Ada 2005 for Mission-Critical Systems

José F. Ruiz

AdaCore
8 rue de Milan
75009 Paris, France
Phone: +33 (0)1 49 70 67 16
Fax: +33 (0)1 49 70 05 52

rui z@dacore. com

Abstract

For the development of mission-critical software, the chaf programming language makes a significant difference
in meeting the requirements of exacting safety standards wtimately, high-reliability applications. Ada has atp
history of success in the safety-critical domain, with eas such as strong typing, that help early error detectiod,
well-defined semantics. The language has evolved basedeorewgerience, and the forthcoming Ada 2005 standard
includes a number of enhancements that will be of partidodarefit to developers of high-integrity real-time systems.
Relevant features include support for run-time profilesxilfle task-dispatching policies, execution-time clocksl a
timers, and a unification of concurrency and object-oriéféatures.

1 Introduction

Ada [9] is the language of choice for many critical systems thiits careful design and the existence of clear guidelines
for building high integrity systems [10].

The Ada language was first introduced in 1983. Used priméoilyarge-scale safety and security critical projects
(embedded systems in particular) where reliability anctiefficy are essential, Ada experienced its last major @visi
in 1995, making it the first internationally standardizedeab-oriented language. The latest revision (Ada 2005) has
been enhanced to better address the needs of the real-tihieggmintegrity communities. This new standard introduce
new restrictions and configurations that can be used to deiiidy efficient, simple, and predictable run-time profiles
Among others, this language revision will standardize tlagdRscar profile, new scheduling policies, and will include
execution time clocks and timers. Flexible object-oridfeatures are also supported without compromising pedoca
or safety.

The following sections will describe the advantages of gghda for developing mission-critical software, paying
special attention to the new features that will be availabtae forthcoming Ada 2005 standard.

2 Subsetting the language

Ada 2005 may be regarded not a single language but ratherily faifanguages. In practice, in writing mission-critical
software, one does not want to use the full facilities of a plex language, since excessive complexity is an enemy
of reliability. Instead a reduced subset is chosen that easupported by a compact run-time system with a reduced
footprint. Another advantage of this subsetting is the ceducomplexity which facilitates the generation of prodfs o
correctness, predictability, reliability, or coveragebysis, if needed.

All general-purpose languages use this subset approactwbaspects make Ada unique. First, the notion of such
subsets is built into the language standard, rather thamgleiternal to it (the latter is exemplified by the attempt to
define a "safe C" subset such as MISRA C). Second, the spesdfiares in the subset can be chosen by the application
developer, thus providing a high degree of flexibility. ledesuch flexibility is essential in practice, since the ¢sat
of features in the subset depends on the analysis techrtivatesre expected to be used during the development process,
which in turn depends on the level of criticality.

One of the most interesting subsets for high-integrityesyst is the Ravenscar profile, a collection of concurrency
features that are powerful enough for real-time prograngrbimt simple enough to make certification practical. Another
notable example is SPARK [2] that includes Ada construgarmged as essential for the construction of complex soéwar
but removes all the features that may jeopardize the remeinés of verifiability, bounded space and time, and minimal
run-time system.

3 The Ravenscar profile

As the functionality and complexity of embedded softwarz@ases, more attention is being devoted to high level;atist
development methods. The Ada tasking model provides cosccy as a means of decoupling application activities, and
hence making software easier to design and test [15].

The tasking model in Ada is extremely powerful, but it hasata/been recognized that, in the case of mission-critical
systems, it is appropriate to choose a subset of the taskailgies because accurate timing analysis is difficultdioiave.
Advances in real-time systems timing analysis methods paved the way to reliable tasking in Ada; accurate analysis o
real-time behavior is possible given a careful choice oslciing/dispatching method together with suitable restms
on the interactions allowed between tasks.

One of the most important achievements of Ada 2005 is thelatalization of the Ravenscar restricted tasking profile.
This profile [4] defines a subset of the tasking features of Atiech is amenable to static analysis for high integrity
system certification, and that can be supported by a smé#ipte run-time system. This profile is founded on state-
of-the-art, deterministic concurrency constructs thatadequate for constructing most types of real-time soé&Jai:.
Major benefits of this model are:

e Improved memory and execution time efficiency, by removiightoverhead or complex features.
¢ Increased reliability and predictability, by removing rdeterministic and non analysable features.

e Reduced certification cost by removing complex featureb@fanguage, thus simplifying the generation of proof
of predictability, reliability, and safety.

Constructions that are difficult to analyze, such as dynaasis and protected objects, task entries, dynamic peisyit
select statements, asynchronous transfer of controtiveldelays, or calendar clock, are forbidden.

The concurrency model promoted by the Ravenscar Profilerisistent with the use of tools that allow the static
properties of programs to be verified. Potential verifiaatiechniques include information flow analysis, schedlitgbi
analysis, execution-order analysis and model checkindefines a computation model similar to the one proposed by
Vardanega [14], which is based on the HRT-HOOD method [6E pitofile allows implementing space on-board systems
using the tasking facilities provided by Ada, restrictechsdo ensure that the system can be analysed for accuratg timi
and safety requirements. Preliminary experience confinesalidity of this approach for on-board software develepin
[13].

The Ravenscar tasking model is static, so the complete dask$ and associated parameters (such as their stack
sizes) are identified and defined at compile time, and hercestijuired data structures (task descriptors and stacks) ca
be statically created by the compiler as global data. Theeefmemory requirements can be determined at link time and
the use of dynamic memory can be avoided.

Ada 2005 contains determinism and hazard mitigation isslasng to task activation and interrupt handler execautio
semantics, in response to certification concerns aboutpateace conditions that could occur due to tasks beingated
and interrupt handlers being executed prior to completibthe library-level elaboration code. A new configuration
pragma has been added for guaranteeing the atomicity ofgoroglaboration, that is, no interrupts are delivered askl ta
activations are deferred until the completion of all lity-devel elaboration code. This eliminates all hazards itblatte to
tasks and interrupt handlers accessing global data pribh&wing been elaborated, without having to resort to ptdén
complex elaboration order control.

Another major hazard in high-integrity systems, tasks teating silently, has been addressed in Ada 2005 with a
new mechanism for setting user-defined handlers which aeued when tasks are about to terminate. These procedures
are invoked when tasks are about to terminate (either ntyneal a result of an unhandled exception, or due to abort),
allowing controlled responses at run time and also logdiegé events for post-mortem analysis.

The Ravenscar profile is part of the Ada 2005 standard, so i@nvendors must implement it. The intention is that
not only will they support it, but in appropriate environnte(notably embedded environments), efficient impleméoriat
of the Ravenscar tasking model will also be supplied.

4 Scheduling and dispatching policies

An important area of increased flexibility in Ada 2005 is tb&task dispatching policies. In Ada 95, the only predefined
policy is fixed-priority preemptive scheduling, althougher policies are permitted. Ada 2005 provides further pras,
policies, and packages which facilitate many different haeisms such as non-preemption within priorities, rourtdro
using timeslicing, and Earliest Deadline First (EDF) ppli®oreover, it is possible to mix different policies accimgito
priority levels within a partition.

Time sharing the processor using round robin schedulinglésjaate for non-real-time systems, and also in some
soft real-time systems requiring a level of fairness. Mapgrating systems, including those compliant with the POSIX
real-time scheduling model, support this scheduling gdhat ensures that if there are multiple tasks at the saroeityri
one of them will not monopolize the processor.

In order to reduce non-determinism and to increase theteféaess of testing, non-preemptive execution is sometime
desirable [3]. The standard way of implementing many higfledrity applications is with a cyclic executive [1]. Usitits
technique a sequence of procedures is called within a defimednterval. Each procedure runs to completion and there
is no concept of preemption. Data is passed from one proeddwanother via shared variables and no synchronization
constraints are needed, since the procedures never ruarcentty. The major disadvantage with non-preemptionés th
it will usually (although not always) lead to reduced scHedility.

Ada 2005 supports the notion of deadlines (the most impbdancept in real-time systems) via a predefined task
attribute. The deadline of a task is an indication of the noyeof the task. EDF scheduling allocate the processor to the
task with the earliest deadline. EDF has the advantage itjia¢hlevels of resource utilization are possible, altHoitigs
less predictable, compared to fixed-priority scheduling:dse of overload situations.

5 Execution time monitoring and control

Monitoring and control execution time is important for maesl-time systems. Ada 2005 provides an additional timing
mechanism which allows for:

e monitoring execution time of individual tasks,

¢ defining and enabling timers and establishing a handlertwiicalled by the run-time system when the execution
time of the task reaches a given value, and

e defining a execution budget to be shared among several faskéding means whereby action can be taken when
the budget expires.

Monitoring CPU usage of individual tasks can be used to detean time an excessive consumption of computational
resources, which are usually caused by either softwaressoreerrors made in the computation of worst-case execution
times.

Schedulability analysis are based on the assumption thabthcution time of each task can be accurately estimated.
Measurement is always difficult, because, with effectsdikehe misses, pipelined and superscalar processor atahés,
the execution time is highly unpredictable. Run-time maiitg of processor usage permits detecting and responding t
wrong estimations in a controlled manner.

CPU clocks and timers are also a key requirement for impleéimgaome modern real-time scheduling policies which
need to perform scheduling actions when a certain amouxeaigion time has been consumed. Providing common CPU
budgets to groups of tasks is the basic support for impleimgaperiodic servers, such as sporadic servers and delferra
servers [12] in fixed priority systems, or the constant badtwserver [8] in EDF-scheduled systems.

6 Timing events

Timing events allow for a handler to be executed at a futuiatpo time in a efficient way, as it is a stand-alone timer
which is execute directly in the context of the interrupt dilen (it does not need a server task).

The use of timing events may reduce the number of tasks ingrqam and hence reduce the overheads of context
switching. It provides an effective solution for progranmgnshort time-triggered procedures, and for implementimges
specific scheduling algorithms, such as those used for iciggeomputation [11]. Imprecise computation increase the
utilization and effectiveness of real-time applicatiogsibeans of structuring tasks into two phases (one mandataty a
one optional). Scheduling algorithms that try to maximbeeltkelihood that optional parts are completed typicadiguire
changing asynchronously the priority of a task, which camfgemented elegant and efficiently with timing events.

7 Object-oriented programming

Programmers writing high-integrity systems want to takesaiage of the powerful notions of object-oriented program
ming, and work is being done in the direction of providingdglines for certifying object-oriented applications [7].
Ada 2005 is ideally suited as the vehicle for exploiting wisagafe in this area, while avoiding what is dangerous.

Type extension and inheritance are powerful and lightwieagfect-oriented mechanisms in Ada which are useful for
embedded programing. Dynamic dispatching is also avaijdhlt there is a language defined restrictiNio (Dispatch
that can be used for forbidding the use of dynamic dispatitatiowing for a more efficient and predictable execution.
Ada 2005 offers also very fine-grained control over inhedgby allowing each operation to declare explicitly whethe
it is intended to inherit, and the compiler checks that therition is met (this avoids accidentally confusing Initialand
Initialise for example, a well known hazard in object-otathlanguages).

A conscious decision was made in the design of Ada 95 to noleimgnt general multiple inheritance, because the
complexities introduced to the language appeared to ovdnwthe benefits. But more recently, the notion of interfaces
(or roles) has been developed as an effective alternateites the power of interfacing to multiple abstractiorthaut
the additional complexity of full multiple inheritance.v@aintroduced the idea of interfaces, and Ada 2005 build$en t
concept to create a new and powerful form of the interfacé&radtson, which also extends to the unique Ada notions of
task and concurrent object, maintaining the importantgiegrinciple that concurrency is a first class citizen.

8 Conclusions

Ada is a powerful and well-designed language, thoroughliereed as part of its standardization process, wich allaws a
effective and efficient use of high-level abstract develeptmethods in mission-critical environments, without pom
mising performance or safety.

Safe tasking is promoted by the Ravenscar profile, which eégfindeterministic and certifiable tasking subset, pro-
viding the high-level abstraction and expressive powededdor making software easy to design and test. Major hazard
related to tasks terminating silently and potential raceditions at elaboration time have been addressed by newanech
nisms added to Ada 2005.

The new language revision constitutes also the refereangefivork for reliable and efficient object-oriented program
ming, supporting powerful and flexible object-orientedtfras while avoiding those that jeopardize the behaviohef t
system.

References

[1] T.P. Baker and A. Shaw. The cyclic executive model and.Alkeal-Time System$(1), 1989.
[2] John BarnesHigh Integrity Software. The SPARK Approach to Safety armdi@g. Addison Wesley, 2003.

[3] A. Burns. Defining new non-preemptive dispatching andklog policies for Ada. In D. Craeynest and
A. Strohmeier, editorsReliable Software Technologies — Ada-Europe 20@imber 2043 in Lecture Notes in
Computer Science, pages 328-336. Springer-Verlag, 2001.

[4] Alan Burns. The Ravenscar profile. Technical report,vérsity of York, 2002. Available alftt p: //ww. cs.
york. ac. uk/ ~burns/ ravenscar. ps.

[5] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide the use of the Ada Ravenscar Profile in high integrity
systems. Technical Report YCS-2003-348, University ofkY@003. Available ahtt p: //ww. cs. york. ac. uk/
ftpdir/reports/YCS- 2003- 348. pdf .

[6] Alan Burns and Andy WellingsHRT-HOOD(TM): A Structured Design Method for Hard Real-@ifkda Systems
North-Holland, Amsterdam, 1995.

[7] FAA. Handbook for Object-Oriented Technology in Aviation (O&)TiOctober 2004. Available dit t p: / / waw.
faa.gov/certification/aircraft/av-info/software/ OOT. ht m

[8] T. M. Ghazalie and Theodore P. Baker. Aperiodic servesdeadline scheduling environmeReal-Time Systems
9(1):31-67, 1995.

[9] ISO. Ada 95 Reference Manual: Language and Standard Librarieterhational Standard ANSI/ISO/IEC-
8652:19951995. Available from Springer-Verlag, LNCS no. 1246.

[10] ISO/IEC/ITC1/SC22/WG9Guidance for the use of the Ada Programming Language in Higégrity Systems
2000. ISO/IEC TR 15942:2000.

[11] J. W. Liu, K. J. Lin, W. K. Shih, A. Chuang-Shi, J. Y. Churend W. Zhao. Algorithms for Scheduling Imprecise
ComputationslEEE Computer24(5):58-68, May 1991.

[12] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic taskesicting for hard real-time system&eal-Time Systems
1(1), 1989.

[13] T. Vardanega, G.Caspersen, and J.S. Pedersen. Atcalseirsthe reuse of on-board embedded real-time software.
In Michael Gonzélez-Harbour and Juan A. de la Puente, exjRaliable Software Technologies — Ada-Europe’99
number 1622 in LNCS, pages 425-436. Springer-Verlag, 1999.

[14] Tullio VardanegaDevelopment of On-Board Embedded Real-Time Systems: Aneenigg ApproachPhD thesis,
TU Delft, 1998. Also available as ESA STR-260.

[15] Tullio Vardanega and Jan van Katwijk. A software pracés the construction of predictable on-board embedded
real-time systemsSoftware Practice and Experienc9(3):1-32, 1999.

