
Exposing Uninitialized Variables:
Strengthening and Extending

Run-Time Checks in Ada

Robert Dewar1, Olivier Hainque2, Dirk Craeynest3, and Philippe Waroquiers3

1 Ada Core Technologies
Fifth Avenue, 73, NY 10003 New York, United States of America

dewar@gnat.com
2 ACT Europe

Rue de Milan, 8, 75009 Paris, France
hainque@act-europe.fr

3 Eurocontrol/CFMU, Development Division
Rue de la Fusée, 96, B-1130 Brussels, Belgium

{dirk.craeynest,philippe.waroquiers}@eurocontrol.int

Abstract. Since its inception, a main objective of the Ada language has
been to assist in the development of large and robust applications. In
addition to that, the language also provides support for building safety-
critical applications, e.g. by facilitating validation and verification of such
programs. The latest revision of the language has brought some addi-
tional improvements in the safety area, such as the Normalize Scalars
pragma, which ensures an automatic initialization of the non-explicitly
initialized scalars. This paper presents Initialize Scalars, an enrichment
of the Normalize Scalars concept, and an extended mode to verify at
run-time the validity of scalars, both designed for easy use in existing
large applications. Their implementation in GNAT Pro (the GNU Ada
95 compiler) is discussed. The practical results obtained on a large Air
Traffic Flow Management application are presented.

1 Introduction

One common cause of bugs that are difficult to find is the use of uninitialized
variables. They often lead to unpredictable behaviour of programs, showing up
only under special circumstances not necessarily encountered during testing. As
an example, one release of the Eurocontrol CFMU1 Air Traffic Flow Management
application [1] had such a bug in compatibility code used to reload the binary
data produced by the previous release. When a new field is introduced, the old
binary data must be read and a default value must be given for this new field,
resulting in code similar to the following:

1 Eurocontrol is the European organization for the safety of air navigation. CFMU
is the Central Flow Management Unit within this organization, in charge of the
European flight plan processing and air traffic flow management.

if Reading_Current_Version then
Boolean’Read (Stream, A_Flight.New_Field);

else
A_Flight.New_Field := True;

end if;

This sequence was wrongly coded as follows, leading to an uninitialized
New_Field for all the flights computed with the previous release and re-read
with the new version:

if Reading_Current_Version then
Boolean’Read (Stream, A_Flight.New_Field);

end if;

This bug was not detected during operational evaluation of the new re-
lease despite the extensive testing (including multiple binary data migration
rehearsals). It was nonetheless triggered during the real migration, resulting in
some temporary inaccuracy in the computation of the air traffic control load.
The effect was limited to one elapsed day, since the new flights were computed
by the new version of the software that correctly initializes this New_Field.

To avoid occurrences of similar bugs in other cases, CFMU deemed it nec-
essary to investigate the practical ways of detecting uninitialized variables in
this large application under constant evolution. The main objective was to im-
prove the robustness of the application, preferably by using automated tools and
techniques. A major constraint was the performance requirements of the system.

At the beginning of this investigation, Ada Core Technologies and CFMU
discussed possible approaches. These discussions resulted in the specification
and implementation in the GNAT compiler of features that help to detect unini-
tialized variables with additional run-time checks.

2 Detecting Uninitialized Variable Usage

Various techniques and methods are already available to track down uninitialized
variables. This can be done either at “code level” (before running, using code
analysis techniques) or at run-time (by insertion of code whose only purpose is
to detect such usage).

2.1 Static Detection of Uninitialized Variables

Formal Validation Techniques: One well-known way to avoid using unini-
tialized variables is to avoid writing code that creates them. However, such ap-
proaches (e.g., formal validation techniques like SPARK [2]) are difficult to apply
on large-scale applications like Eurocontrol’s, which by their nature make exten-
sive use of various features (e.g. tasking, exceptions, recursion, dynamic memory,
usage of COTS products, and so forth). It is even less practical if this approach
has to be applied on a large already existing code base (1.5 million Ada source
lines for the CFMU application).

Compiler Warnings: In some cases, classical compiler principles can be used
to produce warnings about dubious code (e.g. usage of a variable before it is
initialized). Typically, the GNAT compiler emits such warnings in various cases,
through front and back ends circuits that trace possible static flow paths. All
such warnings were corrected in the CFMU application when it was converted
from Ada83 to Ada95 [3].

However, the problem of statically detecting all and only the error cases can
be shown to be equivalent to the halting problem, and thus has no general solu-
tion. In particular, array elements are not easily tracked, and no set of warnings
can catch all the cases without generating an excessive number of false positive
warnings.

2.2 Detecting Uninitialized Variables at Run Time

Purify-like Solutions: Purify is a well-known tool that helps to detect unini-
tialized variable usage, amongst other nice features and capabilities. It inserts
checks in the compiled object code, which means that having the source code is
not necessary. In addition, by maintaining a “shadow” memory to track initial-
izations, Purify can detect invalid uses without requiring invalid bit patterns.

However, this approach has some limitations. The technology is very ad-
vanced but complex and does sometimes introduce difficulties, e.g. when trans-
forming COTS libraries. Also, the instrumentation is highly dependent on which
compiler is used and in which environment. For example, the following code:

main ()
{
int i;
i = i + 1;

}

could not be handled properly by Purify version 5.2 and 5.3 beta on HP-UX
11 when compiled with aCC (even an instrumented correct program gave a
memory fault). When compiled with cc, the transformed code correctly detected
the invalid usage of variable i. When compiled with the gcc C compiler provided
with GNAT 3.15w, Purify correctly detected the invalid usage of i. On Windows
NT with Microsoft Visual VC++ 6.0, the misuse of i was not detected by Purify
(but the instrumented code was not giving a segmentation violation).

The above problems probably originate from the fact that Purify works at
object code level. This is both a strength (no need for the source) but also
a weakness, since it seems difficult to insert in the object code the additional
assembly instructions that will detect an access to uninitialized memory.

Purify is also a “all or nothing” tool that cannot be applied selectively:
it searches for all problems it can search in all object files and libraries. The
resulting instrumented code is significantly larger and slower than the original
code (3 to 5 times slower, taking about 40% more memory [4]), which often
precludes the usage of ’Purified’ applications in an operational context.

In the past, Purify was successfully used in CFMU to detect memory leaks
inside Ada code compiled with GNAT. However, it did not detect the usage of
uninitialized scalars that were later detected using the Initialize Scalars GNAT
enhancements.

Normalize Scalars: After initial discussions between ACT and Eurocontrol,
one of the suggestions was to use the Normalize Scalars feature of Ada95 to
detect this bug at run-time or to at least obtain a predictable behaviour of the
application. However, this pragma was designed for the purpose of eliminating
non-determinacy from safety-critical programs, which is why it appears in Annex
H of [5]. This is a somewhat different goal from detecting uninitialized variables,
and consequently Normalize Scalars has limitations that make its use difficult
for large applications.

Application wide consistency - Normalize Scalars is a configuration pragma that
implies that the full partition is compiled with this pragma, including the Ada
run time. This problem can of course be solved by having the compiler vendor
supply a pre-compiled run-time for use with Normalize Scalars. In the case of
GNAT, this solution is even simpler as the run-time code is available and can be
recompiled easily. In case the application is integrating COTS products for which
sources are not available, special arrangements must be made with each of the
COTS providers so that a Normalize Scalars version is provided. In any case, the
requirement for partition-wide consistency is quite inconvenient, and precludes
the use of Normalize Scalars for testing small parts of a large application.

Invalid values only if possible - The Normalize Scalars specification ensures that
if possible, an invalid value (out of range) is used to initialize otherwise uninitial-
ized scalar objects. Of course, if the full bit range is covered by the values of the
scalars, then there is no invalid value. In this case, Normalize Scalars ensures a
predictable behaviour by initializing to a “normal” value but cannot detect the
usage of this “normal” value.

Manual coding to detect invalid values - The Ada95 language revision added
features to check the validity of a bit pattern (cf. Ada Reference Manual [5],
RM H.1.1.) In conjunction with Normalize Scalars, it is thus possible to detect
errors with code such as:

if A_Flight.A_Field’Valid then
.... -- this field can be used

else
.... -- error handling

end if;

In practice, this kind of manual technique cannot be applied on a large scale
application, essentially because of the existing code base size, so an automatic
validity check would be more useful.

As the use of uninitialized variables in Ada 95 should not “by itself lead to
erroneous or unpredictable execution” ([5], RM 13.9.1-11), a compiler is free, and
sometimes required, to insert “hidden” code checking the validity of scalar values.
In practice, such constructs as case statements or array assignments may require
checks avoiding wild jumps or memory corruption, but most other operations
can simply proceed with invalid data, possibly leading to invalid results.

If we want to maximize the chance of discovering usage of uninitialized vari-
ables during testing, then it is desirable to increase the amount of checking done
at run-time. In case there is no invalid value for the type bit range, an alternative
solution has to be found to detect access to uninitialized data.

3 GNAT Enhancements: Initialize Scalars pragma and
New Checking Levels

To overcome the limitations of Normalize Scalars, CFMU and ACT undertook to
specify and implement an alternative approach to Normalize Scalars, resulting
in an enhancement contract to develop:

– a new pragma Initialize Scalars,
– a way to choose the initial values of otherwise uninitialized scalars,
– compiler support for fine grained additional validity checking levels.

3.1 The pragma Initialize Scalars

The pragma Initialize Scalars ensures, as does the Normalize Scalars, an ini-
tialization of otherwise uninitialized scalars. However, the constraint that the
pragma must be used for the whole partition has been removed. This means
that it can be used in a much wider scope than Normalize Scalars, whose pri-
mary target was embedded safety-critical applications that rarely use COTS
libraries. It also makes it convenient to use for a small part of a large applica-
tion, and avoids the requirement of recompiling the run-time library. (Cf. GNAT
Reference Manual [6]).

3.2 Choice of Initial Value

The standard requires Normalize Scalars to initialize to an invalid value if pos-
sible and requires the documentation of cases in which no invalid value can be
generated. In order to be able to detect more usage of uninitialized variable, the
initial value used by Initialize Scalars can be chosen at bind time from among
the following options:

– all bits 0,
– all bits 1,
– invalid value if possible (corresponding to Normalize Scalars behaviour),
– a specified bit pattern.

Running the application or the application tests using different settings can
detect more bugs. Any difference of behaviour between runs using different initial
values are indications of the use of uninitialized values. Of course, this technique
does not guarantee to find all bugs, but increases the chances of discovering them
if the test coverage is wide enough. Furthermore, it is of particular value in the
case where no invalid values exist, since the variation in behavior can indicate
uninitialized values, even if all values are valid.

3.3 Additional Validity Checking

In GNAT version 3.13, only the RM mandated validity checkings were supported.
They could be turned off, but there was no facility for forcing additional checks.
In version 3.14, the notion of optional validity checks was added, and a switch
with several levels was introduced as follows:

– gnatV0 → no checking,
– gnatV1 → RM checking,
– gnatV2 → check all assignment right hand sides.

The provision for checking assignment right hand sides was done precisely
to improve validity checking in connection with the use of Normalize Scalars.
However, this turned out to miss many cases so an initial enhancement was
provided that added two additional levels:

– gnatV3 → check all tests,
– gnatV4 → check all expressions.

Experimentation against Eurocontrol’s applications showed that intermedi-
ate levels were needed. In particular, it was found that checking all ”in out”
parameters caused difficulties, due to coding that was indeed incorrect with re-
gard to validity checking, but that was in practice harmless in normal operation.
Therefore, control over validity checking was eventually improved to allow spec-
ification of exactly which situations result in additional checks. Furthermore, a
pragma Validity Checks was introduced to allow control to be specified at the
source level, and to be varied within a single unit. The possible settings in the
final implementation of -gnatV (cf. GNAT User’s Guide [7]) are as follows:

– gnatVa/n → turn on/off all validity checks (including RM),
– gnatVc/C → turn on/off checks for copies,
– gnatVd/D → turn on/off RM checks (on by default),
– gnatVf/F → turn on/off checks for floating-point,
– gnatVi/I → turn on/off checks for “in” params,
– gnatVm/M→ turn on/off checks for “in out” params,
– gnatVo/O → turn on/off checks for operators,
– gnatVr/R → turn on/off checks for returns,
– gnatVs/S → turn on/off checks for subscripts,
– gnatVt/T → turn on/off checks for tests.

With the relevant checking mode on, the usage of an invalid value is detected
and reported by raising a Constraint Error exception.

3.4 Implementation in GNAT of Initialize Scalars and gnatV

There were three considerations to the implementation of these new facilities in
GNAT.

First, in order to ensure that Initialize Scalars can be used on a selective
basis, all possible cases of a client being compiled with or without the pragma,
and the packages it uses being compiled with or without the pragma, must work.
This involved the generation of some additional dummy initialization routines,
which in practice are nearly always inlined, resulting in no additional run-time
overhead.

Second, to allow the specification of invalid values at bind time, the code
generated for Initialize Scalars differs from that generated for Normalize Scalars
in that the values used to initialize otherwise uninitialized data are always copied
from fixed memory locations, instead of being supplied as compile-time known
constants as was done for Normalize Scalars. This is slightly less efficient, but
allows the memory locations to be modified at bind time. Indeed it would be
possible to modify them at run time (e.g. by the use of an environment variable),
and that is a planned future enhancement.

Finally, the insertion of additional validity checks required some care, because
the compiler and its various optimization algorithms are quick to eliminate the
additional checks on the grounds that they are obviously not required if the data
is valid. Of course the whole point is that such checks are required because the
data may be invalid, and the optimization procedures had to be modified to avoid
the removal of needed tests. The actual validity checking was easily implemented,
since the compiler already had mechanisms for the ’Valid attribute.

4 Application to Eurocontrol and obtained results

4.1 Bugs Discovered

GNAT has only reported real errors (uninitialized scalar usage). In other words,
the Initialize Scalars and gnatV checks have caused constraint errors only for
uninitialized variables (no false positives). Not all the reported bugs had func-
tional impacts, however, as the following example illustrates. GNAT reported a
bug in code similar to:

Found : boolean;
Data : A_Record_With_A_Status;

Find_A_Record (For_Key, Found, Data);

if Found and Data.Status = Not_Interesting then
Found := False;

end if;
....

The procedure Find_A_Record sets Found to true if it finds a record corre-
sponding to For_Key. If a record is found, Data is initialized otherwise it is not
initialized. Some of the found records are however not interesting and must be
filtered out. The above code is technically incorrect (an uninitialized Status is
accessed in case Found is false) but this has no functional impact. One possible
easy correction is to replace the “and” by an “and then”. Other corrections are of
course possible (i.e. change the code in order to obtain a more elegant structure
based on a cleaner specification of Find_A_Record).

When Initialize Scalars was started to be used, the large majority of bugs
were detected by the additional run-time checks on enumerated and boolean
values. Most of these bugs are usually quite straightforward to correct once they
are detected. Without Initialize Scalars, they are however sometimes very tricky
to detect. As an example, a bug was detected in a procedure that was waiting
for an X protocol event to be received (up to a certain deadline). When the
deadline was reached before asking X if an event occurred, the variable telling if
an X event was pending was left uninitialized. This was then potentially leading
to a call to X to handle the event even when the deadline was expired.

Float validation checking (gnatVf) has also detected quite a number of bugs
in some numeric algorithms with unusual data (e.g. flight plans that do not
respect the aircraft maximum performances). A lot of these bugs have been dis-
covered by injecting massive amount of data. When floats are left uninitialized,
conventional testing does not always reveal such bugs, as the massive results
have to be analyzed in detail with respect to numerical correctness.

Finally, Initialize Scalars and validation checking are not only discovering
functional bugs. They also helped to detect efficiency bugs. E.g., a bug was
discovered in a procedure that has to search in a list of (key, value) the value for
a certain key. This was implemented on a generic list package providing a passive
iterator. The boolean variable used to exit the iterator was left uninitialized. This
had no functional effect as the return value was initialized properly even when
the key was not found. When the key was found, however, potentially all the
rest of the list was still traversed for no reason.

4.2 Incorrect Programming Idiom with “in out” Parameters

The following wrong programming idiom has lead to the need of fine grain control
over validity checks resulting in the gnatV switch described previously.

procedure Read_Or_Write
(Read_Mode : Boolean; A_Scalar : in out Natural) is

begin
if Read_Mode then

A_Scalar :=; -- read from somewhere
else

Write (A_Scalar); -- write somewhere
end if;

end Read_Or_Write;

N : Natural;
....
Read_Or_Write (Read_Mode => True, A_Scalar => N);
N := N + 2;
Read_Or_Write (Read_Mode => False, A_Scalar => N);

The idea is to write ‘low level’ symmetrical read/write procedures that can
either read or write elementary types. Read/Write functions for composite types
can then be programmed without needing to check if the operation to execute is
the read or the write operation as this is delegated to the low level elementary
type procedures. This is in fact a ’manual’ implementation of the ’Read/’Write
attributes of Ada95, designed and programmed at a time Ada83 was used at
CFMU.

This idea looks attractive at first sight as it avoids programming and main-
taining read and write procedure independently. When the compiler inserts a
validity check for scalars parameters, then the above code is raising a constraint
error whenever Read_Mode is True and A_Scalar is not initialized. We first
started to correct this design error by splitting the code in separate read and
write procedures for scalars. However, a lot of generics were expecting this kind
of symmetrical procedures as generic parameter. As the same generics were in-
stantiated with scalars or composite types, this kind of correction had a snowball
effect, obliging to rework all the Read_Or_Write procedures.

A discussion was held with ACT, which resulted in a much finer control over
what validity checks to insert. The case above was solved by having switches to
specifically enable/disable the validation for in and in/out parameters. We are
now disabling the validation for in/out parameters. This does not mean however
that a real bug would not be discovered, only that it would be discovered not at
the point of the wrong call but rather at the point where the called procedure
would wrongly use the uninitialized scalar. In other words, when -gnatVM is
used, a call to Read_Or_Write with N uninitialized does not raise constraint
error, but a constraint error is raised inside Read_Or_Write when the Write
procedure is called.

4.3 Performance Impact

The performance impact of tools influences how and when they can be used. The
factors to be looked at are build time (compile, bind and link), the executable
size and the run-time performance. Table 1 summarizes the impact of various
combinations of GNAT switches on a representative CFMU test program. The
’mode’ column identifies switch combinations with a set of values amongst:

– 0 → no optimization,
– 2 → optimization (gcc -O2 + back-end inlining),
– i → Initialize Scalars pragma,
– v→ gnatVaM (all validation checks, except for in out parameters),
– r → reference manual checking (i.e. gnatVd) + integer overflow check,
– n→ all validity checks off (including reference manual checkings).

Table 1. Performance impact of various switch combinations.

mode current use build time executable size run time

0r 100 100 100
0iv development 118 107 160
2n 190 68 69
2r operational 197 69 70
2iv 252 72 91

The numbers are relative to the 0r mode, which was the default develop-
ment setup before the introduction of Initialize Scalars. The impact of Initial-
ize Scalars and gnatVaM on the three factors is reasonable enough for daily
usage by developers. The run-time penalty is however considered too costly for
operational usage due to the high performance requirements of the CFMU appli-
cation. Currently, the choice is to use the reference manual checks, which avoids
the most horrible consequences of uninitialized scalars (erroneous execution) for
a very small run-time penalty.

4.4 Running with Different Initial Values

CFMU intends to run the application test suite with different values to initialize
the scalars. Typically, we will run the automatic regression tests with scalars
bit patterns initialized to all 0 and all 1 (in addition to the currently used
’invalid values’ initialization). This should help detect the uninitialized variables
for which no invalid values can be generated (when the full bit pattern of the
type is needed to represent all values).

Waiting for a future enhancement of the compiler, changing the default ini-
tial value implies to rebind the executable. As a temporary solution, CFMU
has developed code to override the initial values at startup time, using a shell
environment variable.

5 Conclusions

5.1 Usage During Development

With Initialize Scalars and gnatV, a significant number of latent (and in some
cases potentially serious) bugs were discovered in the large CFMU application.
For all these cases, once the bug was discovered with the help of Initialize Scalars,
it was straightforward to pin-point the error in the code logic and ensure a
correct initialization by modifying the logic or providing a required initial value.
Detection of uninitialized variable usage is now done earlier in the development in
an efficient and pragmatic manner. Based on this experience, we recommended
the use of Initialize Scalars and gnatVa as a default development mode when
writing new code or enhancing existing code.

The GNAT compiler provides fine grain control over validity code insertion.
This makes it possible to use Initialize Scalars and validity checking on large
existing applications that sometimes cannot be fully adapted to all the validity
checkings provided.

5.2 Operational Test Usage

The Initialize Scalars and additional checking level of GNAT has a limited im-
pact on the code size, code performance and compile time. This impact is rea-
sonable enough so that CFMU has transitioned to using Initialize Scalars and
gnatV checking as the default development mode. CFMU also intends to install
for the first few weeks of operational evaluation the version compiled with Initial-
ize Scalars and gnatVaM. This is possible because the performance degradation
in both memory and CPU usage is acceptable for limited capacity evaluation
purposes.

Due to the very high performance requirements of the CFMU application,
after a few weeks of operational test of this “checking version”, the application
compiled with optimization (i.e. with Ada RM checks and GNAT optimization
switches on, but without Initialize Scalars) will be installed. This optimized ver-
sion, after a few more months of operational evaluation, will go operational.

5.3 Impact of Usage of Initialize Scalars on How To Program

There is a trend in programming guidelines to “force” initializing everything at
declaration resulting in code like:

B : Natural := 0;

if then
B := 5;

else
B := 8;

end if;

The difficulty with such an approach is that the initial value is meaningless. If
this value is used accidentally, the results are potentially just as wrong as the use
of an uninitialized value, and furthermore, the explicit initialization precludes
the approach we have described in this paper, and thus may introduce bugs that
are much harder to find and fix. The automatic initialization under control of
the compiler using Initialize Scalars is a far preferable approach.

We therefore recommend that when a scalar is declared, the programmer
should avoid initializing it if the code is supposed to set the value on all paths.
It is better to let Initialize Scalars + gnatVa detect the bug in the code logic
rather than trying to deal with meaningless initial values. Even for safety-critical
programs, we can first compile with Initialize Scalars + gnatVa + invalid values
and then, if needed, field the code with Initialize Scalars + all zero values (if it
is the case that zero values give the code a better chance of avoiding seriously
improper behavior).

References

[1] Waroquiers, P.; Ada Tasking and Dynamic Memory: To Use or Not To Use, That’s
a Question!, Proceedings of International Conference on Reliable Software Tech-
nologies - Ada Europe 1996, Montreux, Switzerland, June 10–14, 1996, Alfred
Strohmeier (Ed.), Lecture Notes in Computer Science, vol. 1088, Springer-Verlag,
1996, pp.460–470.

[2] Barnes, J.; High Integrity Ada; The Spark Approach, Addison Wesley, 1997.
[3] Waroquiers, P., Van Vlierberghe, S., Craeynest, D., Hately, A., and Duvinage, E.;

Migrating Large Applications from Ada83 to Ada95, Proceedings of International
Conference on Reliable Software Technologies - Ada Europe 2001, Leuven, Bel-
gium, May 14–18, 2001, Dirk Craeynest, Alfred Strohmeier (Eds.), Lecture Notes
in Computer Science, vol. 2043, Springer-Verlag, 2001, pp.380–391.

[4] Purify on-line Unix manual, Rational Software Corporation, June 2000.
[5] Taft, S.T., Duff, R.A., Brukardt, R.L. and Plödereder, E.; Consolidated Ada Ref-

erence Manual. Language and Standard Libraries, ISO/IEC 8652:1995(E) with
COR.1:2000, Lecture Notes in Computer Science, vol. 2219, Springer-Verlag, 2001.

[6] GNAT Reference Manual - The GNU Ada95 Compiler, Version 3.15a, Ada Core
Technologies, 30 January 2002.

[7] GNAT User’s Guide for Unix Platforms, Version 3.15a, Ada Core Technologies, 30
January 2002.

