
 1

Rationale for Ada 2005: 5 Exceptions, generics etc
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements in a number of general areas in Ada 2005.
There are some minor almost cosmetic improvements in the exceptions area which add to
convenience rather than functionality. There are some important changes in the numerics
area: one concerns mixing signed and unsigned integers and another concerns fixed point
multiplication and division.
There are also a number of additional pragmas and Restrictions identifiers mostly of a
safety-related nature.
Finally there are a number of improvements in the generics area such as better control of
partial parameters of formal packages.
This is one of a number of papers concerning Ada 2005 which are being published in the
Ada User Journal. An earlier version of this paper appeared in the Ada User Journal, Vol.
26, Number 3, September 2005. Other papers in this series will be found in later issues of
the Journal or elsewhere on this website.
Keywords: rationale, Ada 2005.

1 Overview of changes
The areas mentioned in this paper are not specifically mentioned in the WG9 guidance document [1]
other than under the request to remedy shortcomings and improve interfacing.

The following Ada Issues cover the relevant changes and are described in detail in this paper.

161 Preelaborable initialization

216 Unchecked unions – variants without discriminant

224 pragma Unsuppress

241 Testing for null occurrence

251 Abstract interfaces to provide multiple inheritance

257 Restrictions for implementation defined entities

260 Abstract formal subprograms & dispatching constructors

267 Fast float to integer conversion

286 Assert pragma

317 Partial parameter lists for formal packages

329 pragma No_Return – procedures that never return

340 Mod attribute

361 Raise with message

2 Rat ionale for Ada 2005: 5 Except ions, generics etc.

364 Fixed point multiply and divide

368 Restrictions for obsolescent features

381 New Restrictions identifier – No_Dependence

394 Redundant Restrictions identifiers and Ravenscar

398 Parameters of formal packages given at most once

400 Wide and wide-wide images

414 pragma No_Return for overriding procedures

417 Lower bound of functions in Ada.Exceptions etc

419 Limitedness of derived types

420 Resolution of universal operations in Standard

423 Renaming, null exclusion and formal objects

These changes can be grouped as follows.

First there are some minor changes to exception handling. There are neater means for testing for null
occurrence and raising an exception with a message (241, 361) and also wide and wide-wide
versions of some procedures (400, 417).

The numerics area has a number of small but important changes. They are the introduction of an
attribute Mod to aid conversion between signed and unsigned integers (340); changes to the rules for
fixed point multiplication and division which permit user-defined operations (364, 420); and an
attribute Machine_Rounding which can be used to aid fast conversions from floating to integer types
(267).

A number of new pragmas and Restrictions identifiers have been added. These generally make for
more reliable programming. The pragmas are: Assert, No_Return, Preelaborable_Initialization,
Unchecked_Union, and Unsuppress (161, 216, 224, 286, 329, 414). The restrictions identifiers are
No_Dependence, No_Implementation_Pragmas, No_Implementation_Restrictions, and No_
Obsolescent_Features (257, 368, 381). Note that there are also other new pragmas and new
restrictions identifiers concerned with tasking as described in the previous paper. However, the
introduction of No_Dependence means that the identifiers No_Asynchronous_Control,
No_Unchecked_Conversion and No_Unchecked_Deallocation are now obsolescent (394).

Finally there are changes in generic units. There are changes in generic parameters which are
consequences of changes in other areas such as the introduction of interfaces and dispatching
constructors as described in the paper on the object oriented model (parts of 251 and 260); there are
also changes to formal access and derived types (419, 423). Also, it is now possible to give just
some parameters of a formal package in the generic formal part (317, 398).

2 Exceptions
There are two minor improvements in this area.

One concerns the detection of a null exception occurrence which might be useful in a routine for
analysing a log of exceptions. This is tricky because although a constant Null_Occurrence is
declared in the package Ada.Exceptions, the type Exception_Occurrence is limited and no equality
is provided. So the obvious test cannot be performed.

We can however apply the function Exception_Identity to a value of the type Exception_Occurrence
and this returns the corresponding Exception_Id. Thus we could check to see whether a particular
occurrence X was caused by Program_Error by writing

John Barnes 3

if Exception_Identity(X) = Program_Error'Identity then

However, in Ada 95, applying Exception_Identity to the value Null_Occurrence raises
Constraint_Error so we have to resort to a revolting trick such as declaring a function as follows

function Is_Null_Occurrence(X: Exception_Occurrence) return Boolean is
 Id: Exception_Id;
begin
 Id := Exception_Identity(X);
 return False;
exception
 when Constraint_Error => return True;
end Is_Null_Occurrence;

We can now write some general analysis routine as

procedure Process_Ex(X: in Exception_Occurrence) is
begin
 if Is_Null_Occurrence(X) then -- OK in Ada 95
 -- process the case of a null occurrence
 else
 -- process proper occurrences
 end if;
end Process_Ex;

But the detection of Constraint_Error in Is_Null_Occurrence is clearly bad practice since it would be
all too easy to mask some other error by mistake. Accordingly, in Ada 2005, the behaviour of
Exception_Identity is changed to return Null_Id when applied to Null_Occurrence. So we can now
dispense with the dodgy function Is_Null_Occurrence and just write

procedure Process_Ex(X: in Exception_Occurrence) is
begin
 if Exception_Identity(X) = Null_Id then -- OK in 2005
 -- process the case of a null occurrence
 else
 -- process proper occurrences
 end if;
end Process_Ex;

Beware that, technically, we now have an incompatibility between Ada 95 and Ada 2005 since the
nasty function Is_Null_Occurrence will always return False in Ada 2005.

Observe that Constraint_Error is also raised if any of the three functions Exception_Name,
Exception_Message, or Exception_Information are applied to the value Null_Occurrence so the
similar behaviour with Exception_Identity in Ada 95 is perhaps understandable at first sight.
However, it is believed that it was not the intention of the language designers but got in by mistake.
Actually the change described here was originally classified as a correction to Ada 95 but later
reclassified as an amendment in order to draw more attention to it because of the potential
incompatibility.

The other change in the exception area concerns the raise statement. It is now possible (optionally of
course) to supply a message thus

raise An_Error with "A message";

This is purely for convenience and is identical to writing

Raise_Exception(An_Error'Identity, "A message");

4 Rat ionale for Ada 2005: 5 Except ions, generics etc.

There is no change to the form of raise statement without an exception which simply reraises an
existing occurrence.

Note the difference between

raise An_Error; -- message is implementation defined

and

raise An_Error with ""; -- message is null

In the first case a subsequent call of Exception_Message returns implementation defined
information about the error whereas in the second case it simply returns the given message which in
this example is a null string.

Some minor changes to the procedure Raise_Exception are mentioned in Section 4 below.

There are also additional functions in the package Ada.Exceptions to return the name of an
exception as a Wide_String or Wide_Wide_String. They have identifiers Wide_Exception_Name and
Wide_Wide_Exception_Name and are overloaded to take a parameter of type Exception_Id or
Exception_Occurrence. The lower bound of the strings returned by these functions and by the
existing functions Exception_Name, Exception_Message and Exception_Information is 1 (Ada 95
forgot to state this for the existing functions). The reader will recall that similar additional functions
(and forgetfulness) in the package Ada.Tags were mentioned in the paper on the object oriented
model.

3 Numerics
Although Ada 95 introduced unsigned integer types in the form of modular types, nevertheless, the
strong typing rules of Ada have not made it easy to get unsigned and signed integers to work
together. The following discussion using Ada 95 is based on that in AI-340.

Suppose we wish to implement a simulation of a typical machine which has addresses and offsets.
We make it a generic

generic
 type Address_Type is mod <>;
 type Offset_Type is range <>;
 ...
package Simulator is
 function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type;
 ...
end Simulator;

Addresses are represented as unsigned integers (a modular type), whereas offsets are signed
integers. The function Calc_Address aims to add an offset to a base address and return an address.
The offset could be negative.

Naïvely we might hope to write

function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type is
begin
 return Base_Add + Offset; -- illegal
end Calc_Address;

but this is plainly illegal because Base_Add and Offset are of different types.

John Barnes 5

We can try a type conversion thus

return Base_Add + Address_Type(Offset);

or perhaps, since Address_Type might have a constraint,

return Base_Add + Address_Type'Base(Offset);

but in any case the conversion is doomed to raise Constraint_Error if Offset is negative.

We then try to be clever and write

return Base_Add + Address_Type'Base(Offset mod
 Offset_Type'Base(Address_Type'Modulus));

but this raises Constraint_Error if Address_Type'Modulus > Offset_Type'Base'Last which it often
will be. To see this consider for example a 32-bit machine with

type Offset_Type is range –(2**31) .. 2**31–1;
type Address_Type is mod 2**32;

in which case Address_Type'Modulus is 2**32 which is greater than Offset_Type'Base'Last which is
2**31–1.

So we try an explicit test for a negative offset

if Offset >= 0 then
 return Base_Add + Address_Type'Base(Offset);
else
 return Base_Add - Address_Type'Base(–Offset);
end if;

But if Address_Type'Base'Last < Offset_Type'Last then this will raise Constraint_Error for some
values of Offset. Unlikely perhaps but this is a generic and so ought to work for all possible pairs of
types.

If we attempt to overcome this then we run into problems in trying to compare these two values
since they are of different types and converting one to the other can raise the Constraint_Error
problem once more. One solution is to use a bigger type to do the test but this may not exist in some
implementations. We could of course handle the Constraint_Error and then patch up the answer. The
ruthless programmer might even think of Unchecked_Conversion but this has its own problems.
And so on – 'tis a wearisome tale.

The problem is neatly overcome in Ada 2005 by the introduction of a new functional attribute

function S'Mod(Arg: universal_integer) return S'Base;

S'Mod applies to any modular subtype S and returns

Arg mod S'Modulus

In other words it converts a universal_integer value to the modular type using the corresponding
mathematical mod operation. We can then happily write

function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type is
begin
 return Base_Add + Address_Type'Mod(Offset);
end Calc_Address;

and this always works.

6 Rat ionale for Ada 2005: 5 Except ions, generics etc.

The next topic in the numerics area concerns rounding. One of the problems in the design of any
programming language is getting the correct balance between performance and portability. This is
particularly evident with numeric types where the computer has to implement only a crude
approximation to the mathematician's integers and reals. The best performance is achieved by using
types and operations that correspond exactly to the hardware. On the other hand, perfect portability
requires using types with precisely identical characteristics on all implementations.

An interesting example of this problem arises with conversions from a floating point type to an
integer type when the floating type value is midway between two integer values.

In Ada 83 the rounding in the midway case was not specified. This upset some people and so Ada
95 went the other way and decreed that such rounding was always away from zero. As well as this
rule for conversion to integer types, Ada 95 also introduced a functional attribute to round a floating
value. Thus for a subtype S of a floating point type T we have

function S'Rounding(X: T) return T;

This returns the nearest integral value and for midway values rounds away from zero.

Ada 95 also gives a bit more control for the benefit of the statistically minded by introducing

function S'Unbiased_Rounding(X: T) return T;

This returns the nearest integral value and for midway values rounds to the even value.

However, there are many applications where we don't care which value we get but would prefer the
code to be fast. Implementers have reported problems with the elementary functions where table
look-up is used to select a particular polynomial expansion. Either polynomial will do just as well
when at the midpoint of some range. However on some popular hardware such as the Pentium,
doing the exact rounding required by Ada 95 just wastes time and the resulting function is perhaps
20% slower. This is serious in any comparison with C.

This problem is overcome in Ada 2005 by the introduction of a further attribute

function S'Machine_Rounding(X: T) return T;

This does not specify which of the adjacent integral values is returned if X lies midway. Note that it
is not implementation defined but deliberately unspecified. This should discourage users from
depending upon the behaviour on a particular implementation and thus writing non-portable code.

Zerophiles will be pleased to note that if S'Signed_Zeros is true and the answer is zero then it has
the same sign as X.

It should be noted that Machine_Rounding, like the other rounding functions, returns a value of the
floating point type and not perhaps universal_integer as might be expected. So it will typically be
used in a context such as

X: Some_Float;
Index: Integer;
...
Index := Integer(Some_Float'Machine_Rounding(X));
... -- now use Index for table look-up

Implementations are urged to detect this case in order to generate fast code.

The third improvement to the core language in the numerics area concerns fixed point arithmetic.
This is a topic that concerns few people but those who do use it probably feel passionately about it.

The trouble with floating point is that it is rather machine dependent and of course integers are just
integers. Many application areas have used some form of scaled integers for many decades and the

John Barnes 7

Ada fixed point facility is important in certain applications where rigorous error analysis is
desirable.

The model of fixed point was changed somewhat from Ada 83 to Ada 95. One change was that the
concepts of model and safe numbers were replaced by a much simpler model just based on the
multiples of the number small. Thus consider the type

Del: constant := 2.0**(–15);
type Frac is delta Del range –1.0 .. 1.0;

In Ada 83 small was defined to be the largest power of 2 not greater than Del, and in this case is
indeed 2.0**(–15). But in Ada 95, small can be chosen by the implementation to be any power of 2
not greater than Del provided of course that the full range of values is covered. In both languages an
aspect clause can be used to specify small and it need not be a power of 2. (Remember that
representation clauses are now known as aspect clauses.)

A more far reaching change introduced in Ada 95 concerns the introduction of operations on the
type universal_fixed and type conversion.

A minor problem in Ada 83 was that explicit type conversion was required in places where it might
have been considered quite unnecessary. Thus supposing we have variables F, G, H of the above
type Frac, then in Ada 83 we could not write

H := F * G; -- illegal in Ada 83

but had to use an explicit conversion

H := Frac(F * G); -- legal in Ada 83

In Ada 83, multiplication was defined between any two fixed point types and produced a result of
the type universal_fixed and an explicit conversion was then required to convert this to the type
Frac.

This explicit conversion was considered to be a nuisance so the rule was changed in Ada 95 to say
that multiplication was only defined between universal_fixed operands and delivered a
universal_fixed result. Implicit conversions were then allowed for both operands and result provided
the type resolution rules identified no ambiguity. So since the expected type was Frac and no other
interpretation was possible, the implicit conversion was allowed and so in Ada 95 we can simply
write

H := F * G; -- legal in Ada 95

Similar rules apply to division in both Ada 83 and Ada 95.

Note however that

F := F * G * H; -- illegal

is illegal in Ada 95 because of the existence of the pervasive type Duration defined in Standard. The
intermediate result could be either Frac or Duration. So we have to add an explicit conversion
somewhere.

One of the great things about Ada is the ability to define your own operations. And in Ada 83 many
programmers wrote their own arithmetic operations for fixed point. These might be saturation
operations in which the result is not allowed to overflow but just takes the extreme implemented
value. Such operations often match the behaviour of some external device. So we might declare

function "*"(Left, Right: Frac) return Frac is
begin
 return Standard."*"(Left, Right);

8 Rat ionale for Ada 2005: 5 Except ions, generics etc.

exception
 when Constraint_Error =>
 if (Left>0.0 and Right>0.0) or (Left<0.0 and Right<0.0) then
 return Frac'Last;
 else
 return Frac'First;
 end if;
end "*";

and similar functions for addition, subtraction, and division (taking due care over division by zero
and so on). This works fine in Ada 83 and all calculations can now use the new operations rather
than the predefined ones in a natural manner.

Note however that

H := Frac(F * G);

is now ambiguous in Ada 83 since both our own new "*" and the predefined "*" are possible
interpretations. However, if we simply write the more natural

H := F * G;

then there is no ambiguity. So we can program in Ada 83 without the explicit conversion.

However, in Ada 95 we run into a problem when we introduce our own operations since

H := F * G;

is ambiguous because both the predefined operation and our own operation are possible
interpretations of "*" in this context. There is no cure for this in Ada 95 except for changing our own
multiplying operations to be procedures with identifiers such as mul and div. This is a very tedious
chore and prone to errors.

It has been reported that because of this difficulty many projects using fixed point have not moved
from Ada 83 to Ada 95.

This problem is solved in Ada 2005 by changing the name resolution rules to forbid the use of the
predefined multiplication (division) operation if there is a user-defined primitive multiplication
(division) operation for either operand type unless there is an explicit conversion on the result or we
write Standard."*" (or Standard."/").

This means that when there is no conversion as in

H := F * G;

then the predefined operation cannot apply if there is a primitive user-defined "*" for one of the
operand types. So the ambiguity is resolved. Note that if there is a conversion then it is still
ambiguous as in Ada 83.

If we absolutely need to have a conversion then we can always use a qualification as well or just
instead. Thus we can write

F := Frac'(F * G) * H;

and this will unambiguously use our own operation.

On the other hand if we truly want to use the predefined operation then we can always write

H := Standard."*"(F, G);

Another example might be instructive. Suppose we declare three types TL, TA, TV representing
lengths, areas, and volumes. We use centimetres as the basic unit with an accuracy of 0.1 cm

John Barnes 9

together with corresponding consistent units and accuracies for areas and volumes. We might
declare

type TL is delta 0.1 range –100.0 .. 100.0;
type TA is delta 0.01 range –10_000.0 .. 10_000.0;
type TV is delta 0.001 range –1000_000.0 .. 1000_000.0;
for TL'Small use TL'Delta;
for TA'Small use TA'Delta;
for TV'Small use TV'Delta;

function "*"(Left: TL; Right: TL) return TA;
function "*"(Left: TL; Right: TA) return TV;
function "*"(Left: TA Right: TL) return TV;
function "/"(Left: TV; Right: TL) return TA;
function "/"(Left: TV; Right: TA) return TL;
function "/"(Left: TA; Right: TL) return TL;

XL, YL: TL;
XA, YA: TA;
XV, YV: TV;

These types have an explicit small equal to their delta and are such that no scaling is required to
implement the appropriate multiplication and division operations. This absence of scaling is not
really relevant to the discussion below but simply illustrates why we might have several fixed point
types and operations between them.

Note that all three types have primitive user-defined multiplication and division operations even
though in the case of multiplication, TV only appears as a result type. Thus the predefined
multiplication or division with any of these types as operands can only be considered if the result
has a type conversion.

As a consequence the following are legal

XV := XL * XA; -- OK, volume = length × area
XL := XV / XA; -- OK, length = volume ÷ area

but the following are not because they do not match the user-defined operations

XV := XL * XL; -- no, volume ≠ length × length
XV := XL / XA; -- no, volume ≠ length ÷ area
XL := XL * XL; -- no, length ≠ length × length

But if we insist on multiplying two lengths together then we can use an explicit conversion thus

XL := TL(XL * XL); -- legal, predefined operation

and this uses the predefined operation.

If we need to multiply three lengths to get a volume without storing an intermediate area then we
can write

XV := XL * XL * XL;

and this is unambiguous since there are no explicit conversions and so the only relevant operations
are those we have declared.

It is interesting to compare this with the corresponding solution using floating point where we would
need to make the unwanted predefined operations abstract as discussed in an earlier paper.

10 Rat ionale for Ada 2005: 5 Except ions, generics etc.

It is hoped that the reader has not found this discussion to be too protracted. Although fixed point is
a somewhat specialized area, it is important to those who find it useful and it is good to know that
the problems with Ada 95 have been resolved.

There are a number of other improvements in the numerics area but these concern the Numerics
annex and so will be discussed in a later paper.

4 Pragmas and Restrictions
Ada 2005 introduces a number of new pragmas and Restrictions identifiers. Many of these were
described in the previous paper when discussing tasking and the Real-Time and High Integrity
annexes. For convenience here is a complete list giving the annex if appropriate.

The new pragmas are

Assert
Assertion_Policy
Detect_Blocking High-Integrity
No_Return
Preelaborable_Initialization
Profile Real-Time
Relative_Deadline Real-Time
Unchecked_Union Interface
Unsuppress

The new Restrictions identifiers are

Max_Entry_Queue_Length Real-Time
No_Dependence
No_Dynamic_Attachment Real-Time
No_Implementation_Attributes
No_Implementation_Pragmas
No_Local_Protected_Objects Real-Time
No_Obsolescent_Features
No_Protected_Type_Allocators Real-Time
No_Relative_Delay Real-Time
No_Requeue_Statements Real-Time
No_Select_Statements Real-Time
No_Synchronous_Control Real-Time
No_Task_Termination Real-Time
Simple_Barriers Real-Time

We will now discuss in detail the pragmas and Restrictions identifiers in the core language and so
not discussed in the previous paper.

First there is the pragma Assert and the associated pragma Assertion_Policy. Their syntax is as
follows

pragma Assert([Check =>] boolean_expression [, [Message =>] string_expression]);

pragma Assertion_Policy(policy_identifier);

The first parameter of Assert is thus a boolean expression and the second (and optional) parameter is
a string. Remember that when we write Boolean we mean of the predefined type whereas boolean
includes any type derived from Boolean as well.

John Barnes 11

The parameter of Assertion_Policy is an identifier which controls the behaviour of the pragma
Assert. Two policies are defined by the language, namely, Check and Ignore. Further policies may
be defined by the implementation.

There is also a package Ada.Assertions thus

package Ada.Assertions is
 pragma Pure(Assertions);

 Assertion_Error: exception;

 procedure Assert(Check: in Boolean);
 procedure Assert(Check: in Boolean; Message: in String);
end Ada.Assertions;

The pragma Assert can be used wherever a declaration or statement is allowed. Thus it might occur
in a list of declarations such as

N: constant Integer := ... ;
pragma Assert(N > 1);
A: Real_Matrix(1 .. N, 1 .. N);
EV: Real_Vector(1 .. N);

and in a sequence of statements such as

pragma Assert(Transpose(A) = A, "A not symmetric");
EV := Eigenvalues(A);

If the policy set by Assertion_Policy is Check then the above pragmas are equivalent to

if not N > 1 then
 raise Assertion_Error;
end if;

and

if not Transpose(A) = A then
 raise Assertion_Error with "A not symmetric";
end if;

Remember from Section 2 that a raise statement without any explicit message is not the same as one
with an explicit null message. In the former case a subsequent call of Exception_Message returns
implementation defined information whereas in the latter case it returns a null string. This same
behaviour thus occurs with the Assert pragma as well – providing no message is not the same as
providing a null message.

If the policy set by Assertion_Policy is Ignore then the Assert pragma is ignored at execution time –
but of course the syntax of the parameters is checked during compilation.

The two procedures Assert in the package Ada.Assertions have an identical effect to the
corresponding Assert pragmas except that their behaviour does not depend upon the assertion
policy. Thus the call

Assert(Some_Test);

is always equivalent to

if not Some_Test then
 raise Assertion_Error;
end if;

12 Rat ionale for Ada 2005: 5 Except ions, generics etc.

In other words we could define the behaviour of

pragma Assert(Some_Test);

as equivalent to

if policy_identifier = Check then
 Assert(Some_Test); -- call of procedure Assert
end if;

Note again that there are two procedures Assert, one with and one without the message parameter.
These correspond to raise statements with and without an explicit message.

The pragma Assertion_Policy is a configuration pragma and controls the behaviour of Assert
throughout the units to which it applies. It is thus possible for different policies to be in effect in
different parts of a partition.

An implementation could define other policies such as Assume which might mean that the compiler
is free to do optimizations based on the assumption that the boolean expressions are true although
there would be no code to check that they were true. Careless use of such a policy could lead to
erroneous behaviour.

There was some concern that pragmas such as Assert might be misunderstood to imply that static
analysis was being carried out. Thus in the SPARK language [2], the annotation

--# assert N /= 0

is indeed a static assertion and the appropriate tools can be used to verify this.

However, other languages such as Eiffel have used assert in a dynamic manner as now introduced
into Ada 2005 and, moreover, many implementations of Ada have already provided a pragma Assert
so it is expected that there will be no confusion with its incorporation into the standard.

Another pragma with a related flavour is No_Return. This can be applied to a procedure (not to a
function) and asserts that the procedure never returns in the normal sense. Control can leave the
procedure only by the propagation of an exception or it might loop forever (which is common
among certain real-time programs). The syntax is

pragma No_Return(procedure_local_name {, procedure_local_name});

Thus we might have a procedure Fatal_Error which outputs some message and then propagates an
exception which can be handled in the main subprogram. For example

procedure Fatal_Error(Msg: in String) is
 pragma No_Return(Fatal_Error);
begin
 Put_Line(Msg);
 ... -- other last wishes
 raise Death;
end Fatal_Error;
...

procedure Main is
 ...
 ...
 Put_Line("Program terminated successfully");
exception
 when Death =>
 Put_Line("Program terminated: known error");

John Barnes 13

 when others =>
 Put_Line("Program terminated: unknown error");
end Main;

There are two consequences of supplying a pragma No_Return.

▪ The implementation checks at compile time that the procedure concerned has no explicit return
statements. There is also a check at run time that it does not attempt to run into the final end –
Program_Error is raised if it does as in the case of running into the end of a function.

▪ The implementation is able to assume that calls of the procedure do not return and so various
optimizations can be made.

We might then have a call of Fatal_Error as in

function Pop return Symbol is
begin
 if Top = 0 then
 Fatal_Error("Stack empty"); -- never returns
 elsif
 Top := Top – 1;
 return S(Top+1);
 end if;
end Pop;

If No_Return applies to Fatal_Error then the compiler should not compile a jump after the call of
Fatal_Error and should not produce a warning that control might run into the final end of Pop.

The pragma No_Return now applies to the predefined procedure Raise_Exception. To enable this to
be possible its behaviour with Null_Id has had to be changed. In Ada 95 writing

Raise_Exception(Null_Id, "Nothing");

does nothing at all (and so does return in that case) whereas in Ada 2005 it is defined to raise
Constraint_Error and so now never returns.

We could restructure the procedure Fatal_Error to use Raise_Exception thus

procedure Fatal_Error(Msg: in String) is
 pragma No_Return(Fatal_Error);
begin
 ... -- other last wishes
 Raise_Exception(Death'Identity, Msg);
end Fatal_Error;

Since pragma No_Return applies to Fatal_Error it is important that we also know that
Raise_Exception cannot return.

The exception handler for Death in the main subprogram can now use Exception_Message to print
out the message.

Remember also from Section 2 above that we can now also write

raise Death with Msg;

rather than call Raise_Exception.

The pragma No_Return is a representation pragma. If a subprogram has no distinct specification
then the pragma No_Return is placed inside the body (as shown above). If a subprogram has a
distinct specification then the pragma must follow the specification in the same compilation or

14 Rat ionale for Ada 2005: 5 Except ions, generics etc.

declarative region. Thus one pragma No_Return could apply to several subprograms declared in the
same package specification.

It is important that dispatching works correctly with procedures that do not return. A non-returning
dispatching procedure can only be overridden by a non-returning procedure and so the overriding
procedure must also have pragma No_Return thus

type T is tagged ...
procedure P(X: T; ...);
pragma No_Return(P);
...
type TT is new T with ...
overriding
procedure P(X: TT; ...);
pragma No_Return(P);

The reverse is not true of course. A procedure that does return can be overridden by one that does
not.

It is possible to give a pragma No_Return for an abstract procedure, but obviously not for a null
procedure. A pragma No_Return can also be given for a generic procedure. It then applies to all
instances.

The next new pragma is Preelaborable_Initialization. The syntax is

pragma Preelaborable_Initialization(direct_name);

This pragma concerns the categorization of library units and is related to pragmas such as Pure and
Preelaborate. It is used with a private type and promises that the full type given by the parameter
will indeed have preelaborable initialization. The details of its use will be explained in the next
paper.

Another new pragma is Unchecked_Union. The syntax is

pragma Unchecked_Union(first_subtype_local_name);

The parameter has to denote an unconstrained discriminated record subtype with a variant part. The
purpose of the pragma is to permit interfacing to unions in C. The following example was given in
the Introduction

type Number(Kind: Precision) is
 record
 case Kind is
 when Single_Precision =>
 SP_Value: Long_Float;
 when Multiple_Precision =>
 MP_Value_Length: Integer;
 MP_Value_First: access Long_Float;
 end case;
 end record;

pragma Unchecked_Union(Number);

Specifying the pragma Unchecked_Union ensures the following

▪ The representation of the type does not allow space for any discriminants.

▪ There is an implicit suppression of Discriminant_Check.

▪ There is an implicit pragma Convention(C).

John Barnes 15

The above Ada text provides a mapping of the following C union

union {
 double spvalue;
 struct {
 int length;
 double* first;
 } mpvalue;
} number;

The general idea is that the C programmer has created a type which can be used to represent a
floating point number in one of two ways according to the precision required. One way is just as a
double length value (a single item) and the other way is as a number of items considered juxtaposed
to create a multiple precision value. This latter is represented as a structure consisting of an integer
giving the number of items followed by a pointer to the first of them. These two different forms are
the two alternatives of the union.

In the Ada mapping the choice of precision is governed by the discriminant Kind which is of an
enumeration type as follows

type Precision is (Single_Precision, Multiple_Precision);

In the single precision case the component SP_Value of type Long_Float maps onto the C
component spvalue of type double.

The multiple precision case is somewhat troublesome. The Ada component MP_Value_Length maps
onto the C component length and the Ada component MP_Value_First of type access Long_Float
maps onto the C component first of type double*.

In our Ada program we can declare a variable thus

X: Number(Multiple_Precision);

and we then obtain a value in X by calling some C subprogram. We can then declare an array and
map it onto the C sequence of double length values thus

A: array (1 .. X.MP_Value_Length) of Long_Float;
for A'Address use X.MP_Value_First.all'Address;
pragma Import(C, A);

The elements of A are now the required values. Note that we don't use an Ada array in the
declaration of Number because there might be problems with dope information.

The Ada type can also have a non-variant part preceding the variant part and variant parts can be
nested. It may have several discriminants.

When an object of an unchecked union type is created, values must be supplied for all its
discriminants even though they are not stored. This ensures that appropriate default values can be
supplied and that an aggregate contains the correct components. However, since the discriminants
are not stored, they cannot be read. So we can write

X: Number := (Single_Precision, 45.6);
Y: Number(Single_Precision);
...
Y.SP_Value := 55.7;

The variable Y is said to have an inferable discriminant whereas X does not. Although it is clear that
playing with unchecked unions is potentially dangerous, nevertheless Ada 2005 imposes certain

16 Rat ionale for Ada 2005: 5 Except ions, generics etc.

rules that avoid some dangers. One rule is that predefined equality can only be used on operands
with inferable discriminants; Program_Error is raised otherwise. So

if Y = 55.8 then -- OK

if X = 45.5 then -- raises Program_Error

if X = Y then -- raises Program_Error

It is important to be aware that unchecked union types are introduced in Ada 2005 for the sole
purpose of interfacing to C programs and not for living dangerously. Thus consider

type T(Flag: Boolean := False) is
 record
 case Flag is
 when False =>
 F1: Float := 0.0;
 when True =>
 F2: Integer := 0;
 end case;
 end record;
pragma Unchecked_Union(T);

The type T can masquerade as either type Integer or Float. But we should not use unchecked union
types as an alternative to unchecked conversion. Thus consider

X: T; -- Float by default
Y: Integer := X.F2; -- erroneous

The object X has discriminant False by default and thus has the value zero of type Integer. In the
absence of the pragma Unchecked_Union, the attempt to read X.F2 would raise Constraint_Error
because of the discriminant check. The use of Unchecked_Union suppresses the discriminant check
and so the assignment will occur. But note that the ARM clearly says (11.5(26)) that if a check is
suppressed and the corresponding error situation arises then the program is erroneous.

However, assigning a Float value to an Integer object using Unchecked_Conversion is not erroneous
providing certain conditions hold such as that Float'Size = Integer'Size.

The final pragma to be considered is Unsuppress. Its syntax is

pragma Unsuppress(identifier);

The identifier is that of a check or perhaps All_Checks. The pragma Unsuppress is essentially the
opposite of the existing pragma Suppress and can be used in the same places with similar scoping
rules.

Remember that pragma Suppress gives an implementation the permission to omit the checks but it
does not require that the checks be omitted (they might be done by hardware). The pragma
Unsuppress simply revokes this permission. One pragma can override the other in a nested manner.
If both are given in the same region then they apply from the point where they are given and the
later one thus overrides.

A likely scenario would be that Suppress applies to a large region of the program (perhaps all of it)
and Unsuppress applies to a smaller region within. The reverse would also be possible but perhaps
less likely.

Note that Unsuppress does not override the implicit Suppress of Discriminant_Check provided by
the pragma Unchecked_Union just discussed.

John Barnes 17

A sensible application of Unsuppress would be in the fixed point operations mentioned in Section 3
thus

function "*"(Left, Right: Frac) return Frac is
 pragma Unsuppress(Overflow_Check);
begin
 return Standard."*"(Left, Right);
exception
 when Constraint_Error =>
 if (Left>0.0 and Right>0.0) or (Left<0.0 and Right<0.0) then
 return Frac'Last;
 else
 return Frac'First;
 end if;
end "*";

The use of Unsuppress ensures that the overflow check is not suppressed even if there is a global
Suppress for the whole program (or the user has switched checks off through the compiler
command line). So Constraint_Error will be raised as necessary and the code will work correctly.

In Ada 95 the pragma Suppress has the syntax

pragma Suppress(identifier [, [On =>] name]); -- Ada 95

The second and optional parameter gives the name of the entity to which the permission applies.
There was never any clear agreement on what this meant and implementations varied. Accordingly,
in Ada 2005 the second parameter is banished to Annex J so that the syntax in the core language is
similar to Unsuppress thus

pragma Suppress(identifier); -- Ada 2005

For symmetry, Annex J actually allows an obsolete On parameter for Unsuppress. It might seem
curious that a feature should be born obsolescent.

A number of new Restrictions identifiers are added in Ada 2005. The first is No_Dependence whose
syntax is

pragma Restrictions(No_Dependence => name);

This indicates that there is no dependence on a library unit with the given name.

The name might be that of a predefined unit but it could in fact be any unit. For example, it might be
helpful to know that there is no dependence on a particular implementation-defined unit such as a
package Superstring thus

pragma Restrictions(No_Dependence => Superstring);

Care needs to be taken to spell the name correctly; if we write Supperstring by mistake then the
compiler will not be able to help us.

The introduction of No_Dependence means that the existing Restrictions identifier
No_Asynchronous_Control is moved to Annex J since we can now write

pragma Restrictions(No_Dependence => Ada.Asynchronous_Task_Control);

Similarly, the identifiers No_Unchecked_Conversion and No_Unchecked_Deallocation are also
moved to Annex J.

Note that the identifier No_Dynamic_Attachment which refers to the use of the subprograms in the
package Ada.Interrupts cannot be treated in this way because of the child package

18 Rat ionale for Ada 2005: 5 Except ions, generics etc.

Ada.Interrupts.Names. No dependence on Ada.Interrupts would exclude the use of the child package
Names as well.

The restrictions identifier No_Dynamic_Priorities cannot be treated this way either for a rather
different reason. In Ada 2005 this identifier is extended so that it also excludes the use of the
attribute Priority and this would not be excluded by just saying no dependence on
Ada.Dynamic_Priorities.

Two further Restrictions identifiers are introduced to encourage portability. We can write

pragma Restrictions(No_Implementation_Pragmas, No_Implementation_Attributes);

These do not apply to the whole partition but only to the compilation or environment concerned.
This helps us to ensure that implementation dependent areas of a program are identified.

The final new restrictions identifier similarly prevents us from inadvertently using features in Annex
J thus

pragma Restrictions(No_Obsolescent_Features);

Again this does not apply to the whole partition but only to the compilation or environment
concerned. (It is of course not itself defined in Annex J.)

The reader will recall that in Ada 83 the predefined packages had names such as Text_IO whereas in
Ada 95 they are Ada.Text_IO and so on. In order to ease transition from Ada 83, a number of
renamings were declared in Annex J such as

with Ada.Text_IO;
package Text_IO renames Ada.Text_IO;

A mild problem is that the user could write these renamings anyway and we do not want the
No_Obsolescent_Features restriction to prevent this. Moreover, implementations might actually
implement the renamings in Annex J by just compiling them and we don't want to force
implementations to use some trickery to permit the user to do it but not the implementation.
Accordingly, whether the No_Obsolescent_Features restriction applies to these renamings or not is
implementation defined.

5 Generic units
There are a number of improvements in the area of generics many of which have already been
outlined in earlier papers.

A first point concerns access types. The introduction of types that exclude null means that a formal
access type parameter can take the form

generic
 ...
 type A is not null access T;
 ...

The actual type corresponding to A must then itself be an access type that excludes null. A similar
rule applies in reverse – if the formal parameter excludes null then the actual parameter must also
exclude null. If the two did not match in this respect then all sorts of difficulties could arise.

Similarly if the formal parameter is derived from an access type

generic
 ...
 type FA is new A; -- A is an access type
 ...

John Barnes 19

then the actual type corresponding to FA must exclude null if A excludes null and vice versa. Half of
this rule is automatically enforced since a type derived from a type that excludes null will
automatically exclude null. But the reverse is not true as mentioned in an earlier paper when
discussing access types. If A has the declaration

type A is access all Integer; -- does not exclude null

then we can declare

type NA is new A; -- does not exclude null
type NNA is new not null A; -- does exclude null

and then NA matches the formal parameter FA in the above generic but NNA does not.

There is also a change to formal derived types concerning limitedness. In line with the changes
described in the paper on the object oriented model, the syntax now permits limited to be stated
explicitly thus

generic
 type T is limited new LT; -- untagged
 type TT is limited new TLT with private; -- tagged

However, this can be seen simply as a documentation aid since the actual types corresponding to T
and TT must be derived from LT and TLT and so will be limited if LT and TLT are limited anyway.

Objects of anonymous access types are now also allowed as generic formal parameters so we can
have

generic
 A: access T := null;
 AN: in out not null access T;
 F: access function (X: Float) return Float;
 FN: not null access function (X: Float) return Float;

If the subtype of the formal object excludes null (as in AN and FN) then the actual must also exclude
null but not vice versa. This contrasts with the rule for formal access types discussed above in which
case both the formal type and actual type have to exclude null or not. Note moreover that object
parameters of anonymous access types can have mode in out.

If the subprogram profile itself has access parameters that exclude null as in

generic
 PN: access procedure (AN: not null access T);

then the actual subprogram must also have access parameters that exclude null and so on. The same
rule applies to named formal subprogram parameters. If we have

generic
 with procedure P(AN: not null access T);
 with procedure Q(AN: access T);

then the actual corresponding to P must have a parameter that excludes null but the actual
corresponding to Q might or might not. The rule is similar to renaming – "not null must never lie".
Remember that the matching of object and subprogram generic parameters is defined in terms of
renaming. Here is an example to illustrate why the asymmetry is important. Suppose we have

generic
 type T is private;
 with procedure P(Z: in T);
package G is

20 Rat ionale for Ada 2005: 5 Except ions, generics etc.

This can be matched by

type A is access ...;
procedure Q(Y: in not null A);
...
package NG is new G(T => A; P => Q);

Note that since the formal type T is not known to be an access type in the generic declaration, there
is no mechanism for applying a null exclusion to it. Nevertheless there is no reason why the
instantiation should not be permitted.

There are some other changes to existing named formal subprogram parameters. The reader will
recall from the discussion on interfaces in an earlier paper that the concept of null procedures has
been added in Ada 2005. A null procedure has no body but behaves as if it has a body comprising a
null statement. It is now possible to use a null procedure as a possible form of default for a
subprogram parameter. Thus there are now three possible forms of default as follows

with procedure P(...) is <>; -- OK in 95
with procedure Q(...) is Some_Proc; -- OK in 95
with procedure R(...) is null; -- only in 2005

So if we have

generic
 type T is (<>);
 with procedure R(X: in Integer; Y: in out T) is null;
package PP ...

then an instantiation omitting the parameter for R such as

package NPP is new PP(T => Colour);

is equivalent to providing an actual procedure AR thus

procedure AR(X: in Integer; Y: in out Colour) is
begin
 null;
end AR;

Note that the profile of the actual procedure is conjured up to match the formal procedure.

Of course, there is no such thing as a null function and so null is not permitted as the default for a
formal function.

A new kind of subprogram parameter was introduced in some detail when discussing object factory
functions in the paper on the object oriented model. This is the abstract formal subprogram. The
example given was the predefined generic function Generic_Dispatching_Constructor thus

generic
 type T (<>) is abstract tagged limited private;
 type Parameters (<>) is limited private;
 with function Constructor(Params: not null access Parameters) return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor
 (The_Tag: Tag; Params: not null access Parameters) return T'Class;

The formal function Constructor is an example of an abstract formal subprogram. Remember that
the interpretation is that the actual function must be a dispatching operation of a tagged type
uniquely identified by the profile of the formal function. The actual operation can be concrete or

John Barnes 21

abstract. Formal abstract subprograms can of course be procedures as well as functions. It is
important that there is exactly one controlling type in the profile.

Formal abstract subprograms can have defaults in much the same way that formal concrete
subprograms can have defaults. We write

with procedure P(X: in out T) is abstract <>;
with function F return T is abstract Unit;

The first means of course that the default has to have identifier P and the second means that the
default is some function Unit. It is not possible to give null as the default for an abstract parameter
for various reasons. Defaults will probably be rarely used for abstract parameters.

The introduction of interfaces in Ada 2005 means that a new class of generic parameters is possible.
Thus we might have

generic
 type F is interface;

The actual type could then be any interface. This is perhaps unlikely.

If we wanted to ensure that a formal interface had certain operations then we might first declare an
interface A with the required operations

type A is interface;
procedure Op1(X: A; ...) is abstract;
procedure N1(X: A; ...) is null;

and then

generic
 type F is interface and A;

and then the actual interface must be descended from A and so have operations which match Op1
and N1.

A formal interface might specify several ancestors

generic
 type FAB is interface and A and B;

where A and B are themselves interfaces. And A and B or just some of them might themselves be
further formal parameters as in

generic
 type A is interface;
 type FAB is interface and A and B;

These means that FAB must have both A and B as ancestors; it could of course have other ancestors
as well.

The syntax for formal tagged types is also changed to take into account the possibility of interfaces.
Thus we might have

generic
 type NT is new T and A and B with private;

in which case the actual type must be descended both from the tagged type T and the interfaces A
and B. The parent type T itself might be an interface or a normal tagged type. Again some or all of
T, A, and B might be earlier formal parameters. Also we can explicitly state limited in which case all
of the ancestor types must also be limited.

22 Rat ionale for Ada 2005: 5 Except ions, generics etc.

An example of this sort of structure occurred when discussing printable geometric objects in the
paper on the object oriented model. We had

generic
 type T is abstract tagged private;
package Make_Printable is
 type Printable_T is abstract new T and Printable with private;
 ...
end;

It might be that we have various interfaces all derived from Printable which serve different purposes
(perhaps for different output devices, laser printer, card punch and so on). We would then want the
generic package to take any of these interfaces thus

generic
 type T is abstract tagged private;
 type Any_Printable is interface and Printable;
package Make_Printable is
 type Printable_T is abstract new T and Any_Printable with private;
 ...
end;

A formal interface can also be marked as limited in which case the actual interface must also be
limited and vice versa.

As discussed in the previous paper, interfaces can also be synchronized, task, or protected. Thus we
might have

generic
 type T is task interface;

and then the actual interface must itself be a task interface. The correspondence must be exact. A
formal synchronized interface can only be matched by an actual synchronized interface and so on.
Remember from the discussion in the previous paper that a task interface can be composed from a
synchronized interface. This flexibility does not extend to matching actual and formal generic
parameters.

Another small change concerns object parameters of limited types. In Ada 95 the following is illegal

type LT is limited
 record
 A: Integer;
 B: Float;
 end record; -- a limited type

generic
 X: in LT; -- illegal in Ada 95
 ...
procedure P ...

It is illegal in Ada 95 because it is not possible to provide an actual parameter. This is because the
parameter mechanism is one of initialization of the formal object parameter by the actual and this is
treated as assignment and so is not permitted for limited types.

However, in Ada 2005, initialization of a limited object by an aggregate is allowed since the value is
created in situ as discussed in an earlier paper. So an instantiation is possible thus

procedure Q is new P(X => (A => 1, B => 2.0), ...);

John Barnes 23

Remember that an initial value can also be provided by a function call and so the actual parameter
could also be a function call returning a limited type.

The final improvement to the generic parameter mechanism concerns package parameters.

In Ada 95 package parameters take two forms. Given a generic package Q with formal parameters
F1, F2, F3, then we can have

generic
 with package P is new Q(<>);

and then the actual package corresponding to the formal P can be any instantiation of Q.
Alternatively

generic
 with package R is new Q(P1, P2, P3);

and then the actual package corresponding to R must be an instantiation of Q with the specified
actual parameters P1, P2, P3.

As mentioned in the Introduction, a simple example of the use of these two forms occurs with the
package Generic_Complex_Arrays which takes instantiations of Generic_Real_Arrays and
Generic_Complex_Types which in turn both have the underlying floating type as their single
parameter. It is vital that both packages use the same floating point type and this is assured by
writing

generic
 with package Real_Arrays is new Generic_Real_Arrays(<>);
 with package Complex_Types is new Generic_Complex_Types(Real_Arrays.Real);
package Generic_Complex_Arrays is ...

However, the mechanism does not work very well when several parameters are involved as will now
be illustrated with some examples.

The first example concerns using the new container library which will be discussed in some detail in
a later paper. There are generic packages such as

generic
 type Index_Type is range <>;
 type Element_Type is private:
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Vectors is ...

and

generic
 type Key_Type is private;
 type Element_Type is private:
 with function Hash(Key: Key_Type) return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type) return Boolean;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Hashed_Maps is ...

We might wish to pass instantiations of both of these to some other package with the proviso that
both were instantiated with the same Element_Type. Otherwise the parameters can be unrelated.

It would be natural to make the vector package the first parameter and give it the (<>) form. But we
then find that in Ada 95 we have to repeat all the parameters other than Element_Type for the maps
package. So we have

24 Rat ionale for Ada 2005: 5 Except ions, generics etc.

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 type Key_Type is private;
 with function Hash(Key: Key_Type) return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type) return Boolean;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
 with package HM is new Hashed_Maps(
 Key_Type => Key_Type,
 Element_Type => V.Element_Type,
 Hash => Hash,
 Equivalent_Keys => Equivalent_Keys,
 "=" => "=");
package HMV is ...

This is a nuisance since when we instantiate HMV we have to provide all the parameters required by
Hashed_Maps even though we must already have instantiated it elsewhere in the program. Suppose
that instantiation was

package My_Hashed_Map is new Hashed_Maps(My_Key, Integer, Hash_It, Equiv, "=");

and suppose also that we have instantiated Vectors

package My_Vectors is new Vectors(Index, Integer, "=");

Now when we come to instantiate HMV we have to write

package My_HMV is
 new HMV(My_Vectors, My_Key, Hash_It, Equiv, "=", My_Hashed_Maps);

This is very annoying. Not only do we have to repeat all the auxiliary parameters of Hashed_Maps
but the situation regarding Vectors and Hashed_Maps is artificially made asymmetric. (Life would
have been a bit easier if we had made Hashed_Maps the first package parameter but that just
illustrates the asymmetry.) Of course we could more or less overcome the asymmetry by passing all
the parameters of Vectors as well but then HMV would have even more parameters. This rather
defeats the point of package parameters which were introduced into Ada 95 in order to avoid the
huge parameter lists that had occurred in Ada 83.

Ada 2005 overcomes this problem by permitting just some of the actual parameters to be specified.
Any omitted parameters are indicated using the <> notation thus

generic
 with package S is new Q(P1, F2 => <>, F3 => <>);

In this case the actual package corresponding to S can be any package which is an instantiation of Q
where the first actual parameter is P1 but the other two parameters are left unspecified. We can also
abbreviate this to

generic
 with package S is new Q(P1, others => <>);

Note that the <> notation can only be used with named parameters and also that (<>) is now
considered to be a shorthand for (others => <>).

As another example

generic
 with package S is new Q(F1 => <>, F2 => P2, F3 => <>);

John Barnes 25

means that the actual package corresponding to S can be any package which is an instantiation of Q
where the second actual parameter is P2 but the other two parameters are left unspecified. This can
be abbreviated to

generic
 with package S is new Q(F2 => P2, others => <>);

Using this new notation, the package HMV can now simply be written as

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 with package HM is new Hashed_Maps
 (Element_Type => V.Element_Type, others => <>);
package HMV is ...

and our instantiation of HMV becomes simply

package My_HMV is new HMV(My_Vectors, My_Hashed_Maps);

Some variations on this example are obviously possible. For example it is likely that the
instantiation of Hashed_Maps must use the same definition of equality for the type Element_Type
as Vectors. We can ensure this by writing

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 with package HM is new Hashed_Maps
 (Element_Type => V.Element_Type, "=" => V."=", others => <>);
package HMV is ...

If this seems rather too hypothetical, a more concrete example might be a generic function which
converts a vector into a list provided they have the same element type and equality. Note first that
the specification of the container package for lists is

generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is ...

The specification of a generic function Convert might be

generic
 with package DLL is new Doubly_Linked_Lists(<>);
 with package V is new Vectors
 (Index_Type => <>, Element_Type => DLL.Element_Type, "=" => DLL."=");
function Convert(The_Vector: V.Vector) return DLL.List;

On the other hand if we only care about the element types matching and not about equality then we
could write

generic
 with package DLL is new Doubly_Linked_Lists(<>);
 with package V is new Vectors(Element_Type => DLL.Element_Type, others => <>);
function Convert(The_Vector: V.Vector) return DLL.List;

Note that if we had reversed the roles of the formal packages then we would not need the new <>
notation if both equality and element type had to match but it would be necessary for the case where
only the element type had to match.

26 Rat ionale for Ada 2005: 5 Except ions, generics etc.

Other examples might arise in the numerics area. Suppose we have two independently written
generic packages Do_This and Do_That which both have a floating point type parameter and several
other parameters as well. For example

generic
 type Real is digits <>;
 Accuracy: in Real;
 type Index is range <>;
 Max_Trials: in Index;
package Do_This is ...

generic
 type Floating is digits <>;
 Bounds: in Floating;
 Iterations: in Integer;
 Repeat: in Boolean;
package Do_That is ...

(This is typical of much numerical stuff. Authors are cautious and unable to make firm decisions
about many aspects of their algorithms and therefore pass the buck back to the user in the form of a
turgid list of auxiliary parameters.)

We now wish to write a package Super_Solver which takes instantiations of both Do_This and
Do_That with the requirement that the floating type used for the instantiation is the same in each
case but otherwise the parameters are unrelated. In Ada 95 we are again forced to repeat one set of
parameters thus

generic
 with package This is new Do_This(<>);
 S_Bounds: in This.Real;
 S_Iterations: in Integer;
 S_Repeat: in Boolean;
 with package That is new Do_That(This.Real, S_Bounds, S_Iterations, S_Repeat);
package Super_Solver is ...

And when we come to instantiate Super_Solver we have to provide all the auxiliary parameters
required by Do_That even though we must already have instantiated it elsewhere in the program.
Suppose the instantiation was

package That_One is new Do_That(Float, 0.01, 7, False);

and suppose also that we have instantiated Do_This

package This_One is new Do_This(...);

Now when we instantiate Super_Solver we have to write

package SS is new Super_Solver(This_One, 0.01, 7, False, That_One);

Just as with HMV we have all these duplicated parameters and an artificial asymmetry between This
and That.

In Ada 2005 the package Super_Solver can be written as

generic
 with package This is new Do_This(<>);
 with package That is new Do_That(This.Real, others => <>);
package Super_Solver is ...

John Barnes 27

and the instantiation of Super_Solver becomes simply

package SS is new Super_Solver(This_One, That_One);

Other examples occur with signature packages. Remember that a signature package is one without a
specification. It can be used to ensure that a group of entities are related in the correct way and an
instantiation can then be used to identify the group as a whole. A trivial example might be

generic
 type Index is (<>);
 type item is private;
 type Vec is array (Index range <>) of Item;
package General_Vector is end;

An instantiation of General_Vector just asserts that the three types concerned have the appropriate
relationship. Thus we might have

type My_Array is array (Integer range <>) of Float;

and then

package Vector is new General_Vector(Integer, Float, My_Array);

The package General_Vector could then be used as a parameter of other packages thereby reducing
the number of parameters.

Another example might be the signature of a package for manipulating sets. Thus

generic
 type Element is private;
 type Set is private;
 with function Empty return Set;
 with function Unit(E: Element) return Set;
 with function Union(S, T: Set) return Set;
 with function Intersection(S, T: Set) return Set;
 ...
package Set_Signature is end;

We might then have some other generic package which takes an instantiation of this set signature.
However, it is likely that we would need to specify the type of the elements but possibly not the set
type and certainly not all the operations. So typically we would have

generic
 type My_Element is private;
 with package Sets is new Set_Signature(Element => My_Element, others => <>);

An example of this technique occurred when considering the possibility of including a system of
units facility within Ada 2005. Although it was considered not appropriate to include it, the use of
signature packages was almost essential to make the mechanism usable. The interested reader
should consult AI-324.

We conclude by noting a small change to the syntax of a subprogram instantiation in that an
overriding indicator can be supplied as mentioned in Section 7 of the paper on the object oriented
model. Thus (in appropriate circumstances) we can write

overriding
procedure This is new That(...);

This means that the instantiation must be an overriding operation for some type.

28 Rat ionale for Ada 2005: 5 Except ions, generics etc.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions to the Ada Rapporteur Group from

SC22/WG9 for Preparation of the Amendment.

[2] J. G. P. Barnes (2003) High Integrity Software – The SPARK Approach to Safety and Security,
Addison-Wesley.

© 2005 John Barnes Informatics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

