
John Barnes

Contracts and Aspects

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License.

Rationale for Ada 2012: 1 Contracts and aspects
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

2 Template for Ada User Journal

Abstract
This paper describes the mechanisms for including contracts in Ada 2012.

The main feature is that preconditions and postconditions can be given for subprograms. In
addition, invariants can be given for types and predicates can be given for subtypes.

In attempting to find a satisfactory way of adding these features it was found expedient to introduce
the concept of an aspect specification for describing properties of entities in general. It is thus
convenient to describe aspect specifications in this paper.

Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] identifies very large complex systems as a major application area
for Ada. It further identifies four areas for improvements, one of which is

 Improving the ability to write and enforce contracts for Ada entities (for instance, via
preconditions).

The idea of contracts has been a cornerstone of programming for many years. The very idea of
specifying parameters for subroutines is a simple form of contract going back to languages such as
Fortran over half a century ago. More recently the idea of contracts has been brought to the fore by
languages such as SPARK and Eiffel.

SPARK is, as many readers will be aware, a subset of Ada with annotations providing assertions
regarding state embedded as Ada comments. The subset excludes features such as access types and
dynamic dispatching but it does include Ravenscar tasking and generics. The subset was chosen to
enable the contracts to be proved prior to execution. Thus SPARK is a very appropriate vehicle for
real programs that just have to be correct because of concerns of safety and security.

Eiffel, on the other hand, is a language with a range of dynamic facilities much as in Ada and has
found favour as a vehicle for education. Eiffel includes mechanisms describing contracts which are
monitored on a dynamic basis at program execution.

The goal of this amendment to Ada is to incorporate matters such as pre- and postconditions but
with the recognition that they are, like those in Eiffel, essentially for checking at runtime.

Adding pre- and postconditions and similar features has had quite a wide ranging impact on Ada and
has required much more flexibility in many areas such as the form of expressions which will be
addressed in later papers.

The following Ada issues cover the key changes and are described in detail in this paper:

145 Pre- and postconditions

146 Type invariants

153 Subtype predicates

183 Aspect specifications

191 Aliasing predicates

228 Default initial values for types

229 Specifiable aspects

230 Inheritance of null procedures with precondition

243 Clarification of categorization

247 Preconditions, postconditions, multiple inheritance and dispatching calls

 3

250 Thoughts on type invariants

254 Do we really have contracts right?

267 Improvements for aspect specifications

287 Some questions on subtype predicates

289 Invariants and in mode parameters

297 First_Valid and Last_Valid attributes

These changes can be grouped as follows.

First we lay the syntactic foundations necessary to introduce features such as preconditions by
discussing aspect specifications which essentially replace or provide an alternative to pragmas for
specifying many features (183, 229, 243, 267).

Then we discuss the introduction of pre- and postconditions on subprograms including the problems
introduced by multiple inheritance (145, 230, 247, 254).

Two other related topics are type invariants and subtype predicates which provide additional means
of imposing restrictions on types (146, 153, 250, 287, 289, 297).

Finally, two auxiliary features are the ability to provide default values for scalar types and array
types (228) and means of checking that aliasing does not occur between two objects (191).

2 Aspect specifications
Although in a sense the introduction of aspect specifications is incidental to the main themes of Ada
2012 which are contracts, real-time, and containers, the clarity (and some might say upheaval)
brought by aspect specifications merits their description first.

An early proposal to introduce preconditions was by the use of pragmas. Thus to give a precondition
not Is_Full to the usual Push procedure acting on a stack S and a corresponding postcondition not
Is_Empty, it was proposed that this should be written as

pragma Precondition(Push, not Is_Full(S));
pragma Postcondition(Push, not Is_Empty(S));

But this looks ugly and is verbose since it mentions Push in both pragmas. Moreover, potential
problems with overloading means that it has to be clarified to which procedure Push they apply if
there happen to be several. As a consequence it was decreed that the pragmas had to apply to the
immediately preceding subprogram. Which of course is not the case with pragma Inline which with
overloading applies to all subprograms with the given name. Other curiosities include the need to
refer to the formal parameters of Push (such as S) so that the expression has to be resolved taking
heed of these even though it is detached from the actual specification of Push.

Other pragmas proposed were Inherited_Precondition and Inherited_Postcondition for use with
dispatching subprograms.

So it was a mess and an alternative was sought. The solution which evolved was to get away from
wretched pragmas in such circumstances. Indeed, the Ada 83 Rationale [2] says "In addition, a
program text can include elements that have no influence on the meaning of the program but are
included as information and guidance for the human reader or for the compiler. These are:
Comments; Pragmas..."

So pragmas were meant to have no effect on the meaning of the program. Typical pragmas in Ada 83
were List, Inline, Optimize and Suppress. But in later versions of Ada, pragmas are used for all sorts
of things. The days when pragmas had no effect are long gone!

4 Rat ionale for Ada 2012: 1 Contracts and aspects

The basic need was to tie the pre- and postconditions syntactically to the specification of Push so
that there could be no doubt as to which subprogram they applied; this would also remove the need
to mention the name of the subprogram again. And so, as described in the introductory paper (in the
previous issue of this esteemed journal) we now have

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

The syntax for aspect specification is

aspect_specification ::=
 with aspect_mark [=> expression] { ,
 aspect_mark [=> expression] }

and this can be used with a variety of structures, subprogram declaration being the example here.

Note especially the use of the reserved word with. Serious attempts were made to think of another
word so as to avoid using with again but nothing better was suggested. It might be thought that it
would be confusing to use with which is firmly associated with context clauses. However, recall that
with has also been used to introduce generic formal subprogram parameters without causing
confusion since 1983. Thus

generic
 with function This ...
procedure That ...

Moreover, Ada 95 introduced the use of with for type extension as in

type Circle is new Object with
 record
 Radius: Float;
 end record;

So in Ada 95 there were already many distinct uses of with and another one will surely do no harm.
It's a versatile little word.

Any risk of confusion is easily avoided by using a sensible layout. Thus a with clause should start
on a new line at the left and aligned with the following unit to which it applies. A formal generic
parameter starting with with should be aligned with other formal parameters and indented after the
word generic. In the case of type extension, with should be at the end of the line. Finally, in the case
of aspect specifications, with should be at the beginning of a line and indented after the entity to
which it applies.

Having introduced aspect specifications which are generally so much nicer than pragmas, it was
decided to allow aspect specifications for all those situations where pragmas are used and an aspect
specification makes sense (typically where it applies to an entity rather than a region of text). And
then to make most of the pragmas obsolete.

Before looking at the old pragmas concerned in detail, two general points are worth noting.

The usual linear elaboration rules do not apply to the expression in an aspect specification. It is
essentially sorted out at the freezing point of the entity to which the aspect applies. The reason for
this was illustrated by an example in the Introduction which was

type Stack is private
 with
 Type_Invariant => Is_Unduplicated(Stack);

 5

The problem here is that the function Is_Unduplicated cannot be declared before that of the type
Stack and yet it is needed in the aspect specification of the declaration of Stack. So there is a
circularity which is broken by saying that the elaboration of aspect specifications is deferred.

The other general point is that some aspects essentially take a Boolean value. For example the
pragma Inline is replaced by the aspect Inline so that rather than writing

procedure Do_It(...);
pragma Inline(Do_It);

we now write

procedure Do_It(...)
 with Inline;

The aspect Inline has type Boolean and so we could write

procedure Do_It(...)
 with Inline => True;

To have insisted on this would have been both pedantic and tedious and so in the case of a Boolean
aspect there is a rule that says that => True can be omitted and True is then taken by default. But this
does not apply to Default_Value and Default_Component_Value as explained later in the section on
default initial values.

Note however that omitting the whole aspect by just writing

procedure Do_It(...);

results of course in the Inline aspect of Do_It being False.

A mad programmer could even use defaults for preconditions and postconditions. Thus writing

procedure Curious(...)
 with Pre;

in which by default the precondition is taken to be True, results in the Curious procedure always
being callable.

We will now consider the fate of the various pragmas in Ada 2005. Some are replaced by aspect
specifications and the pragmas made obsolete (of course, they can still be used, but should be
discouraged in new programs). Some are paralleled by aspect specifications and the user left with
the choice. Some are unchanged since for various reasons aspect specifications were inappropriate.
Some pragmas are new to Ada 2012 and born obsolete.

The following are the obsolete pragmas with some examples of corresponding aspect specifications.

The pragmas Inline, No_Return, and Pack are examples having Boolean aspects. We can now write

procedure Do_It(...)
 with Inline;

procedure Fail(...)
 with No_Return;

type T is ...
 with Pack;

Some thought was given as to whether the name of the Pack aspect should be Packing rather than
Pack because this gave better resonance in English. But the possible confusion in having a different
name to that of the pragma overrode the thought of niceties of (human) language.

6 Rat ionale for Ada 2012: 1 Contracts and aspects

Curiously enough the old pragmas Inline and No_Return could take several subprograms as
argument but naturally the aspect specification is explicitly given to each one.

If several aspects are given to a procedure then we simply put them together thus

procedure Kill
 with Inline, No_Return;

rather than having to supply several pragmas (which careless program maintenance might have
scattered around).

In the case of a procedure without a distinct specification, the aspect specification goes in the
procedure body before is thus

procedure Do_It(...)
 with Inline is
 ...
begin
 ...
end Do_It;

This arrangement is because the aspect specification is very much part of the specification of the
subprogram. This will be familiar to users of SPARK where we might have

procedure Do_It(...)
--# global in out Stuff;
is ...

If a subprogram has a distinct specification then we cannot give a language-defined aspect
specification on the body; this avoids problems of conformance. If there is a stub but
no specification then any aspect specification goes on the stub but not the body. Thus aspect
specifications go on the first of specification, stub, and body but are never repeated. Note also that
we can give aspect specifications on other forms of stubs and bodies such as package bodies, task
bodies and entry bodies but none are defined by the language.

In the case of a stub, abstract subprogram, and null subprogram which never have bodies, the aspect
specification goes after is separate, is abstract or is null thus

procedure Action(D: in Data) is separate
 with Convention => C;

procedure Enqueue(...) is abstract
 with Synchronization => By_Entry;

procedure Nothing is null
 with Something;

The above example of the use of Synchronization is from the package Synchronized_Queue_
Interfaces, a new child of Ada.Containers as mentioned in the Introduction.

The same style is followed by the newly introduced expression functions thus

function Inc (A: Integer) return Integer is (A + 1)
 with Inline;

Other examples of Boolean aspects are Atomic, Volatile, and Independent. We now write for
example

Converged: Boolean := False
 with Atomic;

 7

The aspects Atomic_Components, Volatile_Components and Independent_Components are similar.

The three pragmas Convention, Import and Export are replaced by five aspects, namely Import,
Export, Convention, External_Name and Link_Name.

For example, rather than, (see [3] page 702)

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data) is separate;
pragma Convention(C, Action);

we now more neatly write

type Response is access procedure (D: in Data)
 with Convention => C;

procedure Set_Click(P: in Response)
 with Import, Convention => C;

procedure Action(D: in Data) is separate
 with Convention => C;

Note that the aspects can be given in any order whereas in the case of pragmas, the parameters had
to be in a particular order. We could have written with Import => True but that would have been
pedantic. As another example (see the RM 7.4), instead of

CPU_Identifier: constant String(1 .. 8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");

we now have

CPU_Identifier: constant String(1 .. 8)
 with Import, Convention => Assembler, Link_Name => "CPU_ID";

Observe that we always have to give the aspect name such as Convention whereas with pragmas
Import and Export, the parameter name Convention was optional. Clearly it is better to have to give
the name.

The pragma Controlled which it may be recalled told the system to keep its filthy garbage collector
off my nice access type is plain obsolete and essentially abandoned. It is doubted whether it was
ever used. The subclause of the RM (13.11.3) relating to this pragma is now used by a new pragma
Default_Storage_Pools which will be discussed in a later paper.

The pragma Unchecked_Union is another example of a pragma replaced by a Boolean aspect. So we
now write

type Number(Kind: Precision) is
 record
 ...
 end record
 with Unchecked_Union;

Many obsolete pragmas apply to tasks. The aspect Storage_Size takes an expression of any integer
type. Thus in the case of a task type without a task definition part (and thus without is and matching
end) we write

8 Rat ionale for Ada 2012: 1 Contracts and aspects

task type T
 with Storage_Size => 1000;

In the case of a task type with entries we write

task type T
 with Storage_Size => 1000 is
 entry E ...
 ...
end T;

The interrupt pragmas Attach_Handler and Interrupt_Handler now become

procedure P(...)
 with Interrupt_Handler;

which specifies that the protected procedure P can be a handler and

procedure P(...)
 with Attach_Handler => Some_Id;

which actually attaches P to the interrupt Some_Id.

The pragmas Priority and Interrupt_Priority are replaced by corresponding aspect specifications for
example

task T
 with Interrupt_Priority => 31;

protected Object
 with Priority => 20 is -- ceiling priority

Note that a protected type or singleton protected object always has is and the aspect specification
goes before it.

Similarly, instead of using the pragma Relative_Deadline we can write

task T
 with Relative_Deadline => RD;

The final existing pragma that is now obsolete is the pragma Asynchronous used in the Distributed
Systems Annex and which can be applied to a remote procedure or remote access type. It is replaced
by the Boolean aspect Asynchronous.

That covers all the existing Ada 2005 pragmas that are now obsolete.

Two new pragmas in Ada 2012 are CPU and Dispatching_Domain but these are born obsolete. Thus
we can write either of

task My Task is
 pragma CPU(10);

or

task My_Task
 with CPU => 10 is

and similarly

task Your_Task is
 pragma Dispatching_Domain(Your_Domain);

or

 9

task Your_Task
 with Dispatching_Domain => Your_Domain is

The reason for introducing these pragmas is so that existing tasking programs with copious use of
pragmas such as Priority can use the new facilities in a similar style. It was considered inelegant to
write

task My_Task
 with CPU => 10 is
 pragma Priority(5);

and a burden to have to change programs to

task My_Task
 with CPU => 10, Priority => 5 is

So existing programs, can be updated to

task My_Task is
 pragma CPU(10);
 pragma Priority(5);

(One other pragma that was never born at all was Implemented which turned into the aspect
Synchronization often used to ensure that an abstract procedure is actually implemented by an entry
as illustrated earlier.)

A number of existing pragmas are paralleled by aspect specifications but the pragmas are not made
obsolete. Examples are the pragmas relating to packages such as Pure, Preelaborate,
Elaborate_Body and so on.

Thus we can write either of

package P is
 pragma Pure(P);
end P;

or

package P
 with Pure is
end P;

The author prefers the former but some avant garde programmers might like to use the latter.

Note that Preelaborable_Initialization is unusual in that it cannot be written as an aspect specification
for reasons that need not bother us. The inquisitive reader can refer to AI-229 for the details.

Finally, there are many pragmas that do not relate to any particular entity and so for which an aspect
specification would be impossible. These include Assert and Assertion_Policy, Suppress and
Unsuppress, Page and List, Optimize and Restrictions.

As well as replacing pragmas, aspect specifications can be used instead of attribute definition
clauses. For example rather than

type Byte is range 0 .. 255;

followed (perhaps much later) by

for Byte'Size use 8;

we can now write

10 Rat ionale for Ada 2012: 1 Contracts and aspects

type Byte is range 0 .. 255
 with Size => 8;

Similarly

type My_Float is digits 20
 with Alignment => 16;

Loose_Bits: array (1 .. 10) of Boolean
 with Component_Size => 4;

type Cell_Ptr is access Cell
 with Storage_Size => 500 * Cell'Size / Storage_Unit, Storage_Pool => Cell_Ptr_Pool;

S: Status
 with Address => 8#100#;

type T is delta 0.1 range –1.0 .. +1.0
 with Small => 0.1;

But we cannot use this technique to replace an enumeration representation clause or record
representation clause. Thus although we can write

type RR is
 record
 Code: Opcode;
 R1: Register;
 R2: Register;
 end record
 with Alignment => 2, Bit_Order => High_Order_First;

the layout information has to be done by writing

for RR use
 record
 Code at 0 range 0 .. 7;
 R1 at 1 range 0 .. 3;
 R2 at 1 range 4 .. 7;
 end record;

It is interesting to note that attribute definition clauses were not made redundant in the way that
many pragmas were made redundant. This is because there are things that one can do with attribute
definition clauses that cannot be done with aspect specifications. For example a visible type can be
declared in a visible part and then details of its representation can be given in a private part. Thus we
might have

package P is
 type T is ...
private
 Secret_Size: constant := 16;
 for T'Size use Secret_Size;
end P;

It's not that convincing because the user can use the attribute T'Size to find the Secret_Size anyway.
But some existing programs are structured like that and hence the facility could hardly be made
redundant.

The examples above have shown aspect specifications with the following constructions: subprogram
declaration, subprogram body, stub, abstract subprogram declaration, null procedure declaration, full

 11

type declaration, private type declaration, object declaration, package declaration, task type
declaration, single task declaration, and single protected declaration. In addition they can be used
with subtype declaration, component declaration, private extension declaration, renaming
declaration, protected type declaration, entry declaration, exception declaration, generic declaration,
generic instantiation, and generic formal parameter declaration.

The appropriate layout should be obvious. In the case of a large structure such as a package
specification and any body, the aspect specification goes before is. But when something is small and
all in one piece such as a procedure specification, stub, null procedure, object declaration or generic
instantiation any aspect specification goes at the end of the declaration; it is then more visible and
less likely to interfere with the layout of the rest of the structure.

In some cases such as exception declarations there are no language defined aspects that apply but
implementations might define their own aspects.

3 Preconditions and postconditions
We will look first at the simple case when inheritance is not involved and then look at more general
cases. Specific preconditions and postconditions are applied using the aspects Pre and Post
respectively whereas class wide conditions are applied using the aspects Pre'Class and Post'Class.

To apply a specific precondition Before and/or a specific postcondition After to a procedure P we
write

procedure P(P1: in T1; P2: in out T2; P3: out T3)
 with Pre => Before,
 Post => After;

where Before and After are expressions of a Boolean type (that is of type Boolean or a type derived
from it).

The precondition Before and the postcondition After can involve the parameters P1 and P2 and P3
and any visible entities such as other variables, constants and functions. Note that Before can
involve an out parameter such as P3 (if necessary it will be copied in to enable this).

The attribute X'Old will be found useful in postconditions; it denotes the value of X on entry to P.
Old is typically applied to parameters of mode in out such as P2 but it can be applied to any visible
entity such as a global variable. This can be useful for monitoring global variables which are
updated by the call of P. But note that 'Old can only be used in postconditions and not in arbitrary
text and it cannot be applied to objects of a limited type.

Perhaps surprisingly 'Old can also be applied to parameters of mode out. For example, in the case of
a parameter of a record type that is updated as a whole, nevertheless we might want to check that a
particular component has not changed. Thus in updating some personal details, such as address and
occupation, we might want to ensure that the person's date of birth and sex are not tampered with by
writing

Post => P.Sex = P.Sex'Old and P.Dob = P.Dob'Old

In the case of an array, we can write A(I)'Old which means the original value of A(I). But A(I'Old) is
different since it is the component of the final value of A but indexed by the old value of I.

Remember that the result of a function is an object and so 'Old can be applied to it. Note carefully
the difference between F(X)'Old and F(X'Old). The former applies F to X on entry to the subprogram
and saves it. The latter saves X and applies F to it when the postcondition is evaluated. These could
be different because the function F might also involve global variables which have changed.

12 Rat ionale for Ada 2012: 1 Contracts and aspects

Generally 'Old can be applied to anything but there are restrictions on its use in certain conditional
structures in which it can only be applied to statically determined objects. This is illustrated by the
following (based on an example in the AARM)

Table: array (1 .. 10) of Integer := ... ;
procedure P(I: in out Natural)
 with Post => I > 0 and then Table(I)'Old = 1; -- illegal

The programmer's intent is that the postcondition uses a short circuit form to avoid evaluating
Table(I) if I is not positive on exit from the procedure. But, 'Old is evaluated and stored on entry and
this could raise Constraint_Error because I might for example be zero. This is a conundrum since the
compiler cannot know whether the value of Table(I) will be needed and also I can change so it
cannot know which I anyway. So such structures are forbidden.

(The collector of Ada curiosities might be amused to note that we can write

subtype dlo is Character;

and then in a postcondition we could have

dlo'('I')'old

which is palindromic. If the subtype were blo rather than dlo then the expression would be mirror
reflective!

I am grateful to Jean-Pierre Rosen for this example.)

In the case of a postcondition applying to a function F, the result of the function is denoted by the
attribute F'Result. Again this attribute can only be used in postconditions.

Some trivial examples of declarations of a procedure Pinc and function Finc to perform an increment
are

procedure Pinc(X: in out Integer)
 with Post => X = X'Old+1;

function Finc(X: Integer) return Integer
 with Post => Finc'Result = X'Old+1;

Preconditions and postconditions are controlled by the pragma Assertion_Policy. They are enabled
by

pragma Assertion_Policy(Check);

and disabled by using parameter Ignore. It is the value in effect at the point of the subprogram
declaration that matters. So we cannot have a situation where the policy changes during the call so
that preconditions are switched on but postconditions are off or vice versa.

And so the overall effect of calling P with checks enabled is roughly that, after evaluating any
parameters at the point of call, it as if the body were

if not Before then -- check precondition
 raise Assertion_Error;
end if;

evaluate and store any 'Old stuff;

call actual body of P;

if not After then -- check postcondition
 raise Assertion_Error;
end if;

 13

copy back any by-copy parameters;

return to point of call;

Occurrences of Assertion_Error are propagated and so raised at the point of call; they cannot be
handled inside P. Of course, if the evaluation of Before or After themselves raise some exception
then that will similarly be propagated to the point of call.

Note that conditions Pre and Post can also be applied to entries.

Before progressing to the problems of inheritance it is worth reconsidering the purpose of pre- and
postconditions.

 A precondition Before is an obligation on the caller to ensure that it is true before the
subprogram is called and it is a guarantee to the implementer of the body that it can be relied
upon on entry to the body.

 A postcondition After is an obligation on the implementer of the body to ensure that it is true on
return from the subprogram and it is a guarantee to the caller that it can be relied upon on
return.

The symmetry is neatly illustrated by the diagram below

Pre Post
Call writer obligation guarantee
Body writer guarantee obligation

The simplest form of inheritance occurs with derived types that are not tagged. Suppose we declare
the procedure Pinc as above with the postcondition shown and supply a body

procedure Pinc(X: in out Integer) is
begin
 X := X+1;
end Pinc;

and then declare a type

type Apples is new Integer;

then the procedure Pinc is inherited by the type Apples. So if we then write

No_Of_Apples: Apples;
...
Pinc(No_Of_Apples);

what actually happens is that the code of the procedure Pinc originally written for Integer is called
and so the postcondition is inherited automatically.

If the user now wants to add a precondition to Pinc that the number of apples is not negative then a
completely new subprogram has to be declared which overrides the old one thus

procedure Pinc(X: in out Apples)
 with Pre => X >= 0,
 Post => X = X'Old+1;

and a new body has to be supplied (which will of course in this curious case be essentially the same
as the old one). So we cannot inherit an operation and change its conditions at the same time.

14 Rat ionale for Ada 2012: 1 Contracts and aspects

We now turn to tagged types and first continue to consider the specific conditions Pre and Post. As a
perhaps familiar example, consider the hierarchy consisting of a type Object and then direct
descendants Circle, Square and Triangle.

Suppose the type Object is

type Object is tagged
 record
 X_Coord, Y_Coord: Float;
 end record;

and we declare a function Area thus

function Area(O: Object) return Float
 with Pre => O.X_Coord > 0.0,
 Post => Area'Result = 0.0;

This imposes a requirement on the caller that the function is called only with objects with positive x-
coordinate (for some obscure reason), and a requirement on the implementer of the body that the
area is zero (raw objects are just points and have no area).

If we now declare a type Circle as

type Circle is new Object with
 record
 Radius: Float;
 end record;

and override the inherited function Area then the Pre and Post conditions on Area for Object are not
inherited and we have to supply new ones, perhaps

function Area(C: Circle)
 with Pre => C.X_Coord – C.Radius > 0.0,
 Post => Area'Result > 3.1 * C.Radius**2 and
 Area'Result < 3.2 * C.Radius**2;

The conditions ensure that all of the circle is in the right half-plane and that the area is about right!

So the rules so far are exactly as for the untagged case. If an operation is not overridden then it
inherits the conditions from its ancestor but if it is overridden then those conditions are lost and new
ones have to be supplied. And if no new ones are supplied then they are by default taken to be True.

In conclusion, the conditions Pre and Post are very much part of the actual body. One consequence
of this is that an abstract subprogram cannot have Pre and Post conditions because an abstract
subprogram has no body.

We now turn to the class wide conditions Pre'Class and Post'Class which are subtly different. The
first point is that the class wide ones apply to all descendants as well even if the operations are
overridden. In the case of Post'Class if an overridden operation has no condition given then it is
taken to be True (as in the case of Post). But in the case of Pre'Class, if an overridden operation has
no condition given then it is only taken to be True if no other Pre'Class applies (no other is
inherited). We will now look at the consequences of these rules.

It might be that we want certain conditions to hold throughout the hierarchy, perhaps that all objects
concerned have a positive x-coordinate and nonnegative area. In that case we can use class wide
conditions.

 15

function Area(O: Object) return Float
 with Pre'Class => O.X_Coord > 0.0,
 Post'Class => Area'Result >= 0.0;

Now when we declare Area for Circle, Pre'Class and Post'Class from Object will be inherited by the
function Area for Circle. Note that within a class wide condition a formal parameter of type T is
interpreted as of T'Class. Thus O is of type Object'Class and thus applies to Circle. The inherited
postcondition is simply that the area is not negative and uses the attribute 'Result.

If we do not supply conditions for the overriding Area for Circle and simply write

overriding
function Area(C: Circle) return Float;

then the precondition inherited from Object still applies. In the case of the postcondition not only is
the postcondition from Object inherited but there is also an implicit postcondition of True. So the
applicable conditions for Area for Circle are

Pre'Class for Object

Post'Class for Object
True

Suppose on the other hand that we give explicit Pre'Class and Post'Class for Area for Circle thus

overriding
function Area(C: Circle) return Float
 with Pre'Class => ... ,
 Post'Class => ... ;

We then find that the applicable conditions for Area for Circle are

Pre'Class for Object
Pre'Class for Circle

Post'Class for Object
Post'Class for Circle

Incidentally, it makes a lot of sense to declare the type Object as abstract so that we cannot declare
pointless objects. In that case Area might as well be abstract as well. Although we cannot give
conditions Pre and Post for an abstract operation we can still give the class wide conditions
Pre'Class and Post'Class.

If the hierarchy extends further, perhaps Equilateral_Triangle is derived from Triangle which itself is
derived from Object, then we could add class wide conditions to Area for Triangle and these would
also apply to Area for Equilateral_Triangle. And we might add specific conditions for Equilateral_
Triangle as well. So we would then find that the following apply to Area for Equilateral_Triangle

Pre'Class for Object
Pre'Class for Triangle
Pre for Equilateral Triangle

Post'Class for Object
Post'Class for Triangle
Post for Equilateral_Triangle

The postconditions are quite straightforward, all apply and all must be true on return from the
function Area. The compiler can see all these postconditions when the code for Area is compiled and
so they are all checked in the body. Note that any default True makes no difference because B and
True is the same as B.

16 Rat ionale for Ada 2012: 1 Contracts and aspects

However, the rules regarding preconditions are perhaps surprising. The specific precondition Pre for
Equilateral_Triangle must be true (checked in the body) but so long as just one of the class wide
preconditions Pre'Class for Object and Triangle is true then all is well. Note that class wide
preconditions are checked at the point of call. Do not get confused over the use of the word apply.
They all apply but only the ones seen at the point of call are actually checked.

The reason for this state of affairs concerns dispatching and especially redispatching. Consider the
case of Ada airlines which has Basic, Nice and Posh passengers. Basic passengers just get a seat.
Nice passengers also get a meal and Posh passengers also get a limo. The types Reservation,
Nice_Reservation and Posh_Reservation form a hierarchy with Nice_Reservation being extended
from Reservation and so on. The facilities are assigned when a reservation is made by calling an
appropriate procedure Make thus

procedure Make(R: in out Reservation) is
begin
 Select_Seat(R);
end Make;

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 Order_Meal(NR);
end Make;

procedure Make(PR: in out Posh_Reservation) is
 Make(Nice_Reservation(PR));
 Arrange_Limo(PR);
end Make;

Each Make calls its ancestor in order to avoid duplication of code and to ease maintenance.

A variation involving redispatching introduces two different procedures Order_Meal, one for Nice
passengers and one for Posh passengers. We then need to ensure that Posh passengers get a posh
meal rather than a nice meal. We write

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 -- now redispatch to appropriate Order_Meal
 Order_Meal(Nice_Reservation'Class(NR));
end Make;

Now suppose we have a precondition Pre'Class on Order_Meal for Nice passengers and one on
Order_Meal for Posh passengers. The call of Order_Meal sees that it is for Nice_Reservation'Class
and so the code includes a test of Pre'Class on Nice_Reservation. It does not necessarily know of
the existence of the type Posh_Reservation and cannot check Pre'Class on that Order_Meal. At a
later date we might add Supersonic passengers (RIP Concorde) and this can be done without
recompiling the rest of the system so it certainly cannot do anything about checking Pre'Class on
Order_Meal for Supersonic_Reservation which does not exist when the call is compiled. So when
we eventually get to the body of one of the procedures Order_Meal all we know is that some
Pre'Class on Order_Meal has been checked somewhere. And that is all that the writer of the code of
Order_Meal can rely upon. Note that nowhere does the compiled code actually "or" a lot of
preconditions together.

In summary, class wide preconditions are checked at the point of call. Class wide postconditions and
both specific pre- and postconditions are checked in the actual body.

 17

A small point to remember is that a class wide operation such as

procedure Do_It(X: in out T'Class);

is not a primitive operation of T and so although we can specify Pre and Post for Do_It we cannot
specify Pre'Class and Post'Class for Do_It.

We noted above that the aspects Pre and Post cannot be specified for an abstract subprogram
because it doesn't have a body. They cannot be given for a null procedure either, since we want all
null procedures to be identical and do nothing and that includes no conditions.

We now turn to the question of multiple inheritance and progenitors.

In the case of multiple inheritance we have to consider the so-called Liskov Substitution Principle
(LSP). The usual consequence of LSP is that in the case of preconditions they are combined with
"or" (thus weakening) and the rule for postconditions is that they are combined with "and" (thus
strengthening). But the important thing is that a relevant concrete operation can be substituted for
the corresponding operations of all its relevant ancestors.

In Ada, a type T can have one parent and several progenitors. Thus we might have

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors. Remember that a progenitor cannot have
components and cannot have concrete operations (apart possibly for null procedures). So the
operations of the progenitors have to be abstract or null and cannot have Pre and Post conditions.
However, they can have Pre'Class and Post'Class conditions. It is possible that the same operation
Op is primitive for more than one of these. Thus the progenitors G1 and G2 might both have an
operation Op thus

procedure Op(X: G1) is abstract;
procedure Op(X: G2) is abstract;

If they are conforming (as they are in this case) then the one concrete operation Op of the type T
derived from both G1 and G2 will implement both of these. (If they don't conform then they are
simply overloadings and two operations of T are required). Hence the one Op for T can be
substituted for the Op of both G1 and G2 and LSP is satisfied.

Now suppose both abstract operations have pre- and postconditions. Take postconditions first, we
might have

procedure Op(X: G1) is abstract
 with Post'Class => After1;

procedure Op(X: G2) is abstract
 with Post'Class => After2;

Users of the Op of G1 will expect the postcondition After1 to be satisfied by any implementation of
that Op. So if using the Op of T which implements the abstract Op of G1, it follows that Op of T
must satisfy the postcondition After1. By a similar argument regarding G2, it must also satisfy the
postcondition After2.

It thus follows that the effective postcondition on the concrete Op of T is as if we had written

procedure Op(X: T)
 with Post'Class => After1 and After2;

But of course we don't actually have to write that since we simply write

overriding
procedure OP(X: T);

18 Rat ionale for Ada 2012: 1 Contracts and aspects

and it automatically inherits both postconditions and the compiler inserts the appropriate code in the
body. Remember that if we don't give a condition then it is True by default but anding in True makes
no difference.

If we do provide another postcondition thus

overriding
procedure OP(X: T)
 with Post'Class => After_T;

then the overall class wide postcondition to be checked before returning will be After1 and After2
and After_T.

Now consider preconditions. Suppose the declarations of the two versions of Op are

procedure Op(X: G1) is abstract
 with Pre'Class => Before1;

procedure Op(X: G2) is abstract
 with Pre'Class => Before2;

Assuming that there is no corresponding Op for P, we must provide a concrete operation for T thus

overriding
procedure Op(X: T)
 with Pre'Class => Before_T;

This means that at a point of call of Op the precondition to be checked is Before_T or Before1 or
Before2. As long as this is satisfied it does not matter that Before1 and Before2 might have been
different.

If we do not provide an explicit Pre'Class then the condition to be checked at the point of call is
Before1 or Before2.

An interesting case arises if a progenitor (say G1) and the parent have a conforming operation. Thus
suppose P itself has the operation

procedure Op(X: P);

and moreover that the operation is not abstract. Then (ignoring preconditions for the moment) this
Op for P is inherited by T and thus provides a satisfactory implementation of Op for G1 and all is
well.

Now suppose that Op for P has a precondition thus

procedure OP(X: P)
 with Pre'Class => Before_P;

and that Before_P and Before1 are not the same. If we do not provide an explicit overriding for Op,
it would be possible to call the body of Op for P when the precondition it knows about, Before_P, is
False (since Before1 being True would be sufficient to allow the call to proceed). This would
effectively mean that no class wide preconditions could be trusted within the subprogram body and
that would be totally unacceptable. So in this case there is a rule that an explicit overriding is
required for Op for T.

If Op for P is abstract then a concrete Op for T must be provided and the situation is just as in the
case for the Op for G1 and G2.

If T itself is declared as abstract (and P is not abstract and Op for P is concrete) then the inherited
Op for T is abstract.

 19

(These rules are similar to those for functions returning a tagged type when the type is extended; it
has to be overridden unless the type is abstract in which case the inherited operation is abstract.)

We finish this somewhat mechanical discussion of the rules by pointing out that if silly inappropriate
preconditions are given then we will get a silly program.

At the end of the day, the real point is that programmers should not write preconditions that are not
sensible and sensibly related to each other. Because of the generality, the compiler cannot tell so
stupid things are hard to prohibit. There is no defence against stupid programmers.

A concrete example using simple numbers might help. Suppose we have a tagged type T1 and an
operation Solve which takes a parameter of type T1 and perhaps finds the solution to an equation
defined by the components of T1. Solve delivers the answer in a parameter A with a parameter D
giving the number of significant digits required in the answer. Also we impose a precondition on the
number of digits D thus

type T1 is tagged record ...

procedure Solve(X: in T1; A: out Float; D: in Integer)
 with Pre'Class => D < 5;

The intent here is that the version of Solve for the type T1 always works if the number of significant
digits asked for is less than 5.

Now suppose we declare a type T2 derived from T1 and that we override the inherited Solve with a
new version that works if the number of significant digits asked for is less than 10

type T2 is new T1 with ...

overriding
procedure Solve(X: in T2; A: out Float; D: in Integer)
 with Pre'Class => D < 10;

And so on with a type T3

type T3 is new T2 with ...

overriding
procedure Solve(X: in T3; A: out Float; D: in Integer)
 with Pre'Class => D < 15;

Thus we have a hierarchy of algorithms Solve with increasing capability.

Now suppose we have a dispatching call

An_X: T1'Class := ... ;
Solve(An_X, Answer, Digs);

this will dispatch to one of the Solve procedures but we do not know which one. The only
precondition that applies is that on the Solve for T1 which is D < 5. That is fine because D < 5
implies D < 10 and D < 15 and so on. Thus the preconditions work because the hierarchy weakens
them.

Similarly, if we have

An_X: T2'Class := ... ;
Solve(An_X, Answer, Digs);

then it will dispatch to a Solve for one of T2, T3, ..., but not to the Solve for T1. The applicable
preconditions are D < 5 and D < 10 and these are notionally ored together which means D < 10 is
actually required. To see this suppose we supply D = Digs = 7. Then D < 5 is False but D < 10 is
True so by oring False and True we get True, so the call works.

20 Rat ionale for Ada 2012: 1 Contracts and aspects

On the other hand if we write

An_X: T2 := ... ;
Solve(An_X, Answer, Digs);

then no dispatching is involved and the Solve for T2 is called. But both class wide preconditions D <
5 and D < 10 apply and so again the resulting ored precondition that is required is D < 10.

Now it should be clear that if the preconditions do not form a weakening hierarchy then we will be
in trouble. Thus if the preconditions were D < 15 for T1, D < 10 for T2, and D < 5 for T3, then
dispatching from the root will only check D < 15. However, we could end up calling the Solve for
T2 which expects the precondition D < 10 and this might not be satisfied.

Care is thus needed with preconditions that they are sensibly related.

4 Type invariants
Type invariants are designed for use with private types where we want some relationship to always
hold between components of the type. Like pre- and postconditions there are both specific invariants
that can be applied to any type and class wide invariants that can only be applied to tagged types.

One example mentioned above and discussed in the Introduction was a type Stack with specific
invariant Is_Unduplicated. Thus we write

type Stack is private
 with Type_Invariant => Is_Unduplicated(Stack);

After calls of Push and Pop and any other operations that manipulate the stack, the function
Is_Unduplicated is called to ensure that there are no duplicates on the stack.

The monitoring is controlled by the pragma Assertion_Policy in the same way as pre- and
postconditions. If an invariant fails (that is, has value False) then Assertion_Error is raised.

The invariant Is_Unduplicated is a curious example because it cannot be violated by Pop anyway
since if there were no duplicates then removing the top item cannot make one appear.

Moreover, Push needs to ensure that the item to be added is not a duplicate of one on the stack
already and so essentially much of the checking is repeated. Indeed, when writing Push we should
be able to assume that no items are already duplicated and hence all we need to do is check that the
new item to be added is not equal to one of the existing items (so n comparisons). However, a
general function Is_Unduplicated will need to compare all pairs and thus require a double loop (so
n(n+1)/2 comparisons).

The reader is invited to meditate over this conundrum. One's first reaction might be that this is a bad
example. However, one way to ensure reliability is to introduce redundancy. Thus if the encoding of
Is_Unduplicated and Push are done independently then there is an increased probability that any
error will be detected.

The aspect Type_Invariant requires an expression of a Boolean type. The mad programmer could
therefore also write

type Stack is private
 with Type_Invariant;

which would thus be True by default and so useless! Actually it might not be entirely useless since it
might act as a placeholder for an invariant to be defined later and meanwhile the program will
compile and execute.

Type invariants are useful whenever a type is more than just the sum of its components. Note
carefully that the invariant may not hold when an object is being manipulated by a subprogram

 21

having access to the full type. In the case of Push and Pop and the invariant Is_Unduplicated this
will not happen but consider the following simple example.

Suppose we have a type Point which describes the position of an object in a plane. It might simply
be

type Point is
 record
 X, Y: Float;
 end record;

Now suppose we want to ensure that all points are within a unit circle. We could ensure that a point
lies within a square by means of range constraints by writing

type Point is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

but we need to ensure that X**2 + Y**2 is not greater than 1.0, and that cannot be done by individual
constraints. So we might declare a type Disc_Pt with an invariant as follows

package Places is

 type Disc_Pt is private
 with Type_Invariant => Check_In(Disc_Pt);

 function Check_In(D: Disc_Pt) return Boolean
 with Inline;
 ... -- various operations on disc points
private

 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0);

end Places;

Note that we have used an expression function for Check_In. Expression functions were outlined in
the Introduction and will be discussed in detail in the next paper. They are very useful for small
functions in situations like this and typically will be given the aspect Inline on the specification as
shown.

Now suppose that we wish to make available to the user a procedure Flip that reflects a Disc_Pt in
the line x = y, or in other words interchanges its X and Y components. The body might be

procedure Flip(D: in out Disc_Pt) is
 T: Float; -- temporary
begin
 T := D.X; D.X := D.Y; D.Y := T;
end Flip;

This works just fine but note that just before the assignment to D.Y, it is quite likely that the
invariant does not hold. If the original value of D was (0.1, 0.8) then at the intermediate stage it will
be (0.8, 0.8) and so well outside the unit circle.

22 Rat ionale for Ada 2012: 1 Contracts and aspects

So there is a general principle that an intermediate value not visible externally need not satisfy the
invariant. There is an analogy with numeric types. The intermediate value of an expression can fall
outside the range of the type but will be within range when the final value is assigned to the object.
For example, suppose type Integer is 16 bits (a small machine) but the registers perform arithmetic
in 32 bits, then a statement such as

J := K * L / M;

could easily produce an intermediate result K * L outside the range of Integer but the final value
could be in range.

In many cases it will not be necessary for the user to know that a type invariant applies to the type; it
is after all merely a detail of the implementation. So perhaps the above should be rewritten as

package Places is

 type Disc_Pt is private;
 ... -- various operations on disc points
private

 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record
 with Type_Invariant => Disc_Pt.X**2 + Disc_Pt.Y**2 <= 1.0;

end Places;

In this case we do not need to declare a function Check_In at all. Note the use of the type name
Disc_Pt in the invariant expression. This is another example of the use of a type name to denote a
current instance (this is familiar from way back in Ada 83 with task type names).

We now turn to consider the places where a type invariant on a private type T is checked. These are
basically when it can be changed from the point of view of the outside user. They are

▪ after default initialization of an object of type T,

▪ after a conversion to type T,

▪ after assigning to a view conversion involving descendants and ancestors of type T,

▪ after a call of T'Read or T'Input,

▪ after a call of a subprogram declared in the immediate scope of T and visible outside that has a
parameter (of any mode including an access parameter) with a part of type T or returns a result
with a part of type T.

Note that by saying a part of type T, the checks not only apply to subprograms with parameters and
results of type T but they also apply to parameters and results whose components are of the type T or
are view conversions involving the type T. Observe that parameters of mode in are also checked
because, as is well known, there are accepted techniques for changing such parameters.

Beware, however, that the checks do not extend to deeply nested situations, such as components
with components that are access values to objects that themselves involve type T or worse. Thus
there are holes in the protection offered by type invariants. However, if the types are straightforward
and the writer does not do foolish things like surreptitiously exporting access types referring to T
then all will be well. It is another example of there being no defence against foolish programmers.

 23

The checks on type invariants regarding parameters and results can be conveniently implemented in
the body of the subprogram in much the same way as for postconditions. This saves duplicating the
code of the tests at each point of call.

If a subprogram such as Flip which is visible outside is called from inside then the checks still apply.
This is not strictly necessary of course, but fits the simple model of the checks being in the body and
so simplifies the implementation.

If an untagged type is derived then any existing specific invariant is inherited for inherited
operations. However, a further invariant can be given as well and both will apply to the inherited
operations. This fits in with the model of view conversions used to describe how an inherited
subprogram works on derivation. The parameters of the derived type are view converted to the
parent type before the body is called and back again afterwards. As mentioned above, view
conversions are one of the places where invariants are checked.

However, if we add new operations then the old invariant does not apply to them. In truth, the
specific invariant is not really inherited at all; it just comes along for free with the inherited
operations that are not overridden. So if we do add new operations then we need to state the total
invariant required.

Note that this is not quite the same model as specific postconditions. We cannot add postconditions
to an inherited operation but have to override it and then any specific postconditions on the parent
are lost. In any event, in both cases, if we want to use inheritance then we should really use tagged
types and class wide aspects.

So there is also an aspect Type_Invariant'Class for use with private tagged types. The distinction
between Type_Invariant and Type_Invariant 'Class has similarities to that between Post and
Post'Class.

The specific aspect Type_Invariant can be applied to any type but Type_Invariant'Class can only be
applied to tagged types. A tagged type can have both an aspect Type_Invariant and
Type_Invariant'Class.

Type_Invariant cannot be applied to an abstract type.

Type_Invariant'Class is inherited by all derived types; it can also be applied to an abstract type.

Note the subtle difference between Type_Invariant and Type_Invariant'Class. Type_Invariant'Class is
inherited for all operations of the type but as noted above Type_Invariant is only incidentally
inherited by the operations that are inherited.

An interesting rule is that Type_Invariant'Class cannot be applied to a full type declaration which
completes a private type such as Disc_Pt in the example above. This is because the writer of an
extension will need to see the applicable invariants and this would not be possible if they were in the
private part.

So if we have a type T with a class wide invariant thus

type T is tagged private
 with Type_Invariant'Class => F(T);
procedure Op1(X: in out T);
procedure Op2(X: in out T);

and then write

type NT is new T with private
 with Type_Invariant'Class => FN(NT);
overriding
procedure Op2(X: in out NT);

24 Rat ionale for Ada 2012: 1 Contracts and aspects

not overriding
procedure Op3(X: in out NT);

then both invariants F and FN will apply to NT.

Note that the procedure Op1 is inherited unchanged by NT, procedure Op2 is overridden for NT and
procedure Op3 is added.

Now consider various calls. The calls of Op1 will involve view conversions as mentioned earlier and
these will apply the checks for FN and the inherited body will apply the checks for F. The body of
Op2 will directly include checks for F and FN as will the body of Op3. So the invariant F is properly
inherited and all is well.

Remember that if the invariants were specific and not class wide then although Op1 will have
checks for F and FN, Op2 and Op3 will only check FN.

In the case of the type Disc_Pt we might decide to derive a type which requires that all values are
not only inside the unit circle but outside an inner circle – in other words in an annulus or ring. We
use the class wide invariants so that the parent package is

package Places is

 type Disc_Pt is tagged private
 with Type_Invariant'Class => Check_In(Disc_Pt);

 function Check_In(D: Disc_Pt) return Boolean
 with Inline;
 ... -- various operations on disc points
private

 type Disc_Pt is tagged
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0);

end Places;

And then we might write

package Places.Inner is

 type Ring_Pt is new Disc_Pt with null record
 with Type_Invariant'Class => Check_Out(Ring_Pt);

 function Check_Out(R: Ring_Pt) return Boolean
 with Inline;

private

 function Check_Out(R: Ring_Pt) return Boolean is
 (R.X**2 + R.Y**2 >= 0.25);

end Places.Inner;

And now the type Ring_Pt has both its own type invariant but also that inherited from Disc_Pt
thereby ensuring that points are within the ring or annulus. It is unfortunate that we could not make
the size of the inner circle a discriminant but a discriminant cannot be of a real type. Ah well,
perhaps in Ada 2020??

 25

Finally, it is worth emphasizing that it is good advice not to use inheritance with specific invariants
but they are invaluable for checking internal and private properties of types.

5 Subtype predicates
The final major facility to be discussed here is subtype predicates. These are not really contractual in
the sense that preconditions, postconditions and invariants are contractual but are more akin to
constraints.

Subtype predicates are of two kinds, Static_Predicate and Dynamic_Predicate. They can be applied
to subtype declarations and to type declarations using aspect specifications. For example, in the
Introduction we met

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0;

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

The predicates take an expression of a Boolean type and again we note the use of the subtype name
to denote the current instance. In the case of Dynamic_Predicate, the expression can be any Boolean
expression.

However, in the case of Static_Predicate, the expression is restricted and can only be

▪ a static membership test where the choice is selected by the current instance,

▪ a case expression whose dependent expressions are static and selected by the current instance,

▪ a call of the predefined operations =, /=, <, <=, >, >= where one operand is the current instance,

▪ an ordinary static expression,

and, in addition, a call of a Boolean logical operator and, or, xor, not whose operands are such
static predicate expressions, and, a static predicate expression in parentheses.

So we see that the predicate in the subtype Even cannot be a static predicate because the operator
mod is not permitted with the current instance. But mod could be used in an inner static expression.

However, the predicate in the subtype Winter can be a static predicate because it takes the from of a
membership test where the choice is selected by the current instance and whose individual items are
static. Note that membership tests are considerably enhanced in Ada 2012; further details will be
given in a later paper. Another useful example of this kind is

subtype Letter is Character
 with Static_Predicate => Letter in 'A' .. 'Z' | 'a' .. 'z';

Static case expressions are valuable because they provide the comfort of covering all values of the
current instance. Suppose we have a type Animal

type Animal is (Bear, Cat, Dog, Horse, Wolf);

We could then declare a subtype of friendly animals

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

and perhaps

subtype Predator is Animal
 with Static_Predicate => not (Predator in Pet);

or equivalently

26 Rat ionale for Ada 2012: 1 Contracts and aspects

subtype Predator is Animal
 with Static_Predicate => Predator not in Pet;

Now suppose we add Rabbit to the type Animal. Assuming that we consider that rabbits are pets and
not food, we should change Pet to correspond but we might forget with awkward results. Maybe we
have a procedure Hunt which aims to eliminate predators

procedure Hunt(P: in out Predator);

and we will find that our poor rabbit is hunted rather than petted!

What we should have done is use a case expression controlled by the current instance thus

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

and now if we add Rabbit to Animal and forget to update Pet to correspond then the program will
fail to compile.

Note that a similar form of if expression where the current instance has to be of a Boolean type
would not be useful and so is excluded.

Static subtypes with static predicates can also be used in case statements. Thus elsewhere in the
program we might have

case Animal is
 when Pet => ... -- feed it
 when Predator => ... -- feed on it
end case;

Observe that we do not have to list all the individual animals and naturally there is no others clause.
If other animals are added to Pet or Predator then this case statement will not need changing. Thus
not only do we get the benefit of full coverage checking, but the code is also maintenance free. Of
course if we add an animal that is neither a Pet nor Predator (Sloth perhaps?) then the case statement
will need updating.

Subtype predicates, like pre- and postconditions and type invariants are similarly monitored by the
pragma Assertion_Policy. If a predicate fails (that is, has value False) then Assertion_Error is raised.

Subtype predicates are checked in much the same sort of places as type invariants. Thus

▪ on a subtype conversion,

▪ on parameter passing (which covers expressions in general),

▪ on default initialization of an object.

Note an important difference from type invariants. If a type invariant is violated then the damage has
been done. But subtype predicates are checked before any damage is done. This difference
essentially arises because type invariants apply to private types and can become temporarily false
inside the defining package as we saw with the procedure Flip applying to the type Disc_Pt.

If an object is declared without initialization and no default applies then any subtype predicate might
be false in the same way that a subtype constraint might be violated.

 27

Beware that subtype predicates like type invariants are not foolproof. Thus in the case of a record
type they apply to the record as a whole but they are not checked if an individual component is
modified.

Subtype predicates can be given for all types in principle. Thus we might have

type Date is
 record
 D: Integer range 1 .. 31;
 M: Month;
 Y: Integer;
 end record;

and then

subtype Winter_Date is Date
 with Dynamic_Predicate => Winter_Date.M in Winter;

Note how this uses the subtype Winter which was itself defined by a subtype predicate. However,
Winter_Date has to have a Dynamic_Predicate because the selector is not simply the current
instance but a component of it.

We can now declare and manipulate a Winter_Date

WD: Winter_Date := (25, Dec, 2011);
...
Do_Date(WD);

and the subtype predicate will be checked on the call of Do_Date. However, beware that if we write

WD.Month := Jun; -- dodgy

then the subtype predicate is not checked because we are modifying an individual component and
not the record as a whole.

Subtype predicates can be given with type declarations as well as with subtype declarations.
Consider for example declaring a type whose only allowed values are the possible scores for an
individual throw when playing darts. These are 1 to 20 and doubles and trebles plus 50 and 25 for an
inner and outer bull's eye. We could write these all out explicitly

type Score is new Integer
 with Static_Predicate =>
 Score in 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
 | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 33 | 34 | 36 | 38 | 39 | 40 | 42 | 45 | 48 | 50
 | 51 | 54 | 57 | 60;

But that is rather boring and obscures the nature of the predicate. We can split it down by first
defining individual subtypes for singles, doubles and trebles as follows

subtype Single is Integer range 1 .. 20;

subtype Double is Integer
 with Static_Predicate =>
 Double in 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20;

subtype Treble is Integer
 with Static_Predicate =>
 Treble in 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30;

28 Rat ionale for Ada 2012: 1 Contracts and aspects

subtype Score is Integer
 with Static_Predicate =>
 Score in Single or Score in Double or Score in Treble or Score in 25 | 50;

Note that it would be neater to write

subtype Score is Integer
 with Static_Predicate =>
 Score in Single | Double | Treble | 25 | 50;

Observe that it does not matter that the individual predicates overlap. That is a score such as 12 is a
Single, a Double and a Treble.

If we do not mind the predicates being dynamic then we can write

subtype Double is Integer
 with Dynamic_Predicate =>
 Double mod 2 = 0 and Double / 2 in Single;

and so on. Or we could even use a quantified expression

subtype Double is Integer
 with Dynamic_Predicate =>
 (for some K in Single => Double = 2*K);

or go all the way in one lump

type Dyn_Score is new Integer
 with Dynamic_Predicate =>
 (for some K in 1 .. 20 => Score = K or Score = 2*K or Score = 3*K) or Score in 25 | 50;

There are some restrictions on the use of subtypes with predicates.

If a subtype has a static or dynamic predicate then it cannot be used as an array index subtype. This
is to avoid arrays with holes. So we cannot write

type Winter_Hours is array (Winter) of Hours; -- illegal

type Hits is array (Score range <>) of Integer; -- illegal

Similarly, we cannot use a subtype with a predicate to declare the range of an array object or to
select a slice. So if we have

type Month_Days is array (Month range <>) of Integer;
The_Days: Month_Days := (31, 28, 31, 30, ...);

then we cannot write

Winter_Days: Month_Days(Winter); -- illegal array

The_Days(Winter) := (Jan | Dec => 31, Feb => 29); -- really nasty illegal slice

However, a subtype with a static predicate can be used in a for loop thus

for W in Winter loop ...

and in a named aggregate such as

(Winter => 10.0, others => 14.0); -- OK

but a subtype with a dynamic predicate cannot be used in these ways. Actually the restriction is
slightly more complicated. If the original subtype is not static such as

subtype To_N is Integer range 1 .. N;

 29

then even if To_N has a static predicate it still cannot be used in a for loop or named aggregate.

These rules can also be illustrated by considering the dartboard. We might like to accumulate a count
of the number of times each particular score has been achieved. So we might like to declare

type Hit_Count is array (Score) of Integer; -- illegal

but sadly this would result in an array with holes and so is forbidden. However, we could declare an
array from 1 to 60 and then initialize it with 0 for those components used for hits and –1 for the
unused components. Of course, we ought not to repeat literals such as 1 and 60 because of potential
maintenance problems. But, we can use new attributes First_Valid and Last_Valid thus

type Hit_Count is array (Score'First_Valid .. Score'Last_Valid) of Integer :=
 (Score => 0, others => –
1);

which uses Score to indicate the used components. The attributes First_Valid and Last_Valid can be
applied to any static subtype but are particularly useful with static predicates.

In detail, First_Valid returns the smallest valid value of the subtype. It takes any range and/or
predicate into account whereas First only takes the range into account. Similarly Last_Valid returns
the largest value. Incidentally, they are illegal on null subtypes (because null subtypes have no valid
values at all).

The Hit_Count array can then be updated by the value of each hit as expected

A_Hit: Score := ... ; -- next dart

Hit_Count(A_Hit) := Hit_Count(A_Hit) + 1;

If we attempt to assign a value of type Integer which is not in the subtype Score to A_Hit then
Assertion_Error is raised.

After the game, we can now loop through the subtype Score and print out the number of times each
hit has been achieved and perhaps accumulate the total at the same time thus

for K in Score loop
 New_Line; Put(Hit); Put(Hit_Count(K));
 Total := Total + K * Hit_Count(K);
end loop;

The reason for the distinction between static and dynamic predicates is that the static form can be
implemented as small sets with static operations on the small sets. Hence the loop

for K in Score loop ...

can be implemented simply as a sequence of 43 iterations. However, a loop such as

for X in Even loop ...

which might look innocuous requires iterating over the whole set of integers. Thus we insist on
having to write

for X in Integer loop
 if X in Even then ...

which makes the situation quite clear.

Another restriction on the use of subtypes with predicates is that the attributes First, Last and Range
cannot be applied. But Pred and Succ are permitted because they apply to the underlying type. As a
consequence, if a generic body uses First, Last or Range on a formal type and the actual type has a
subtype predicate then Program_Error is raised.

30 Rat ionale for Ada 2012: 1 Contracts and aspects

Subtype predicates can be applied to abstract types but not to incomplete types.

Subtype predicates are inherited as expected on derivation. Thus if we have

type T is ...
 with Static_Predicate => SP(T);

and then

type NT is new T
 with Dynamic_Predicate => DP(NT);

the result is that both predicates apply to NT rather as if we had written the predicate as SP(NT) and
DP(NT). So if several apply they are anded together. If any one is dynamic then restrictions on the
use of subtypes with a dynamic predicate apply.

There is no need for special predicates for class wide types in the way that we have both
Type_Invariant and Type_Invariant'Class. So in the general case where a tagged type is derived from
a parent and several progenitors

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors, the subtype predicate applicable to T is simply
those for P, G1 and G2 all anded together.

6 Default initial values
It is often important that we can rely upon an object having a value within its subtype even before it
is assigned to and this especially applies in the face of type invariants and subtype predicates.
Consider a type Location whose type invariant In_Place requires the point to be within some place.

package Places is
 type Location is private
 with Type_Invariant => In_Place(Location);

 function In_Place(L: Location) return Boolean;
 procedure Do_It(X: in out Location; ...);

private

 type Location is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 ...

end Places;

If we just declare an object of type Location thus

Somewhere: Location;

then there is no guarantee that Somewhere is anywhere in particular. If the type invariant In_Place
applies and a subprogram with an in out parameter such as Do_It is called

Do_It(Somewhere);

then it might be that some paths through Do_It do not assign a new value to X. Nevertheless, on
return from Do_It, the type invariant In_Place will be checked on the parameter. If Somewhere by
chance had an accidental initial value outside the space implied by In_Place then the call will fail.
Now it might be that other parameters of the procedure indicate to the caller that Somewhere has

 31

not been updated in this case but unfortunately this information is unlikely to be available to the
invariant.

One solution to this is to ensure that objects always have an initial value satisfying the requisite
constraints, predicates or invariants. One might do this by assigning a safe initial value thus

Somewhere: Location := (0.0, 0.0); -- illegal

but this is illegal because the type is private. We could of course export from the package Places a
safe initial value so that we could write

Somewhere: Location := Places.Haven;

But this is often frowned upon because giving an explicit initial value can hide flow errors. It is thus
best to ensure that the object automatically has a safe default value by writing perhaps

 type Location is
 record
 X, Y: Float range –1.0 .. +1.0 := 0.0;
 end record;

It is curious that Ada allows default initial values for components of records and provides them
automatically for access types (null) but not for scalar types or for array types. This is remedied in
Ada 2012 by the introduction of aspects Default_Value and Default_Component_Value for scalar
types and arrays of scalar types respectively. The format is as expected

type My_Float is digits 20
 with Default_Value => 0.5;

type OK is new Boolean
 with Default_Value => True;

The usual rule regarding the omission of => True does not apply in the case of Default_Value for
Boolean types for obvious reasons.

If possible, a special value indicating the status of the default should be supplied. This particularly
applies to enumeration types. For example

type Switch is (On, Off, Unknown)
 with Default_Value => Unknown;

In the case of an array type this can be constrained or unconstrained and the default value will apply
to all components.

type Vector is array (Integer range <>) of Integer
 with Default_Component_Value => 0;

Default initial values cannot be given to the predefined types but they can be given to types derived
from them such as the Boolean type OK above.

In the case of a private type, any default has to be given on the full type declaration.

It is important to note that default initial values can only be given for types and not for subtypes. If a
default initial value lies outside the range of a subtype then declaring an object of a subtype without
its own specific initial value will raise Constraint_Error. So writing

subtype Known_Switch is Switch range On .. Off;
A_Switch: Known_Switch;

raises Constraint_Error because the default initial value Unknown is outside the range of the subtype
Known_Switch.

32 Rat ionale for Ada 2012: 1 Contracts and aspects

If a record type is declared and some components are given initial values but others are not then
explicitly given initial values take precedence over default values given by these aspects. Thus if we
have

 type Location is
 record
 X: My_Float range –1.0 .. +1.0 := 0.0;
 Y: My_Float range –1.0 .. +1.0;
 end record;

then the component X has default value 0.0 but component Y has default value 0.5, (since My_Float
declared above has default value 0.5).

A final important point is that default initial values supplied by these aspects have to be static unlike
default initial values for record components.

7 Storage occupancy checks
Finally, two new attributes are introduced to aid in the writing of preconditions. Sometimes it is
necessary to check that two objects do not occupy the same storage in whole or in part. This can be
done with two functional attributes X'Has_Same_Storage and X'Overlaps_Storage which apply to
an object X of any type.

Their specifications are

function X'Has_Same_Storage(Arg: any_type) return Boolean;

function X'Overlaps_Storage(Arg: any_type) return Boolean;

As an example we might have a procedure Exchange and wish to ensure that the parameters do not
overlap in any way. We can write

procedure Exchange(X, Y: in out T)
 with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since this enables the semantics to be written in
a manner that permits X and Y to be of any type and moreover does not imply that X or Y are read.

The object X and the parameter Y could be components such as A(5) or indeed A(J) or even a slice
A(1 .. N). Thus the actual addresses to be checked may not be statically determined but have to be
determined at the point of call.

AI-191 shows the following curious example

procedure Count(A: in out Arrtype; B: in Arrtype)
 with Pre => not A'Overlaps_Storage(B)
is
 -- intended to count in A the number of value
 -- occurrences in B as part of a distribution sort
begin
 for I in B'Range loop
 A(B(I)) := A(B(I)) + 1;
 end loop;
end Count;

The author seems to have assumed that the array A has appropriate components and that they are
initialized to zero. This also illustrates the use of an aspect specification in a subprogram body.

 33

At the machine level Overlaps_Storage means that at least one bit is in common and
Has_Same_Storage means that all bits are in common. Hence X'Has_Same_Storage(Y) implies
X'Overlaps_Storage(Y).

In some applications involving the possibility of aliasing (messing with tree structures comes to
mind) we do really want to check that two entities are not in the same place rather than just
overlapping in which case it is more logical to use Has_Same_Storage.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions to the Ada Rapporteur Group from SC22/

WG9 for Preparation of Amendment 2 to ISO/IEC 8652.

[2] Jean Ichbiah, John Barnes, Robert Firth, Mike Woodger (1986) Rationale for the Design of the
Ada Programming Language, Honeywell and Alsys.

[3] J. G. P. Barnes (2006) Programming in Ada 2005, Addison-Wesley.

© 2011 John Barnes Informatics.

34 Rat ionale for Ada 2012: 1 Contracts and aspects

