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Abstract 
This paper describes various improvements in a number of general areas in Ada 2005. 
There are some minor almost cosmetic improvements in the exceptions area which add to 
convenience rather than functionality. There are some important changes in the numerics 
area: one concerns mixing signed and unsigned integers and another concerns fixed point 
multiplication and division. 
There are also a number of additional pragmas and Restrictions identifiers mostly of a 
safety-related nature. 
Finally there are a number of improvements in the generics area such as better control of 
partial parameters of formal packages.  
This is one of a number of papers concerning Ada 2005 which are being published in the 
Ada User Journal. An earlier version of this paper appeared in the Ada User Journal, Vol. 
26, Number 3, September 2005. Other papers in this series will be found in later issues of 
the Journal or elsewhere on this website. 
Keywords: rationale, Ada 2005. 

1   Overview of changes 
The areas mentioned in this paper are not specifically mentioned in the WG9 guidance document [1] 
other than under the request to remedy shortcomings and improve interfacing.  

The following Ada Issues cover the relevant changes and are described in detail in this paper. 

161  Preelaborable initialization 

216  Unchecked unions – variants without discriminant 

224  pragma Unsuppress 

241  Testing for null occurrence 

251  Abstract interfaces to provide multiple inheritance 

257  Restrictions for implementation defined entities 

260  Abstract formal subprograms & dispatching constructors 

267  Fast float to integer conversion 

286  Assert pragma 

317  Partial parameter lists for formal packages 

329  pragma No_Return – procedures that never return 

340  Mod attribute 

361  Raise with message 
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364  Fixed point multiply and divide 

368  Restrictions for obsolescent features 

381  New Restrictions identifier – No_Dependence 

394  Redundant Restrictions identifiers and Ravenscar 

398  Parameters of formal packages given at most once 

400  Wide and wide-wide images 

414  pragma No_Return for overriding procedures 

417  Lower bound of functions in Ada.Exceptions etc 

419  Limitedness of derived types 

420  Resolution of universal operations in Standard 

423  Renaming, null exclusion and formal objects 

These changes can be grouped as follows. 

First there are some minor changes to exception handling. There are neater means for testing for null 
occurrence and raising an exception with a message (241, 361) and also wide and wide-wide 
versions of some procedures (400, 417). 

The numerics area has a number of small but important changes. They are the introduction of an 
attribute Mod to aid conversion between signed and unsigned integers (340); changes to the rules for 
fixed point multiplication and division which permit user-defined operations (364, 420); and an 
attribute Machine_Rounding which can be used to aid fast conversions from floating to integer types 
(267). 

A number of new pragmas and Restrictions identifiers have been added. These generally make for 
more reliable programming. The pragmas are: Assert, No_Return, Preelaborable_Initialization, 
Unchecked_Union, and Unsuppress (161, 216, 224, 286, 329, 414). The restrictions identifiers are 
No_Dependence, No_Implementation_Pragmas, No_Implementation_Restrictions, and No_ 
Obsolescent_Features (257, 368, 381). Note that there are also other new pragmas and new 
restrictions identifiers concerned with tasking as described in the previous paper. However, the 
introduction of No_Dependence means that the identifiers No_Asynchronous_Control, 
No_Unchecked_Conversion and No_Unchecked_Deallocation are now obsolescent (394). 

Finally there are changes in generic units. There are changes in generic parameters which are 
consequences of changes in other areas such as the introduction of interfaces and dispatching 
constructors as described in the paper on the object oriented model (parts of 251 and 260); there are 
also changes to formal access and derived types (419, 423). Also, it is now possible to give just 
some parameters of a formal package in the generic formal part (317, 398).  

2   Exceptions 
There are two minor improvements in this area.  

One concerns the detection of a null exception occurrence which might be useful in a routine for 
analysing a log of exceptions. This is tricky because although a constant Null_Occurrence is 
declared in the package Ada.Exceptions, the type Exception_Occurrence is limited and no equality 
is provided. So the obvious test cannot be performed. 

We can however apply the function Exception_Identity to a value of the type Exception_Occurrence 
and this returns the corresponding Exception_Id. Thus we could check to see whether a particular 
occurrence X was caused by Program_Error by writing 
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if Exception_Identity(X) = Program_Error'Identity then 

However, in Ada 95, applying Exception_Identity to the value Null_Occurrence raises 
Constraint_Error so we have to resort to a revolting trick such as declaring a function as follows 

function Is_Null_Occurrence(X: Exception_Occurrence) return Boolean is 
   Id: Exception_Id; 
begin 
   Id := Exception_Identity(X); 
   return False; 
exception 
   when Constraint_Error => return True; 
end Is_Null_Occurrence; 

We can now write some general analysis routine as 

procedure Process_Ex(X: in Exception_Occurrence) is 
begin 
   if Is_Null_Occurrence(X) then            -- OK in Ada 95 
      -- process the case of a null occurrence 
   else 
      -- process proper occurrences 
   end if; 
end Process_Ex; 

But the detection of Constraint_Error in Is_Null_Occurrence is clearly bad practice since it would be 
all too easy to mask some other error by mistake. Accordingly, in Ada 2005, the behaviour of 
Exception_Identity is changed to return Null_Id when applied to Null_Occurrence. So we can now 
dispense with the dodgy function Is_Null_Occurrence and just write 

procedure Process_Ex(X: in Exception_Occurrence) is 
begin 
   if Exception_Identity(X) = Null_Id then  -- OK in 2005 
      -- process the case of a null occurrence 
   else 
      -- process proper occurrences 
   end if; 
end Process_Ex; 

Beware that, technically, we now have an incompatibility between Ada 95 and Ada 2005 since the 
nasty function Is_Null_Occurrence will always return False in Ada 2005. 

Observe that Constraint_Error is also raised if any of the three functions Exception_Name, 
Exception_Message, or Exception_Information are applied to the value Null_Occurrence so the 
similar behaviour with Exception_Identity in Ada 95 is perhaps understandable at first sight. 
However, it is believed that it was not the intention of the language designers but got in by mistake. 
Actually the change described here was originally classified as a correction to Ada 95 but later 
reclassified as an amendment in order to draw more attention to it because of the potential 
incompatibility. 

The other change in the exception area concerns the raise statement. It is now possible (optionally of 
course) to supply a message thus 

raise An_Error with "A message"; 

This is purely for convenience and is identical to writing 

Raise_Exception(An_Error'Identity, "A message"); 
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There is no change to the form of raise statement without an exception which simply reraises an 
existing occurrence. 

Note the difference between 

raise An_Error;      -- message is implementation defined 

and  

raise An_Error with "";  -- message is null 

In the first case a subsequent call of Exception_Message returns implementation defined 
information about the error whereas in the second case it simply returns the given message which in 
this example is a null string. 

Some minor changes to the procedure Raise_Exception are mentioned in Section 4 below. 

There are also additional functions in the package Ada.Exceptions to return the name of an 
exception as a Wide_String or Wide_Wide_String. They have identifiers Wide_Exception_Name and 
Wide_Wide_Exception_Name and are overloaded to take a parameter of type Exception_Id or 
Exception_Occurrence. The lower bound of the strings returned by these functions and by the 
existing functions Exception_Name, Exception_Message and Exception_Information is 1 (Ada 95 
forgot to state this for the existing functions). The reader will recall that similar additional functions 
(and forgetfulness) in the package Ada.Tags were mentioned in the paper on the object oriented 
model. 

3   Numerics 
Although Ada 95 introduced unsigned integer types in the form of modular types, nevertheless, the 
strong typing rules of Ada have not made it easy to get unsigned and signed integers to work 
together. The following discussion using Ada 95 is based on that in AI-340. 

Suppose we wish to implement a simulation of a typical machine which has addresses and offsets. 
We make it a generic 

generic 
   type Address_Type is mod <>; 
   type Offset_Type is range <>; 
   ... 
package Simulator is 
   function Calc_Address(Base_Add: Address_Type; 
              Offset: Offset_Type) return Address_Type; 
   ... 
end Simulator; 

Addresses are represented as unsigned integers (a modular type), whereas offsets are signed 
integers. The function Calc_Address aims to add an offset to a base address and return an address. 
The offset could be negative. 

Naïvely we might hope to write 

function Calc_Address(Base_Add: Address_Type; 
           Offset: Offset_Type) return Address_Type is 
begin 
   return Base_Add + Offset;  -- illegal 
end Calc_Address; 

but this is plainly illegal because Base_Add and Offset are of different types. 
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We can try a type conversion thus 

return Base_Add + Address_Type(Offset); 

or perhaps, since Address_Type might have a constraint,  

return Base_Add + Address_Type'Base(Offset); 

but in any case the conversion is doomed to raise Constraint_Error if Offset is negative.  

We then try to be clever and write 

return Base_Add + Address_Type'Base(Offset mod  
                 Offset_Type'Base(Address_Type'Modulus)); 

but this raises Constraint_Error if Address_Type'Modulus > Offset_Type'Base'Last which it often 
will be. To see this consider for example a 32-bit machine with 

type Offset_Type is range –(2**31) .. 2**31–1; 
type Address_Type is mod 2**32; 

in which case Address_Type'Modulus is 2**32 which is greater than Offset_Type'Base'Last which is 
2**31–1. 

So we try an explicit test for a negative offset 

if Offset >= 0 then 
   return Base_Add + Address_Type'Base(Offset); 
else 
   return Base_Add - Address_Type'Base(–Offset); 
end if; 

But if Address_Type'Base'Last < Offset_Type'Last then this will raise Constraint_Error for some 
values of Offset. Unlikely perhaps but this is a generic and so ought to work for all possible pairs of 
types. 

If we attempt to overcome this then we run into problems in trying to compare these two values 
since they are of different types and converting one to the other can raise the Constraint_Error 
problem once more. One solution is to use a bigger type to do the test but this may not exist in some 
implementations. We could of course handle the Constraint_Error and then patch up the answer. The 
ruthless programmer might even think of Unchecked_Conversion but this has its own problems. 
And so on – 'tis a wearisome tale. 

The problem is neatly overcome in Ada 2005 by the introduction of a new functional attribute  

function S'Mod(Arg: universal_integer) return S'Base; 

S'Mod applies to any modular subtype S and returns  

Arg mod S'Modulus  

In other words it converts a universal_integer value to the modular type using the corresponding 
mathematical mod operation. We can then happily write 

function Calc_Address(Base_Add: Address_Type; 
           Offset: Offset_Type) return Address_Type is 
begin 
   return Base_Add + Address_Type'Mod(Offset); 
end Calc_Address; 

and this always works. 



6  Rat ionale for  Ada 2005: 5 Except ions,  generics etc.  

The next topic in the numerics area concerns rounding. One of the problems in the design of any 
programming language is getting the correct balance between performance and portability. This is 
particularly evident with numeric types where the computer has to implement only a crude 
approximation to the mathematician's integers and reals. The best performance is achieved by using 
types and operations that correspond exactly to the hardware. On the other hand, perfect portability 
requires using types with precisely identical characteristics on all implementations. 

An interesting example of this problem arises with conversions from a floating point type to an 
integer type when the floating type value is midway between two integer values. 

In Ada 83 the rounding in the midway case was not specified. This upset some people and so Ada 
95 went the other way and decreed that such rounding was always away from zero. As well as this 
rule for conversion to integer types, Ada 95 also introduced a functional attribute to round a floating 
value. Thus for a subtype S of a floating point type T we have 

function S'Rounding(X: T) return T; 

This returns the nearest integral value and for midway values rounds away from zero. 

Ada 95 also gives a bit more control for the benefit of the statistically minded by introducing 

function S'Unbiased_Rounding(X: T) return T; 

This returns the nearest integral value and for midway values rounds to the even value. 

However, there are many applications where we don't care which value we get but would prefer the 
code to be fast. Implementers have reported problems with the elementary functions where table 
look-up is used to select a particular polynomial expansion. Either polynomial will do just as well 
when at the midpoint of some range. However on some popular hardware such as the Pentium, 
doing the exact rounding required by Ada 95 just wastes time and the resulting function is perhaps 
20% slower. This is serious in any comparison with C. 

This problem is overcome in Ada 2005 by the introduction of a further attribute 

function S'Machine_Rounding(X: T) return T; 

This does not specify which of the adjacent integral values is returned if X lies midway. Note that it 
is not implementation defined but deliberately unspecified. This should discourage users from 
depending upon the behaviour on a particular implementation and thus writing non-portable code. 

Zerophiles will be pleased to note that if S'Signed_Zeros is true and the answer is zero then it has 
the same sign as X. 

It should be noted that Machine_Rounding, like the other rounding functions, returns a value of the 
floating point type and not perhaps universal_integer as might be expected. So it will typically be 
used in a context such as 

X: Some_Float; 
Index: Integer; 
... 
Index := Integer(Some_Float'Machine_Rounding(X)); 
...     -- now use Index for table look-up 

Implementations are urged to detect this case in order to generate fast code. 

The third improvement to the core language in the numerics area concerns fixed point arithmetic. 
This is a topic that concerns few people but those who do use it probably feel passionately about it. 

The trouble with floating point is that it is rather machine dependent and of course integers are just 
integers. Many application areas have used some form of scaled integers for many decades and the 
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Ada fixed point facility is important in certain applications where rigorous error analysis is 
desirable. 

The model of fixed point was changed somewhat from Ada 83 to Ada 95. One change was that the 
concepts of model and safe numbers were replaced by a much simpler model just based on the 
multiples of the number small. Thus consider the type  

Del: constant := 2.0**(–15); 
type Frac is delta Del range –1.0 .. 1.0; 

In Ada 83 small was defined to be the largest power of 2 not greater than Del, and in this case is 
indeed 2.0**(–15). But in Ada 95, small can be chosen by the implementation to be any power of 2 
not greater than Del provided of course that the full range of values is covered. In both languages an 
aspect clause can be used to specify small and it need not be a power of 2. (Remember that 
representation clauses are now known as aspect clauses.) 

A more far reaching change introduced in Ada 95 concerns the introduction of operations on the 
type universal_fixed and type conversion. 

A minor problem in Ada 83 was that explicit type conversion was required in places where it might 
have been considered quite unnecessary. Thus supposing we have variables F, G, H of the above 
type Frac, then in Ada 83 we could not write 

H := F * G;    -- illegal in Ada 83 

but had to use an explicit conversion 

H := Frac(F * G);   -- legal in Ada 83 

In Ada 83, multiplication was defined between any two fixed point types and produced a result of 
the type universal_fixed and an explicit conversion was then required to convert this to the type 
Frac.  

This explicit conversion was considered to be a nuisance so the rule was changed in Ada 95 to say 
that multiplication was only defined between universal_fixed operands and delivered a 
universal_fixed result. Implicit conversions were then allowed for both operands and result provided 
the type resolution rules identified no ambiguity. So since the expected type was Frac and no other 
interpretation was possible, the implicit conversion was allowed and so in Ada 95 we can simply 
write 

H := F * G;    -- legal in Ada 95 

Similar rules apply to division in both Ada 83 and Ada 95. 

Note however that  

F := F * G * H;   -- illegal 

is illegal in Ada 95 because of the existence of the pervasive type Duration defined in Standard. The 
intermediate result could be either Frac or Duration. So we have to add an explicit conversion 
somewhere. 

One of the great things about Ada is the ability to define your own operations. And in Ada 83 many 
programmers wrote their own arithmetic operations for fixed point. These might be saturation 
operations in which the result is not allowed to overflow but just takes the extreme implemented 
value. Such operations often match the behaviour of some external device. So we might declare 

function "*"(Left, Right: Frac) return Frac is 
begin 
   return Standard."*"(Left, Right); 
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exception 
   when Constraint_Error =>  
      if (Left>0.0 and Right>0.0) or (Left<0.0 and Right<0.0) then 
         return Frac'Last; 
      else 
         return Frac'First; 
      end if; 
end "*"; 

and similar functions for addition, subtraction, and division (taking due care over division by zero 
and so on). This works fine in Ada 83 and all calculations can now use the new operations rather 
than the predefined ones in a natural manner. 

Note however that 

H := Frac(F * G);  

is now ambiguous in Ada 83 since both our own new "*" and the predefined "*" are possible 
interpretations. However, if we simply write the more natural 

H := F * G; 

then there is no ambiguity. So we can program in Ada 83 without the explicit conversion. 

However, in Ada 95 we run into a problem when we introduce our own operations since  

H := F * G; 

is ambiguous because both the predefined operation and our own operation are possible 
interpretations of "*" in this context. There is no cure for this in Ada 95 except for changing our own 
multiplying operations to be procedures with identifiers such as mul and div. This is a very tedious 
chore and prone to errors. 

It has been reported that because of this difficulty many projects using fixed point have not moved 
from Ada 83 to Ada 95. 

This problem is solved in Ada 2005 by changing the name resolution rules to forbid the use of the 
predefined multiplication (division) operation if there is a user-defined primitive multiplication 
(division) operation for either operand type unless there is an explicit conversion on the result or we 
write Standard."*" (or Standard."/"). 

This means that when there is no conversion as in 

H := F * G; 

then the predefined operation cannot apply if there is a primitive user-defined "*" for one of the 
operand types. So the ambiguity is resolved. Note that if there is a conversion then it is still 
ambiguous as in Ada 83.  

If we absolutely need to have a conversion then we can always use a qualification as well or just 
instead. Thus we can write 

F := Frac'(F * G) * H; 

and this will unambiguously use our own operation. 

On the other hand if we truly want to use the predefined operation then we can always write 

H := Standard."*"(F, G); 

Another example might be instructive. Suppose we declare three types TL, TA, TV representing 
lengths, areas, and volumes. We use centimetres as the basic unit with an accuracy of 0.1 cm 
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together with corresponding consistent units and accuracies for areas and volumes. We might 
declare 

type TL is delta 0.1 range –100.0 .. 100.0; 
type TA is delta 0.01 range –10_000.0 .. 10_000.0; 
type TV is delta 0.001 range –1000_000.0 .. 1000_000.0; 
for TL'Small use TL'Delta; 
for TA'Small use TA'Delta; 
for TV'Small use TV'Delta; 

function "*"(Left: TL; Right: TL) return TA; 
function "*"(Left: TL; Right: TA) return TV; 
function "*"(Left: TA Right: TL) return TV; 
function "/"(Left: TV; Right: TL) return TA; 
function "/"(Left: TV; Right: TA) return TL; 
function "/"(Left: TA; Right: TL) return TL; 

XL, YL: TL; 
XA, YA: TA; 
XV, YV: TV; 

These types have an explicit small equal to their delta and are such that no scaling is required to 
implement the appropriate multiplication and division operations. This absence of scaling is not 
really relevant to the discussion below but simply illustrates why we might have several fixed point 
types and operations between them.  

Note that all three types have primitive user-defined multiplication and division operations even 
though in the case of multiplication, TV only appears as a result type. Thus the predefined 
multiplication or division with any of these types as operands can only be considered if the result 
has a type conversion. 

As a consequence the following are legal 

XV := XL * XA;   -- OK, volume = length × area  
XL := XV / XA;   -- OK, length = volume ÷ area 

but the following are not because they do not match the user-defined operations 

XV := XL * XL;   -- no, volume ≠  length × length 
XV := XL / XA;   -- no, volume ≠  length ÷ area 
XL := XL * XL;   -- no, length ≠  length × length 

But if we insist on multiplying two lengths together then we can use an explicit conversion thus 

XL := TL(XL * XL);   -- legal, predefined operation 

and this uses the predefined operation. 

If we need to multiply three lengths to get a volume without storing an intermediate area then we 
can write 

XV := XL * XL * XL; 

and this is unambiguous since there are no explicit conversions and so the only relevant operations 
are those we have declared. 

It is interesting to compare this with the corresponding solution using floating point where we would 
need to make the unwanted predefined operations abstract as discussed in an earlier paper. 
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It is hoped that the reader has not found this discussion to be too protracted. Although fixed point is 
a somewhat specialized area, it is important to those who find it useful and it is good to know that 
the problems with Ada 95 have been resolved. 

There are a number of other improvements in the numerics area but these concern the Numerics 
annex and so will be discussed in a later paper. 

4   Pragmas and Restrictions 
Ada 2005 introduces a number of new pragmas and Restrictions identifiers. Many of these were 
described in the previous paper when discussing tasking and the Real-Time and High Integrity 
annexes. For convenience here is a complete list giving the annex if appropriate. 

The new pragmas are 

Assert 
Assertion_Policy 
Detect_Blocking  High-Integrity 
No_Return 
Preelaborable_Initialization 
Profile  Real-Time 
Relative_Deadline  Real-Time 
Unchecked_Union  Interface 
Unsuppress 

The new Restrictions identifiers are 

Max_Entry_Queue_Length  Real-Time 
No_Dependence 
No_Dynamic_Attachment  Real-Time 
No_Implementation_Attributes 
No_Implementation_Pragmas 
No_Local_Protected_Objects  Real-Time 
No_Obsolescent_Features 
No_Protected_Type_Allocators Real-Time 
No_Relative_Delay  Real-Time 
No_Requeue_Statements  Real-Time 
No_Select_Statements  Real-Time 
No_Synchronous_Control  Real-Time 
No_Task_Termination  Real-Time 
Simple_Barriers  Real-Time 

We will now discuss in detail the pragmas and Restrictions identifiers in the core language and so 
not discussed in the previous paper. 

First there is the pragma Assert and the associated pragma Assertion_Policy. Their syntax is as 
follows 

pragma Assert([Check =>] boolean_expression [, [Message =>] string_expression]); 

pragma Assertion_Policy(policy_identifier); 

The first parameter of Assert is thus a boolean expression and the second (and optional) parameter is 
a string. Remember that when we write Boolean we mean of the predefined type whereas boolean 
includes any type derived from Boolean as well. 
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The parameter of Assertion_Policy is an identifier which controls the behaviour of the pragma 
Assert. Two policies are defined by the language, namely, Check and Ignore. Further policies may 
be defined by the implementation. 

There is also a package Ada.Assertions thus 

package Ada.Assertions is 
   pragma Pure(Assertions); 

   Assertion_Error: exception; 

   procedure Assert(Check: in Boolean); 
   procedure Assert(Check: in Boolean; Message: in String); 
end Ada.Assertions; 

The pragma Assert can be used wherever a declaration or statement is allowed. Thus it might occur 
in a list of declarations such as 

N: constant Integer := ... ; 
pragma Assert(N > 1); 
A: Real_Matrix(1 .. N, 1 .. N); 
EV: Real_Vector(1 .. N); 

and in a sequence of statements such as 

pragma Assert(Transpose(A) = A, "A not symmetric"); 
EV := Eigenvalues(A); 

If the policy set by Assertion_Policy is Check then the above pragmas are equivalent to 

if not N > 1 then 
   raise Assertion_Error; 
end if; 

and  

if not Transpose(A) = A then 
   raise Assertion_Error with "A not symmetric"; 
end if; 

Remember from Section 2 that a raise statement without any explicit message is not the same as one 
with an explicit null message. In the former case a subsequent call of Exception_Message returns 
implementation defined information whereas in the latter case it returns a null string. This same 
behaviour thus occurs with the Assert pragma as well – providing no message is not the same as 
providing a null message. 

If the policy set by Assertion_Policy is Ignore then the Assert pragma is ignored at execution time – 
but of course the syntax of the parameters is checked during compilation. 

The two procedures Assert in the package Ada.Assertions have an identical effect to the 
corresponding Assert pragmas except that their behaviour does not depend upon the assertion 
policy. Thus the call 

Assert(Some_Test); 

is always equivalent to 

if not Some_Test then 
   raise Assertion_Error; 
end if; 
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In other words we could define the behaviour of 

pragma Assert(Some_Test); 

as equivalent to 

if policy_identifier = Check then 
   Assert(Some_Test);        -- call of procedure Assert 
end if; 

Note again that there are two procedures Assert, one with and one without the message parameter. 
These correspond to raise statements with and without an explicit message.  

The pragma Assertion_Policy is a configuration pragma and controls the behaviour of Assert 
throughout the units to which it applies. It is thus possible for different policies to be in effect in 
different parts of a partition. 

An implementation could define other policies such as Assume which might mean that the compiler 
is free to do optimizations based on the assumption that the boolean expressions are true although 
there would be no code to check that they were true. Careless use of such a policy could lead to 
erroneous behaviour. 

There was some concern that pragmas such as Assert might be misunderstood to imply that static 
analysis was being carried out. Thus in the SPARK language [2], the annotation 

--# assert N /= 0 

is indeed a static assertion and the appropriate tools can be used to verify this.  

However, other languages such as Eiffel have used assert in a dynamic manner as now introduced 
into Ada 2005 and, moreover, many implementations of Ada have already provided a pragma Assert 
so it is expected that there will be no confusion with its incorporation into the standard. 

Another pragma with a related flavour is No_Return. This can be applied to a procedure (not to a 
function) and asserts that the procedure never returns in the normal sense. Control can leave the 
procedure only by the propagation of an exception or it might loop forever (which is common 
among certain real-time programs). The syntax is 

pragma No_Return(procedure_local_name {, procedure_local_name}); 

Thus we might have a procedure Fatal_Error which outputs some message and then propagates an 
exception which can be handled in the main subprogram. For example 

procedure Fatal_Error(Msg: in String) is 
   pragma No_Return(Fatal_Error); 
begin 
   Put_Line(Msg); 
   ...    -- other last wishes 
   raise Death; 
end Fatal_Error; 
... 

procedure Main is 
   ... 
   ... 
   Put_Line("Program terminated successfully"); 
exception 
   when Death => 
      Put_Line("Program terminated: known error"); 
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   when others => 
      Put_Line("Program terminated: unknown error"); 
end Main; 

There are two consequences of supplying a pragma No_Return.  

▪ The implementation checks at compile time that the procedure concerned has no explicit return 
statements. There is also a check at run time that it does not attempt to run into the final end – 
Program_Error is raised if it does as in the case of running into the end of a function. 

▪ The implementation is able to assume that calls of the procedure do not return and so various 
optimizations can be made. 

We might then have a call of Fatal_Error as in 

function Pop return Symbol is 
begin 
   if Top = 0 then 
      Fatal_Error("Stack empty");  -- never returns 
   elsif 
      Top := Top – 1; 
      return S(Top+1); 
   end if; 
end Pop; 

If No_Return applies to Fatal_Error then the compiler should not compile a jump after the call of 
Fatal_Error and should not produce a warning that control might run into the final end of Pop. 

The pragma No_Return now applies to the predefined procedure Raise_Exception. To enable this to 
be possible its behaviour with Null_Id has had to be changed. In Ada 95 writing 

Raise_Exception(Null_Id, "Nothing"); 

does nothing at all (and so does return in that case) whereas in Ada 2005 it is defined to raise 
Constraint_Error and so now never returns. 

We could restructure the procedure Fatal_Error to use Raise_Exception thus 

procedure Fatal_Error(Msg: in String) is 
   pragma No_Return(Fatal_Error); 
begin 
   ...   -- other last wishes 
   Raise_Exception(Death'Identity, Msg); 
end Fatal_Error; 

Since pragma No_Return applies to Fatal_Error it is important that we also know that 
Raise_Exception cannot return. 

The exception handler for Death in the main subprogram can now use Exception_Message to print 
out the message. 

Remember also from Section 2 above that we can now also write 

raise Death with Msg; 

rather than call Raise_Exception. 

The pragma No_Return is a representation pragma. If a subprogram has no distinct specification 
then the pragma No_Return is placed inside the body (as shown above). If a subprogram has a 
distinct specification then the pragma must follow the specification in the same compilation or 
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declarative region. Thus one pragma No_Return could apply to several subprograms declared in the 
same package specification.  

It is important that dispatching works correctly with procedures that do not return. A non-returning 
dispatching procedure can only be overridden by a non-returning procedure and so the overriding 
procedure must also have pragma No_Return thus 

type T is tagged ... 
procedure P(X: T; ... ); 
pragma No_Return(P); 
... 
type TT is new T with ... 
overriding 
procedure P(X: TT; ... ); 
pragma No_Return(P); 

The reverse is not true of course. A procedure that does return can be overridden by one that does 
not. 

It is possible to give a pragma No_Return for an abstract procedure, but obviously not for a null 
procedure. A pragma No_Return can also be given for a generic procedure. It then applies to all 
instances. 

The next new pragma is Preelaborable_Initialization. The syntax is 

pragma Preelaborable_Initialization(direct_name); 

This pragma concerns the categorization of library units and is related to pragmas such as Pure and 
Preelaborate. It is used with a private type and promises that the full type given by the parameter 
will indeed have preelaborable initialization. The details of its use will be explained in the next 
paper. 

Another new pragma is Unchecked_Union. The syntax is 

pragma Unchecked_Union(first_subtype_local_name); 

The parameter has to denote an unconstrained discriminated record subtype with a variant part. The 
purpose of the pragma is to permit interfacing to unions in C. The following example was given in 
the Introduction 

type Number(Kind: Precision) is 
   record 
      case Kind is 
         when Single_Precision => 
            SP_Value: Long_Float; 
         when Multiple_Precision => 
            MP_Value_Length: Integer; 
            MP_Value_First: access Long_Float; 
      end case; 
   end record; 

pragma Unchecked_Union(Number); 

Specifying the pragma Unchecked_Union ensures the following 

▪ The representation of the type does not allow space for any discriminants. 

▪ There is an implicit suppression of Discriminant_Check. 

▪ There is an implicit pragma Convention(C). 
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The above Ada text provides a mapping of the following C union 

union { 
   double spvalue; 
   struct { 
      int length; 
      double* first; 
      } mpvalue; 
} number; 

The general idea is that the C programmer has created a type which can be used to represent a 
floating point number in one of two ways according to the precision required. One way is just as a 
double length value (a single item) and the other way is as a number of items considered juxtaposed 
to create a multiple precision value. This latter is represented as a structure consisting of an integer 
giving the number of items followed by a pointer to the first of them. These two different forms are 
the two alternatives of the union. 

In the Ada mapping the choice of precision is governed by the discriminant Kind which is of an 
enumeration type as follows 

type Precision is (Single_Precision, Multiple_Precision); 

In the single precision case the component SP_Value of type Long_Float maps onto the C 
component spvalue of type double. 

The multiple precision case is somewhat troublesome. The Ada component MP_Value_Length maps 
onto the C component length and the Ada component MP_Value_First of type access Long_Float 
maps onto the C component first of type double*. 

In our Ada program we can declare a variable thus 

X: Number(Multiple_Precision); 

and we then obtain a value in X by calling some C subprogram. We can then declare an array and 
map it onto the C sequence of double length values thus  

A: array (1 .. X.MP_Value_Length) of Long_Float; 
for A'Address use X.MP_Value_First.all'Address; 
pragma Import(C, A); 

The elements of A are now the required values. Note that we don't use an Ada array in the 
declaration of Number because there might be problems with dope information. 

The Ada type can also have a non-variant part preceding the variant part and variant parts can be 
nested. It may have several discriminants. 

When an object of an unchecked union type is created, values must be supplied for all its 
discriminants even though they are not stored. This ensures that appropriate default values can be 
supplied and that an aggregate contains the correct components. However, since the discriminants 
are not stored, they cannot be read. So we can write 

X: Number := (Single_Precision, 45.6); 
Y: Number(Single_Precision); 
... 
Y.SP_Value := 55.7; 

The variable Y is said to have an inferable discriminant whereas X does not. Although it is clear that 
playing with unchecked unions is potentially dangerous, nevertheless Ada 2005 imposes certain 
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rules that avoid some dangers. One rule is that predefined equality can only be used on operands 
with inferable discriminants; Program_Error is raised otherwise. So 

if Y = 55.8 then   -- OK 

if X = 45.5 then   -- raises Program_Error 

if X = Y then   -- raises Program_Error 

It is important to be aware that unchecked union types are introduced in Ada 2005 for the sole 
purpose of interfacing to C programs and not for living dangerously. Thus consider 

type T(Flag: Boolean := False) is 
   record 
      case Flag is 
         when False => 
            F1: Float := 0.0; 
         when True => 
            F2: Integer := 0; 
      end case; 
   end record; 
pragma Unchecked_Union(T); 

The type T can masquerade as either type Integer or Float. But we should not use unchecked union 
types as an alternative to unchecked conversion. Thus consider 

X: T;    -- Float by default 
Y: Integer := X.F2;   -- erroneous 

The object X has discriminant False by default and thus has the value zero of type Integer. In the 
absence of the pragma Unchecked_Union, the attempt to read X.F2 would raise Constraint_Error 
because of the discriminant check. The use of Unchecked_Union suppresses the discriminant check 
and so the assignment will occur. But note that the ARM clearly says (11.5(26)) that if a check is 
suppressed and the corresponding error situation arises then the program is erroneous. 

However, assigning a Float value to an Integer object using Unchecked_Conversion is not erroneous 
providing certain conditions hold such as that Float'Size = Integer'Size. 

The final pragma to be considered is Unsuppress. Its syntax is 

pragma Unsuppress(identifier); 

The identifier is that of a check or perhaps All_Checks. The pragma Unsuppress is essentially the 
opposite of the existing pragma Suppress and can be used in the same places with similar scoping 
rules. 

Remember that pragma Suppress gives an implementation the permission to omit the checks but it 
does not require that the checks be omitted (they might be done by hardware). The pragma 
Unsuppress simply revokes this permission. One pragma can override the other in a nested manner. 
If both are given in the same region then they apply from the point where they are given and the 
later one thus overrides.  

A likely scenario would be that Suppress applies to a large region of the program (perhaps all of it) 
and Unsuppress applies to a smaller region within. The reverse would also be possible but perhaps 
less likely.  

Note that Unsuppress does not override the implicit Suppress of Discriminant_Check provided by 
the pragma Unchecked_Union just discussed. 
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A sensible application of Unsuppress would be in the fixed point operations mentioned in Section 3 
thus 

function "*"(Left, Right: Frac) return Frac is 
   pragma Unsuppress(Overflow_Check); 
begin 
   return Standard."*"(Left, Right); 
exception 
   when Constraint_Error =>  
      if (Left>0.0 and Right>0.0) or (Left<0.0 and Right<0.0) then 
         return Frac'Last; 
      else 
         return Frac'First; 
      end if; 
end "*"; 

The use of Unsuppress ensures that the overflow check is not suppressed even if there is a global 
Suppress for the whole program (or the user has switched checks off through the compiler 
command line). So Constraint_Error will be raised as necessary and the code will work correctly. 

In Ada 95 the pragma Suppress has the syntax 

pragma Suppress(identifier [ , [On =>] name]);   -- Ada 95 

The second and optional parameter gives the name of the entity to which the permission applies. 
There was never any clear agreement on what this meant and implementations varied. Accordingly, 
in Ada 2005 the second parameter is banished to Annex J so that the syntax in the core language is 
similar to Unsuppress thus  

pragma Suppress(identifier);   -- Ada 2005 

For symmetry, Annex J actually allows an obsolete On parameter for Unsuppress. It might seem 
curious that a feature should be born obsolescent. 

A number of new Restrictions identifiers are added in Ada 2005. The first is No_Dependence whose 
syntax is 

pragma Restrictions(No_Dependence => name); 

This indicates that there is no dependence on a library unit with the given name. 

The name might be that of a predefined unit but it could in fact be any unit. For example, it might be 
helpful to know that there is no dependence on a particular implementation-defined unit such as a 
package Superstring thus 

pragma Restrictions(No_Dependence => Superstring); 

Care needs to be taken to spell the name correctly; if we write Supperstring by mistake then the 
compiler will not be able to help us.  

The introduction of No_Dependence means that the existing Restrictions identifier 
No_Asynchronous_Control is moved to Annex J since we can now write 

pragma Restrictions(No_Dependence => Ada.Asynchronous_Task_Control); 

Similarly, the identifiers No_Unchecked_Conversion and No_Unchecked_Deallocation are also 
moved to Annex J. 

Note that the identifier No_Dynamic_Attachment which refers to the use of the subprograms in the 
package Ada.Interrupts cannot be treated in this way because of the child package 
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Ada.Interrupts.Names. No dependence on Ada.Interrupts would exclude the use of the child package 
Names as well. 

The restrictions identifier No_Dynamic_Priorities cannot be treated this way either for a rather 
different reason. In Ada 2005 this identifier is extended so that it also excludes the use of the 
attribute Priority and this would not be excluded by just saying no dependence on 
Ada.Dynamic_Priorities. 

Two further Restrictions identifiers are introduced to encourage portability. We can write 

pragma Restrictions(No_Implementation_Pragmas, No_Implementation_Attributes); 

These do not apply to the whole partition but only to the compilation or environment concerned. 
This helps us to ensure that implementation dependent areas of a program are identified.  

The final new restrictions identifier similarly prevents us from inadvertently using features in Annex 
J thus 

pragma Restrictions(No_Obsolescent_Features); 

Again this does not apply to the whole partition but only to the compilation or environment 
concerned. (It is of course not itself defined in Annex J.) 

The reader will recall that in Ada 83 the predefined packages had names such as Text_IO whereas in 
Ada 95 they are Ada.Text_IO and so on. In order to ease transition from Ada 83, a number of 
renamings were declared in Annex J such as 

with Ada.Text_IO; 
package Text_IO renames Ada.Text_IO; 

A mild problem is that the user could write these renamings anyway and we do not want the 
No_Obsolescent_Features restriction to prevent this. Moreover, implementations might actually 
implement the renamings in Annex J by just compiling them and we don't want to force 
implementations to use some trickery to permit the user to do it but not the implementation. 
Accordingly, whether the No_Obsolescent_Features restriction applies to these renamings or not is 
implementation defined. 

5   Generic units 
There are a number of improvements in the area of generics many of which have already been 
outlined in earlier papers. 

A first point concerns access types. The introduction of types that exclude null means that a formal 
access type parameter can take the form 

generic 
   ... 
   type A is not null access T; 
   ... 

The actual type corresponding to A must then itself be an access type that excludes null. A similar 
rule applies in reverse – if the formal parameter excludes null then the actual parameter must also 
exclude null. If the two did not match in this respect then all sorts of difficulties could arise. 

Similarly if the formal parameter is derived from an access type 

generic 
   ... 
   type FA is new A;  -- A is an access type 
   ... 
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then the actual type corresponding to FA must exclude null if A excludes null and vice versa. Half of 
this rule is automatically enforced since a type derived from a type that excludes null will 
automatically exclude null. But the reverse is not true as mentioned in an earlier paper when 
discussing access types. If A has the declaration 

type A is access all Integer;  -- does not exclude null 

then we can declare 

type NA is new A;    -- does not exclude null 
type NNA is new not null A;  -- does exclude null 

and then NA matches the formal parameter FA in the above generic but NNA does not. 

There is also a change to formal derived types concerning limitedness. In line with the changes 
described in the paper on the object oriented model, the syntax now permits limited to be stated 
explicitly thus 

generic 
   type T is limited new LT;   -- untagged 
   type TT is limited new TLT with private;   -- tagged 

However, this can be seen simply as a documentation aid since the actual types corresponding to T 
and TT must be derived from LT and TLT and so will be limited if LT and TLT are limited anyway.  

Objects of anonymous access types are now also allowed as generic formal parameters so we can 
have 

generic 
   A: access T := null; 
   AN: in out not null access T; 
   F: access function (X: Float) return Float; 
   FN: not null access function (X: Float) return Float; 

If the subtype of the formal object excludes null (as in AN and FN) then the actual must also exclude 
null but not vice versa. This contrasts with the rule for formal access types discussed above in which 
case both the formal type and actual type have to exclude null or not. Note moreover that object 
parameters of anonymous access types can have mode in out. 

If the subprogram profile itself has access parameters that exclude null as in 

generic 
   PN: access procedure (AN: not null access T); 

then the actual subprogram must also have access parameters that exclude null and so on. The same 
rule applies to named formal subprogram parameters. If we have 

generic 
   with procedure P(AN: not null access T); 
   with procedure Q(AN: access T); 

then the actual corresponding to P must have a parameter that excludes null but the actual 
corresponding to Q might or might not. The rule is similar to renaming – "not null must never lie". 
Remember that the matching of object and subprogram generic parameters is defined in terms of 
renaming. Here is an example to illustrate why the asymmetry is important. Suppose we have 

generic 
   type T is private; 
   with procedure P(Z: in T); 
package G is 
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This can be matched by 

type A is access ...; 
procedure Q(Y: in not null A); 
... 
package NG is new G(T => A; P => Q); 

Note that since the formal type T is not known to be an access type in the generic declaration, there 
is no mechanism for applying a null exclusion to it. Nevertheless there is no reason why the 
instantiation should not be permitted. 

There are some other changes to existing named formal subprogram parameters. The reader will 
recall from the discussion on interfaces in an earlier paper that the concept of null procedures has 
been added in Ada 2005. A null procedure has no body but behaves as if it has a body comprising a 
null statement. It is now possible to use a null procedure as a possible form of default for a 
subprogram parameter. Thus there are now three possible forms of default as follows 

with procedure P( ... ) is <>;  -- OK in 95 
with procedure Q( ... ) is Some_Proc; -- OK in 95 
with procedure R( ... ) is null;  -- only in 2005 

So if we have 

generic 
   type T is (<>); 
   with procedure R(X: in Integer; Y: in out T) is null; 
package PP ... 

then an instantiation omitting the parameter for R such as  

package NPP is new PP(T => Colour); 

is equivalent to providing an actual procedure AR thus 

procedure AR(X: in Integer; Y: in out Colour) is 
begin 
   null; 
end AR; 

Note that the profile of the actual procedure is conjured up to match the formal procedure. 

Of course, there is no such thing as a null function and so null is not permitted as the default for a 
formal function. 

A new kind of subprogram parameter was introduced in some detail when discussing object factory 
functions in the paper on the object oriented model. This is the abstract formal subprogram. The 
example given was the predefined generic function Generic_Dispatching_Constructor thus 

generic 
   type T (<>) is abstract tagged limited private; 
   type Parameters (<>) is limited private; 
   with function Constructor(Params: not null access Parameters) return T is abstract; 
function Ada.Tags.Generic_Dispatching_Constructor 
 (The_Tag: Tag; Params: not null access Parameters) return T'Class; 

The formal function Constructor is an example of an abstract formal subprogram. Remember that 
the interpretation is that the actual function must be a dispatching operation of a tagged type 
uniquely identified by the profile of the formal function. The actual operation can be concrete or 



John Barnes 21  

abstract. Formal abstract subprograms can of course be procedures as well as functions. It is 
important that there is exactly one controlling type in the profile. 

Formal abstract subprograms can have defaults in much the same way that formal concrete 
subprograms can have defaults. We write 

with procedure P(X: in out T) is abstract <>; 
with function F return T is abstract Unit; 

The first means of course that the default has to have identifier P and the second means that the 
default is some function Unit. It is not possible to give null as the default for an abstract parameter 
for various reasons. Defaults will probably be rarely used for abstract parameters. 

The introduction of interfaces in Ada 2005 means that a new class of generic parameters is possible. 
Thus we might have 

generic 
   type F is interface; 

The actual type could then be any interface. This is perhaps unlikely. 

If we wanted to ensure that a formal interface had certain operations then we might first declare an 
interface A with the required operations 

type A is interface; 
procedure Op1(X: A; ... ) is abstract;  
procedure N1(X: A; ... ) is null; 

and then 

generic 
   type F is interface and A; 

and then the actual interface must be descended from A and so have operations which match Op1 
and N1.  

A formal interface might specify several ancestors 

generic 
   type FAB is interface and A and B; 

where A and B are themselves interfaces. And A and B or just some of them might themselves be 
further formal parameters as in 

generic 
   type A is interface; 
   type FAB is interface and A and B; 

These means that FAB must have both A and B as ancestors; it could of course have other ancestors 
as well. 

The syntax for formal tagged types is also changed to take into account the possibility of interfaces. 
Thus we might have 

generic 
   type NT is new T and A and B with private; 

in which case the actual type must be descended both from the tagged type T and the interfaces A 
and B. The parent type T itself might be an interface or a normal tagged type. Again some or all of 
T, A, and B might be earlier formal parameters. Also we can explicitly state limited in which case all 
of the ancestor types must also be limited. 
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An example of this sort of structure occurred when discussing printable geometric objects in the 
paper on the object oriented model. We had 

generic 
   type T is abstract tagged private; 
package Make_Printable is 
   type Printable_T is abstract new T and Printable with private; 
   ... 
end; 

It might be that we have various interfaces all derived from Printable which serve different purposes 
(perhaps for different output devices, laser printer, card punch and so on). We would then want the 
generic package to take any of these interfaces thus 

generic 
   type T is abstract tagged private; 
   type Any_Printable is interface and Printable; 
package Make_Printable is 
   type Printable_T is abstract new T and Any_Printable with private; 
   ... 
end; 

A formal interface can also be marked as limited in which case the actual interface must also be 
limited and vice versa. 

As discussed in the previous paper, interfaces can also be synchronized, task, or protected. Thus we 
might have 

generic 
   type T is task interface; 

and then the actual interface must itself be a task interface. The correspondence must be exact. A 
formal synchronized interface can only be matched by an actual synchronized interface and so on. 
Remember from the discussion in the previous paper that a task interface can be composed from a 
synchronized interface. This flexibility does not extend to matching actual and formal generic 
parameters.  

Another small change concerns object parameters of limited types. In Ada 95 the following is illegal 

type LT is limited 
   record 
      A: Integer; 
      B: Float; 
   end record;   -- a limited type 

generic 
   X: in LT;    -- illegal in Ada 95 
   ... 
procedure P ... 

It is illegal in Ada 95 because it is not possible to provide an actual parameter. This is because the 
parameter mechanism is one of initialization of the formal object parameter by the actual and this is 
treated as assignment and so is not permitted for limited types. 

However, in Ada 2005, initialization of a limited object by an aggregate is allowed since the value is 
created in situ as discussed in an earlier paper. So an instantiation is possible thus 

procedure Q is new P(X => (A => 1, B => 2.0), ... ); 
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Remember that an initial value can also be provided by a function call and so the actual parameter 
could also be a function call returning a limited type. 

The final improvement to the generic parameter mechanism concerns package parameters. 

In Ada 95 package parameters take two forms. Given a generic package Q with formal parameters 
F1, F2, F3, then we can have  

generic 
   with package P is new Q(<>); 

and then the actual package corresponding to the formal P can be any instantiation of Q. 
Alternatively 

generic 
   with package R is new Q(P1, P2, P3); 

and then the actual package corresponding to R must be an instantiation of Q with the specified 
actual parameters P1, P2, P3. 

As mentioned in the Introduction, a simple example of the use of these two forms occurs with the 
package Generic_Complex_Arrays which takes instantiations of Generic_Real_Arrays and 
Generic_Complex_Types which in turn both have the underlying floating type as their single 
parameter. It is vital that both packages use the same floating point type and this is assured by 
writing 

generic 
   with package Real_Arrays is new Generic_Real_Arrays(<>); 
   with package Complex_Types is new Generic_Complex_Types(Real_Arrays.Real); 
package Generic_Complex_Arrays is ... 

However, the mechanism does not work very well when several parameters are involved as will now 
be illustrated with some examples.  

The first example concerns using the new container library which will be discussed in some detail in 
a later paper. There are generic packages such as 

generic 
   type Index_Type is range <>; 
   type Element_Type is private: 
   with function "=" (Left, Right: Element_Type ) return Boolean is <>; 
package Ada.Containers.Vectors is ... 

and 

generic 
   type Key_Type is private; 
   type Element_Type is private: 
   with function Hash(Key: Key_Type) return Hash_Type; 
   with function Equivalent_Keys(Left, Right: Key_Type) return Boolean; 
   with function "=" (Left, Right: Element_Type ) return Boolean is <>; 
package Ada.Containers.Hashed_Maps is ... 

We might wish to pass instantiations of both of these to some other package with the proviso that 
both were instantiated with the same Element_Type. Otherwise the parameters can be unrelated. 

It would be natural to make the vector package the first parameter and give it the (<>) form. But we 
then find that in Ada 95 we have to repeat all the parameters other than Element_Type for the maps 
package. So we have 
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with ... ; use Ada.Containers; 
generic  
   with package V is new Vectors(<>); 
   type Key_Type is private; 
   with function Hash(Key: Key_Type) return Hash_Type; 
   with function Equivalent_Keys(Left, Right: Key_Type) return Boolean; 
   with function "=" (Left, Right: Element_Type ) return Boolean is <>; 
   with package HM is new Hashed_Maps( 
   Key_Type => Key_Type, 
   Element_Type => V.Element_Type, 
   Hash => Hash, 
   Equivalent_Keys => Equivalent_Keys, 
   "=" => "="); 
package HMV is ... 

This is a nuisance since when we instantiate HMV we have to provide all the parameters required by 
Hashed_Maps even though we must already have instantiated it elsewhere in the program. Suppose 
that instantiation was 

package My_Hashed_Map is new Hashed_Maps(My_Key, Integer, Hash_It, Equiv, "="); 

and suppose also that we have instantiated Vectors 

package My_Vectors is new Vectors(Index, Integer, "="); 

Now when we come to instantiate HMV we have to write 

package My_HMV is  
   new HMV(My_Vectors, My_Key, Hash_It, Equiv, "=", My_Hashed_Maps); 

This is very annoying. Not only do we have to repeat all the auxiliary parameters of Hashed_Maps 
but the situation regarding Vectors and Hashed_Maps is artificially made asymmetric. (Life would 
have been a bit easier if we had made Hashed_Maps the first package parameter but that just 
illustrates the asymmetry.) Of course we could more or less overcome the asymmetry by passing all 
the parameters of Vectors as well but then HMV would have even more parameters. This rather 
defeats the point of package parameters which were introduced into Ada 95 in order to avoid the 
huge parameter lists that had occurred in Ada 83. 

Ada 2005 overcomes this problem by permitting just some of the actual parameters to be specified. 
Any omitted parameters are indicated using the <> notation thus 

generic 
   with package S is new Q(P1, F2 => <>, F3 => <>); 

In this case the actual package corresponding to S can be any package which is an instantiation of Q 
where the first actual parameter is P1 but the other two parameters are left unspecified. We can also 
abbreviate this to 

generic 
   with package S is new Q(P1, others => <>); 

Note that the <> notation can only be used with named parameters and also that (<>) is now 
considered to be a shorthand for (others => <>). 

As another example 

generic 
   with package S is new Q(F1 => <>, F2 => P2, F3 => <>); 
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means that the actual package corresponding to S can be any package which is an instantiation of Q 
where the second actual parameter is P2 but the other two parameters are left unspecified. This can 
be abbreviated to 

generic 
   with package S is new Q(F2 => P2, others => <>); 

Using this new notation, the package HMV can now simply be written as 

with ... ; use Ada.Containers; 
generic  
   with package V is new Vectors(<>); 
   with package HM is new Hashed_Maps 
   (Element_Type => V.Element_Type, others => <>); 
package HMV is ... 

and our instantiation of HMV becomes simply 

package My_HMV is new HMV(My_Vectors, My_Hashed_Maps); 

Some variations on this example are obviously possible. For example it is likely that the 
instantiation of Hashed_Maps must use the same definition of equality for the type Element_Type 
as Vectors. We can ensure this by writing 

with ... ; use Ada.Containers; 
generic  
   with package V is new Vectors(<>); 
   with package HM is new Hashed_Maps 
   (Element_Type => V.Element_Type, "=" => V."=", others => <>); 
package HMV is ... 

If this seems rather too hypothetical, a more concrete example might be a generic function which 
converts a vector into a list provided they have the same element type and equality. Note first that 
the specification of the container package for lists is  

generic 
   type Element_Type is private; 
   with function "=" (Left, Right: Element_Type) return Boolean is <>; 
package Ada.Containers.Doubly_Linked_Lists is ... 

The specification of a generic function Convert might be 

generic 
   with package DLL is new Doubly_Linked_Lists(<>); 
   with package V is new Vectors  
   (Index_Type => <>, Element_Type => DLL.Element_Type, "=" => DLL."="); 
function Convert(The_Vector: V.Vector) return DLL.List; 

On the other hand if we only care about the element types matching and not about equality then we 
could write 

generic 
   with package DLL is new Doubly_Linked_Lists(<>); 
   with package V is new Vectors(Element_Type => DLL.Element_Type, others => <>); 
function Convert(The_Vector: V.Vector) return DLL.List; 

Note that if we had reversed the roles of the formal packages then we would not need the new <> 
notation if both equality and element type had to match but it would be necessary for the case where 
only the element type had to match. 
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Other examples might arise in the numerics area. Suppose we have two independently written 
generic packages Do_This and Do_That which both have a floating point type parameter and several 
other parameters as well. For example  

generic 
   type Real is digits <>; 
   Accuracy: in Real; 
   type Index is range <>; 
   Max_Trials: in Index; 
package Do_This is ...  

generic 
   type Floating is digits <>; 
   Bounds: in Floating; 
   Iterations: in Integer; 
   Repeat: in Boolean; 
package Do_That is ...  

(This is typical of much numerical stuff. Authors are cautious and unable to make firm decisions 
about many aspects of their algorithms and therefore pass the buck back to the user in the form of a 
turgid list of auxiliary parameters.) 

We now wish to write a package Super_Solver which takes instantiations of both Do_This and 
Do_That with the requirement that the floating type used for the instantiation is the same in each 
case but otherwise the parameters are unrelated. In Ada 95 we are again forced to repeat one set of 
parameters thus 

generic 
   with package This is new Do_This(<>); 
   S_Bounds: in This.Real; 
   S_Iterations: in Integer; 
   S_Repeat: in Boolean; 
   with package That is new Do_That(This.Real, S_Bounds, S_Iterations, S_Repeat); 
package Super_Solver is ... 

And when we come to instantiate Super_Solver we have to provide all the auxiliary parameters 
required by Do_That even though we must already have instantiated it elsewhere in the program. 
Suppose the instantiation was 

package That_One is new Do_That(Float, 0.01, 7, False); 

and suppose also that we have instantiated Do_This 

package This_One is new Do_This( ... ); 

Now when we instantiate Super_Solver we have to write 

package SS is new Super_Solver(This_One, 0.01, 7, False, That_One); 

Just as with HMV we have all these duplicated parameters and an artificial asymmetry between This 
and That.  

In Ada 2005 the package Super_Solver can be written as 

generic 
   with package This is new Do_This(<>); 
   with package That is new Do_That(This.Real, others => <>); 
package Super_Solver is ... 
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and the instantiation of Super_Solver becomes simply 

package SS is new Super_Solver(This_One, That_One); 

Other examples occur with signature packages. Remember that a signature package is one without a 
specification. It can be used to ensure that a group of entities are related in the correct way and an 
instantiation can then be used to identify the group as a whole. A trivial example might be 

generic 
   type Index is (<>); 
   type item is private; 
   type Vec is array (Index range <>) of Item; 
package General_Vector is end; 

An instantiation of General_Vector just asserts that the three types concerned have the appropriate 
relationship. Thus we might have 

type My_Array is array (Integer range <>) of Float; 

and then 

package Vector is new General_Vector(Integer, Float, My_Array); 

The package General_Vector could then be used as a parameter of other packages thereby reducing 
the number of parameters. 

Another example might be the signature of a package for manipulating sets. Thus 

generic 
   type Element is private; 
   type Set is private; 
   with function Empty return Set; 
   with function Unit(E: Element) return Set; 
   with function Union(S, T: Set) return Set; 
   with function Intersection(S, T: Set) return Set; 
   ... 
package Set_Signature is end; 

We might then have some other generic package which takes an instantiation of this set signature. 
However, it is likely that we would need to specify the type of the elements but possibly not the set 
type and certainly not all the operations. So typically we would have 

generic 
   type My_Element is private; 
   with package Sets is new Set_Signature(Element => My_Element, others => <>); 

An example of this technique occurred when considering the possibility of including a system of 
units facility within Ada 2005. Although it was considered not appropriate to include it, the use of 
signature packages was almost essential to make the mechanism usable. The interested reader 
should consult AI-324. 

We conclude by noting a small change to the syntax of a subprogram instantiation in that an 
overriding indicator can be supplied as mentioned in Section 7 of the paper on the object oriented 
model. Thus (in appropriate circumstances) we can write 

overriding 
procedure This is new That( ... ); 

This means that the instantiation must be an overriding operation for some type. 
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