
A Comparison of the

Asynchronous Transfer of Control Features in

Ada and the Real-Time Specification for JavaTM

Benjamin M. Brosgol
Ada Core Technologies

79 Tobey Road, Belmont MA 02478, USA
brosgol@gnat.com

Andy Wellings
Dept. of Computer Science, University of York

Heslington, York YO10 5DD, UK
andy@cs.york.ac.uk

11 February 2003

Abstract

Asynchronous Transfer of Control (“ATC”) is a transfer of control within a thread,1 triggered
not by the thread itself but rather from some external source such as another thread or an interrupt
handler. ATC is useful for several purposes; e.g. expressing common idioms such as timeouts
and thread termination, and reducing the latency for responses to events. However, ATC presents
significant issues semantically, methodologically, and implementationally. This paper describes the
approaches to ATC taken by Ada [1] and the Real-Time Specification for Java [2, 3], and compares
them with respect to safety, programming style / expressive power, and implementability / latency
/ efficiency.

Overview

Section 1 introduces the basic terminology and sets the framework for the discussion of ATC. Section 2
presents the fundamental issues surrounding ATC and briefly summarizes the Ada and Real-Time Specifi-
cation for Java (“RTSJ”) approaches. Section 3 describes and analyzes Ada’s approach to ATC. Section 4
summarizes and critiques the ATC facilities in regular Java. Section 5 gives a general overview of the
RTSJ, and Section 6 then describes and analyzes the RTSJ’s approach to ATC. Section 7 contrasts the
Ada and RTSJ approaches. Section 8 summarizes this paper’s findings. Appendix A presents a complete
ATC example with sample Ada and RTSJ solutions and compares the two versions.

This paper is an extended version of [4].

1 Preliminaries

Communication between threads may be either synchronous or asynchronous. In the synchronous case,
the receiving thread waits for a communication request from a sender. Examples of synchronous com-
munication are the Ada rendezvous, the Java wait / notify mechanism, and the setting and polling of
shared data. In the asynchronous case, the receiving thread is informed “immediately” of the sending
thread’s request to communicate; the receiver does not need to be waiting for the request. There are

1We use the term “thread” generically to refer to a concurrent activity within a program. When discussing a particular
language’s mechanism we use that language’s terminology (e.g., “task” in Ada).

1

two models for such asynchronous communication: one is based on resumption, and the other on ter-
mination. The models are not mutually exclusive; a multithreading language or operating system may
support either or both.

With the resumption model, a communication request results in interruption of the receiver’s thread
of control, and execution of a “handler” that is supplied as part of the receiver’s logic. The handler runs
on the receiver’s stack and consumes the receiver’s execution time budget. When the handler finishes,
the receiver continues executing from the point where it was interrupted.

Most operating systems provide this kind of facility through signals and signal handling, if not at the
thread level then at the process level. For example, in POSIX [5] a signal sig is sent to a particular
pthread pt if the system can determine that pt is the pthread that generated sig, but sig is sent to the
process as a whole if the generating pthread cannot be identified.

With the termination model the receiver’s thread of control is similarly interrupted, and a handler is
executed. However, control does not resume at the point of interruption. Instead, execution of the context
in which the receiver was executing is abandoned (either immediately or upon exit from a region where
such interruption is deferred), a handler (if one exists) associated with that context is invoked, finalization
code (if any) is executed, and the context is exited. In this paper, the term Asynchronous Transfer of
Control (or simply ATC) is used to denote asynchronous communication via such a termination model.

Direct operating system support for ATC is generally fairly limited, typically comprising mechanisms
for thread termination versus more fine-grained control. For example, POSIX supports a pthread cancel-
lation facility through which a pthread is allow to push and pop “cleanup” handlers as it enters and leaves
execution contexts. When a pthread is canceled, its contexts are popped and the associated handlers are
executed. When all handlers have run, the pthread terminates. POSIX also allows the pthread to defer
cancellation during sensitive code.

Ada and the Real-Time Specification for Java support both the resumption and termination models
for asynchronous communication. This paper will focus on the latter.

2 Summary of Issues and Approaches

ATC is a rather controversial feature. It is methodologically suspect, since writing correct code is difficult
if control transfers can occur at unpredictable points. As an example, if a thread has acquired a shared
resource such as a mutex lock and then incurs an ATC before releasing the resource, the result may be
deadlock or “resource leakage”. Moreover, ATC is complicated to specify and to implement, and in the
absence of optimizations it may incur a performance penalty even for programs that don’t use it.

Despite these difficulties, there are several situations that are common in real-time applications where
ATC offers a solution:

Timing out on a computation. A typical example is a function that performs an iterative calculation
where an intermediate approximation after a given amount of time is required.

Terminating a thread. An example is a fault-tolerant application where because of a hardware fault
or other error a thread might not be able to complete its assigned work. In some situations the
termination must be “immediate”; in other cases it should be deferred until after the doomed
thread has had the opportunity to execute some “last wishes” code.

Terminating one iteration of a loop. The ability to abort one iteration but continue with the next is
useful in an interactive command processor that reads and executes commands sequentially, where
the user can abort the current command.

It is possible, and generally preferable stylistically, to program such applications via “polling” (the
thread can check synchronously for “requests” to perform the given action, and take the appropriate
action). However such a solution may introduce unwanted latency and/or unpredictability of response
time, a problem that is exacerbated if the thread can block.

The basic problem, then, is how to resolve the essential conflict between the desire to perform ATC
“immediately” and the need to ensure that certain sections of code are executed to completion2 and that
relevant finalization is performed.

2Note that “executed to completion” does not imply non-preemptability.

2

In brief, ATC in Ada is based on the concept of aborting either a task (via an explicit abort statement)
or a syntactically-distinguished sequence of statements (as the result of the completion of a triggering
action, such as a timeout, in an asynchronous select statement). The fundamental principle is that ATC
should be safe: it is postponed while control is in an abort-deferred operation (e.g., a rendezvous), and
when it takes place any needed finalizations are performed. ATC does not entail raising or handling
exceptions.

In contrast, the Real-Time Specification for Java captures ATC via asynchronous exceptions, which
are instances of the AsynchronouslyInterruptedException (abbreviated “AIE”) class. An ATC request
is posted to a target thread by a method call rather than a specialized statement, making an AIE instance
pending on the thread. In the interest of safety, several contexts are ATC-deferred : synchronized code,
and methods and constructors lacking a throws AIE clause. An asynchronous exception is only thrown
when the target thread is executing code that is not ATC-deferred, and special rules dictate how it is
propagated / handled. Finalization can be arranged via appropriately placed explicit finally clauses.3

The ATC mechanism can be used for thread termination, timeout, and other purposes.
The remainder of this paper will elaborate on these points. The focus will be on uniprocessor systems;

multiprocessors present some issues that are beyond the scope of this paper (and in any event the RTSJ
does not explicitly address multiprocessor environments).

3 ATC in Ada

This section summarizes, illustrates, and critiques Ada’s4 ATC features.

3.1 Semantics

One of Ada’s ATC constructs is the abort statement, which is intended to trigger the termination
of one or more target tasks. However, termination will not necessarily be immediate, and in some
situations (although admittedly anomalous in a real-time program) it will not occur at all. An aborted
task becomes “abnormal” but continues execution as long as it is in an abort-deferred operation (e.g.,
a protected action). When control is outside such a region the aborted task becomes “completed”. Its
local controlled objects are finalized, and its dependent tasks are aborted. The task terminates after all
its dependent tasks have terminated. (This description was necessarily a simplification; full semantics
are in [1], Sections 9.8 and D.6).

Ada’s second ATC feature — the asynchronous select statement — offers finer-grained ATC. This
syntactic construct consists of two branches:

• A triggering alternative, comprising a sequence of statements headed by a triggering statement that
can be either a delay statement (for a timeout) or an entry call;

• The abortable part, which is the sequence of statements subject to ATC.

Conceptually, the abortable part is like a task that is aborted if/when the triggering statement com-
pletes.5 In such an event, control passes to the statement following the triggering statement. Otherwise
(i.e., if the abortable part completes first) the triggering statement is canceled and control resumes at
the point following the asynchronous select statement.

The following example illustrates a typical use for an asynchronous select statement. The context is
a Sensor task that updates Position values at intervals no shorter than 1 second. It times out after
10 seconds and then displays a termination message. Position is a protected object declared elsewhere,
with an Update procedure that modifies its value.

3Java also supplies finalization semantics via the finalize() method from class Object, but when (if ever) finalize

is invoked depends on the implementation’s Garbage Collection strategy. It is thus inadvisable to rely on the finalize

method to perform needed finalizations.
4It is assumed that the implementation complies with the Real-Time Systems Annex.
5It is thus subject to the rules for abort-deferred operations, and finalization of controlled objects.

3

task body Sensor is
Time_Out : constant Duration := 10.0;
Sleep_Interval : constant Duration := 1.0;

begin
select

delay Time_Out;
Put_Line("Sensor terminating");

then abort
loop
Position.Update;
delay Sleep_Interval;

end loop;
end select;

end Sensor;

The asynchronous select statement deals with nested ATCs correctly. For example, if the delay for an
outer triggering statement expires while an inner delay is pending, the inner delay will be canceled and
an ATC will be promulgated out of the inner abortable part (subject to the semantics for abort-deferred
operations) and then out of the outer abortable part.

The Ada ATC facility does not rely on asynchronous exceptions. It thereby avoids several difficult
semantic issues; these will be described below in Section 6.1, in conjunction with the RTSJ’s approach
to ATC.

3.2 Safety

The Ada rules for abort-deferred operations give precedence to safety over immediacy: e.g., execution
of Update in the Sensor task will be completed even if the timeout occurs while the call is in progress.
Abort-deferred regions include other constructs (e.g. finalization) that logically must be executed to
completion. However, the possibility for ATC must be taken into account by the programmer in order to
ensure that the program performs correctly. For example, the idiom of locking a semaphore, performing
a “block assignment” of a large data structure, and then unlocking the semaphore, is susceptible to data
structure corruption and/or deadlock if an ATC occurs while the assignment is in progress.

Ada’s two ATC features take different approaches to the issue of whether the permission for ATC is
implicit or explicit. Any task is susceptible to being aborted; thus the programmer needs to program
specially so that regions that logically should be executed to completion are coded as abort-deferred
constructs. In any event the abort statement is intended for specialized circumstances: to initiate the
termination of either the entire partition or a collection of tasks that are no longer needed (e.g., in a
“mode change”).

The asynchronous select statement takes the opposite approach. The abortable part of such a state-
ment is syntactically distinguished, making clear the scope of the effect of the triggering condition.
However, since subprograms called from the abortable part are subject to being aborted, the author of
the asynchronous select construct needs to understand and anticipate such effects.

Some Ada implementations provide facilities for specifying local code regions that are abort deferred
(e.g., pragma Abort_Defer in GNAT).

3.3 Style and Expressiveness

The Ada ATC mechanisms are concise and syntactically distinguished, making their effects clear and
readable. For example, the timeout of the Sensor thread is captured succinctly in the asynchronous
select statement.

While a task is performing an abort-deferred operation, an attempt to execute an asynchronous select
statement is a bounded error. Thus a programmer implementing an abort-deferred operation needs to
know the implementation of any subprograms that the operation calls.

Ada does not have a construct that immediately/unconditionally terminates a task. This omission is
a good thing. Such a feature would have obvious reliability problems; e.g., if it were to take place during
a protected operation, shared data might be left in an inconsistent state.

Several gaps in functionality should be noted:

4

Triggering “accept” statement. Ada allows an entry call but not an accept statement as a trigger-
ing statement. This restriction can lead to some stylistic clumsiness and the need for additional
intermediate tasks.

Cleaner finalization syntax. Capturing finalization by declaring a controlled type and overriding
Finalize can be somewhat awkward. An explicit control structure (e.g. something like Java’s
finally clause) would be cleaner.

Awakening a blocked task. There is no way for one task to awaken a second, blocked task, except
by aborting it. Such a capability would sometimes be useful.

3.4 Implementability, Latency, and Efficiency

There are two basic approaches to implementing the asynchronous select statement, referred to as the
“one thread” and “two thread” models [6, 7, 8]. In the one-thread model, the task does not block after
executing the triggering statement but instead proceeds to execute the abortable part. The task is thus
in a somewhat schizophrenic state of being queued on an entry or a timeout while still running. If the
triggering statement occurs, the task is interrupted; it performs the necessary finalizations and then
resumes in the triggering alternative. These effects can be implemented via the equivalent of a signal
and setjmp/longjmp.

With the two-thread model, the task executing the asynchronous select is blocked at the triggering
statement (as suggested by the syntax), and a subsidiary task is created to execute the abortable part.
If the triggering condition occurs, the effect is equivalent to aborting the subsidiary task. Conceptually,
this model seems cleaner than the one-thread approach. However, adding implicit threads of control
is not necessarily desirable; e.g., data declared in the outer task and referenced in the abortable part
would need to be specified as Volatile or Atomic to prevent unwanted caching. Moreover, aborting the
subsidiary thread is complicated, due to the required semantics for execution of finalizations [7, 8].

As a result of these considerations, current Ada implementations generally use the one-thread model.
In addition to the basic question of how to implement the ATC semantics there are issues of run-time

responsiveness (i.e., low latency) and efficiency. As noted above, the effect of ATC is sometimes deferred,
in the interest of safety. If the abortable part declares any controlled objects or local tasks, or executes
a rendezvous, then this will introduce a corresponding latency. The amount incurred is thus a function
of programming style.

The efficiency question is somewhat different. Unlike its “pay as you go” effect on latency, ATC
imposes a “distributed overhead”; i.e., there is a cost even if ATC isn’t used. As an example, the epilog
code for rendezvous and protected operations needs to check is there is a pending ATC request (either an
abort or the completion of a triggering statement). Somewhat anticipating this issue, the Ada language
allows the user to specify restrictions on feature usage, thus allowing/directing the implementation to
use a more specialized and more efficient version of the run-time library, omitting support for unused
features.

4 ATC in Java

This section briefly summarizes and critiques the ATC capabilities provided in Java [9] itself;6 Java’s
asynchrony facilities inspired the RTSJ in either what to do or what not to do.

Java’s support for asynchronous communication is embodied in three methods from the Thread
class: interrupt, stop, and destroy. It also has a limited form of timeout via overloaded versions of
Object.wait.

When t.interrupt() is invoked on a target thread7 t, the effect depends on whether t is blocked
(at a call for wait, sleep, or join). If so, an ATC takes place: an InterruptedException is thrown,
awakening t. Otherwise, t’s “interrupted” state is set; it is reset either when t next calls the interrupted
method or when it reaches a call on wait, sleep, or join. In the latter cases an InterruptedException
is thrown.

6This description is based on [10].
7In this section “thread” means an instance of java.lang.Thread.

5

Despite the ATC aspects of interrupt, it is basically used in polling approaches: each time through
a loop, a thread can invoke interrupted to see if interrupt has been called on it, and take appropriate
action if so.

When t.stop() is invoked on a target thread t, a ThreadDeath exception is thrown in t wherever
it was executing, and normal exception propagation semantics apply. This method was designed to
terminate t while allowing it to do cleanup (via finally clauses as the exception propagates). However,
there are several major problems:

• If t.stop() is called while t is executing synchronized code, the synchronized object will be left
in an inconsistent state.

• A “catch-all” handler (e.g. for Exception or Throwable) in a try statement along the propagation
path will catch the ThreadDeath exception, preventing t from being terminated.

As a result of such problems, the Thread.stop() method has been deprecated.
When t.destroy() is invoked, t is terminated immediately, with no cleanup. However, if t is

executing synchronized code, the lock on the synchronized object will never be released. For this reason,
even though destroy has not been officially deprecated, its susceptibility to deadlock makes it a dangerous
feature. In any event, destroy has not been implemented in any JVM released by Sun.

Java’s timeout support is limited to several overloaded versions of class Object’s wait method.
However, there is no way to know (after awakening) which condition occurred: the timeout, or an object
notification. Indeed, there are race conditions in which both may have happened; an object notification
may occur after the timeout but before the thread is scheduled.

5 An Overview of the Real-Time Specification for Java

ATC is one of several facilities provided by the RTSJ. To establish a perspective, this section summarizes
the problems that the RTSJ sought to address, and the main aspects of its solution.

The Real-Time Specification for Java is a class library (the package javax.realtime) that supple-
ments the Java platform to satisfy real-time requirements. It was designed to particularly address the
following shortcomings in regular Java:

Incompletely specified thread model. Java places only loose requirements on the scheduler.8 There
is no guarantee that priority is used to dictate which thread is chosen on release of a lock or on
notification of an object. Priority inversions may occur; moreover, the priority range is too narrow.

Garbage Collector interference. Program predictability is compromised by the latency induced by
the Garbage Collector.

Lack of low-level facilities. Java (although for good reasons) prevents the program from doing low-
level operations such as accessing physical addresses on the machine.

Asynchrony shortcomings. As mentioned above, Java’s features for asynchronous thread termination
are flawed, and it lacks a general mechanism for timeouts and other asynchronous communication.

The RTSJ provides a flexible scheduling framework based on the Schedulable interface and the
Thread subclass RealtimeThread that implements this interface. The latter class overrides various
methods with versions that add real-time functionality, and supplies new methods for operations such
as periodic scheduling. The Schedulable interface is introduced because certain schedulable entities (in
particular, handlers for asynchronous events) might not be implemented as threads.

The RTSJ mandates a default POSIX-compliant preemptive priority-based scheduler that supports
at least 28 priority levels, and that enforces Priority Inheritance as the way to manage priority inversions.
The implementation can provide other schedulers (e.g., Earliest Deadline First) and priority inversion
control policies (e.g., Priority Ceiling Emulation).

8This lack of precision may seem strange in light of Java’s well-publicized claim to portability (“Write Once, Run
Anywhere”). However, in the threads area there is considerable variation in the support provided by the operating systems
underlying the JVM implementations. If the semantics for priorities, etc., were tighter, that would make Java difficult or
inefficient to implement on certain platforms.

6

To deal with Garbage Collection issues, the RTSJ provides various memory areas that are not subject
to Garbage Collection: “immortal memory”, which persists for the duration of the application; and
“scoped memory”, which is a generalization of the run-time stack. Restrictions on assignment prevent
dangling references. The RTSJ also provides a NoHeapRealtimeThread class; instances never reference
the heap, may preempt the Garbage Collector at any time (even when the heap is in an inconsistent
state), and thus do not incur GC latency.

The RTSJ provides several classes that allow low-level programming. “Peek and poke” facilities for
integral and floating-point data are available for “raw memory”, and “physical memory” may be defined
with particular characteristics (such as flash memory) and used for general object allocation.

Java’s asynchrony issues are addressed through two main features. First, the RTSJ allows the defini-
tion of asynchronous events and asynchronous event handlers – these are basically a high-level mechanism
for handling hardware interrupts or software “signals”. Secondly, the RTSJ extends the effect of Thread.-
interrupt to apply not only to blocked threads, but also to real-time threads9 and asynchronous event
handlers whether blocked or not. How this is achieved, and how it meets various software engineering
criteria, will be the subject of the next section.

6 ATC in the Real-Time Specification for Java

This section describes, illustrates and critiques the RTSJ’s ATC facilities.

6.1 Semantics

ATC in the RTSJ is defined by the effects of an asynchronous exception that is thrown in a thread10 t
as the result of invoking t.interrupt. However, asynchronous exceptions raise a number of issues that
need to be resolved:

Inconsistent state. If the exception is thrown while the thread is synchronized on an object – or more
generally, while the thread is in a code section that needs to be executed to completion – then the
object (or some global state) will be left inconsistent when the exception is propagated.

Unintended non-termination. If the purpose of the ATC request is to terminate t, but the resulting
exception is thrown while t is in a try block that has an associated catch clause for, say, Exception
or Throwable, then the exception will be caught; t will not be terminated.

Unintended termination. If the purpose of the ATC request is, say, to make t timeout on a compu-
tation, but the exception is thrown either before t has entered a try statement with an associated
handler, or after it has exited from such a construct, then the exception will not be handled. It
will propagate out, and eventually cause t to terminate.

Nested ATCs / competing exceptions. A thread may receive an ATC request while another ATC
is in progress. This raises the issue of propagating multiple exceptions or choosing which one should
be discarded.

Indeed, these kinds of problems motivated the removal of the asynchronous ’Failure exception from
an early pre-standard version of Ada.

The RTSJ’s approach to ATC addresses all of these issues. It is based on the class Asynchronously-
InterruptedException, abbreviated “AIE”, a subclass of the checked exception class Interrupted-
Exception. An ATC request always involves, either explicitly or implicitly, a target thread t and an AIE
instance aie. For example, the method call t.interrupt() posts an ATC request to the explicit target
thread t, but the AIE instance (the system-wide “generic” AIE) is implicit.

Key to the semantics are the complementary concepts of asynchronously interruptible (or AI) and
ATC-deferred sections. The only code that is asynchronously interruptible is that contained textually
within a method or constructor that includes AIE on its throws clause, but that is not within synchronized

9A real-time thread is an instance of the RealtimeThread class.
10For ease of exposition, we refer to the target of interrupt as a “thread”, but in fact for ATC effects it must be a

real-time thread or asynchronous event handler. Regular Java threads – instances of java.lang.Thread – do not have ATC
semantics.

7

code or in inner classes, methods, or constructors. Synchronized statements and methods, and also
methods and constructors that lack a throws AIE clause, are ATC-deferred.

Posting an ATC request for AIE instance aie on thread t has the following effect:

1. aie is made pending on t.11

2. If t is executing within ATC-deferred code, t continues execution until it either invokes an AI
method, or returns to an AI context.

3. If t is executing within AI code, aie is thrown (but stays pending).

Note that if control never reaches an AI method, then aie will stay pending “forever”; it will not be
thrown.

If/when control does reach an AI method, then aie is thrown. However, the rules for handling
AIE are different from other exceptions; this exception class is never handled by catch clauses in AI
code. Instead, control transfers immediately – without executing finally clauses in AI code as the
exception is propagated – to the catch clause for AIE (or any of its ancestor classes) of the nearest
dynamically enclosing try statement that is an an ATC-deferred section. Unless the handling code
resets the “pending” status, the AIE stays pending.

These rules address two of the previously-noted issues with asynchronous exceptions (and thus avoid
the problems with Thread.stop):

• Since AI code needs to be explicitly marked with a throws AIE clause, and synchronized code is
ATC-deferred, the RTSJ prevents inconsistent state (or at least forces the programmer to make
explicit the possibility of inconsistent state).

• Since handling the AIE does not automatically reset the “pending” status, the RTSJ rules prevent
unintended non-termination.

Since the RTSJ provides no mechanism for immediately terminating a thread, it avoids the difficulties
inherent in Thread.destroy.

Here is an example of typical RTSJ style for thread termination:

class Victim extends RealtimeThread{
private void interruptibleRun()
throws AsynchronouslyInterruptedException{
... // Code that is asynchronously interruptible

}

public void run(){
try{

this.interruptibleRun();
}
catch (AsynchronouslyInterruptedException aie){
System.out.println("terminating");
}

}
}

To create, start, and eventually terminate a Victim thread:

Victim v = new Victim();
v.start();
...
v.interrupt();

The immediacy of the effect of v.interrupt() depends on where t is executing when the ATC is
posted. There are several possibilities:

11A special case, when there is already an AIE pending on t, is treated below.

8

• Before reaching the invocation of interruptibleRun. The generic AIE remains pending until
interruptibleRun is invoked, and it is thrown then (without entering the called method) since
interruptibleRun is AI. The catch clause in run handles the exception and displays the "term-
inating" message. The catch clause does not reset the AIE’s pending status, so the AIE stays
pending12 when run returns.

• During execution of interruptibleRun. The generic AIE is thrown either immediately (if control
is not in an ATC-deferred section, such as a synchronized statement within the method’s body)
or else as soon as control is in AI code.

• After returning from interruptibleRun. The generic AIE stays pending on t, and the run method
returns without the AIE having been thrown.

The declaration of an AIE-throwing method that is invoked from run is essential to allow the thread
to be terminated from outside. If we simply declared a run method – note that Java semantics prohibit
the inclusion of a throws clause for a checked exception class such as AIE – then invoking t.interrupt()
would leave the generic AIE pending; the exception would never be thrown.

In order to address the problem of unintended termination – i.e., throwing an AIE outside the target
thread’s try statement that supplies a handler – the AIE class declares the doInterruptible and fire
instance methods. The invocation aie.doInterruptible(obj) in a thread t takes an instance obj of a
class that implements the Interruptible interface. This interface declares (and thus obj implements)
the run and interruptAction methods. The run method (which should have a throws AIE clause) is
invoked synchronously from doInterruptible. If aie.fire() is invoked – presumably from another
thread that holds the aie reference – then an ATC request for aie is posted to t. The implementation
logic in doInterruptible supplies a handler that invokes obj.interruptAction and resets aie’s pending
state. If aie.fire() is invoked when control is not within aie.doInterruptible then the ATC request
is discarded – thus t will only receive the exception when it is executing in a scope that can explicitly
handle it (through user-supplied code).

A timeout is achieved by combining an asynchronous event handler, a timer, and an AIE. Since the de-
tails can be tedious, the RTSJ supplies the Timed subclass of AIE; a constructor takes a HighResolution-
Time value. The application can then perform a timeout by invoking timed.doInterruptible(obj)
where timed is an instance of Timed, and obj is an Interruptible. Here is an example, with the same
effect as the Ada version in Section 3.1. It assumes that a Position object (passed in a constructor) is
updated via the synchronized method update. Instead of declaring an explicit class that implements the
Interruptible interface, it uses an anonymous inner class.

class Sensor extends RealtimeThread{
final Position pos;
final long sleepInterval = 1000;
final long timeout = 10000;

Reporter(Position pos){ this.pos = pos; }

public void run(){
new Timed(new RelativeTime(timeout, 0)).

doInterruptible(
new Interruptible(){
public void run(AsynchronouslyInterruptedException e)

throws AsynchronouslyInterruptedException{
while (true){
pos.update(); // synchronized method
try {
sleep(sleepInterval);

}
catch(InterruptedException ie) {}

12This doesn’t matter here; in other contexts it may be important to make the AIE non-pending, and the AIE class
supplies a method that has this effect.

9

}
}
public void interruptAction(

AsynchronouslyInterruptedException e){
System.out.println("Sensor instance terminating");

}
});

}
}

If the timeout occurs while the Interruptible’s run() method is in progress, execution of this
method is abandoned (but deferred if execution is in synchronized code) and interruptAction is invoked,
here simply displaying a termination message.

Nested ATCs raise the issue of multiple ATC requests in progress simultaneously. The RTSJ addresses
this problem by permitting a thread to contain at most one pending AIE, and by defining an ordering
relation between AIE instances. The rules give a “precedence” to an AIE based on the dynamic level of its
“owning” scope, where ownership is established through an invocation of doInterruptible. Shallower
scopes have precedence over deeper ones, and the generic AIE has the highest precedence. Thus a pending
AIE is replaced by a new one only if the latter is “aimed” at a shallower scope.

6.2 Safety

Like Ada, the RTSJ opts for safety over immediacy and thus defers ATC in synchronized code (the
Java analog to Ada’s protected operations and rendezvous). However, ATC is not deferred in finally
clauses,13 thus leading to potential problems where essential finalization is either not performed at all or
else only done partially.

Since the RTSJ controls asynchronous interruptibility on a method-by-method basis (i.e., via the
presence or absence of a throws AIE clause), legacy code that was not written to be asynchronously
interruptible will continue to execute safely even if called from an asynchronously-interruptible method.

6.3 Style and Expressiveness

A major issue with the RTSJ is the rather complex style that is needed to obtain ATC. Some examples:

• Aborting a thread requires splitting off an AIE-throwing method that is invoked from run (inter-
ruptibleRun in the Victim example above).

• Achieving timeout is somewhat obscure, typically involving advanced features such as anonymous
inner classes or their equivalent.

• Programming errors that are easy to make – e.g., omitting the throws AIE clause from the run
method of the anonymous Interruptible object – will thwart the ATC intent. This error would
not be caught be the compiler.

• If the run method for an Interruptible invokes sleep, then the method has to handle Interrupted-
Exception even though the RTSJ semantics dictate that such a handler will never be executed.

These stylistic problems are due somewhat to the constraint on the RTSJ to not introduce new
syntax. ATC is a control mechanism, and modeling control features with method calls tends to sacrifice
readability and program clarity.

Another issue with the RTSJ is its mix of high-level and low-level features. An advantage is generality,
but the disadvantage is that the programmer needs to adhere to a fairly constrained set of idioms in
order to avoid writing hard-to-understand code.

The rules for AIE propagation diverge from regular Java semantics; this does not help program
readability. For example, if an asynchronously interruptible method has a try statement with a finally
clause, then the finally clause is not executed if an ATC is triggered while control is in the try block.

13This is because the RTSJ was designed to affect only the implementation of the Java Virtual Machine, and not the
compiler. The syntactic distinction for the finally clause is not preserved in the class file, and there is no easy way for
the implementation to recognize that such bytecodes should be ATC-deferred.

10

For situations where t.interrupt() is invoked to cause t to terminate, the method name “interrupt”
is slightly misleading.

6.4 Implementability, Latency, and Efficiency

The conceptual basis for implementing ATC is a slot in each “thread control block” to hold an AIE, a flag
indicating whether the AIE is pending, and a flag in each stackframe indicating if the method is currently
asynchronously interruptible. Posting an AIE instance aie to a real-time thread t involves setting aie
as t’s AIE (subject to the precedence rules) and setting the pending flag to true. Entering / leaving
synchronized code affects the AI flag. The bytecodes for method call/return and exception propagation
use these data values to implement ATC semantics.

As with Ada, the latency to asynchronous interruption depends on style.
Also as with Ada, ATC incurs a cost even if not used; the implementation of various bytecodes needs

to check the ATC data structures.

7 Comparison

Table 1 summarizes how Ada and the RTSJ compare with respect to specific ATC criteria; for complete-
ness it also includes the basic Java asynchrony mechanisms. The following subsections will elaborate on
the Ada and RTSJ entries.

Table 1: Comparison of ATC Mechanisms
Ada Java RTSJ

abort asynch interrupt stop destroy AIE
select

Semantic basis Task abort Synchronous Asynch Immediate Asynch
exception exception terminate exception

Safety Good Good Good Poor Poor Good
Defer in synchronized code Yes Yes No No No Yes
Defer in finalization Yes Yes No No No No
Defer unless explicit No No No No No Yes

Style Good Good Good Poor Poor Fair
Expressiveness Good Good Fair Fair Poor Good
Implementability Good Fair Good Fair Poor Fair
Latency Fair Fair Poor Good Good Fair
Efficiency Fair Fair Good Fair Poor Fair

7.1 Semantics

Ada and the RTSJ take very different approaches to ATC. Ada defines the semantics for asynchronous
task termination (the abort statement) and then applies these semantics in another context (the asyn-
chronous select) to model ATC triggered by a timeout or the servicing of an entry call. Ada does not
define ATC in terms of exceptions. Indeed, aborting a task t does not cause an exception to be thrown in
t; even if a Finalize procedure throws an exception, this exception is not propagated ([1], ¶7.6.1(20)).

In contrast, the RTSJ’s ATC mechanism is based on asynchronous exceptions, a somewhat natural
design decision given the semantics of Java’s interrupt() facility. Thus the RTSJ has a general ATC
approach, and realizes real-time thread termination as a special case of ATC. However, a side effect is a
rather complicated set of rules, e.g., the precedence of exceptions.

7.2 Safety

Both Ada and the RTSJ recognize the need to define regions of code where ATC is inhibited, in particular
in code that is executed under a “lock”. Ada is safer in specifying additional operations (e.g. finalization
of controlled objects) as abort-deferred; in the RTSJ finally clauses are asynchronously interruptible.

11

The RTSJ, however, offers finer granularity of control than Ada; asynchronous interruptibility can be
specified on a method-by-method basis, and the default is “noninterruptible”. It thus avoids the problem
of aborting code that might not have been written to be abortable.

7.3 Style and Expressiveness

Ada and the RTSJ are roughly comparable in their expressive power but they differ significantly with
respect to their programming styles. Ada provides distinguished syntax – the abort and asynchronous
select statements – whose effects are clear. The RTSJ realizes ATC via method calls, which sacrifices
readability, as is evidenced by comparing the two versions of the Sensor timeout example. There are
also a number of non-intuitive points of style that programmers will need to remember.

On the other hand, Java’s interrupt() mechanism allows the programmer to awaken a blocked
thread by throwing an exception; Ada lacks a comparable feature. Moreover, the RTSJ is somewhat
more regular than Ada with respect to feature composition. ATC-deferred code can call an AI method,
and an ATC can thus be triggered in the called method. In Ada it is a bounded error if a subprogram
invoked by an abort-deferred operation attempts an asynchronous select statement.

7.4 Implementability, Latency and Efficiency

ATC in both Ada and the RTSJ requires non-trivial implementation support; these features are compli-
cated semantically (in the details if not the main concepts) and are among the most difficult to implement
and to test.

ATC latency is roughly equivalent in Ada and the RTSJ, and is a function of programming style.
Heavy use of abort/ATC-deferred constructs will induce high latency, and inversely. However, since
subprograms by default are abortable in Ada, the latency from ATC in Ada is likely to be less than in
the RTSJ.

Efficiency will be a challenge for both Ada and the RTSJ; this seems intrinsic in ATC rather than a
flaw in either design. Non-optimizing implementations will likely impose an overhead even if ATC is not
used. Possible approaches include sophisticated control and data flow analysis, hardware support, and
the definition of restricted profiles.

8 Conclusions

ATC is a difficult issue in language design, and both Ada and the RTSJ have made serious attempts to
provide workable solutions. They share a common philosophy in opting for safety as the most important
objective, and thus in defining ATC to be deferred in certain regions that must be executed to completion.
They offer roughly comparable expressive power, but they differ significantly in how the mechanism is
realized and in the resulting programming style. Ada bases ATC on the concept of abortable code
regions, integrates ATC with the inter-task communication facility, and provides specific syntax for ATC
in general and for task termination in particular. The RTSJ bases ATC on an asynchronous exception
thrown as the result of invoking interrupt() on a real-time thread; termination is a special case. The
RTSJ does not introduce new syntax for ATC, so the effect must be achieved through new classes and
method calls.

Since the RTSJ is so new, there is not much experience revealing how it compares with Ada in practice.
As implementations mature, and developers gain familiarity with the concepts, it will be interesting to
see whether ATC fulfills its designers’ expectations and its users’ requirements.

A An ATC Example

This Appendix presents a complete example that illustrates thread termination and timeout, and provides
sample solutions in Ada and Java/RTSJ.

A.1 Problem Statement / Program Requirements

An application comprises a shared data object and three threads of control:

12

�
�
�
�

�
�
�
�

Main thread

�
�
�
�

�
�
�
�

Updater

�
�
�
�

�
�
�
�

Reporter

'
&

$
%Coordinates

���

��	

update
@@

@@R

fetch

@
@
@
@
@
@I

abort

r

Figure 1: ATC Example

A “coordinates” object. This object is an array of two integers. Two operations are permitted:
update, which adds 1 to each element of the array; and fetch, which returns the current value for
the array. Each operation requires mutually exclusive access to the object.14

An “updater” thread. This thread invokes the update operation on the coordinates object at intervals
no shorter than 2 seconds.15 It runs “forever”, or until its execution is aborted by some other
thread of control. In the latter case, the updater thread should display the message "Updater
terminating" before it terminates. Aborting the updater thread must not leave the coordinates
object inconsistent: i.e., if the thread is aborted while executing the update operation, then the
update must be allowed to complete.

A “reporter” thread. This thread fetches and then displays the value of the coordinates object, at
intervals no shorter than 1 second. It times out after 10 seconds, after which it displays the message
"Reporter terminating" and then terminates.

The main thread of control. This thread creates the coordinates object and activates the other two
threads, after which it suspends for 5 seconds and then aborts the execution of the updater thread.

Figure 1 indicates the relationships among these components. The straight arrows show the data
flows between the data object and the threads; update both “reads” and “writes” the data object, and
fetch only “reads” it. The jagged arrow depicts asynchronous communication between threads, here an
abort ATC request. The timeout ATC internal to the reporter thread is not shown.

A.2 Ada Version

1 with Ada.Finalization;
2 package Last_Wishes_Pkg is
3 type Last_Wishes is new Ada.Finalization.Controlled
4 with null record;
5 procedure Finalize(Item : in out Last_Wishes);
6 end Last_Wishes_Pkg;
7
14Actually the fetch operation only needs a “read” lock, but this detail is not critical to the example.
15For simplicity, we are not concerned with more precise periodicity. If we were, then both Ada and the RTSJ have

relevant features for addressing this issue.

13

8 with Ada.Text_IO; use Ada.Text_IO;
9 package body Last_Wishes_Pkg is
10 procedure Finalize(Item : in out Last_Wishes) is
11 begin
12 Put_Line("Updater terminating");
13 end Finalize;
14 end Last_Wishes_Pkg;
15
16 with Last_Wishes_Pkg, Ada.Text_IO;
17 use Last_Wishes_Pkg, Ada.Text_IO;
18 procedure Ada_ATC is
19
20 type Pair is array(1..2) of Integer;
21
22 protected Coordinates is
23 procedure Update;
24 function Fetch return Pair;
25 private
26 Data : Pair := (0, 0);
27 end Coordinates;
28
29 protected body Coordinates is
30 procedure Update is
31 begin
32 for I in Data’Range loop
33 Data(I) := Data(I) +1;
34 end loop;
35 end Update;
36
37 function Fetch return Pair is
38 begin
39 return Data;
40 end Fetch;
41 end Coordinates;
42
43 task Updater;
44
45 task body Updater is
46 Period : constant Duration := 2.0;
47 LW : Last_Wishes;
48 begin
49 loop
50 Coordinates.Update;
51 delay Period;
52 end loop;
53 end Updater;
54
55 task Reporter;
56
57 task body Reporter is
58 Time_Out : constant Duration := 10.0;
59 Period : constant Duration := 1.0;
60 Data : Pair;
61 begin
62 select
63 delay Time_Out;

14

64 Put_Line("Reporter terminating");
65 then abort
66 loop
67 Data := Coordinates.Fetch;
68 Put("(" & Integer’Image(Data(1)) & "," &
69 Integer’Image(Data(2)) & ") ");
70 delay Period;
71 end loop;
72 end select;
73 end Reporter;
74 begin
75 delay 5.0;
76 abort Updater;
77 end Ada_ATC;

The updater and reporter threads are directly modeled by tasks local to the main procedure, and the
coordinates variable is captured by a protected object.

The Updater task declares a local controlled variable LW (line 47), to arrange appropriate finalization
(here simply displaying a message) if the task is aborted.

The Reporter task implements the timeout via an asynchronous select statement (lines 62–72). There
is an implicit assumption that the Put procedure is safe to abort (or that the run-time library will defer
the timeout until a safe abort point is reached). If this assumption is not correct, the invocation of
Put needs to be placed in an abort-deferred construct. A simple way to do this (at least in the GNAT
implementation) is to enclose the call of Put within a block that has an Abort_Defer pragma:

begin
pragma Abort_Defer;
Put("(" & Integer’Image(Data(1)) & "," &

Integer’Image(Data(2)) & ") ");
end;

The program produces the following sample output (GNAT 3.15a on Windows):

(1, 1) (1, 1) (2, 2) (2, 2) (3, 3) Updater terminating
(3, 3) (3, 3) (3, 3) (3, 3) (3, 3) Reporter terminating

A.3 RTSJ version

1 class Coordinates{
2 final private int[] data = {0, 0};
3 synchronized public void update(){
4 data[0]++;
5 data[1]++;
6 }
7 synchronized public void fetch(int[] data){
8 data[0] = this.data[0];
9 data[1] = this.data[1];
10 }
11 }
12
13 class RtsjAtc{
14 public static void main(String[] args) throws InterruptedException{
15 final Coordinates coordinates = new Coordinates();
16
17 final Reporter reporter = new Reporter(coordinates);
18 final Updater updater = new Updater(coordinates);
19

15

20 reporter.start();
21 updater.start();
22 Thread.sleep(5000);
23 updater.interrupt();
24 }
25 }
26
27 import javax.realtime.*;
28 class Updater extends RealtimeThread{
29 final Coordinates coordinates;
30 final long period = 2000;
31
32 Updater(Coordinates coordinates){
33 this.coordinates = coordinates;
34 }
35
36 private void interruptibleRun()
37 throws AsynchronouslyInterruptedException{
38 while (true){
39 coordinates.update();
40 try {
41 sleep(period);
42 }
43 catch(InterruptedException ie) {}
44 }
45 }
46
47 public void run(){
48 try{
49 this.interruptibleRun();
50 }
51 catch (AsynchronouslyInterruptedException aie){
52 System.out.println("Updater terminating");
53 }
54 }
55 }
56
57 import javax.realtime.*;
58 class Reporter extends RealtimeThread{
59 final Coordinates coordinates;
60 final long period = 1000;
61 final long timeout = 10000;
62
63 Reporter(Coordinates coordinates){
64 this.coordinates = coordinates;
65 }
66
67 public void run()
68 {
69 new Timed(new RelativeTime(timeout, 0)).
70 doInterruptible(
71 new Interruptible(){
72 public void run(AsynchronouslyInterruptedException e)
73 throws AsynchronouslyInterruptedException{
74 int[] data = new int[2];
75 while (true){

16

76 coordinates.fetch(data);
77 System.out.print("(" + data[0] + ","
78 + data[1] + ") ");
79 try {
80 sleep(period);
81 }
82 catch(InterruptedException ie) {}
83 }
84 }
85 public void interruptAction(
86 AsynchronouslyInterruptedException e){
87 System.out.println("Reporter terminating");
88 }
89 }
90);
91 }
92 }

The main() method in the RtsjAtc class is executed by the main program thread. This method con-
structs the coordinates object that is shared by the reporter and updater threads, and then constructs
and starts these threads.

The logic of the updater thread is separated into two methods: interruptibleRun and run.

• The interruptibleRun method is asynchronously interruptible, since it specifies Asynchronously-
InterruptedException on its throws clause. When its execution is interrupted by the main
thread’s call updater.interrupt(), an instance of AsynchronouslyInterruptedException will
be propagated back to the caller. However, since ATC is deferred in synchronized code, this
exception will not be thrown when updater is executing coordinates.update().

• The run() method is invoked when updater is started. Its catch clause handles the asynchronous
exception propagated by interruptibleRun.

The reporter thread illustrates how the RTSJ models a timeout. The doInterruptible method is
invoked on an instance of the Timed class. This method sets up the timeout framework by constructing
an Interruptible object that provides an asynchronously interruptible run() method and an inter-
ruptAction “handler”. If the timeout occurs while this run() method is in progress, execution of the
run() method is abandoned. Note, however, that since fetch is a synchronized method, and print does
not include AIE on its throws clause, neither of these methods is asynchronously interruptible. Thus
run will only be interrupted when control is not within either of these methods. After execution of run
is abandoned, interruptAction is invoked; it will display a termination message.

The program produces the following sample output (TimeSys Reference Implementation):

(1,1) (1,1) (2,2) (2,2) (3,3) Updater terminating
(3,3) (3,3) (3,3) (3,3) (3,3) Reporter terminating

A.4 Discussion

Safety. Both solutions guarantee that protected (Ada) / synchronized (Java) code will not be aborted.
There is the issue in the Ada solution that the invocation of Put is not abort-deferred; this requires the
Ada developer to either check that such a call is safe, or else to place the call in a construct that is
guaranteed to be abort deferred.

Style. On the whole, the Ada version is much clearer than the RTSJ version. Ada’s specialized syntax
for ATC makes the intent apparent: aborting the Updater task is direct (there is no need, as in the
RTSJ version, to partition the processing into interruptible and noninterruptible parts). The difference
between the timeout styles is even more pronounced. The asynchronous select statement clearly indicates

17

the intent and the control flow. In contrast, the RTSJ version requires constructing an instance of a class
that implements run and interruptAction methods, and the effect is not nearly as apparent.

The one area where the RTSJ version is superior stylistically is in capturing the finalization processing.
Ada requires the declaration of a library-level controlled type (Last_Wishes), and a never-referenced
variable (LW) in the body of the Updater task, in order to arrange the necessary finalization for that task.
The RTSJ version accomplishes the same effect much more simply in a catch clause within Updater’s
run method.

Efficiency. Attempting to compare performance across languages and platforms (native versus JVM)
is very difficult. We will simply point out that Ada has the advantage over Java/RTSJ in some areas
(e.g., the compiler can more easily optimize specialized syntax than method calls) but incurs higher
overhead in others (e.g., finalization and handling of task hierarchies).

References

[1] S.T. Taft, R.A. Duff, R.L. Brukardt, and E. Ploedereder; Consolidated Ada Reference Manual, Lan-
guage and Standard Libraries, International Standard ISO/IEC 8652/1995(E) with Technical Corri-
gendum 1; Springer LNCS 2219; 2000.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull; The Real-Time
Specification for Java, Addison-Wesley, 2000.

[3] The Real-Time for Java Expert Group; The Real-Time Specification for Java, V1.0; Sun Microsystems
JSR-001; http://www.rtj.org; November 2001.

[4] B. Brosgol and A. Wellings; “A Comparison of the Asynchronous Transfer of Control Features in Ada
and the Real-Time Specification for Java”, Proc. Ada Europe 2003, June 2003, Toulouse, France.

[5] ISO/IEC 9945-1: 1996 (ANSI/IEEE Standard 1003.1, 1996 Edition); POSIX Part 1: System Appli-
cation Program Interface (API) [C Language].

[6] E.W. Giering and T.P. Baker; “The GNU Runtime Library (GNARL): Design and Implementation”,
WAdaS ’94 Proceedings, ACM SIGAda; 1994.

[7] E.W. Giering and T.P. Baker; “Ada 9X Asynchronous Transfer of Control: Applications and Imple-
mentation”, Proceedings of the SIGPLAN Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, ACM SIGPLAN; 1994.

[8] J. Miranda; A Detailed Description of the GNU Ada Run Time (Version 1.0);
http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/main.htm; 2002.

[9] J. Gosling, B. Joy, G. Steele, G. Bracha; The Java Language Specification (2nd ed.); Addison Wesley,
2000.

[10] B. Brosgol, R.J. Hassan II, and S. Robbins; “Asynchronous Transfer of Control in the Real-Time
Specification for Java”, Proc. ISORC 2002 – The 5th IEEE International Symposium on Object-
oriented Real-time distributed Computing, April 29 - May 1, 2002, Washington, DC - USA.

18

