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Abstract. Ada 2005 Abstract Interface Types provide a limited and
practical form of multiple inheritance of specifications. In this paper
we cover the following aspects of their implementation in the GNAT
compiler: interface type conversions, the layout of variable sized tagged
objects with interface progenitors, and the use of the GNAT compiler
for interfacing with C++ classes with compatible inheritance trees.
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1 Introduction

In recent years, a number of language designs [1, 2] have adopted a compromise
between full multiple inheritance and strict single inheritance, which is to allow
multiple inheritance of specifications, but only single inheritance of implemen-
tations. Typically this is obtained by means of “interface” types. An interface
consists solely of a set of operation specifications: it has no data components and
no operation implementations. A type may implement multiple interfaces, but
can inherit code from only one parent type [4, 7]. This model has much of the
power of full-blown multiple inheritance, without most of the implementation
and semantic difficulties that are manifest in the object model of C++ [3].

At compile time, an interface type is conceptually a special kind of abstract
tagged type and hence its handling does not add special complexity to the com-
piler front-end (in fact, most of the current compiler support for abstract tagged
types has been reused in GNAT). At run-time we have chosen to give support to
dynamic dispatching through abstract interfaces by means of secondary dispatch
tables. This model was chosen for its time efficiency (constant-time dispatching



through interfaces), and its compatibility with the run-time structures used by
G++ (this is the traditional nickname of GNU C++).

This is the third paper in a series describing the implementation in the GNAT
compiler of Ada 2005 features related to interfaces (the previous papers are
[13] and [14]). We discuss the interesting implementation challenges presented
by interface type conversions, and the layout of variable sized tagged objects
with progenitors, which is the Ada 2005 term that designates the interfaces
implemented by a tagged type [4, Section 3.9.4 (9/2)]. Finally, we show how
our implementation makes it possible to write multi-language object-oriented
programs with interface inheritance. We present a small mixed-language example
that imports into Ada a C++ class hierarchy with multiple inheritance, when
all but one of the base classes have only pure virtual functions [3, Chapter 9].

This paper is structured as follows: In Section 2 we give a brief overview
of Ada 2005 abstract interfaces. In Section 3 we summarize the data layout
adopted by GNAT (for more details read [13] and [14]). In Section 4 we describe
the implementation of interface conversions. In Section 5 we discuss possible
approaches to the layout of tagged objects with components constrained by dis-
criminants, and their impact on conversion. In Section 6 we present an example
of mixed-language object-oriented programming; this example extends in Ada
2005 a C++ class whose base classes have only pure virtual functions [3, Chapter
9]. We close with some conclusions and the bibliography.

2 Abstract Interfaces in Ada 2005

The characteristics of an Ada 2005 interface type are introduced by means of
an interface type declaration and a set of subprogram declarations [4, Section
3.9.4]. The interface type has no data components, and its primitive operations
are either abstract or null. A type that implements an interface must provide non-
abstract versions of all the abstract operations of its progenitor(s). For example:

package Interfaces_Example is
type I1 is interface; -- 1
function P (X : I1) return Natural is abstract;

type I2 is interface and I1; -- 2
procedure Q (X : I1) is null;
procedure R (X : I2) is abstract;

type Root is tagged record ... -- 3
...
type DT1 is new Root and I2 with ... -- 4
-- DT1 must provide implementations for P and R
...
type DT2 is new DT1 with ... -- 5
-- Inherits all the primitives and interfaces of the ancestor

end Interfaces_Example;



The interface I1 defined at –1– has one subprogram. The interface I2 has
the same operations as I1 plus two subprograms: the null subprogram Q and
the abstract subprogram R. (Null procedures are described in AI-348 [10]; they
behave as if their body consists solely of a null statement.) At –3– we define the
root of a derivation class. At –4– DT1 extends the root type, with the added
commitment of implementing (all the abstract subprograms of) interface I2.
Finally, at –5– type DT2 extends DT1, inheriting all the primitive operations
and interfaces of its ancestor.

The power of multiple inheritance is realized by the ability to dispatch calls
through interface subprograms, using a controlling argument of a class-wide
interface type. In addition, languages that provide interfaces [1, 2] provide a run-
time mechanism to determine whether a given object implements a particular
interface. Accordingly Ada 2005 extends the membership operation to interfaces,
and allows the programmer to write the predicate O in I’Class. Let us look at
an example that uses the types declared in the previous fragment, and displays
both of these features:

procedure Dispatch_Call (Obj : I1’Class) is
begin

if Obj in I2’Class then -- 1: membership test
R (I2’Class (Obj)); -- 2: interface conversion plus dispatch call

else
... := P (Obj); -- 3: dispatch call

end if;

I1’Write (Stream, Obj); -- 4: dispatch call to predefined op.
end Dispatch_Call;

The type of the formal Obj covers all the types that implement the inter-
face I1. At –1– we use the membership test to check if the actual object also
implements I2. At –2– we perform a conversion of the actual to the class-wide
type of I2 to dispatch the call through I2’Class. (If the object does not imple-
ment the target interface and we do not protect the interface conversion with
the membership test then Constraint Error is raised at run-time.) At –3– the
subprogram safely dispatches the call to the P primitive of I1. Finally, at –4–
we see that, in addition to user-defined primitives, we can also dispatch calls to
predefined operations (that is, ’Size, ’Alignment, ’Read, ’Write, ’Input, ’Output,
Adjust, Finalize, and the equality operator).

Ada 2005 extends abstract interfaces for their use in concurrency: an interface
can be declared to be a non-limited interface, a limited interface, a synchronized
interface, a protected interface, or a task interface [9, 11]. Each one of these
imposes constraints on the types that can implement such an interface: a task
interface can be implemented only by a task type or a single task; a protected
interface can only be implemented by a protected type or a single protected
object; a synchronized interface can be implemented by either task types, single
tasks, protected types or single protected objects, and a limited interface can



be implemented by tasks types, single tasks, protected types, single protected
objects, and limited tagged types.

The combination of the interface mechanism with concurrency means that it
is possible, for example, to build a system with distinct server tasks that provide
similar services through different implementations, and to create heterogeneous
pools of such tasks. Using synchronized interfaces one can build a system where
some coordination actions are implemented by means of active threads (tasks)
while others are implemented by means of passive monitors (protected types).
For details on the GNAT implementation of synchronized interfaces read [14].

3 Abstract Interfaces in GNAT

Our first design decision was to adopt as much as possible a dispatching model
compatible with the one used by G++, in the hope that mixed-language pro-
gramming would intermix types, classes, and operations defined in both lan-
guages. A compatible design decision was to ensure that dispatching calls through
either classwide types or interface types should take constant time.

As a result of these choices, the GNAT implementation of abstract interfaces
is compatible with the C++ Application Binary Interface (ABI) described in [6].
That is, the compiler generates a secondary dispatch table for each progenitor of
a given tagged type. Thus, dispatching a call through an interface has the same
cost as any other dispatching call. The model incurs storage costs, in the form
of additional pointers to dispatch tables in each object.

Figure 1 presents an example of this layout. The dispatch table has a header
containing the offset to the top and the Run-Time Type Information Pointer
(RTTI). For a primary dispatch table, the first field is always set to 0 and
the RTTI pointer points to the GNAT Type Specific Data (the contents of this
record are described in the GNAT sources, file a-tags.adb). The tag of the object
points to the first element of the table of pointers to primitive operations. At the
bottom of the same figure we have the layout of a derived type that implements
two interfaces I1 and I2. When a type implements several interfaces, its run-time
data structure contains one primary dispatch table and one secondary dispatch
table per interface. In the layout of the object (left side of the figure), we see
that the derived object contains all the components of its parent type plus 1) the
tag of all the implemented interfaces, and 2) its own user-defined components.
Concerning the contents of the dispatch tables, the primary dispatch table is
an extension of the primary dispatch table of its immediate ancestor, and thus
contains direct pointers to all the primitive subprograms of the derived type.
The offset to top component of the secondary tables holds the displacement to
the top of the object from the object component containing the interface tag.
(This offset provides a way to find the top of the object from any derived object
that contains secondary virtual tables and is necessary in abstract interface type
conversion; this will be described in Section 4.)



package Example is

   type I1 is interface;
   function P (X : I1) return Natural is abstract;
 
    type I2 is interface;
    procedure Q  (X : I2) is null;
    procedure R (X : I2) is abstract;

A’Address
B’Address

Primary Dispatch Table
Offset_To_Top = 0
      TSD Pointer

T’Tag

T Object

T Components

   type Root is tagged record with
       -- T components
      . . .
   end record;

   procedure A (Obj : T) is . . .
   function   B  (Obj : T) return Integer is . . .    

   type DT is new Root and I1 and I2 with
      --  DT Components
     . . . 
   end record;

   function   P  (Obj : T) return Natural is . . .
   procedure Q (Obj : T) is . . .
   procedure R (Obj : T) is . . .

end Example;
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Q’Address
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I1’Tag
I2’Tag
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n
m

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

Fig. 1. Layout compatibility with C++

In the example shown in Figure 1, the offset-to-top values of interfaces I1 and
I2 are m and n respectively. In addition, rather than containing direct pointers to
the primitive operations associated with the interfaces, the secondary dispatch
tables contain pointers to small fragments of code called thunks. These thunks
are generated by the compiler, and used to adjust the pointer to the base of the
object (see description below).

4 Abstract Interface Type Conversions

In order to support interface conversions and the membership test, the GNAT
run-time has a table of interfaces associated with each tagged type containing the
tag of all the implemented interfaces plus its corresponding offset-to-top value in
the object layout. Figure 2 completes the run-time data structure described in
the previous section with the Type Specific Data record which stores this table
of interfaces.

In order to understand the actions required to perform interface conversions,
let us recall briefly the use of this run-time structure for interface calls. At the
point of call to a subprogram whose controlling argument is a class-wide inter-
face, the compiler generates code that displaces the pointer to the object by m
bytes, in order to reference the tag of the secondary dispatch table correspond-
ing to the controlling interface. This adjusted address is passed as the pointer
to the actual object in the call. Within the body of the called subprogram, the
dispatching call to P is handled as if it were a normal dispatching call. For ex-
ample, because P is the first primitive operation of the interface I1, the compiler
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Fig. 2. Object Layout

generates code that issues a call to the subprogram identified by the first entry
of the primary dispatch table associated with the actual parameter. Because the
actual parameter is a displaced pointer that points to the I1’Tag component
of the object, we are really issuing a call through the secondary dispatch table
of the object associated with the interface I1. In addition, rather than a direct
pointer to subprogram Q, the compiler also generates code that fills this entry
of the secondary dispatch table with the address of a thunk that 1) subtracts the
m bytes displacement corresponding to I1 in order to adjust the address so that
it refers to the real base of the object, and 2) does a direct jump to the body of
subprogram Q.

Now let us see the work performed by the GNAT run-time to support in-
terface conversion. Let us assume that we are again executing the body of the
subprogram with the class-wide formal, and hence that the actual parameter is
a displaced pointer that points to the I1’Tag component of the object. In order
to get access to the table of interfaces the first step is to read the value of the
offset-to-top field available in the header of the dispatch table (see 1 in the fig-
ure). This value is used to displace upwards the actual parameter by m bytes to
designate the base of the object (see 2). From here we can get access to the table
of interfaces and retrieve the tag of the target interface (see 3). If found we per-
form a second displacement of the actual by using the offset value stored in the
table of interfaces (in our example n bytes) to displace the pointer downwards
from the root of the object to the component that has the I2’Tag of the object
(see 4). If the tag of the target interface is not found in the table of interfaces the
run-time raises Constraint Error. As a result, an interface conversion incurs a
run-time cost proportional to the number of interfaces implemented by the type.
An extensive examination of the Java libraries indicates that in the great major-
ity of cases there are no more than 4 progenitors for any given class. Thus this
overhead is certainly acceptable. More sophisticated structures could be used to



speed up the search for the desired interface, but we defer such optimizations
until actual performance results indicate that they are needed.

5 Discriminant Complications

The use of abstract interface types in variable sized tagged objects requires
some special treatment. Complications arise when a tagged type has a parent
that includes some component whose size is determined by a discriminant. For
example:

type Root (D : Positive) is tagged record
Name : String (1 .. D);

end record;

type DT is new Root and I1 and I2 with ...
Obj : DT (N); -- N is not necessarily static

In this example it is clear that the final position of the components contain-
ing the tags associated with the secondary dispatch tables of the progenitors
depends on the actual value of the discriminant at the point the object Obj is
elaborated. Therefore the offset-to-top values can not be placed in the header of
the secondary dispatch tables, nor in the table of interfaces itself. However as
we described in the previous section the offset-to-top values are required for in-
terface conversions. The C++ ABI does not address this problem for the simple
reason that C++ classes do not have non-static components.

At this point it is clear that we must provide a way to 1) displace the pointer
up to the base of the object, and 2) displace the pointer down to reference the
tag component associated with the target interface. Two main alternatives were
considered to solve this problem (obviously the naive approach of generating
a separate dispatch table for each object was declared unacceptable at once).
Whatever alternative was chosen, it should not affect the data layout when dis-
criminants are not present, so as to maintain C++ compatibility for the normal
case. The two plausible alternatives are:

1. To place the interface tag components at negative (and static) offsets from
the object pointer (cf. Figure 3). Although this solution solves the problem,
it was rejected because the value of the Address attribute for variable size
tagged objects would not be conformant with the Ada Reference Manual,
which explicitly states that “X’Address denotes the address of the first of the
storage elements allocated for X” [5, Annex K]. In addition, programmers
generally assume that the allocation of an object can be accurately described
using ’Address and ’Size and therefore they generally expect to be able to
place the object at the start of a particular region of memory by using an
offset of zero from that starting address.
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Fig. 3. Approach I: Interface tags located at negative offsets

2. The second option is to store the offset-to-top values immediately follow-
ing each of the interface tags of the object (that is, adjacent to each of the
object’s secondary dispatch table pointers). In this way, this offset can be
retrieved when we need to adjust a pointer to the base of the object. There
are two basic cases where this value needs to be obtained: 1) The thunks
associated with a secondary dispatch table for such a type must fetch this
offset value and adjust the pointer to the object appropriately before dis-
patching a call; 2) Class-wide interface type conversions need to adjust the
value of the pointer to reference the secondary dispatch table associated with
the target type. In this second case this field allows us to solve the first part
of the problem, but we still need this value in the table of interfaces to be
able to displace down the pointer to reference the field associated with the
target interface. For this purpose the compiler must generate object specific
functions which read the value of the offset-to-top hidden field. Pointers to
these functions are themselves stored in the table of interfaces.

The latter approach has been selected for the GNAT compiler. Figure 4 shows
the data layout of our example following this approach. Note: The value -1 in
the Offset To Top of the secondary dispatch tables indicates that this field does
not have a valid offset-to-top value.

6 Collaborating with C++

The C++ equivalent of an Ada 2005 abstract interface is a class with pure
virtual functions and no data members. For example, the following declarations
are conceptually equivalent:
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class I1 { type I1 is interface;
public: virtual void p () = 0; procedure P (X : I1) is abstract;
}

class I2 { type I2 is interface;
public: virtual void q () = 0; procedure Q (X : I2) is abstract;

virtual int r () = 0; function R (X : I2) return Integer
} is abstract;

Let us see the correspondence between classes derived from these declarations
in the two languages:

class Root { type Root is tagged record with
public: R_Value : Integer;

int r_value; end record;
virtual void Root_Op (); procedure Root_Op (X : Root);

};

class A : Root, I1, I2 { type A is new Root and I1 and I2 with
public A_Value: Float;

float a_value; end record;

virtual void p (); procedure P (X : A);
virtual void q (); procedure Q (X : A);
virtual int r (); function R (X : A) return Integer;
virtual float s (); function S (X : A) return Float;

};

Because of the chosen compatibility between GNAT run-time structures and
the C++ ABI, interfacing with these C++ classes is easy. The only require-



ment is that all the primitives and components must be declared exactly in the
same order in the two languages. The code makes use of several GNAT-specific
pragmas, introduced early in our Ada 95 implementation for the more modest
goal of using single inheritance hierarchies across languages. These pragmas are
CPP Class, CPP Virtual, CPP Import, and CPP Constructor.

First we must indicate to the GNAT compiler. by means of the pragma CPP -
Class, that some tagged types have been defined in the C++ side; this is required
because the dispatch table associated with these tagged types will be built on
the C++ side and therefore it will not have the Ada predefined primitives. (The
GNAT compiler then generates the elaboration code for the portion of the table
that holds the predefined primitives: Size, Alignment, stream operations, etc).
Next, for each user-defined primitive operation we must indicate by means of
pragma CPP Virtual that their body is on the C++ side, and by means of
pragma CPP Import their corresponding C++ external name. The complete
code for the previous example is as follows:

package My_Cpp_Interface is
type I1 is interface;
procedure P (X : I1) is abstract;

type I2 is interface;
procedure Q (X : I1) is abstract;
function R (X : I2) return Integer is abstract;

type Root is tagged record with
R_Value : Integer;

end record;
pragma CPP_Class (Root);

procedure Root_Op (Obj : Root);
pragma CPP_Virtual (Root_Op);
pragma Import (CPP, Root_Op, "_ZN4Root7Root_OpEv");

type A is new Root and I1 and I2 with record
A_Value : Float;

end record;
pragma CPP_Class (A);

procedure P (Obj : A);
pragma CPP_Virtual (P);
pragma Import (CPP, P, "_ZN1A4PEv");

procedure Q (Obj : A);
pragma CPP_Virtual (Q);
pragma Import (CPP, Q, "_ZN1A4QEv");

function R (Obj : A) return Integer;
pragma CPP_Virtual (R);



pragma Import (CPP, R, "_ZN1A4REv");

function S (Obj : A) return Float;
pragma CPP_Virtual (S);
pragma Import (CPP, S, "_ZN1A7SEi");

function Constructor return A’Class;
pragma CPP_Constructor (Constructor);
pragma Import (CPP, Constructor, "_ZN1AC2Ev");

end My_Cpp_Interface;

With the above package we can now declare objects of type A and dispatch
calls to the corresponding subprograms in the C++ side. We can also extend
A with further fields and primitives, and override on the Ada side some of the
C++ primitives of A.

It is important to note that we do not need to add any further information to
indicate either the object layout, or the dispatch table entry associated with each
dispatching operation. For completeness we have also indicated to the compiler
that the default constructor of the object is also defined in the C++ side.

In order to further simplify interfacing with C++ we are currently working
on a utility for GNAT that automatically generates the proper mangled name
for the operations, as generated by the G++ compiler. This would make the
pragma Import redundant.

7 Conclusion

We have described part of the work done by the GNAT Development Team to
implement Ada 2005 interface types in a way that is fully compatible with the
C++ Application Binary Interface (ABI). We have explained our implementa-
tion of abstract interface type conversions, including the special support required
for variable sized tagged objects. We have also given an example that shows the
power of the combined use of the GNAT and G++ compilers for mixed-language
object-oriented programming.

The implementation described above is available to users of GNAT PRO,
under a switch that controls the acceptability of language extensions (note that
these extensions are not part of the current definition of the language, and can
not be used by programs that intend to be strictly Ada95-conformant). This
implementation is also available in the GNAT compiler that is distributed under
the GNAT Academic Program (GAP) [15].

We hope that the early availability of the Ada 2005 features to the academic
community will stimulate experimentation with the new language, and spread
the use of Ada as a teaching and research vehicle. We encourage users to report
their experiences with this early implementation of the new language, in advance
of its much-anticipated official standard.
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