolean type (that is of type Boolean  or a type derived 
from it).

The precondition Before and the postcondition After can involve the parameters P1 and P2 and P3 
and any visible entities such as other variables, constants and functions. Note that  Before can 
involve an out parameter such as P3 (if necessary it will be copied in to enable this).

The attribute X'Old will be found useful in postconditions; it  denotes the value of X on entry to P. 
Old is typically applied to parameters of mode in out such as P2 but it  can be applied to any visible 
entity such as a global variable. This can be useful for monitoring global variables which are 
updated by the call of P. But  note that 'Old can only be used in postconditions and not in arbitrary 
text and it cannot be applied to objects of a limited type.

Perhaps surprisingly 'Old can also be applied to parameters of mode out. For example, in the case of 
a parameter of a record type that  is updated as a whole, nevertheless we might  want to check that  a 
particular component has not  changed. Thus in updating some personal details, such as address and 
occupation, we might want  to ensure that the person's date of birth and sex are not  tampered with by 
writing

Post => P.Sex = P.Sex'Old and P.Dob = P.Dob'Old

In the case of an array, we can write A(I)'Old which means the original value of A(I). But A(I'Old) is 
different since it is the component of the final value of A but indexed by the old value of I.

Remember that the result of a function is an object  and so 'Old can be applied to it. Note carefully 
the difference between F(X)'Old and F(X'Old). The former applies F to X on entry to the subprogram 
and saves it. The latter saves X and applies F to it  when the postcondition is evaluated. These could 
be different because the function F might also involve global variables which have changed. 
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Generally 'Old can be applied to anything but there are restrictions on its use in certain conditional 
structures in which it  can only be applied to statically determined objects. This is illustrated by the 
following (based on an example in the AARM)

Table: array (1 .. 10) of Integer := ... ;
procedure P(I: in out Natural)
   with Post => I > 0 and then Table(I)'Old = 1;    -- illegal

The programmer's intent  is that  the postcondition uses a short  circuit  form to avoid evaluating 
Table(I) if I is not positive on exit  from the procedure. But, 'Old is evaluated and stored on entry and 
this could raise Constraint_Error because I might for example be zero. This is a conundrum since the 
compiler cannot know whether the value of Table(I) will be needed and also I can change so it 
cannot know which I anyway. So such structures are forbidden.

(The collector of Ada curiosities might be amused to note that we can write

subtype dlo is Character;

and then in a postcondition we could have

dlo'('I')'old

which is palindromic. If the subtype were blo rather than dlo then the expression would be mirror 
reflective!

I am grateful to Jean-Pierre Rosen for this example.)

In the case of a postcondition applying to a function F, the result of the function is denoted by the 
attribute F'Result. Again this attribute can only be used in postconditions.

Some trivial examples of declarations of a procedure Pinc  and function Finc  to perform an increment 
are

procedure Pinc(X: in out Integer)
    with Post => X = X'Old+1;

function Finc(X: Integer) return Integer
   with Post => Finc'Result = X'Old+1;

Preconditions and postconditions are controlled by the pragma Assertion_Policy. They are enabled 
by 

pragma Assertion_Policy(Check);

and disabled by using parameter Ignore. It  is the value in effect at  the point of the subprogram 
declaration that  matters. So we cannot have a situation where the policy changes during the call so 
that preconditions are switched on but postconditions are off or vice versa.

And so the overall effect of calling P with checks enabled is roughly that, after evaluating any 
parameters at the point of call, it as if the body were

if not Before then   -- check precondition
   raise Assertion_Error;
end if;

evaluate and store any 'Old stuff;

call actual body of P;

if not After then   -- check postcondition
   raise Assertion_Error;
end if;
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copy back any by-copy parameters;

return to point of call;

Occurrences of Assertion_Error are propagated and so raised at  the point of call; they cannot be 
handled inside P. Of course, if the evaluation of Before  or After themselves raise some exception 
then that will similarly be propagated to the point of call.

Note that conditions Pre and Post can also be applied to entries.

Before progressing to the problems of inheritance it is worth reconsidering the purpose of pre- and 
postconditions.

 A precondition Before is an obligation on the caller to ensure that it  is true before the 
subprogram is called and it  is a guarantee to the implementer of the body that it  can be relied 
upon on entry to the body.

 A postcondition After is an obligation on the implementer of the body to ensure that  it  is true on 
return from the subprogram and it  is a guarantee to the caller that  it  can be relied upon on 
return.

The symmetry is neatly illustrated by the diagram below

Pre Post
Call writer obligation guarantee
Body writer guarantee obligation

The simplest  form of inheritance occurs with derived types that are not tagged. Suppose we declare 
the procedure Pinc as above with the postcondition shown and supply a body

procedure Pinc(X: in out Integer) is
begin
   X := X+1;
end Pinc;

and then declare a type

type Apples is new Integer;

then the procedure Pinc is inherited by the type Apples. So if we then write

No_Of_Apples: Apples;
...
Pinc(No_Of_Apples);

what actually happens is that the code of the procedure Pinc originally written for Integer is called 
and so the postcondition is inherited automatically. 

If the user now wants to add a precondition to Pinc  that the number of apples is not negative then a 
completely new subprogram has to be declared which overrides the old one thus

procedure Pinc(X: in out Apples)
    with Pre => X >= 0,
            Post => X = X'Old+1;

and a new body has to be supplied (which will of course in this curious case be essentially the same 
as the old one). So we cannot inherit an operation and change its conditions at the same time.
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We now turn to tagged types and first continue to consider the specific conditions Pre and Post. As a 
perhaps familiar example, consider the hierarchy consisting of a type Object and then direct 
descendants Circle, Square and Triangle. 

Suppose the type Object is

type Object is tagged
   record
      X_Coord, Y_Coord: Float;
   end record;

and we declare a function Area thus

function Area(O: Object) return Float
   with Pre => O.X_Coord > 0.0,
           Post => Area'Result = 0.0;

This imposes a requirement on the caller that  the function is called only with objects with positive x-
coordinate (for some obscure reason), and a requirement on the implementer of the body that  the 
area is zero (raw objects are just points and have no area).

If we now declare a type Circle as

type Circle is new Object with 
   record
      Radius: Float;
   end record;

and override the inherited function Area then the Pre and Post conditions on Area for Object are not 
inherited and we have to supply new ones, perhaps

function Area(C: Circle) 
   with Pre => C.X_Coord – C.Radius > 0.0,
           Post => Area'Result > 3.1 * C.Radius**2 and
                        Area'Result < 3.2 * C.Radius**2;

The conditions ensure that all of the circle is in the right half-plane and that the area is about right!

So the rules so far are exactly as for the untagged case. If an operation is not  overridden then it 
inherits the conditions from its ancestor but if it  is overridden then those conditions are lost  and new 
ones have to be supplied. And if no new ones are supplied then they are by default taken to be True.

In conclusion, the conditions Pre and Post are very much part of the actual body. One consequence 
of this is that an abstract subprogram cannot  have Pre and Post conditions because an abstract 
subprogram has no body.

We now turn to the class wide conditions Pre'Class and Post'Class which are subtly different. The 
first  point  is that the class wide ones apply to all descendants as well even if the operations are 
overridden. In the case of Post'Class if an overridden operation has no condition given then it  is 
taken to be True (as in the case of Post). But in the case of Pre'Class, if an overridden operation has 
no condition given then it  is only taken to be True if no other Pre'Class applies (no other is 
inherited). We will now look at the consequences of these rules.

It  might be that we want  certain conditions to hold throughout  the hierarchy, perhaps that  all objects 
concerned have a positive x-coordinate and nonnegative area. In that case we can use class wide 
conditions. 
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function Area(O: Object) return Float
   with Pre'Class => O.X_Coord > 0.0,
           Post'Class => Area'Result >= 0.0;

Now when we declare Area for Circle, Pre'Class and Post'Class from Object will be inherited by the 
function Area for Circle. Note that within a class wide condition a formal parameter of type T is 
interpreted as of T'Class. Thus O is of type Object'Class and thus applies to Circle. The inherited 
postcondition is simply that the area is not negative and uses the attribute 'Result.

If we do not supply conditions for the overriding Area for Circle and simply write

overriding
function Area(C: Circle) return Float;

then the precondition inherited from Object still applies. In the case of the postcondition not  only is 
the postcondition from Object inherited but there is also an implicit postcondition of True. So the 
applicable conditions for Area for Circle are

Pre'Class for Object

Post'Class for Object
True

Suppose on the other hand that we give explicit Pre'Class and Post'Class for Area for Circle thus

overriding
function Area(C: Circle) return Float
   with Pre'Class => ... ,
           Post'Class => ... ;

We then find that the applicable conditions for Area for Circle are

Pre'Class for Object
Pre'Class for Circle

Post'Class for Object
Post'Class for Circle

Incidentally, it  makes a lot  of sense to declare the type Object as abstract  so that  we cannot  declare 
pointless objects. In that  case Area might as well be abstract as well. Although we cannot give 
conditions Pre and Post for an abstract  operation we can still give the class wide conditions 
Pre'Class and Post'Class.

If the hierarchy extends further, perhaps Equilateral_Triangle  is derived from Triangle which itself is 
derived from Object, then we could add class wide conditions to Area for Triangle  and these would 
also apply to Area for Equilateral_Triangle. And we might add specific conditions for Equilateral_
Triangle as well. So we would then find that the following apply to Area for Equilateral_Triangle

Pre'Class for Object
Pre'Class for Triangle
Pre for Equilateral Triangle

Post'Class for Object
Post'Class for Triangle
Post for Equilateral_Triangle

The postconditions are quite straightforward, all apply and all must be true on return from the 
function Area. The compiler can see all these postconditions when the code for Area is compiled and 
so they are all checked in the body. Note that  any default True makes no difference because B and 
True is the same as B.
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However, the rules regarding preconditions are perhaps surprising. The specific precondition Pre for 
Equilateral_Triangle must be true (checked in the body) but  so long as just one of the class wide 
preconditions Pre'Class for Object and Triangle is true then all is well. Note that  class wide 
preconditions are checked at  the point  of call. Do not get  confused over the use of the word apply. 
They all apply but only the ones seen at the point of call are actually checked.

The reason for this state of affairs concerns dispatching and especially redispatching. Consider the 
case of Ada airlines which has Basic, Nice and Posh passengers. Basic passengers just get a seat. 
Nice passengers also get a meal and Posh passengers also get  a limo. The types Reservation, 
Nice_Reservation and Posh_Reservation form a hierarchy with Nice_Reservation being extended 
from Reservation and so on. The facilities are assigned when a reservation is made by calling an 
appropriate procedure Make thus

procedure Make(R: in out Reservation) is
begin
   Select_Seat(R);
end Make;

procedure Make(NR: in out Nice_Reservation) is
begin
   Make(Reservation(NR));
   Order_Meal(NR);
end Make;

procedure Make(PR: in out Posh_Reservation) is
   Make(Nice_Reservation(PR));
   Arrange_Limo(PR);
end Make;

Each Make calls its ancestor in order to avoid duplication of code and to ease maintenance.

A variation involving redispatching introduces two different procedures Order_Meal, one for Nice 
passengers and one for Posh passengers. We then need to ensure that  Posh passengers get a posh 
meal rather than a nice meal. We write

procedure Make(NR: in out Nice_Reservation) is
begin
   Make(Reservation(NR));
      -- now redispatch to appropriate Order_Meal
   Order_Meal(Nice_Reservation'Class(NR));  
end Make;

Now suppose we have a precondition Pre'Class on Order_Meal  for Nice passengers and one on 
Order_Meal  for Posh passengers. The call of Order_Meal sees that it  is for Nice_Reservation'Class 
and so the code includes a test  of Pre'Class on Nice_Reservation. It  does not necessarily know of 
the existence of the type Posh_Reservation  and cannot check Pre'Class on that Order_Meal. At a 
later date we might  add Supersonic passengers (RIP Concorde) and this can be done without 
recompiling the rest of the system so it certainly cannot  do anything about checking Pre'Class on 
Order_Meal  for Supersonic_Reservation which does not exist  when the call is compiled. So when 
we eventually get  to the body of one of the procedures Order_Meal  all we know is that  some 
Pre'Class on Order_Meal has been checked somewhere. And that  is all that  the writer of the code of 
Order_Meal  can rely upon. Note that  nowhere does the compiled code actually "or" a lot of 
preconditions together.

In summary, class wide preconditions are checked at the point  of call. Class wide postconditions and 
both specific pre- and postconditions are checked in the actual body.

 17



A small point to remember is that a class wide operation such as 

procedure Do_It(X: in out T'Class); 

is not  a primitive operation of T and so although we can specify Pre and Post for Do_It we cannot 
specify Pre'Class and Post'Class for Do_It.

We noted above that  the aspects Pre and Post cannot be specified for an abstract subprogram 
because it doesn't have a body. They cannot be given for a null procedure either, since we want all 
null procedures to be identical and do nothing and that includes no conditions.

We now turn to the question of multiple inheritance and progenitors.

In the case of multiple inheritance we have to consider the so-called Liskov Substitution Principle 
(LSP). The usual consequence of LSP is that  in the case of preconditions they are combined with 
"or" (thus weakening) and the rule for postconditions is that  they are combined with "and" (thus 
strengthening). But the important  thing is that  a relevant  concrete operation can be substituted for 
the corresponding operations of all its relevant ancestors.

In Ada, a type T can have one parent and several progenitors. Thus we might have

type T is new P and G1 and G2 with ...

where P is the parent  and G1 and G2 are progenitors. Remember that a progenitor cannot  have 
components and cannot have concrete operations (apart  possibly for null procedures). So the 
operations of the progenitors have to be abstract or null and cannot  have Pre and Post conditions. 
However, they can have Pre'Class and Post'Class conditions. It  is possible that the same operation 
Op is primitive for more than one of these. Thus the progenitors G1 and G2 might both have an 
operation Op thus

procedure Op(X: G1) is abstract;
procedure Op(X: G2) is abstract;

If they are conforming (as they are in this case) then the one concrete operation Op of the type T 
derived from both G1 and G2 will implement both of these. (If they don't conform then they are 
simply overloadings and two operations of T  are required). Hence the one Op for T  can be 
substituted for the Op of both G1 and G2 and LSP is satisfied.

Now suppose both abstract operations have pre- and postconditions. Take postconditions first, we 
might have

procedure Op(X: G1) is abstract
   with Post'Class => After1;

procedure Op(X: G2) is abstract
   with Post'Class => After2;

Users of the Op of G1 will expect the postcondition After1  to be satisfied by any implementation of 
that Op. So if using the Op of T  which implements the abstract Op of G1, it follows that Op of T 
must satisfy the postcondition After1. By a similar argument regarding G2, it  must  also satisfy the 
postcondition After2.

It thus follows that the effective postcondition on the concrete Op of T is as if we had written

procedure Op(X: T)
   with Post'Class => After1 and After2;

But of course we don't actually have to write that since we simply write

overriding
procedure OP(X: T);
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and it  automatically inherits both postconditions and the compiler inserts the appropriate code in the 
body. Remember that if we don't  give a condition then it  is True by default  but  anding in True  makes 
no difference. 

If we do provide another postcondition thus

overriding
procedure OP(X: T)
   with Post'Class => After_T;

then the overall class wide postcondition to be checked before returning will be After1 and After2 
and After_T.

Now consider preconditions. Suppose the declarations of the two versions of Op are

procedure Op(X: G1) is abstract
   with Pre'Class => Before1;

procedure Op(X: G2) is abstract
   with Pre'Class => Before2;

Assuming that there is no corresponding Op for P, we must provide a concrete operation for T thus

overriding
procedure Op(X: T)
   with Pre'Class => Before_T;

This means that at a point  of call of Op  the precondition to be checked is Before_T or Before1 or 
Before2. As long as this is satisfied it  does not matter that  Before1 and Before2 might have been 
different. 

If we do not  provide an explicit  Pre'Class then the condition to be checked at the point  of call is 
Before1 or Before2. 

An interesting case arises if a progenitor (say G1) and the parent have a conforming operation. Thus 
suppose P itself has the operation

procedure Op(X: P);

and moreover that  the operation is not  abstract. Then (ignoring preconditions for the moment) this 
Op for P is inherited by T  and thus provides a satisfactory implementation of Op for G1 and all is 
well. 

Now suppose that Op for P has a precondition thus

procedure OP(X: P)
   with Pre'Class => Before_P;

and that Before_P and Before1 are not the same. If we do not  provide an explicit  overriding for Op, 
it  would be possible to call the body of Op for P when the precondition it  knows about, Before_P, is 
False (since Before1 being True would be sufficient  to allow the call to proceed). This would 
effectively mean that  no class wide preconditions could be trusted within the subprogram body and 
that would be totally unacceptable. So in this case there is a rule that an explicit overriding is 
required for Op for T. 

If Op  for P is abstract then a concrete Op for T must be provided and the situation is just as in the 
case for the Op for G1 and G2.

If T  itself is declared as abstract (and P is not abstract  and Op  for P is concrete) then the inherited 
Op for T is abstract. 
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(These rules are similar to those for functions returning a tagged type when the type is extended; it 
has to be overridden unless the type is abstract in which case the inherited operation is abstract.)

We finish this somewhat mechanical discussion of the rules by pointing out that if silly inappropriate 
preconditions are given then we will get a silly program.

At the end of the day, the real point is that  programmers should not write preconditions that are not 
sensible and sensibly related to each other. Because of the generality, the compiler cannot  tell so 
stupid things are hard to prohibit. There is no defence against stupid programmers.

A concrete example using simple numbers might  help. Suppose we have a tagged type T1 and an 
operation Solve which takes a parameter of type T1 and perhaps finds the solution to an equation 
defined by the components of T1. Solve delivers the answer in a parameter A with a parameter D 
giving the number of significant digits required in the answer. Also we impose a precondition on the 
number of digits D thus 

type T1 is tagged record ...

procedure Solve(X: in T1; A: out Float; D: in Integer)
   with Pre'Class => D < 5;

The intent here is that  the version of Solve for the type T1 always works if the number of significant 
digits asked for is less than 5.

Now suppose we declare a type T2 derived from T1 and that we override the inherited Solve with a 
new version that works if the number of significant digits asked for is less than 10

type T2 is new T1 with ...

overriding
procedure Solve(X: in T2; A: out Float; D: in Integer)
   with Pre'Class => D < 10;

And so on with a type T3

type T3 is new T2 with ...

overriding
procedure Solve(X: in T3; A: out Float; D: in Integer)
   with Pre'Class => D < 15;

Thus we have a hierarchy of algorithms Solve with increasing capability.

Now suppose we have a dispatching call

An_X: T1'Class := ... ;
Solve(An_X, Answer, Digs);

this will dispatch to one of the Solve  procedures but  we do not know which one. The only 
precondition that applies is that on the Solve for T1 which is D < 5. That  is fine because D < 5 
implies D < 10 and D < 15 and so on. Thus the preconditions work because the hierarchy weakens 
them.

Similarly, if we have

An_X: T2'Class := ... ;
Solve(An_X, Answer, Digs);

then it  will dispatch to a Solve for one of T2, T3, ..., but not to the Solve for T1. The applicable 
preconditions are D < 5 and D < 10 and these are notionally ored together which means D < 10 is 
actually required. To see this suppose we supply D = Digs = 7. Then D < 5 is False but  D < 10 is 
True so by oring False and True we get True, so the call works.
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On the other hand if we write

An_X: T2 := ... ;
Solve(An_X, Answer, Digs);

then no dispatching is involved and the Solve for T2 is called. But  both class wide preconditions D < 
5 and D < 10 apply and so again the resulting ored precondition that is required is D < 10.

Now it  should be clear that if the preconditions do not form a weakening hierarchy then we will be 
in trouble. Thus if the preconditions were D < 15 for T1, D < 10 for T2, and D < 5 for T3, then 
dispatching from the root  will only check D < 15. However, we could end up calling the Solve for 
T2 which expects the precondition D < 10 and this might not be satisfied. 

Care is thus needed with preconditions that they are sensibly related.

4   Type invariants
Type invariants are designed for use with private types where we want some relationship to always 
hold between components of the type. Like pre- and postconditions there are both specific invariants 
that can be applied to any type and class wide invariants that can only be applied to tagged types.

One example mentioned above and discussed in the Introduction was a type Stack with specific 
invariant Is_Unduplicated. Thus we write

type Stack is private
   with Type_Invariant  => Is_Unduplicated(Stack);

After calls of Push and Pop and any other operations that manipulate the stack, the function 
Is_Unduplicated is called to ensure that there are no duplicates on the stack. 

The monitoring is controlled by the pragma Assertion_Policy in the same way as pre- and 
postconditions. If an invariant fails (that is, has value False) then Assertion_Error is raised.

The invariant Is_Unduplicated is a curious example because it cannot be violated by Pop anyway 
since if there were no duplicates then removing the top item cannot make one appear. 

Moreover, Push needs to ensure that the item to be added is not a duplicate of one on the stack 
already and so essentially much of the checking is repeated. Indeed, when writing Push we should 
be able to assume that  no items are already duplicated and hence all we need to do is check that the 
new item to be added is not  equal to one of the existing items (so n comparisons). However, a 
general function Is_Unduplicated will need to compare all pairs and thus require a double loop (so 
n(n+1)/2 comparisons). 

The reader is invited to meditate over this conundrum. One's first  reaction might  be that this is a bad 
example. However, one way to ensure reliability is to introduce redundancy. Thus if the encoding of 
Is_Unduplicated and Push are done independently then there is an increased probability that  any 
error will be detected. 

The aspect  Type_Invariant requires an expression of a Boolean type. The mad programmer could 
therefore also write

type Stack is private
   with Type_Invariant;

which would thus be True by default and so useless! Actually it might  not  be entirely useless since it 
might  act as a placeholder for an invariant  to be defined later and meanwhile the program will 
compile and execute.

Type invariants are useful whenever a type is more than just  the sum of its components. Note 
carefully that the invariant  may not  hold when an object is being manipulated by a subprogram 
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having access to the full type. In the case of Push and Pop and the invariant  Is_Unduplicated this 
will not happen but consider the following simple example.

Suppose we have a type Point which describes the position of an object in a plane. It  might  simply 
be

type Point is
   record
      X, Y: Float;
   end record;

Now suppose we want to ensure that all points are within a unit  circle. We could ensure that a point 
lies within a square by means of range constraints by writing

type Point is
   record
      X, Y: Float range –1.0 .. +1.0;
   end record;

but we need to ensure that X**2 + Y**2 is not  greater than 1.0, and that cannot  be done by individual 
constraints. So we might declare a type Disc_Pt with an invariant as follows

package Places is

   type Disc_Pt is private
      with Type_Invariant => Check_In(Disc_Pt);

   function Check_In(D: Disc_Pt) return Boolean
      with Inline;
   ...   -- various operations on disc points
private

   type Disc_Pt is
      record
         X, Y: Float range –1.0 .. +1.0;
      end record;

   function Check_In(D: Disc_Pt) return Boolean is
      (D.X**2 + D.Y**2 <= 1.0);

end Places;

Note that we have used an expression function for Check_In. Expression functions were outlined in 
the Introduction and will be discussed in detail in the next paper. They are very useful for small 
functions in situations like this and typically will be given the aspect Inline on the specification  as 
shown.

Now suppose that we wish to make available to the user a procedure Flip that  reflects a Disc_Pt in 
the line x = y, or in other words interchanges its X and Y components. The body might be

procedure Flip(D: in out Disc_Pt) is
   T: Float;   -- temporary
begin
   T := D.X;  D.X := D.Y;  D.Y := T;
end Flip;

This works just fine but note that  just  before the assignment  to D.Y, it  is quite likely that  the 
invariant does not hold. If the original value of D was (0.1, 0.8) then at  the intermediate stage it  will 
be (0.8, 0.8) and so well outside the unit circle.
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So there is a general principle that an intermediate value not visible externally need not  satisfy the 
invariant. There is an analogy with numeric types. The intermediate value of an expression can fall 
outside the range of the type but will be within range when the final value is assigned to the object. 
For example, suppose type Integer is 16 bits (a small machine) but  the registers perform arithmetic 
in 32 bits, then a statement such as

J := K * L / M;

could easily produce an intermediate result K * L outside the range of Integer but  the final value 
could be in range.

In many cases it will not be necessary for the user to know that a type invariant  applies to the type; it 
is after all merely a detail of the implementation. So perhaps the above should be rewritten as 

package Places is

   type Disc_Pt is private;
   ...   -- various operations on disc points
private

   type Disc_Pt is
      record
         X, Y: Float range –1.0 .. +1.0;
      end record
      with Type_Invariant => Disc_Pt.X**2 + Disc_Pt.Y**2 <= 1.0;

end Places;

In this case we do not need to declare a function Check_In  at all. Note the use of the type name 
Disc_Pt in the invariant expression. This is another example of the use of a type name to denote a 
current instance (this is familiar from way back in Ada 83 with task type names).

We now turn to consider the places where a type invariant  on a private type T  is checked. These are 
basically when it can be changed from the point of view of the outside user. They are

▪ after default initialization of an object of type T,

▪ after a conversion to type T,

▪ after assigning to a view conversion involving descendants and ancestors of type T,

▪ after a call of T'Read or T'Input,

▪ after a call of a subprogram declared in the immediate scope of T  and visible outside that has a 
parameter (of any mode including an access parameter) with a part  of type T  or returns a result 
with a part of type T.

Note that by saying a part of type T, the checks not  only apply to subprograms with parameters and 
results of type T but they also apply to parameters and results whose components are of the type T  or 
are view conversions involving the type T. Observe that parameters of mode in are also checked 
because, as is well known, there are accepted techniques for changing such parameters.

Beware, however, that  the checks do not extend to deeply nested situations, such as components 
with components that are access values to objects that themselves involve type T or worse. Thus 
there are holes in the protection offered by type invariants. However, if the types are straightforward 
and the writer does not  do foolish things like surreptitiously exporting access types referring to T 
then all will be well. It is another example of there being no defence against foolish programmers.
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The checks on type invariants regarding parameters and results can be conveniently implemented in 
the body of the subprogram in much the same way as for postconditions. This saves duplicating the 
code of the tests at each point of call.

If a subprogram such as Flip which is visible outside is called from inside then the checks still apply. 
This is not  strictly necessary of course, but  fits the simple model of the checks being in the body and 
so simplifies the implementation.

If an untagged type is derived then any existing specific invariant is inherited for inherited 
operations. However, a further invariant  can be given as well and both will apply to the inherited 
operations. This fits in with the model of view conversions used to describe how an inherited 
subprogram works on derivation. The parameters of the derived type are view converted to the 
parent type before the body is called and back again afterwards. As mentioned above, view 
conversions are one of the places where invariants are checked.

However, if we add new operations then the old invariant does not apply to them. In truth, the 
specific invariant  is not  really inherited at all; it just comes along for free with the inherited 
operations that are not overridden. So if we do add new operations then we need to state the total 
invariant required.

Note that this is not quite the same model as specific postconditions. We cannot add postconditions 
to an inherited operation but  have to override it and then any specific postconditions on the parent 
are lost. In any event, in both cases, if we want  to use inheritance then we should really use tagged 
types and class wide aspects.

So there is also an aspect Type_Invariant'Class for use with private tagged types. The distinction 
between Type_Invariant and Type_Invariant 'Class has similarities to that  between Post and 
Post'Class.

The specific aspect Type_Invariant can be applied to any type but Type_Invariant'Class can only be 
applied to tagged types. A tagged type can have both an aspect Type_Invariant and 
Type_Invariant'Class.

Type_Invariant cannot be applied to an abstract type.

Type_Invariant'Class is inherited by all derived types; it can also be applied to an abstract type.

Note the subtle difference between Type_Invariant and Type_Invariant'Class. Type_Invariant'Class is 
inherited for all operations of the type but as noted above Type_Invariant is only incidentally 
inherited by the operations that are inherited.

An interesting rule is that  Type_Invariant'Class cannot be applied to a full type declaration which 
completes a private type such as Disc_Pt in the example above. This is because the writer of an 
extension will need to see the applicable invariants and this would not  be possible if they were in the 
private part.

So if we have a type T with a class wide invariant thus

type T is tagged private
   with Type_Invariant'Class => F(T);
procedure Op1(X: in out T);
procedure Op2(X: in out T);

and then write

type NT is new T with private
   with Type_Invariant'Class => FN(NT);
overriding
procedure Op2(X: in out NT);
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not overriding
procedure Op3(X: in out NT);

then both invariants F and FN will apply to NT.

Note that  the procedure Op1 is inherited unchanged by NT, procedure Op2 is overridden for NT  and 
procedure Op3 is added.

Now consider various calls. The calls of Op1 will involve view conversions as mentioned earlier and 
these will apply the checks for FN and the inherited body will apply the checks for F. The body of 
Op2 will directly include checks for F and FN as will the body of Op3. So the invariant  F is properly 
inherited and all is well.

Remember that  if the invariants were specific and not  class wide then although Op1 will have 
checks for F and FN, Op2 and Op3 will only check FN.

In the case of the type Disc_Pt we might  decide to derive a type which requires that  all values are 
not only inside the unit circle but outside an inner circle – in other words in an annulus or ring. We 
use the class wide invariants so that the parent package is

package Places is

   type Disc_Pt is tagged private
      with Type_Invariant'Class => Check_In(Disc_Pt);

   function Check_In(D: Disc_Pt) return Boolean
      with Inline;
   ...   -- various operations on disc points
private

   type Disc_Pt is tagged
      record
         X, Y: Float range –1.0 .. +1.0;
      end record;

   function Check_In(D: Disc_Pt) return Boolean is
      (D.X**2 + D.Y**2 <= 1.0);

end Places;

And then we might write

package Places.Inner is

   type Ring_Pt is new Disc_Pt with null record
      with Type_Invariant'Class => Check_Out(Ring_Pt);

   function Check_Out(R: Ring_Pt) return Boolean
      with Inline;

private

   function Check_Out(R: Ring_Pt) return Boolean is
      (R.X**2 + R.Y**2 >= 0.25);

end Places.Inner;

And now the type Ring_Pt has both its own type invariant but  also that inherited from Disc_Pt 
thereby ensuring that  points are within the ring or annulus. It  is unfortunate that we could not  make 
the size of the inner circle a discriminant but a discriminant cannot be of a real type. Ah well, 
perhaps in Ada 2020??
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Finally, it  is worth emphasizing that  it  is good advice not to use inheritance with specific invariants 
but they are invaluable for checking internal and private properties of types.

5   Subtype predicates
The final major facility to be discussed here is subtype predicates. These are not really contractual in 
the sense that  preconditions, postconditions and invariants are contractual but  are more akin to 
constraints. 

Subtype predicates are of two kinds, Static_Predicate and Dynamic_Predicate. They can be applied 
to subtype declarations and to type declarations using aspect specifications. For example, in the 
Introduction we met

subtype Even is Integer
   with Dynamic_Predicate => Even mod 2 = 0;

subtype Winter is Month
   with Static_Predicate => Winter in Dec | Jan | Feb;

The predicates take an expression of a Boolean type and again we note the use of the subtype name 
to denote the current instance. In the case of Dynamic_Predicate, the expression can be any Boolean 
expression. 

However, in the case of Static_Predicate, the expression is restricted and can only be

▪ a static membership test where the choice is selected by the current instance,

▪ a case expression whose dependent expressions are static and selected by the current instance,

▪ a call of the predefined operations =, /=, <, <=, >, >= where one operand is the current instance,

▪ an ordinary static expression,

and, in addition, a call of a Boolean logical operator and, or, xor, not whose operands are such 
static predicate expressions, and, a static predicate expression in parentheses.

So we see that the predicate in the subtype Even cannot be a static predicate because the operator 
mod is not permitted with the current instance. But mod could be used in an inner static expression.

However, the predicate in the subtype Winter can be a static predicate because it  takes the from of a 
membership test  where the choice is selected by the current instance and whose individual items are 
static. Note that membership tests are considerably enhanced in Ada 2012; further details will be 
given in a later paper. Another useful example of this kind is

subtype Letter is Character
   with Static_Predicate => Letter in 'A' .. 'Z' | 'a' .. 'z';

Static case expressions are valuable because they provide the comfort of covering all values of the 
current instance. Suppose we have a type Animal

type Animal is (Bear, Cat, Dog, Horse, Wolf);

We could then declare a subtype of friendly animals

subtype Pet is Animal
   with Static_Predicate => Pet in Cat | Dog | Horse;

and perhaps

subtype Predator is Animal
   with Static_Predicate => not (Predator in Pet);

or equivalently
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subtype Predator is Animal
   with Static_Predicate => Predator not in Pet;

Now suppose we add Rabbit to the type Animal. Assuming that we consider that  rabbits are pets and 
not food, we should change Pet to correspond but  we might forget with awkward results. Maybe we 
have a procedure Hunt which aims to eliminate predators

procedure Hunt(P: in out Predator);

and we will find that our poor rabbit is hunted rather than petted!

What we should have done is use a case expression controlled by the current instance thus

subtype Pet is Animal
   with Static_Predicate =>
      (case Pet is
                when Cat | Dog | Horse => True,
                when Bear | Wolf => False);

and now if we add Rabbit to Animal and forget  to update Pet to correspond then the program will 
fail to compile.

Note that a similar form of if expression where the current instance has to be of a Boolean type 
would not be useful and so is excluded.

Static subtypes with static predicates can also be used in case statements. Thus elsewhere in the 
program we might have

case Animal is
   when Pet =>   ... -- feed it
   when Predator =>  ... -- feed on it
end case;

Observe that we do not have to list  all the individual animals and naturally there is no others clause. 
If other animals are added to Pet or Predator then this case statement  will not need changing. Thus 
not only do we get  the benefit  of full coverage checking, but the code is also maintenance free. Of 
course if we add an animal that is neither a Pet nor Predator (Sloth perhaps?) then the case statement 
will need updating.

Subtype predicates, like pre- and postconditions and type invariants are similarly monitored by the 
pragma Assertion_Policy. If a predicate fails (that is, has value False) then Assertion_Error is raised.

Subtype predicates are checked in much the same sort of places as type invariants. Thus

▪ on a subtype conversion,

▪ on parameter passing (which covers expressions in general),

▪ on default initialization of an object.

Note an important difference from type invariants. If a type invariant is violated then the damage has 
been done. But subtype predicates are checked before any damage is done. This difference 
essentially arises because type invariants apply to private types and can become temporarily false 
inside the defining package as we saw with the procedure Flip applying to the type Disc_Pt.

If an object is declared without  initialization and no default  applies then any subtype predicate might 
be false in the same way that a subtype constraint might be violated.
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Beware that  subtype predicates like type invariants are not foolproof. Thus in the case of a record 
type they apply to the record as a whole but they are not  checked if an individual component is 
modified.

Subtype predicates can be given for all types in principle. Thus we might have

type Date is 
   record
      D: Integer range 1 .. 31;
      M: Month;
      Y: Integer;
   end record;

and then

subtype Winter_Date is Date
   with Dynamic_Predicate => Winter_Date.M in Winter;

Note how this uses the subtype Winter which was itself defined by a subtype predicate. However, 
Winter_Date has to have a Dynamic_Predicate because the selector is not simply the current 
instance but a component of it.

We can now declare and manipulate a Winter_Date

WD: Winter_Date := (25, Dec, 2011);
...
Do_Date(WD);

and the subtype predicate will be checked on the call of Do_Date. However, beware that if we write

WD.Month := Jun;   -- dodgy

then the subtype predicate is not checked because we are modifying an individual component and 
not the record as a whole.

Subtype predicates can be given with type declarations as well as with subtype declarations. 
Consider for example declaring a type whose only allowed values are the possible scores for an 
individual throw when playing darts. These are 1 to 20 and doubles and trebles plus 50 and 25 for an 
inner and outer bull's eye. We could write these all out explicitly

type Score is new Integer
   with Static_Predicate => 
       Score in 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 
                    | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 33 | 34 | 36 | 38 | 39 | 40 | 42 | 45 | 48 | 50 
                    | 51 | 54 | 57 | 60;

But that  is rather boring and obscures the nature of the predicate. We can split  it down by first 
defining individual subtypes for singles, doubles and trebles as follows

subtype Single is Integer range 1 .. 20;

subtype Double is Integer 
   with Static_Predicate =>
       Double in 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20;

subtype Treble is Integer 
   with Static_Predicate =>
      Treble in 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30;
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subtype Score is Integer
   with Static_Predicate =>
      Score in Single or Score in Double or Score in Treble or Score in 25 | 50;

Note that it would be neater to write

subtype Score is Integer
   with Static_Predicate =>
      Score in Single | Double | Treble | 25 | 50;

Observe that it does not matter that  the individual predicates overlap. That  is a score such as 12 is a 
Single, a Double and a Treble.

If we do not mind the predicates being dynamic then we can write

subtype Double is Integer
   with Dynamic_Predicate =>
      Double mod 2 = 0 and Double / 2 in Single;

and so on. Or we could even use a quantified expression

subtype Double is Integer
   with Dynamic_Predicate =>
      (for some K in Single => Double = 2*K);

or go all the way in one lump

type Dyn_Score is new Integer
   with Dynamic_Predicate =>
      (for some K in 1 .. 20 => Score = K or Score = 2*K or Score = 3*K) or Score in 25 | 50;

There are some restrictions on the use of subtypes with predicates.

If a subtype has a static or dynamic predicate then it  cannot be used as an array index subtype. This 
is to avoid arrays with holes. So we cannot write

type Winter_Hours is array (Winter) of Hours;     -- illegal

type Hits is array (Score range <>) of Integer;     -- illegal

Similarly, we cannot use a subtype with a predicate to declare the range of an array object  or to 
select a slice. So if we have

type Month_Days is array (Month range <>) of Integer;
The_Days: Month_Days := (31, 28, 31, 30, ... );

then we cannot write

Winter_Days: Month_Days(Winter);       -- illegal array

The_Days(Winter) := (Jan | Dec => 31, Feb => 29);  -- really nasty illegal slice

However, a subtype with a static predicate can be used in a for loop thus

for W in Winter loop ...

and in a named aggregate such as

(Winter => 10.0, others => 14.0);   -- OK

but a subtype with a dynamic predicate cannot be used in these ways. Actually the restriction is 
slightly more complicated. If the original subtype is not static such as

subtype To_N is Integer range 1 .. N;
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then even if To_N has a static predicate it still cannot be used in a for loop or named aggregate.

These rules can also be illustrated by considering the dartboard. We might  like to accumulate a count 
of the number of times each particular score has been achieved. So we might like to declare

type Hit_Count is array (Score) of Integer;    -- illegal

but sadly this would result in an array with holes and so is forbidden. However, we could declare an 
array from 1 to 60 and then initialize it with 0  for those components used for hits and –1 for the 
unused components. Of course, we ought not to repeat  literals such as 1 and 60 because of  potential 
maintenance problems. But, we can use new attributes First_Valid and Last_Valid thus

type Hit_Count is array (Score'First_Valid .. Score'Last_Valid) of Integer :=
        (Score => 0, others => –
1);

which uses Score to indicate the used components. The attributes First_Valid and Last_Valid can be 
applied to any static subtype but are particularly useful with static predicates.

In detail, First_Valid returns the smallest  valid value of the subtype. It takes any range and/or 
predicate into account  whereas First only takes the range into account. Similarly Last_Valid returns 
the largest  value. Incidentally, they are illegal on null subtypes (because null subtypes have no valid 
values at all).

The Hit_Count array can then be updated by the value of each hit as expected

A_Hit: Score := ... ;         -- next dart

Hit_Count(A_Hit) := Hit_Count(A_Hit) + 1;

If we attempt to assign a value of type Integer which is not  in the subtype Score to A_Hit then 
Assertion_Error is raised.

After the game, we can now loop through the subtype Score and print out the number of times each 
hit has been achieved and perhaps accumulate the total at the same time thus 

for K in Score loop
   New_Line;  Put(Hit);  Put(Hit_Count(K));
   Total := Total + K * Hit_Count(K);
end loop;

The reason for the distinction between static and dynamic predicates is that  the static form can be 
implemented as small sets with static operations on the small sets. Hence the loop

for K in Score loop ...

can be implemented simply as a sequence of 43 iterations. However, a loop such as

for X in Even loop ...

which might look innocuous requires iterating over the whole set  of integers. Thus we insist on 
having to write

for X in Integer loop
   if X in Even then ...

which makes the situation quite clear.

Another restriction on the use of subtypes with predicates is that the attributes First, Last and Range 
cannot be applied. But Pred and Succ are permitted because they apply to the underlying type. As a 
consequence, if a generic body uses First, Last or Range on a formal type and the actual type has a 
subtype predicate then Program_Error is raised.
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Subtype predicates can be applied to abstract types but not to incomplete types.

Subtype predicates are inherited as expected on derivation. Thus if we have

type T is ...
   with Static_Predicate => SP(T);

and then

type NT is new T
   with Dynamic_Predicate => DP(NT);

the result  is that  both predicates apply to NT  rather as if we had written the predicate as SP(NT) and 
DP(NT). So if several apply they are anded together. If any one is dynamic then restrictions on the 
use of subtypes with a dynamic predicate apply.

There is no need for special predicates for class wide types in the way that  we have both 
Type_Invariant and Type_Invariant'Class. So in the general case where a tagged type is derived from 
a parent and several progenitors

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors, the subtype predicate applicable to T  is simply 
those for P, G1 and G2 all anded together.

6   Default initial values
It  is often important that  we can rely upon an object having a value within its subtype even before it 
is assigned to and this especially applies in the face of type invariants and subtype predicates. 
Consider a type Location whose type invariant In_Place requires the point to be within some place. 

package Places is
   type Location is private
      with Type_Invariant => In_Place(Location);

   function In_Place(L: Location) return Boolean;
   procedure Do_It(X: in out Location; ... );

private

   type Location is
      record
         X, Y: Float range –1.0 .. +1.0;
      end record;

   ...

end Places;

If we just declare an object of type Location thus

Somewhere: Location;

then there is no guarantee that  Somewhere is anywhere in particular. If the type invariant  In_Place 
applies and a subprogram with an in out parameter such as Do_It is called

Do_It(Somewhere);

then it might  be that  some paths through Do_It do not assign a new value to X. Nevertheless, on 
return from Do_It, the type invariant  In_Place  will be checked on the parameter. If Somewhere by 
chance had an accidental initial value outside the space implied by In_Place then the call will fail. 
Now it might  be that other parameters of the procedure indicate to the caller that Somewhere has 
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not been updated in this case but  unfortunately this information is unlikely to be available to the 
invariant.

One solution to this is to ensure that objects always have an initial value satisfying the requisite 
constraints, predicates or invariants. One might do this by assigning a safe initial value thus

Somewhere: Location := (0.0, 0.0);   -- illegal

but this is illegal because the type is private. We could of course export from the package Places a 
safe initial value so that we could write

Somewhere: Location := Places.Haven;

But this is often frowned upon because giving an explicit  initial value can hide flow errors. It is thus 
best to ensure that the object automatically has a safe default value by writing perhaps

   type Location is
      record
         X, Y: Float range –1.0 .. +1.0 := 0.0;
      end record;

It  is curious that Ada allows default  initial values for components of records and provides them 
automatically for access types (null) but not  for scalar types or for array types. This is remedied in 
Ada 2012 by the introduction of aspects Default_Value and Default_Component_Value for scalar 
types and arrays of scalar types respectively. The format is as expected

type My_Float is digits 20
   with Default_Value => 0.5;

type OK is new Boolean
   with Default_Value => True;

The usual rule regarding the omission of => True does not apply in the case of Default_Value for 
Boolean types for obvious reasons.

If possible, a special value indicating the status of the default should be supplied. This particularly 
applies to enumeration types. For example

type Switch is (On, Off, Unknown)
   with Default_Value => Unknown;

In the case of an array type this can be constrained or unconstrained and the default  value will apply 
to all components.

type Vector is array (Integer range <>) of Integer
   with Default_Component_Value => 0;

Default  initial values cannot be given to the predefined types but they can be given to types derived 
from them such as the Boolean type OK above.

In the case of a private type, any default has to be given on the full type declaration.

It  is important to note that default initial values can only be given for types and not for subtypes. If a 
default initial value lies outside the range of a subtype then declaring an object  of a subtype without 
its own specific initial value will raise Constraint_Error. So writing

subtype Known_Switch is Switch range On .. Off;
A_Switch: Known_Switch;

raises Constraint_Error because the default initial value Unknown is outside the range of the subtype 
Known_Switch.
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If a record type is declared and some components are given initial values but others are not then 
explicitly given initial values take precedence over default values given by these aspects. Thus if we 
have

   type Location is
      record
         X: My_Float range –1.0 .. +1.0 := 0.0;
         Y: My_Float range  –1.0 .. +1.0;
      end record;

then the component  X has default  value 0.0 but component Y has default value 0.5, (since My_Float 
declared above has default value 0.5).

A final important point  is that default  initial values supplied by these aspects have to be static unlike 
default initial values for record components.

7   Storage occupancy checks
Finally, two new attributes are introduced to aid in the writing of preconditions. Sometimes it is 
necessary to check that  two objects do not occupy the same storage in whole or in part. This can be 
done with two functional attributes X'Has_Same_Storage and X'Overlaps_Storage which apply to 
an object X of any type.

Their specifications are

function X'Has_Same_Storage(Arg: any_type) return Boolean;

function X'Overlaps_Storage(Arg: any_type) return Boolean;

As an example we might have a procedure Exchange and wish to ensure that the parameters do not 
overlap in any way. We can write

procedure Exchange(X, Y: in out T) 
   with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since this enables the semantics to be written in 
a manner that permits X and Y to be of any type and moreover does not imply that X or Y are read.

The object X and the parameter Y could be components such as A(5) or indeed A(J) or even a slice 
A(1 .. N). Thus the actual addresses to be checked may not be statically determined but have to be 
determined at the point of call.

AI-191 shows the following curious example

procedure Count(A: in out Arrtype; B: in Arrtype) 
   with Pre => not A'Overlaps_Storage(B)
is
   -- intended to count in A the number of value
   -- occurrences in B as part of a distribution sort
begin
   for I in B'Range loop
      A(B(I)) := A(B(I)) + 1;
   end loop;
end Count;

The author seems to have assumed that the array A has appropriate components and that  they are 
initialized to zero. This also illustrates the use of an aspect specification in a subprogram body.
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At the machine level Overlaps_Storage  means that at least one bit is in common and 
Has_Same_Storage means that all bits are in common. Hence X'Has_Same_Storage(Y) implies 
X'Overlaps_Storage(Y).

In some applications involving the possibility of aliasing (messing with tree structures comes to 
mind) we do really want to check that two entities are not  in the same place rather than just 
overlapping in which case it is more logical to use Has_Same_Storage. 
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