
Formalization and Comparison of MCDC and Object Branch Coverage
Criteria

Cyrille Comar, Jerome Guitton, Olivier Hainque, Thomas Quinot
AdaCore, 46 rue d’Amsterdam, F-75009 PARIS (France)
{comar, guitton, hainque, quinot}@adacore.com

Abstract

This paper presents formal results derived from the
COUVERTURE project, whose goal was to develop
tools to support structural coverage analysis of unin-
strumented safety-critical software. After briefly intro-
ducing the project context and explaining the need for
formal foundations, we focus on the relationships be-
tween machine branch coverage and the DO-178B
Modified Condition/Decision Coverage (MCDC) crite-
rion. A thorough understanding of those relationships
is important, since it provides the foundation for know-
ing where efficient execution trace techniques can be
used to demonstrate compliance with the MCDC crite-
rion. We first present several conjectures that were
tested using Alloy models, then provide a formally ver-
ified characterization of the situations when coverage
of object control-flow edges implies MCDC compliance.

Keywords: Structural coverage, MCDC, formaliza-
tion, coverage criteria comparison, BDD, DO-178, cer-
tification

1 Introduction

Structural coverage analysis can be described as a
metric assessing how thoroughly pieces of a software
program were exercised by a testing campaign. Sev-
eral criteria exist both at the object and at the source
level. The statement coverage criterion, for example,
focuses on source statements with metrics such as
“proportion of executed statements” and information
on which ones were not executed. Coverage anal-
ysis is typically mandated by safety critical certifica-
tion processes, such as the DO-178B standard in the
civil avionics domain. It usually involves some sort
of instrumentation, most often of the program itself
to output information about paths taken at run time,
or using hardware probes to fetch traces out of the
target execution environment. COUVERTURE’s main
idea was to leverage on the QEMU [1] emulator to pro-
duce machine-level execution traces and to serve as
the core of a modern Free Software analysis frame-
work. Relying on object-level traces permits operat-
ing on uninstrumented target code, very close to what
goes on board. It also reduces dependencies on pro-
gramming languages, compared to techniques based

on source instrumentation, none of which supported
Ada 2005 when we started in 2008 for example. Fur-
thermore, unlike hardware probes, the simulator runs
entirely on development hosts and is replicable at will,
facilitating usage of Agile techniques such as continu-
ous integration.
One challenge remains, however: the need to deter-
mine valid mappings between the machine-level ex-
ecution traces and the user-oriented criteria defined
by certification standards. Of particular concern in
our context are the relationships between the cover-
age status of machine conditional branch instructions
and the Modified Condition/Decision Coverage (MCDC)
criterion of DO-178B.
For a long time it was commonly accepted that achiev-
ing full Object Branch Coverage (OBC), so that all the
branch instructions were taken both ways, was suffi-
cient to claim MCDC when Boolean operators are re-
stricted to short-circuit forms. This was exploited in
[12] for example. Unfortunately, this admitted informal
equivalence was shown not to hold in the general case
[10] and it is now clear that a rigorous in-depth analysis
is called for.
The following section summarizes the related work and
contributions of this paper in this area. Section 3
presents precise definitions of MCDC and branch/edge
coverage criteria, together with additional background
for the remainder of the paper. Section 4 then intro-
duces conjectures that we came to elaborate using Al-
loy model checking to explore subsets of the general
problem space. Section 5 generalizes them into for-
mal characterizations with associated proofs.

2 Related Work and Contributions

Our concern is the thorough characterization of the
relationships between object-level and source-level
coverage criteria, and specifically between machine
branch coverage and the DO-178B MCDC criterion.
The purpose is a clear determination of the situations
when efficient execution trace collection techniques,
operating in bounded data space, may be used to as-
sess MCDC.
We know of only a few formalization efforts related to
MCDC coverage: [15], [17] and [16] offer a formaliza-
tion of the DO-178B MCDC criterion in Z, explore as-
pects of its fault detection capabilities and suggest a

1

stronger criterion to address identified shortcomings.
[9] presents a formal framework to model and reason
about Ada programs and a wide variety of coverage
criteria, all at the source level. Finally, [7] introduces
formal definitions of MCDC variants, to compare their
main fault detection characteristics and offer important
proofs regarding the minimum size of test sets required
to fulfill the criteria.
None of these address the aforementioned area of in-
terest and the main contribution of this paper is to for-
mally establish how OBC techniques can be used to
claim MCDC coverage. In particular, we provide a for-
mal characterization of the conditions in which trace
collection mechanisms, that are typically used to es-
tablish OBC, can be leveraged on to assess MCDC
when Boolean operators are restricted to short-circuit
forms. Our characterization is expressed in multiple
forms: firstly over Binary Decision Diagram (BDD) prop-
erties, suitable for automated processing by tools, then
in source properties understandable by human users.
For both we provide a formal proof of validity, based on
an intermediate notion of BDD edge coverage.
To our knowledge, this is the first published charac-
terization of this kind, providing solid grounds for effi-
cient trace-based assessment technologies. This al-
lowed the productization of the COUVERTURE project
into the GNATCOVERAGE toolset, a professional cov-
erage analysis framework that scales up to industrial
needs (by avoiding the need for gigantic trace data)
and can be trusted to be correct.

3 MCDC and OBC/edge coverage

3.1 Modified Condition/Decision Coverage

The definition of MCDC in DO-178B [13] distinguishes
between “decisions” and “conditions”. A decision is
composed of one or more conditions connected by
Boolean operators. For example, (C1 and then C2)

or else C3 in Ada is one decision with three condi-
tions C1, C2, and C3. The definition then reads:

Modified Condition/Decision Coverage: Every
point of entry and exit in the program has been in-
voked at least once, every condition in a decision
in the program has taken all possible outcomes
at least once, every decision in the program has
taken all possible outcomes at least once, and
each condition in a decision has been shown to
independently affect that decision’s outcome. A
condition is shown to independently affect a deci-
sion’s outcome by varying just that condition while
holding fixed all other possible conditions.

Entry and exit points are beyond the scope of this pa-
per. For our purposes, the key point is the concept of a
condition that “independently affects” a decision’s out-
come. To help explain it, we will use a decision evalu-
ation vector — a vector of Boolean values where each

element corresponds to the value of one condition in
the decision. For instance, (T,F,T) for our example de-
cision denotes an evaluation vector where C1, C2 and
C3 evaluate to True, False and True respectively.
A condition C is then said to have an independent in-
fluence on a decision D if a pair of evaluation vectors
exist which evaluate D to True and False and are iden-
tical but for the value of C. A given vector may par-
ticipate in more than one pair, showing independent
influence of different conditions. The latter point is cru-
cial in keeping the required testing complexity linear
with the number of conditions, and MCDC is known to
require n + 1 tests for a decision with n independent
conditions [7]. Thus the MCDC criterion calls for much
more careful testing than basic decision coverage (2
tests per decision only), while remaining tractable for
industrial applications in practice.
Returning to (C1 and then C2) or else C3, ta-
ble 1(a) lists four evaluation vectors that indeed
achieve MCDC for the three conditions. The indepen-
dent influence of C1 is demonstrated by vectors 1+4,
where only C1 changes and the decision evaluates to
True and False. Similarly, the independent influence of
C2 and C3 is demonstrated by pairs 1+3 and 2+3.

vector C1 C2 C3 D
1 T T F T
2 T F T T
3 T F F F
4 F T F F

(a) Unique Cause

vector C1 C2 C3 D
1 T T x T
2 T F T T
3 T F F F
4 F x F F

(b) Short-Circuit

Figure 1: MCDC vectors for (C1 and then C2) or else C3

The strict DO-178B definition we have just introduced
has come to be known as Unique Cause MCDC. This
definition has several limitations:

• Unique Cause MCDC can never be achieved for deci-
sions with coupled conditions — when condition val-
ues necessarily change together;

• Even conditions that cannot affect the outcome must
remain unchanged in independence pairs, which is
unnecessarily restrictive.

Proposals were made in which conditions other than
the one of interest may differ in independence pairs.
Unique Cause+Masking and Masking MCDC [7] are
two such variants accepted as sound alternatives [5],
in which condition variations are allowed when they

2

cannot influence the decision because masked by an-
other condition. The second criterion allows a general
use of the masking facility, while the former restricts
that option to coupled conditions only.

In COUVERTURE, we restrict Boolean operators to
short-circuit forms and resort to what [8] advocates,
which we designate as Unique Cause+Short-Circuit
MCDC. We consider the right-hand side of a short-
circuit operator to be masked when the left-hand side
alone determines the outcome, and ignore the thus-
masked conditions for the determination of indepen-
dence pairs. This is consistent with the code gener-
ation strategy for short-circuit expressions, since the
operator right-hand side is not even evaluated in this
case. We denote these cases with “x” in vector tables,
as for C3 in evaluation vector 1 of table 1(b).

A very useful property of this variant is to allow as-
sessments using execution flow traces, where no in-
formation is available about unevaluated conditions. In
addition, the set of conditions masked for a given eval-
uation always is a strict subset of those masked ac-
cording to the Masking criterion, so every set of vec-
tors satisfying MCDC for our variant also satisfies it for
the latter. We qualify Unique Cause+Short-Circuit as
stronger than Masking to denote this property.

3.2 Object Branch Coverage

Applicants for DO-178B certification have sometimes
proposed the use of object code coverage instead of
source code coverage as a metric to satisfy the objec-
tives of DO-178B. The proposed approach involves
measuring either instruction coverage or branch cov-
erage. Object instruction coverage (OIC) consists in
assessing whether all object instructions are executed
at least once; object branch coverage (OBC) in addi-
tion requires that all conditional branch instructions be
exercised in both directions (branch and fall-through).
One interesting aspect of these metrics is that they can
both be assessed in bounded data space, scaling very
well to industrial applications.

The general issue of using object coverage in order to
achieve the various source coverage criteria defined in
DO-178B [13] is considered in both FAQ 42 of DO-
248B [14] (Can structural coverage be demonstrated
by analyzing the object code instead of the source
code?) and CAST paper 17 (Structural Coverage of
Object Code) issued by the Federal Aviation Admin-
istration [6]. Both documents assert that object code
coverage can substitute for source code coverage as
long as analysis can be provided which demonstrates
that the coverage analysis conducted at the object
code will be equivalent to the same coverage analysis
at the source code level. This paper provides elements
clarifying the conditions under which such an equiva-
lence can be met in the challenging context of MCDC.

C1

F

F

C2

C3

F

F

T

T

F

T

T

T

(a) C1 and then

(C2 or else C3)

C1

C3

F

F

T

T

C2

T

T

T

F
F

(b) (C1 and then C2)
or else C3

Figure 2: BDD examples

3.3 MCDC assessment strategy

Assessing MCDC from execution traces requires the
value of each condition in a source level decision to
be represented by a control flow change at execution:
there must be a conditional branch testing each con-
dition and altering control flow depending on its value.
In this case, evaluating a decision is equivalent to a
formal traversal of its reduced ordered BDD (example
in figure 2), evaluating conditions from left to right as
required. Condition values can be inferred from the di-
rection taken at each conditional branch instruction in
the object code.

This assumes that the machine code features the ap-
propriate conditional branch instructions for each con-
dition, i.e. that the object control flow graph reflects
the source structure of decisions. Even with short-
circuit operators only, this has to be carefully con-
trolled. We have introduced a specific compiler mode
in the GNAT/GCC suite for this purpose, where opti-
mization passes are tailored and where the compiler
generates artifacts that help tracing edges of the con-
trol flow graph back to the corresponding edges of
each decision’s BDD. These include DWARF debug-
ging information (which map object code instructions
back to source locations), and Source Coverage Obli-
gations (SCOs), identifying source locations that cor-
respond to constructs that are subject to coverage
analysis (statements, decisions, conditions).

As we have described, local branch coverage data (in-
dication for each relevant conditional branch instruc-
tion of whether or not it was exercised in both di-
rections) was shown to be insufficient to determine
whether MCDC is reached in some situations. In such
cases, historical traces are needed to reconstruct the
complete set of evaluation vectors, where each vec-
tor denotes a path followed in the decision’s BDD. A
chronological record of the direction taken by each ex-
ecution of conditional branch instructions needs to be
kept, generating a data set of an unwieldy size, as op-
posed to the bounded size of the data set required to
establish OBC.

3

The following sections provide a precise and formally
verified characterization of those situations (decisions)
for which local branch coverage data is sufficient to as-
sess MCDC, allowing the collection of complete histori-
cal traces to be performed only when necessary.

3.4 Object Branch and BDD Edge Coverage

In order to evaluate MCDC using control flow changes,
we will discuss this coverage criterion in terms of BDD
coverage: MCDC is assessed by examining the set of
distinct paths through the BDD that have been taken.
The data we have at our disposal is the trace of con-
ditional branch instructions, which conveys informa-
tion about exercising edges of the executable control
flow graph (CFG). We need to bridge the gap between
these edges and those of the source BDD.
The correspondance is straightforward when there is
just one conditional branch instruction for a given con-
dition: the two CFG edges for this instruction (branch
and fall-through) correspond to the True and False out-
going edges out of the BDD node for the condition.
However, the evaluation of some complex conditions
may involve more than one conditional branch instruc-
tion, as for example in the case of the Ada mod oper-
ator, which involves an overflow test for modulus −1,
and a test on operand sign (figure 3).

A mod B = 0

F

F

C = 0

F

F

T

T

T

(a) BDD

B = −1

A > 0

B < 0

F

R = 0

F

F

C = 0

F

F

T

T

T

F

T
F T

T

A mod B = 0

(b) CFG

Figure 3: A mod B = 0 and then C = 0

Edges of the CFG then fall into two categories: ei-
ther they remain within the region of code for a given
condition, or they correspond to a BDD edge, trans-
fering control to code evaluating one of the successor
conditions or determining the outcome of the decision.
When processing control flow traces to assess MCDC,
we concern ourselves only with the latter. We ignore
intra-condition branches, as they do not provide any in-
formation as to the value of a condition or the outcome
of the decision so have no impact on source coverage.

4 Elaborating conjectures with Alloy

In the initial stages of the COUVERTURE project, we
tried to establish equivalence conditions between OBC
and MCDC, and to determine the relationships between
branch coverage data and MCDC evaluation vectors. In
order to gain a better understanding of these issues,
we formalized the problem in Alloy [11], which proved
to be a powerful tool to test and debug conjectures.
Alloy is a formal specification language, just as Z, B,
VDM or OCL. It can be used to describe a problem as
a set of first-order logic constraints over sets and re-
lations. A binary decision diagram (BDD), for example,
can be represented as a set of two relations that record
its two types of edges, with the constraint that the cor-
responding graph should be acyclic and have only one
root (sketch on listing 1).
pred i s bdd [i f t r u e , i f f a l s e :

BDD Node −> (BDD Node + BDD Term)]

l e t graph = i f t r u e + i f f a l s e {
−− Exac t ly one roo t . dom [graph] i s the
−− set o f nodes i n BDD, graph . node i s the
−− set o f f a t h e r s f o r node .
one node : dom [graph] | no graph . node

−− A c y c l i c i t y . ˆ i s t r a n s i t i v e c losure ;
−− i d e n t i t y not i n the c losure means no
−− node has a path to i t s e l f .
no iden & ˆ graph

. . .

Listing 1: BDDs in Alloy

The full model can be downloaded from the COUVER-
TURE forge on forge.open-do.org.
Alloy comes with a set of tools to automatically check
for consistency and to find counterexamples on small
models of the problem: in our case, this typically
means that properties could be verified on decisions
with fewer than 5 conditions. Although this does not
prove these properties in all cases, it allowed us to rule
out a significant set of false assumptions. In the con-
text of COUVERTURE, the following abstractions have
been formally specified:

• Decisions (by their syntax tree);

• (Reduced Ordered) Binary Decision Diagrams;

• BDD edge coverage;

• Masking and Unique Cause variants of MCDC.

In this model, all conditions in decisions are supposed
to be independent; no coupling is considered. The idea
was to use this model to help organize the problem
space: which coverage criteria are equivalent, in which
circumstances, and the different ways to express these
circumstances (in terms of constraint on the BDD or
on the syntax tree). The following section shows how
such a model clarifies the situation by exposing a set
of false assumptions and offering high confidence that
other assumptions are valid.

4

4.1 Does BDD edge coverage imply MCDC?

The canonical (C1 and then C2) or else C3 exam-
ple is indeed a case where BDD edge coverage does
not imply MCDC, so the answer is negative. By model-
ing BDD edge coverage and the different MCDC criteria,
it was possible to explore broadly the space of such
counterexamples. In particular, when asked to find de-
cisions that could be covered for BDD edge coverage
by 3 evaluations, Alloy was able to find instances with
decisions from 3 to 11 conditions (more than 11 con-
ditions made the model too big to be handled by Al-
loy). The minimum number of evaluations to reach any
known MCDC variant is a strictly increasing function of
the number N of conditions: [7] proved that Unique
Cause needs at least N + 1 tests, and Masking MCDC
d(2
√
N)e tests. These two functions take values that

are strictly greater than 3 for decisions with more than
3 conditions; so these are indeed other cases where
the original assumption is invalid.
These counterexamples suggested that a generaliza-
tion to any number of conditions could be produced.
And indeed there exists classes of decisions with an
arbitrary high number of conditions that can be edge
covered by just 3 evaluations. Consider for instance
the following set {Dn}n∈N of decisions:

• let D0 be a simple condition decision, with its condi-
tion denoted C0; then define:

• ∀ n > 0, Dn = (Dn−1 and then C ′n) or else C ′′n ,
with C ′n, C ′′n independent from each other and from
any condition in Dn−1.

C0

C ′1

C ′′1

T T F

T
F

T
F

T F

(a)

C0

C ′1

C ′′1

C ′2

C ′′2

T T F

T
F

T
F

T
F

T
F

T F

(b)

C0 C ′1 C ′′1 C ′2 C ′′2 D2

T T x T x T
T F T F T T
F x F x F F

(c)

Figure 4: BDDs that can be edge covered by 3 evalu-
ations

Figure 4(a) shows the BDD for D1, and Figure 4(b) for
D2. It can be seen that all the edges can be covered
by 3 evaluation paths which only demonstrate the in-
dependent effect of C0; these 3 evaluations are given
in figure 4(c).

By induction we can build a decision Dn with an arbi-
trary number of conditions that can be BDD edge cov-
ered by just 3 evaluation paths. As MCDC can only be
achieved with a minimal number of d(2

√
N)e evalua-

tions, this is a striking case where BDD edge coverage
is far from being equivalent to MCDC.

4.2 When does BDD edge coverage imply MCDC?

After having explored the space of counterexamples, it
was still possible to identify the conditions where the
implication holds. From the preliminary study, a pair
of conjectures emerged for a criterion that would char-
acterize cases where edge coverage and MCDC are
equivalent:

Conjecture 1 If the BDD of a decision D is a tree (with
only one path from the root to any condition node),
then BDD edge coverage implies MCDC.

Conjecture 2 If the BDD of a decision D is not a tree,
then there exists a set of evaluations that covers the
edges of its BDD but does not reach MCDC.

When checked against the Alloy model, no counterex-
ample was found for decisions with up to 6 conditions,
for all forms of MCDC. Each conjecture was checked
separately:

• Assuming BDD is a tree, prove that BDD edge cover-
age implies the strongest MCDC variant;

• Assuming BDD is not a tree, build cases where
BDD edge coverage is reached whereas the weak-
est MCDC variant is not.

When only short-circuit operators are used in deci-
sions, the strongest MCDC variant in our scope is
Unique Cause+Short-Circuit MCDC. The weakest
known variant is Masking MCDC, but its formal spec-
ification is complicated and degrades the performance
of the automatic verification enough to restrict drasti-
cally the field of possible explorations. A weaker and
simpler criterion was introduced to address this; Weak
MCDC, defined as follows:

Definition 1 Given a decision D, a pair of evaluation
vectors satisfies Weak MCDC for a condition C if, and
only if, the condition and the decision have both been
evaluated to True and False.
A test set satisfies Weak MCDC for a decision D if, and
only if, for each condition in this decision, there exists
a pair of tests in the test set that satisfies Weak MCDC.

Weak MCDC does not prove independent effect of a
condition on a decision; this makes it much weaker
than Masking and Unique Cause. Its formal specifica-
tion is much simpler though, and allowed validating the
two conjectures with up to 6 conditions. It also helped
manual proofs, as the next section will show.

5

Incremental refinements also allowed us to rephrase
these two conjectures in a more direct and human-
readable manner:

Conjecture 3 Given a decision D, BDD edge coverage
implies MCDC if, and only if, when considering the
negation normal form D’ of D, for every sub-decision E
of D’, all binary operators in the left-hand-side operand
of E, if any, are of the same kind as E’s operator: that
is to say, all of them are or else if E’s operator is or

else, and all of them are and then if E’s operator is
and then.

Automatic verification finds no counterexamples to this
conjecture for decisions with up to 5 conditions.

5 From conjectures to proofs

The previous section discussed how we tested our
conjectures on equivalence cases between OBC and
MCDC using Alloy models of decisions with up to five
conditions. Alloy was an invaluable tool for extracting
counterexamples and finding interesting corner cases.
Once we had refined our hypotheses, we developed
general proofs of these conjectures, which apply to ar-
bitrarily complex decisions.
In the following sections, unless explicitely indicated,
we always assume that decisions contain no coupled
conditions. The conjectures 1 and 2 can now be
rephrased as theorems that we will prove in the gen-
eral case:

Theorem 1 If the BDD of a decision D is a tree (with
only one path from the root to any condition node),
then BDD edge coverage implies MCDC.

Theorem 2 If the BDD of a decision D is not a tree, then
there exists a set of evaluations that covers the edges
of its BDD but does not reach MCDC.

In other words: a tree BDD is necessary and sufficient
for BDD edge coverage to imply MCDC. The proof of
these two theorems will rely extensively on structural
induction on the reduced ordered BDD of a decision,
whose construction is detailed below.

5.1 Construction of the reduced ordered BDD

The BDD for a decision is constructed using the follow-
ing recursive procedure:

Build BDD.Condition
As illustrated on figure 5(a), the BDD for a decision
consisting in a single condition C has:

• the node“test C” as its entry point;
• the label True assigned to the edge corresponding

to “C is True”;
• the label False assigned to the edge correspond-

ing to “C is False”.

C

F

F

T

T

(a) condition

BDD(D)

F

D=T

T

D=F

(b) not D

BL

BR

F

F

T

T

F

T

T

(c) or else

BL

F

F

BR

F

F

T

T

T

(d) and then

Figure 5: Build BDD

Build BDD.NOT
The BDD for not(D) is the BDD for D with the labels of
the exit edges swapped. It is illustrated in figure 5(b),
where double arrows represent edge sets.

Build BDD.Short Circuit Operator
For any short-circuit operator ?, the BDD for (DL) ?
(DR) is constructed as follows (figure 5(c) and 5(d)):

If ? is and then, let SC be False; if ? is or else, let
SC be True.

Let BL be the BDD for DL, and BR the BDD for DR.

Then B, the BDD for D, is obtained by combining BL
and BR as follows:

• the entry point is that of BL
• the exit edge labeled SC of BL is an exit edge la-

beled SC of B
• the other exit edge of BL connects to the entry

point of BR
• the exit edges of BR are exit edges of B with the

same labels

Usual properties of reduced ordered BDDs [4] follow
from the construction process. In particular, we have
the independent outcome reachability property, which
states that, for independent conditions, there is a path
from each node to an exit edge labeled True and to an
exit edge labeled False, such that the two paths start
with distinct edges from the node. Given a decision D,
we will now call BDD(D) its BDD as built by this recursive
procedure. Each condition of D corresponds to one
node in BDD(D), and evaluating a decision is equivalent
to traversing its BDD.

Most properties presented in the section are proved by
induction on the structure of the decision. For each
case of the Build BDD procedure, we assume that the
property holds for the parameters and prove that the
build step preserves the property.

6

5.2 First case: BDD is a tree

We now consider the case of an expression whose
BDD is a tree, i.e. for each BDD node there is exactly
one path from the entry point to that node. We prove
that BDD edge coverage implies Unique Cause+Short-
Circuit MCDC, which extends to weaker variants by
construction and proves theorem 1.
Let us consider an arbitrary condition C. If we have
BDD edge coverage, then all possible paths starting at
C have been taken (by recursion on path length, taking
advantage of tree structural properties). From the in-
dependent outcome reachability property, we have two
paths starting at C, beginning each with one edge from
C, and ending on the two decision outcomes. Since the
BDD is a tree, there is a single path from the entry point
to C and any condition appearing on the path from C to
one outcome is not evaluated on the path to the other
outcome. Thus, we have two paths from the entry point
to both outcomes, that differ in C, in no other condition
before C, and in no other non-masked condition after
C, which proves the independent influence of C over
the decision.
This holds for each condition in the decision, so Unique
Cause MCDC + Short-Circuit is proved.
We can now comment on the case of coupling. When
some conditions of a decision are coupled, the set of
possible evaluations is a strict subset of the one that
we would have in absence of coupling. If this removes
the possibility of covering the BDD edges, then it is still
true that BDD edge coverage implies MCDC: the left
operand of the implication being false, the implication
is true. On the other hand, if coupling does not remove
the possibility of covering the BDD edges, then such
a coverage also implies MCDC, by the same proof as
in the case of no coupling. Therefore theorem 1 also
holds if there are coupled conditions in a decision.
For a similar reason, since OBC implies BDD edge cov-
erage, this theorem extends to OBC; i.e. if the BDD of a
decision D is a tree, then OBC implies MCDC.

5.3 Second case: BDD is not a tree

The general idea of the proof of theorem 2 is to show
that, for any BDD that is not a tree, we can build a
set of evaluations that covers the BDD edges in such a
way that there is at least one condition for which MCDC
is not met. As the notion of “independent influence”
differs between MCDC variants, this proof focuses on
the weakest one: Weak MCDC. If a set of evaluations
proves BDD edge coverage but not Weak MCDC, it nec-
essarily fails to prove any stronger variant as well.
On our (C1 and then C2) or else C3 example, we
observe that the set of evaluations 1+2+4 from ta-
ble 1(b) achieves BDD edge coverage but not Weak
MCDC as the decision outcome remains True whenever
C2 is evaluated. For the more general characterization
we introduce multipath nodes as the BDD nodes reach-
able by more than one path from the entry point.

BDD1

lplmn

o BDD2

o ¬o
(a) BDD

BDD1

lplmn

o BDD2

o ¬o
(b) cover direct exit

BDD1

lplmn

o BDD2

o ¬o
(c) cover indirect exit

BDD1

lplmn

o BDD2

o ¬o
(d) cover the rest

Figure 6: BDD edge coverage but no MCDC

With reduced ordered BDDs each node can be or-
dered. With short-circuit operators, this order is the
order of conditions in the decision expression, and we
have well defined notions of last multipath node and
its last parent. In our example, the last multipath node
would be C3, and its last parent C2. For these two
entities, the following property holds:

Lemma 1 If a BDD is not a tree, then the last parent of
the last multipath node has an exit edge that is directly
connected to an outcome. We call this outcome the
node’s direct outcome and the edge connected to the
direct outcome will be called the direct exit edge.

This lemma can easily be proven by structural induc-
tion on Build BDD. Figure 6(a) illustrates its conse-
quences in term of BDD topology: lplmn is the last
parent of the last multipath node, one of its edges is
directly connected to an outcome o; its second edge is
connected to the last multipath node, which is the root
of the sub-bdd BDD2; the sub-bdd BDD1 has its exit
edges connected to lplmn and BDD2’s root, and can
have some other exit edges connected to an outcome
(not represented on this figure).
From this topology, it is possible to build three particu-
lar sets of evaluations:

• a first set such that all incoming edges of lplmn are
covered, whose evaluations always evaluate lplmn
and always exit on the direct exit edge; this is fig-
ure 6(b);

• a second set whose evaluations always evaluate
lplmn, do not take the direct exit edge, traverse
BDD2 and end up exiting on o; this is figure 6(c);

7

• a third set that never executes lplmn and covers the
rest of the BDD (including the exit edges for o that
have not been covered by the second set); this is
figure 6(d).

The union of these three sets covers the BDD, but
Weak MCDC is not satisfied: whenever lplmn is evalu-
ated, the decision has the same value (o). As a conse-
quence, this constitutes a BDD coverage for which no
MCDC variants are reached.

The complete formal proof builds these three sets by
induction on the structure of the decision. This demon-
stration is detailed in the COUVERTURE documenta-
tion [2].

Note, this time, that theorem 2 does not hold if cou-
pling is permitted: coupling may specifically prevent
the BDD edge coverages that fail to achieve MCDC. For
the same reason, this theorem cannot be rephrased
in terms of OBC: there may be cases where coupling
between intra-condition branches and inter-condition
branches precludes having BDD edge coverage but not
MCDC.

5.4 Formulation in terms of operator combination

In the previous two subsections, we showed that BDD
edge coverage is equivalent to MCDC for a decision if,
and only if, the decision BDD is a tree. Automatic verifi-
cation allowed us to reformulate this property in terms
of operator combination in the negation normal form of
the expression, obtained by rewriting it using De Mor-
gan’s laws so that negations apply only to atomic con-
ditions (and not to more complex subexpressions). We
can now requalify conjecture 3 as a theorem:

Theorem 3 Given a decision D, BDD edge coverage
implies MCDC if, and only if, in the negation normal
form D’ of D, for every sub-decision E of D’, all binary
operators in the left-hand-side operand of E, if any, are
of the same kind as E’s operator.

Let us first consider the case of a decision D containing
no negation operator, and its associated BDD.

Let NF(D) be the number of paths from the root of de-
cision D to False (F) and NT(D) the number of paths
from the root of decision D to True (T). For a condition,
NF (D) = NT (D) = 1. For an and then form:{

NF (D) = NF (DL) +NT (DL)×NF (DR)
NT (D) = NT (DL)×NT (DR)

Similarly, for an or else form:{
NF (D) = NF (DL)×NF (DR)
NT (D) = NT (DL) +NF (DL)×NT (DR)

We therefore have the following bounds:

Lemma 2 For every decision D, NF (D) > 1 and
NT (D) > 1.
If D is of the form or else then NT (D) > 2.
If D is of the form and then then NF (D) > 2.

and by structural induction on the form of decisions, we
can show:

Lemma 3 NF and NT are monotonic functions, i.e. if
D’ is a sub-decision of D, then NF (D′) 6 NF (D) and
NT (D′) 6 NT (D).

With these lemmas, we can now prove theorem 3.

Proof of direct implication, by contraposition:

Consider a decision D of the form and then containing
a sub-decision D’ of the form or else on the left-hand
side. If DL and DR are the two sub-decisions such that
D = DL and then DR, then D’ is also a sub-decision
of DL.

Let’s now count the paths from the root of the BDD to
the root of DR. Since D is an and then form, this is ex-
actly NT (DL). By lemma 3, we know that NT (DL) >
NT (D′), and by Lemma 2, we know that NT (D′) > 2.

We have thus proved that DR’s root node in BDD(D) is
reachable by more than one path, so there is a multi-
path node in the BDD. We can apply similar reasoning
for a decision D that is an or else form whose left
operand contains a subdecision D’ that is an and then

form.

By contraposition, we have therefore shown that if the
BDD is a tree, then no operator of one kind has an op-
erator of the other kind in its left operand.

Proof of converse:

We now assume that for every sub-decision in decision
D, the left operand of an and then sub-decision con-
tains only and then sub-decisions and the left operand
of an or else sub-decision contains only or else sub-
decisions.

Lemma 4 If E contains only or else sub-decisions
then NF (E) = 1. If E contains only and then sub-
decisions then NT (E) = 1.

Proof of Lemma 4 is on structural induction on the form
of decisions, based on the 3 cases distinguished above
(atomic condition, and then form, and or else).

By structural induction on the depth of the BDD, we can
show that there cannot be any multipath node in the
BDD associated with D, which proves that the desired
implication holds.

Proof of the general case:

We now extend the above derivation to the case of a
decision D containing not sub-decisions. Then, con-
sider D’ the negation normal form of D. Since D and D’
are represented by the same BDD, Theorem 3 follows.

8

6 Evaluation on industrial code

A first evaluation of the impact of theorem 1 has been
given in [3]; two industrial applications were analyzed
and it was shown that less than 1% of decisions have
a multipath node. In practise, this means that a cover-
age tool that uses this theorical result does not need to
keep full historical traces except for the few decisions
requiring it. This optimization has been implemented
in GNATCOVERAGE and it drastically reduced the over-
head that historical traces introduce.
GNATCOVERAGE has been used to measure the
coverage of its own qualification testsuite, and the size
of the traces generated by that operation can help
us evaluate the impact of the optimization. Of the
1026 decisions in GNATCOVERAGE, only 4 of them
contain multipath nodes: this ratio is similar to the one
observed in other industrial applications. Coverage
traces have been collected for 3 configurations:
firstly, for OBC, since these traces do not require any
historical information and can serve as a baseline for
measuring the overhead of historical traces; secondly,
MCDC 1 with historical traces on branches of all
decisions (inter-condition branches excluded); thirdly,
MCDC 2 taking into account theorem 1 and having
historical traces only for BDDs that are not a tree.
Every run of the qualification testsuite gathered 10279
traces whose total size are as follows:

configuration OBC MCDC 1 MCDC 2
#branches to trace 0 1788 22
size of traces 1.33G 5.06G 1.37G

As this example shows, the optimization allowed to re-
move 99% of historical traces; the overhead compared
to OBC traces can be considered as marginal.

7 Conclusion

Structural coverage analysis plays an important role in
the verification of safety-critical software. Historically,
such analysis, considered hard, was delegated to the
end of the development cycle, and inevitably, software
changes required to take into account the results of this
analysis were cumbersome and expensive. With the
increasing popularity of Agile methods and in particu-
lar, one of its key concepts – Continuous Integration –
it is important to be able to perform such analysis on
a regular basis; ideally every day or even after each
software change. Being able to perform such an ana-
lysis directly on the final non-instrumented code from
moderately-sized and bounded execution traces help
considerably in such a context.
Object-level coverage metrics can easily be imple-
mented with such characteristics whereas it is not as
usual with source-level ones. The results presented
and demonstrated in this paper can provide the foun-
dation for a bridge between those two kinds of cover-
age techniques. In particular, Theorems 1 and 2 pro-
vide the characteristics of complex decisions in which

the MCDC criterion can be deduced from bounded ex-
ecution traces with no history. Theorem 3 provides the
same characteristics in source-level terms. Those re-
sults have been exploited in the context of the COU-
VERTURE project in the design and implemention of
an efficient and accurate coverage tool producing both
source-level and object-level coverage metrics.

References

[1] QEMU, a generic and open source machine em-
ulator and virtualizer. http://www.qemu.org/.

[2] AdaCore. Couverture - Technical report on
OBC/MCDC properties, 2010.

[3] Matteo Bordin, Cyrille Comar, Tristan Gingold,
Jerome Guitton, Olivier Hainque, and Thomas
Quinot. Object and Source Coverage for Critical
Applications with the COUVERTURE Open Anal-
ysis Framework. In ERTS (Embedded Real Time
Sofware and Systems Conference), May 2010.

[4] Randal E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. IEEE Transac-
tions on Computers, 35:677–691, 1986.

[5] CAST, Certification Authorities Software Team.
Rationale for accepting Masking MCDC in certi-
fication projects. Position Paper 6, August 2001.

[6] CAST, Certification Authorities Software Team.
Structural Coverage of Object Code. Position Pa-
per 17, June 2003.

[7] John J. Chilenski. An Investigation of Three
Forms of the Modified Condition/Decision Cov-
erage (MCDC) Criterion. Technical Report
DOT/FAA/AR-01/18, April 2001.

[8] John J. Chilenski and Steven P. Miller. Applica-
bility of modified condition/decision coverage to
software testing. volume 9, issue 5 of Software
Engineering Journal, pages 193–200, September
2004.

[9] John J. Chilenski and Philip H. Newcomb. For-
mal Specification Tools for Test Coverage Analy-
sis. Software Engineering Journal, pages 59–68,
1994.

[10] FAA, Federal Aviation Administration. Object Ori-
ented Technology Verification Phase 3 Report -
Structural Coverage at the Source Code and Ob-
ject Code Levels. Technical Report DOT/FAA/AR-
07/20, June 2007.

[11] Daniel Jackson. Software Abstractions: Logic,
Language, and Analysis. MIT Press, 2006.

[12] George Romanski. MCDC coverage
analysis using short-circuit conditions.
http://www.verocel.com/.

9

[13] RTCA. Software considerations in airborne sys-
tems and equipment certification. Document
RTCA DO-178B, 1992.

[14] RTCA. Final annual report for clarification of do-
178b ”software considerations in airborne sys-
tems and equipment certification”. Document
RTCA DO-248B, 2001.

[15] Sergiy A. Vilkomir and Jonathan P. Bowen. For-
malization of software testing criteria using the z
notation. In Computer Software and Applications
Conference (COMPSAC), pages 351–356. IEEE
Computer Society, 2001.

[16] Sergiy A. Vilkomir and Jonathan P. Bowen. From
MC/DC to RC/DC: Formalization and Analysis of
Control-Flow Testing Criteria. Technical Report
SBU-CISM-02-17, South Bank University, CISM,
London, UK, 2002.

[17] Sergiy A. Vilkomir and Jonathan P. Bowen. Re-
inforced Condition/Decision Coverage (RC/DC):
A New Criterion for Software Testing. In Didier
Bert, Jonathan P. Bowen, Martin Henson, and
Ken Robinson, editors, ZB2002: Formal Specifi-
cation and Development in Z and B, volume 2272
of Lecture Notes in Computer Science, pages
295–313. Springer Verlag, 2002.

10

