
Multi-Language Programming: The Challenge and
Promise of Class-Level Interfacing

Cyrille Comar, Matthew Gingell, Olivier Hainque, Javier Miranda
AdaCore

{comar, gingell, hainque, miranda}@adacore.com

Abstract

Many computer applications today involve
modules written in different programming lan-
guages, and integrating these modules together
is a delicate operation. This first requires
the availability of formalisms to let program-
mers denote “foreign” entities like objects and
subprograms as well as their associated types.
Then, proper translation of what programmers
express often calls for significant implementa-
tion effort, possibly down to the specification
of very precise ABIs (Application Binary In-
terfaces). Meta-language based approaches a-
la CORBA/IDL are very powerful in this re-
spect but typically aim at addressing distributed
systems issues as well, hence entail support in-
frastructure that not every target environment
needs or can afford. When component distri-
bution over a network is not a concern, straight
interfacing at the binary object level is much
more efficient. It however relies on numerous
low level details and in practice is most often
only possible for a limited set of constructs.

Binary level interaction between foreign mod-
ules is traditionally achieved through subpro-
gram calls, exchanging simple data types and
relying on the target environment’s core ABI.
Object Oriented features in modern languages
motivate specific additional capabilities in this
area, such as class-level interfacing to allow

reuse and extension of class hierarchies across
languages with minimal constraints. This pa-
per describes work we have conducted in this
context, allowing direct binding of Ada exten-
sible tagged types with C++ classes. Motivated
by extensions to the Ada typing system made
as part of the very recent language standard
revision, this work leverages the GCC multi-
language infrastructure and implementation of
the Itanium C++ ABI. We will first survey the
issues and mechanisms related to basic inter-
language operations, then present the interfac-
ing challenges posed by modern object oriented
features after a brief overview of the Ada, C++,
and Java object models. We will continue with
a description of our work on Ada/C++ class-
level interfacing facilities, illustrated by an ex-
ample.

1 Interfacing Across Programming
Languages - Introduction

Two general aspects of Multi-Language Pro-
gramming are the formalisms available to de-
note and use “foreign” entities exposed from a
different language than the one in which they
are referred to, and the support infrastructure
for what programmers express. “Interfacing”
can cover many different things, such as ac-
cess to foreign data, foreign type representa-

1



tion, calls to foreign subprograms, handling of
foreign events like exceptions, and reuse of ob-
ject class hierarchies. In any case, an interface
always implies agreement between the involved
parties. For instance, a subroutine call will
only operate properly if the caller and the callee
agree on how arguments are passed (in what or-
der, using what machine resources), who allo-
cates/releases this or that part of the stack, how
aligned the stack pointer is expected to be, etc.
Likewise, operating on a foreign variable re-
quires a way to describe or denote the variable’s
“native” type to ensure a correct interpretation
of the actual value layout. Typically, more pow-
erful formalisms make programmers lives eas-
ier at the price of more complicated underlying
infrastructure.

1.1 Core Mechanisms - Basic Capabilities

A first set of basic interfacing possibilities is
provided by explicit programming language
features associated with well establishedcall-
ing conventionsand low level rules for the tar-
get environment specified in baseApplication
Binary Interface(ABI) documents.

Among other things, base ABI documents de-
scribe binary files formats, basic data type lay-
outs, stack frame organization, and machine
level conventions for passing parameters to and
returning results from subprograms. See [19]
and [12] for examples of such documents for
the i386 and amd64 architectures. Additional
calling conventions may apply in some envi-
ronments, such as thestdcall /fastcall
variants on x86-Windows [17], or for some spe-
cific programming languages as illustrated by
the differences between Pascal and C in argu-
ments passing order. These conventions pro-
vide a common ground for basic inter-language
interfacing capabilities and binary code inter-
operability, ensuring for instance proper inter-
action between GCC compiled code and target

operating system libraries.

On top of the common base conventions we
have just surveyed, various standard devices are
available on the programming languages side.
As a first example, the Ada Reference Man-
ual (ARM) includes a full annex dedicated to
the issue [22, Annex B], covering interfacing
with C, Cobol, and Fortran, and allowing im-
plementations to support other languages. The
minimum support specified in this annex con-
sists of standard packages for each language,
for instance theInterfaces.C hierarchy for
C, and specific compilerpragmas:

• Pragma Import, to import an entity de-
fined in a foreign language into an Ada
program, thus allowing a foreign-language
subprogram to be called from Ada, or a
foreign-language variable to be accessed
from Ada.

• Pragma Export, to export an Ada entity to
a foreign language.

• Pragma Convention, to specify that an
Ada entity should use the conventions of
another language for passing parameters
to subprograms, or else to represent a data
type in memory (for example determining
matrix element ordering).

• Pragma Linker_Options, to specify the
system linker parameters needed when a
given compilation unit is included in a pro-
gram.

The following code example illustrates the use
of some of these facilities to call a C func-
tion from Ada to print out anint value found
at a provided address. It uses the standard
Interfaces.C package to get access to the
Ada type corresponding toint , declares an
Ada subprogram to represent the C service in-
terface, and imports the service by way of an

2



Import pragma. The latter tells the compiler
that the subprogram is external with C conven-
tion and states what symbol (link name) should
be used to refer to it.
with I n t e r f a c e s . C ; use I n t e r f a c e s ;
procedure Binding_Example i s

−− Map and use C f u n c t i o n
−− vo id dump_ in t_a t ( i n t∗ p t r ) ;

procedure Dump_Int_At ( P t r : a c c e s s C . I n t ) ;

pragma Impor t
( Convent ion = > C,

E n t i t y = > Dump_Int_At ,
Link_Name = > " dump_ in t_a t " ) ;

Myint : a l i a s e d C . I n t : = 1 2 ;
begin

Dump_Int_At ( Myint ’ Access) ;
end ;

The Ada Access attribute used here in
Myint’Access corresponds to the& unary
addressing operator in C: It produces an ad-
dress, called anaccess value, said to desig-
nate the entity. Ada access values are nor-
mally subject toaccessibility checksmandated
by the language to prevent the creation of dan-
gling pointers [22, 3.10.2-24]. Roughly, an ac-
cess value may only be assigned to an object
of an access type if the value lifetime is guar-
anteed to be shorter than the lifetime of the
target type. Performing these checks requires
run-time code in some cases, raising the prede-
finedProgram_Errorexception in case of fail-
ure. With GNAT, accessibility checks result
in automatic extra argument passing in calls to
subprograms with access parameters. A no-
ticeable effect of the C convention applied to
Dump_Int_At in our example is to disable
this circuitry, as the extra parameter is not part
of the base interface and only makes sense for
Ada subprograms.

As other examples, C++ provideslinkage spec-
ifications such asextern "C" to allow the
use of C++ entities in other languages, and
calls to foreign routines from Java are possible
thanks to an exhaustive Java Native Interface
specification [11].

1.2 Higher Level Facilities and Paper
Overview

As time goes by, programming languages
evolve, higher level features are introduced,
implementation choices are made, and binary
compatibility issues, especially with respect to
other languages, are not always part of the pic-
ture upfront. This is legitimate, as a concept in
one language doesn’t necessarily have a coun-
terpart in others, and because complex factors
come into play views inevitably vary on what
scheme is best in each specific case. Still, com-
monalities do occur even for sophisticated fea-
tures, and the capability to interface across lan-
guages at these higher levels is often desirable
and an interesting challenge. For instance, an
Ada top-level subprogram might be interested
in catching exceptions raised by C++ subcom-
ponents, or vice-versa. Although the concept of
“exception” is similar in both languages, there
are variations in the way it is precisely mapped
on each side, and determining the appropriate
semantics for such a facility is difficult to start
with.

This paper describes work we have conducted
in this context, on GNU Ada/C++ “class-level
interfacing,” to allow direct binding of Ada ex-
tensible tagged types hierarchies to C++ classes
in both directions. Motivated by extensions to
the Ada typing system made as part of the very
recent language standard revision [1], this work
leverages the GCC multi-language infrastruc-
ture and implementation of the Itanium C++
ABI [5] to simplify interfacing between OO
languages at the class-level.

In Section 2 we briefly describe the Ada OO
model and its relationship with the C++ and
Java models. In Section 3 we present in greater
detail what “class-level interfacing” involves
and the various possible approaches. In Sec-
tion 4 we analyze the GNAT specific capabil-
ities for interfacing Ada with C++, illustrated

3



with a commented example in Section 5, and
then offer our conclusions.

2 Static OO Models Comparison:
Ada, Java, C++

Booch [2] defines Object Orientation around
seven principles: Abstraction, Encapsulation,
Modularity, Hierarchy, Typing, Concurrency
and Persistence. The first two principles are
about separating how objects are defined and
used from how they are represented and imple-
mented. Modularity is about organizing pro-
grams as a collection of separate components
with defined interactions and limited access to
data. Typing and Hierarchy are about distin-
guishing different kinds of objects and structur-
ing them according to their common character-
istics. A complete description of these princi-
ples can also be found in [9, Section 1.3.2].

In C++ and Java, the notion of “class” is cen-
tral to all these principles even though mod-
ularity is also achieved through name-spaces
and separate files. In those languages, classes
allow grouping of data members along with
their associated function members (methods).
They also specify their position in a hierarchy
by specifying their immediate parents and of-
fer visibility restriction mechanisms for their
members.

In Ada, the first three concepts (Abstraction,
Encapsulation, and Modularity) are associated
with packages and “private” declarations while
the Typing concept is clearly associated with
the Ada typing model. The Hierarchy princi-
ple is found both in packages and types: the
child package construct allows the programmer
to define a hierarchy of packages, and the type
derivation allows him to create hierarchies of
types.

Ada 83, Ada’s original definition, was con-
sidered an Object-Based language. It was
based on the above principles without offering
any mechanism for dynamic polymorphism.
In fact, dynamic dispatching was deliberately
banned from the language since it was, at the
time, considered incompatible with its safety
requirements. In this first model, a class is
represented by a private type along with its
primitive operations (methods) encapsulated in
a package. The implementation of the pri-
vate type is typically a record grouping all data
members, and the implementation of methods
are hidden in the package body.

The second revision of the language, known as
Ada 95, enriches its typing system with a new
variety of record called “tagged” records. The
main characteristic of these records is that they
can be extended during derivation and thus are
used as the basis for dynamic polymorphism
under a single inheritance model. Both C++
and Java fully support single inheritance. Con-
trary to those languages where polymorphism
is implicit, Ada distinguishes it through an ex-
plicit notation: T’Class is the polymorphic,
calledclass-wide, version of a specific tagged
type T, which means that the actual run-time
type of an object declared of type T’Class can
be T or any of its descendant.

In Java, all methods are dispatching. In C++,
methods are dispatching when they are de-
clared “virtual”. In Ada, all methods are poten-
tially dispatching and a call dispatches or not
depending on the nature of the object it applies
to. Dispatching will only occur when the lat-
ter has a polymorphic type, as illustrated by the
code excerpt below:

−− A c a l l i s d i s p a t c h i n g i f t h e c o n t r o l l i n g
−− argument t y p e i s c l a s s w i d e :

X : T ’ C l as s : = . . . ;
Y : T : = . . . ;
. . .

X . T_Method ; −− d i s p a t c h i n g
Y. T_Method ; −− no t d i s p a t c h i n g

4



C++ offers full-scale multiple inheritance. That
is to say, a class may have several parents and
inherits all their data and function members.
This is a powerful capability providing a great
deal of expressive power. At the design level,
it is particularly convenient for composing con-
cepts represented by independent classes. Pro-
gramming with full multiple inheritance re-
quires familiarity with the answers provided
by the language to tricky questions such as:
What happens when a class inherits multiple
times from the same ancestor through different
derivation paths? What happens when inherit-
ing methods with the same profile from differ-
ent parents? A thorough overview of how C++
answers such questions is available from [21],
along with many ideas on how multiple inheri-
tance can be implemented efficiently. Nonethe-
less, although multiple inheritance has proven
to be a very powerful paradigm for skilled pro-
grammers, its extensive use may have negative
consequences for the readability and long term
maintainability of software.

In recent years, a number of language designs
[6, 7] have adopted a compromise between full
multiple inheritance and strict single inheri-
tance, which is to allow multiple inheritance
of specifications, and only single inheritance of
implementations. Typically this is obtained by
means of“interface” types. An interface con-
sists solely of a set of operation specifications:
it has no data components and no operation im-
plementations. A type may implement multiple
interfaces, but can inherit code from only one
parent type. This model has much of the power
of full-scale multiple inheritance, but without
most of the implementation and semantic diffi-
culties of the C++ multiple inheritance model
[10].

Ada 2005 provides support for such abstract in-
terface types [1, Section 3.9.4]. Its character-
istics are introduced by means of an interface
type declaration and a set of subprogram dec-

larations. The interface type has no data com-
ponents and its primitive operations are either
abstract or null, in which case they behave as if
their body was empty. A data type that imple-
ments an interface must provide non-abstract
versions of all the abstract operations of its par-
ents. Here is a code sample to illustrate the
declaration of interface types and the associated
multiple inheritance capability in Ada 2005:

package I n t e r f a c e s _ E x a m p l e i s
type I1 i s i n t e r f a c e ;
f un c t i o n P ( X : I1 ) re turn I n t e g e r

i s a b s t r a c t ;

type I2 i s i n t e r f a c e and I1 ;
procedure Q ( X : I1 ) i s n u l l ;
procedure R ( X : I2 ) i s a b s t r a c t ;

type Root i s tagged record with p r i v a t e ;
procedure A ( Obj : T ) ;
f un c t i o n B ( Obj : T ) re turn I n t e g e r ;

type DT i s
new Root and I1 and I2 with p r i v a t e ;

−− DT1 must imp lement P , and R
. . .

type DT2 i s new DT with p r i v a t e ;
−− I n h e r i t s a l l t h e p r i m i t i v e s and
−− i n t e r f a c e s o f t h e a n c e s t o r

p r i v a t e
type Root i s tagged record with
−− Root components
. . .

end record ;

type DT i s
new Root and I1 and I2 with record
−− DT components
. . .

end record ;

type DT2 i s new DT with record
−− DT2 components
. . .

end record ;
end I n t e r f a c e s _ E x a m p l e ;

The interface I1 has one subprogram,P. The
interface I2 has the same operations as I1 plus
two subprograms: the null subprogramQ and
the abstract subprogramR. Then, we define the
root of a derivation class that has two primitive
operations,A andB. DT extends the root type
and also inherits the two interfaces I1 and I2, so
it is required to implement all the associated ab-
stract subprograms. Finally, typeDT2 extends

5



DT1, inheriting all the primitive operations and
interfaces of its ancestor.

OO languages that provide abstract interface
types [6, 7] have a run-time mechanism that
determines whether a given object implements
a particular interface. Accordingly Ada 2005
extends the membership operation to interfaces
and allows the programmer to write the pred-
icate O in I’Class. Let us consider an exam-
ple that uses the types declared in the previous
fragment and displays both of these features:

procedure D i s p a t c h _ C a l l
( Obj : I1 ’ C l a s s ) i s

begin
−− 1 : d i s p a t c h c a l l
. . . : = P ( Obj ) ;

−− 2 : membership t e s t
i f Obj i n I2 ’ C l a ss then

−− 3 : i n t e r f a c e c o n v e r s i o n p l u s
−− d i s p a t c h c a l l
R ( I2 ’ C l a s s ( Obj ) ) ;

end i f ;

−− 4 : d i s p a t c h t o p r e d e f i n e d op .
I1 ’ Wr i te ( Stream , Obj )

end D i s p a t c h _ C a l l ;

The type of the formalOb j covers all the types
that implement the interface I1. At –1– we dis-
patch a call to the primitiveP of I1. At –2– we
use the membership test to check if the actual
object also implements I2. In order to issue a
dispatching call to the subprogram R of inter-
face I2, at –3– we perform a conversion of the
actual to the class-wide type of interface I2. If
the object does not implement the target inter-
face and we do not protect the interface con-
version with the membership test, then the pre-
defined exceptionConstraint_Erroris raised at
run-time. Finally at –4– we see that, in addi-
tion to user-defined primitives, we can also dis-
patch calls to predefined Ada operations:’Size,
’Alignment, ’Read, ’Write, ’Input, ’Output, Ad-
just, Finalize, or the equality operator.

Ada 2005 also extends abstract interfaces for
its use in concurrency, but this topic is not dis-
cussed in this paper. For details on the GNAT

implementation of synchronized interfaces see
[15].

3 Interfacing at the class level

3.1 Basic Requirements

In general, reusing an object-oriented system
requires two distinct capabilities: creating in-
stances of existing classes and defining new
classes inheriting from them. Reusing an OO
system written in a different language requires
the additional capability: to “see” foreign
classes and use them with as few restrictions
as possible. In particular it implies the possi-
bility of defining in one language an instance
of a class which has been implemented in an-
other. Another interesting capability is inherit-
ing from foreign classes, which implies that dy-
namic binding can cross language boundaries
transparently. Although of less general inter-
est, Run Time Type Information (RTTI) queries
such as membership tests are also worth men-
tioning.

For such interfacing capabilities to make sense,
minimal commonalities between the OO mod-
els are required to preserve coherence between
a class hierarchy defined on one side and used
on the other.

3.2 Common Approaches

A well-known approach to inter-language
class-level interfacing consists of resorting to
a common meta language. CORBA [18] of-
fers an interesting case of the definition of such
a model. CORBA’s main goal is to support
the development of Object-Oriented distributed
systems. Thus inter-computer communication

6



plays an important role. If we abstract the com-
munication component however, CORBA of-
fers a model for interfacing systems that may
be written in different languages and thus of-
fers a language independent object model. This
model is described using an Interface Defini-
tion Language (IDL). The CORBA IDL defines
the concepts needed to describe the most com-
mon abstractions: basic and composite data
types, modules, exceptions, and class hierar-
chies, possibly with multiple inheritance. Not
being an implementation language, only the
definition part of a class needs to be provided
in the CORBA IDL and corresponds to a Java
interface. In fact they are also called interfaces
in IDL jargon. Hence, CORBA IDL seems an
ideal solution for interfacing at the class level
since it offers the common ground on which
languages with different object models can use-
fully communicate.

At the practical level, however, the situation is
not ideal. Within the CORBA framework, each
language requires a binding between its native
OO model and the Definition Language, an IDL
compiler is needed to transform IDL models
into a set of native specifications or header files,
and these then have to be connected to the exist-
ing system. So, not only does the user need to
learn and use a yet another language, the final
system ends up with a thick layer for the inter-
facing part composed of the two bindings men-
tioned above connected by a complete commu-
nication middleware (Object Request Broker,
ORB). In situations where the various subsys-
tems are not intended to be deployed on differ-
ent machines, this can represent a very signif-
icant overhead both in development effort and
in the amount of code dedicated to interfacing.

The use of an Interface Definition Language
is not limited to CORBA. It is also used in
other contexts where interfacing at class level
is sought. [4] offers a good description of such
a case for interfacing two languages with quite

different OO models: OCaml and C#. The IDL
used in this context is very close to Java syn-
tax and the paper gives a good description of
the notion of shadow (or Proxy) classes, an-
other typical model for class level interfacing
between two incompatible worlds.

The “shadow/proxy class” idea is to define two
matching class hierarchies on each side of the
language fence. For each class implemented on
one side, a shadow class is defined on the other
side where all its methods are wrappers that ul-
timately call the corresponding foreign method.
On the shadow side, each class instance needs
to be associated to a real instance on the other
side, which can be done as part of the initializa-
tion of the shadow instance.

The SWIG system [20] is worth mentioning
in this context. SWIG is a software develop-
ment tool that connects programs written in C
and C++ with a variety of high-level program-
ming languages such as Java, Python, Ruby
or Scheme, most of which offer their own OO
model. As with CORBA, SWIG uses an IDL.
Its syntax is very close to C/C++ header files, so
interface files can be written quickly by simpli-
fying the existing header files of the system to
interface. SWIG automatically creates the hier-
archy of shadow classes that will allow those
various OO languages to access pre-existing
C++ class hierarchies.

The shadow class mechanism becomes com-
plicated when the original language features
garbage collection, since the shadow object
may end up being the only valid reference to the
real object and is usually hidden from the orig-
inal environment. When the language does not
provide garbage collection, the opposite prob-
lem can arise: how to make sure that those
shadow objects or their counterpart are released
properly before becoming unreachable? All
these issues are described in great detail in the
SWIG documentation.

7



Apart from the aforementioned families of ap-
proaches, direct interfacing at the binary level
can sometimes be achieved, alleviating the
need for intermediate software layers. This is
what we have done for Ada/C++ interfacing
with the GNAT compiler, as described in the
following section.

4 The GNAT Approach to
Ada/C++ Interfacing

The interfacing mechanisms mentioned in the
previous section have been designed to be in-
dependent of compiler technologies. They gen-
erate potentially heavy glue code whose only
requirements are related to the semantics of the
languages to interface and not to their actual
implementation.

As compiler implementors with full control
over code generation on one side of the in-
terface, our perspective is different. Our pur-
pose is to provide a low-level mechanism that
simplifies interfacing and allow production of
lighter glue code when possible. For instance,
when an object is part of an Ada/C++ interface,
a heavy duty interfacing mechanism such as
CORBA requires the following steps: 1) mar-
shall the object to transform it from its Ada rep-
resentation to a machine independent represen-
tation such as CDR in the CORBA case; 2) send
this encoded data through the communication
channel (ORB for CORBA); and 3) unmarshall
the data into its C++ representation.

From the compiler viewpoint, a much simpler
method can be used if one side can mimic the
data representation expected by the other. In
such a situation interfacing becomes as sim-
ple as sharing a name or a reference. In this
context, our goal is to extend the base Ada
interfacing pragmas introduced in Section 1.1

to encompass the class concept and its associ-
ated mechanisms, such as dynamic dispatching.
This is possible thanks to the commonalities
between the Ada and the C++ object models:
a C++ class maps naturally to an Ada tagged
type, a class data member is a tagged record
component, a virtual function member maps to
an Ada primitive operation, and static members
functions or constructors can be mapped to Ada
operations on the classwide type. The follow-
ing subsections describe two different schemes
we have developed to achieve this goal.

4.1 Original Scheme for Ada95

When the original Ada95/C++ interfacing
mechanism was designed in the mid 90s, a
study of various C++ compilers showed wide
variation in the layout of C++ objects and their
virtual function tables. As a consequence, we
decided to provide a model of interfacing to
C++ which depended as little as possible on
the choices made by particular C++ implemen-
tations. In this approach, the GNAT compiler
made no assumptions about how objects gen-
erated by the C++ compiler were laid out, and
required that the user determine and provide a
correct matching representation in Ada them-
selves.

For instance, the compiler made no assump-
tions about where a virtual function table
pointer would appear in an imported object.
Hence, in the declaration of the correspond-
ing type in Ada the user had to provide a
dummy pointer field and mark it explicitly with
a pragma CPP_Vtable . Additionally the
compiler had no special knowledge of how
a virtual function table was actually laid out,
leaving it up to the user to determine whether
or not he needed to provide specific offsets
in his method bindings viapragma CPP_
Virtual .

8



In addition, no knowledge about what might be
needed to call a C++ method was encapsulated
in the compiler itself. Instead, the compiler
delegated the responsibility for accessing the
vtable and calling methods through it to a set
of routines in the run-time with a well defined
procedural interface. This abstraction meant
it was possible to adapt GNAT to changes in
C++ compilers or to adapt it to new compilers
very easily at the run-time level without actu-
ally having to make any changes in the com-
piler itself.

On the one hand, this approach enabled a suf-
ficiently motivated user to find a way of inter-
facing to C++ objects generated by a wide vari-
ety of compilers. For instance, users interested
enough in finding the virtual function pointer in
objects generated by the Sun C++ compiler and
determining at what offsets it had placed what
methods could, with enough effort, put together
a useful Ada binding.

On the other hand, this process was labor in-
tensive and error prone, and required a level of
knowledge about the implementation of both
compilers that the user may not have had
and was unlikely to be interested in acquir-
ing. While in principle the facilities the user
required were provided, in practice there was a
great deal left to be desired.

4.2 Redesign for Ada 2005 - Leveraging the
C++ ABI

An alternate approach recently added to the
GNAT compiler takes advantage of knowledge
of the C++ ABI [5]. This approach takes re-
sponsibility for the details and complexities
which the previous approach left to the end
user. This ABI is also followed by GCJ, the
GNU Java compiler [8, Section 12.1]. For
each tagged type the compiler generates a pri-
mary dispatch table associated with its single-
inheritance line of derivation and a secondary

dispatch table for each abstract interface type
inherited by the tagged type. This model incurs
storage costs, in the form of additional point-
ers to dispatch tables in each object andthunks
that adjust the value of the pointer to the object
implementing abstract interface types.

A’Address
B’Address

Primary Dispatch Table
Offset_To_Top = 0
     RTTI Pointer

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

P’Address
Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
      RTTI Pointer

Offset_To_Top = -m
       RTTI Pointer

Offset_To_Top = -n
      RTTI Pointer

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

Root’Tag

Root Object

Root  Components

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I2.P

Figure 1: Layout compatibility with C++

Following with the example presented in sec-
tion 2, Figure 1 represents the layout of the
tagged typesRootandDT. The dispatch table
has a header containing the offset to the top
and the Run Time Type Information Pointer
(RTTI). For a primary dispatch table, the first
field is always set to 0. The tag of the object
points to the first element of the table of point-
ers to primitive operations. At the bottom of the
same figure we have the layout of DT, type de-
rived from Root that implements two interfaces
(I1 and I2). The layout of the object (left side of
the figure), shows that the derived object con-
tains all the components of its parent type plus
1) the tag of all the implemented interfaces, and

9



2) its own user-defined components. Concern-
ing the contents of the dispatch tables, the pri-
mary dispatch table is an extension of the pri-
mary dispatch table of its immediate ancestor,
and thus contains direct pointers to all the prim-
itive subprograms of the derived type. Theoff-
set_to_topcomponent of the secondary tables
holds the displacement to the top of the object
from the object component containing the inter-
face tag. The offset-to-top values of interfaces
I1 and I2 arem and n respectively. This off-
set provides a way to find the top of the object
from any derived object that contains secondary
dispatch tables and is necessary in type conver-
sions. In addition, rather than containing direct
pointers to the primitive operations associated
with the interfaces, the secondary dispatch ta-
bles contain pointers to small fragments of code
called thunks. These thunks are generated by
the compiler, and used to adjust the pointer to
the base of the object.

The main difference between the current ABI
layout provided by the Ada compiler and the
official C++ ABI [5] is the contents of the RTTI
pointer. On the Ada side this pointer refer-
ences a record containing information required
to support Ada semantics (accessibility level,
expanded name of the tagged type, etc.) plus
two additional tables: a table containing the
tag of all the immediate ancestors of the type,
and a table containing the tag of all the abstract
interface types implemented by the type plus
its corresponding offset-to-top values in the ob-
ject layout. These tables give run-time support
to the membership test and interface conver-
sions respectively. Figure 2 completes the run-
time data structure described in previous sec-
tion with the GNATType Specific Datarecord.

It is clear that this difference introduces several
incompatibilities. For example, on the Ada side
we cannot make use of the membership test on
a class imported from the C++ side, and simi-
larly on the C++ side the dynamic cast opera-

I1’Tag        m
I2’Tag        n

         GNAT 
Type Specific Data

Access_Level
Expanded_Name
                :
                :

 Table of
Interfaces

Root’Tag
DT’Tag

 Table of
Ancestors

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

P’Address
Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
      RTTI Pointer

Offset_To_Top = -m
       RTTI Pointer

Offset_To_Top = -n
      RTTI Pointer

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I2.P

Figure 2: GNAT Layout

tor cannot be used with tagged types imported
from the Ada side. We are working on this area
to reduce these layout differences.

Regarding the C++ ABI’s [5] completeness for
use in the implementation of other OO lan-
guages, we have found that the case of variable
sized tagged objects is not supported. Compli-
cations arise when a tagged type has a parent
that includes some component whose size is de-
termined by a discriminant and the type is also
derived from abstract interface types. For ex-
ample:

type Root ( D : P o s i t i v e ) i s tagged record
Name : S t r i n g ( 1 . . D ) ;

end record ;

type DT i s new Root and I1 and I2 with . . .
Obj : DT ( N) ;
−− N i s no t n e c e s s a r i l y s t a t i c

In this example it is clear that the final posi-
tion of the components containing the tags as-
sociated with the secondary dispatch tables of
DT depends on the actual value of the discrimi-
nant at the point the object Obj is elaborated.
Therefore the offset-to-top values can not be
placed in the header of the secondary dispatch
tables because these tables are shared by all
the objects of the type. The C++ ABI does
not address this problem for the simple reason

10



that C++ classes do not have non-static compo-
nents.

In order to solve this problem we decided to
store the offset-to-top values immediately fol-
lowing each of the interface tags of the object
(that is, adjacent to each of the object’s sec-
ondary dispatch table pointers). In this way,
this offset can be retrieved when we need to ad-
just a pointer to the base of the object. There
are two basic cases where this value needs to
be obtained: 1) The thunks associated with a
secondary dispatch table for such a type must
fetch this offset value and adjust the pointer
to the object appropriately before dispatching
a call; 2) Class-wide interface type conversions
need to adjust the value of the pointer to ref-
erence the secondary dispatch table associated
with the target type. In this second case this
field allows us to reach the object’s base ad-
dress, but we also need this value in the table
of interfaces to be able to displace down the
pointer to reference the field associated with the
target interface. For this purpose the compiler
generates object specific functions which read
the value of the offset-to-top hidden field, and
stores pointers to these functions in the table of
interfaces. For further information see [16].

5 A Commented Example

In this section we present the new GNAT fea-
tures for interfacing with C++ by means of
an example. This example consists of a clas-
sification of animals; classes have been used
to model our main classification of animals,
and interfaces provide support for the manage-
ment of secondary classifications. We will first
present a case in which the types and construc-
tors are defined on the C++ side and imported
from the Ada side, and latter the reverse case.

5.1 Importing from C++

The root of our derivation will be theAnimal
class, with a single private attribute (theAgeof
the animal) and two public primitives to set and
get the value of this attribute.
c l a s s Animal {

pub l i c :
v i r t u a l vo id Set_Age (i n t New_Age ) ;
v i r t u a l i n t Age ( ) ;

p r i v a t e :
i n t Age_Count ;

} ;

Abstract interface types are defined in C++ by
means of classes with pure virtual functions
and no data members. In our example we will
use two interfaces that provide support for the
common management ofCarnivore and Do-
mesticanimals:
c l a s s C a r n i v o r e {
pub l i c :

v i r t u a l i n t Number_Of_Teeth ( ) = 0 ;
} ;

c l a s s Domest ic {
pub l i c :

v i r t u a l vo id Set_Owner (char ∗ Name ) = 0 ;
} ;

Using these declarations, we can now say that
a Dog is an animal that is both Carnivore and
Domestic, that is:
c l a s s Dog : Animal , Carn ivo re , Domest ic {

pub l i c :
v i r t u a l i n t Number_Of_Teeth ( ) ;
v i r t u a l vo id Set_Owner (char ∗ Name ) ;

Dog ( ) ; / / C o n s t r u c t o r
p r i v a t e :

i n t Tooth_Count ;
char ∗Owner ;

} ;

In the following examples we will assume
that the previous declarations are located in a
file namedanimals.h. The following package
demonstrates how to import these C++ declara-
tions from the Ada side:

11



with I n t e r f a c e s . C . S t r i n g s ;
use I n t e r f a c e s . C . S t r i n g s ;
package Animals i s

type C a r n i v o r e i s i n t e r f a c e ;
f un c t i o n Number_Of_Teeth ( X : C a r n i v o r e )

re turn I n t e g e r i s a b s t r a c t ;
pragma Convent ion ( CPP , Number_Of_Teeth ) ;

type Domest ic i s i n t e r f a c e ;
procedure Set_Owner

(X : i n out Domest ic ;
Name : C h a r s _ P t r )i s a b s t r a c t ;

pragma Convent ion ( CPP , Set_Owner ) ;

type Animal i s tagged p r i v a t e;
pragma CPP_Class ( Animal ) ;

procedure Set_Age
(X : i n out Animal ; Age : I n t e g e r ) ;

pragma Impor t ( CPP , Set_Age ) ;

f un c t i o n Age ( X : Animal ) re turn I n t e g e r ;
pragma Impor t ( CPP , Age ) ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with p r i v a t e ;

pragma CPP_Class ( Dog ) ;

f un c t i o n Number_Of_Teeth ( A : Dog )
re turn I n t e g e r ;

pragma Impor t ( CPP , Number_Of_Teeth ) ;

procedure Set_Owner
(A : i n out Dog ; Name : C h a r s _ P t r ) ;

pragma Impor t ( CPP , Set_Owner ) ;

f un c t i o n New_Dog re turn Dog ’ C l a s s ;
pragma CPP_Cons t ruc to r ( New_Dog ) ;
pragma Impor t ( CPP , New_Dog , "_ZN3DogC2Ev" ) ;

p r i v a t e
type Animal i s tagged record

Age : I n t e g e r : = 0 ;
end record ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with

record
Tooth_Count : I n t e g e r ;
Owner : C h a r s _ P t r ;

end record ;
end Animals ;

Thanks to the compatibility between GNAT
run-time structures and the C++ ABI, interfac-
ing with these C++ classes is easy. The only
requirement is that all the primitives and com-
ponents must be declared exactly in the same
order in the two languages. The code makes no
use of the GNAT specific pragmas CPP_Vtable
and CPP_Virtual described in Section 4.1.

Regarding the abstract interfaces, we must in-
dicate to the GNAT compiler by means of
a pragma Convention (CPP) , the con-
vention used to pass the arguments to the called
primitives will be the same as for C++. For
the imported classes we usepragma CPP_
Class to indicate that they have been de-
fined on the C++ side; this is required because
the dispatch table associated with these tagged
types will be built on the C++ side and therefore
will not contain the predefined Ada primitives
which Ada would otherwise expect.

Finally, for each user-defined primitive op-
eration we must indicate by means of a
pragma Import (CPP) that they are im-
ported from the C++ side.

As the reader can see there is no need to indi-
cate the C++ mangled names associated with
each subprogram because it is assumed that all
the calls to these primitives will be dispatch-
ing calls. The only exception is the construc-
tor, which must be registered in the compiler
by means ofpragma CPP_Constructor
and needs to provide its associated C++ man-
gled name because the Ada compiler generates
direct calls to it. In order to further simplify in-
terfacing with C++, we are currently working
on a utility for GNAT that automatically gen-
erates the proper mangled names for C++ im-
ported subprograms, as generated by the G++
compiler.

With the above packages we can now declare
objects of type Dog on the Ada side and dis-
patch calls to the corresponding subprograms
on the C++ side. We can also extend the tagged
type Dog with further fields and primitives, and
override some of its C++ primitives on the Ada
side. For example, here we have a type deriva-
tion defined on the Ada side that inherits all the
dispatching primitives of the ancestor from the
C++ side.

12



with Animals ; use Animals ;
package Vacc ina ted_An ima ls i s

type Vaccinated_Dog i s
new Dog with n u l l record ;

f un c t i o n V a c c i n a t i o n _ E x p i r e d
(A : Vacc inated_Dog ) re turn Boolean ;

pragma Convent ion
(CPP , V a c c i n a t i o n _ E x p i r e d ) ;

end Vacc ina ted_An ima ls ;

It is important to note that, because of the ABI
compatibility, the programmer does not need to
add any further information to indicate either
the object layout or the dispatch table entry as-
sociated with each dispatching operation.

5.2 Exporting to C++

Now let us define all the types and constructors
on the Ada side and export them to C++, using
the same hierarchy of our previous example:
with I n t e r f a c e s . C . S t r i n g s ;
use I n t e r f a c e s . C . S t r i n g s ;
package Animals i s

type C a r n i v o r e i s i n t e r f a c e ;
f un c t i o n Number_Of_Teeth ( X : C a r n i v o r e )

re turn I n t e g e r i s a b s t r a c t ;
pragma Convent ion ( CPP , Number_Of_Teeth ) ;

type Domest ic i s i n t e r f a c e ;
procedure Set_Owner

(X : i n out Domest ic ;
Name : C h a r s _ P t r )i s a b s t r a c t ;

pragma Convent ion ( CPP , Set_Owner ) ;

type Animal i s tagged p r i v a t e;
pragma Convent ion ( CPP , Animal ) ;

procedure Set_Age
(X : i n out Animal ;
Age : I n t e g e r ) ;

pragma Expor t ( CPP , Set_Age ) ;

f un c t i o n Age ( X : Animal ) re turn I n t e g e r ;
pragma Expor t ( CPP , Age ) ;

type Dog i s new Animal
and C a r n i v o r e
and Domest ic with p r i v a t e ;

pragma Convent ion ( CPP , Dog ) ;

f un c t i o n Number_Of_Teeth ( A : Dog )
re turn I n t e g e r ;

pragma Expor t ( CPP , Number_Of_Teeth ) ;

procedure Set_Owner
(A : i n out Dog ;
Name : C h a r s _ P t r ) ;

pragma Expor t ( CPP , Set_Owner ) ;

f un c t i o n New_Dog re turn a c c e s s Dog ’ C l a s s ;
pragma Expor t ( CPP , New_Dog ) ;

p r i v a t e
type Animal i s tagged record

Age : I n t e g e r : = 0 ;
end record ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with

record
Tooth_Count : I n t e g e r ;
Owner : C h a r s _ P t r ;

end record ;
end Animals ;

Compared with our previous example the only
difference is the use of pragmaExport to indi-
cate to the GNAT compiler that the primitives
will be available to C++. Thanks to the ABI
compatibility, on the C++ side there is nothing
else to be done; as explained above, the only
requirement is that all the primitives and com-
ponents are declared in exactly the same or-
der. For completeness, let us see a brief C++
main program that uses the declarations avail-
able inanimals.h(presented in our first exam-
ple) to import and use the declarations from
the Ada side, properly initializing and finaliz-
ing the Ada run-time system along the way:
# inc lude " an ima l s . h "
# inc lude < ios t ream >
us ing namespace s t d ;

vo id Check_Carn ivore ( C a r n i v o r e∗ ob j ) { . . . }
vo id Check_Domest ic ( Domest ic∗ ob j ) { . . . }
vo id Check_Animal ( Animal ∗ ob j ) { . . . }
vo id Check_Dog ( Dog∗ ob j ) { . . . }

ex te rn "C" {
vo id a d a i n i t (vo id ) ;
vo id a d a f i n a l (vo id ) ;
Dog∗ new_dog ( ) ;

}

vo id t e s t ( )
{ Dog ∗ ob j = new_dog ( ) ; / / Ada c o n s t r u c t o r

Check_Carn ivore ( ob j ) ; / / Check secondary DT
Check_Domest ic ( ob j ) ; / / Check secondary DT
Check_Animal ( ob j ) ; / / Check pr imary DT
Check_Dog ( ob j ) ; / / Check pr imary DT

}

i n t main ( )
{

a d a i n i t ( ) ; t e s t ( ) ; a d a f i n a l ( ) ;
re turn 0 ;

}

13



6 Conclusion

The C++ ABI [5] was first defined as part of
a new processor ABI, but it has evolved into a
processor independent ABI for C++ which can
be used as a de-facto standard for other lan-
guages (ie. currently the GNU C++, Ada and
Java compilers support this ABI). This evolu-
tion not only allows mixing C++ objects com-
piled with different compilers in the same exe-
cutable, but also allows multi-language object-
oriented programs compiled into a single exe-
cutable. The common ABI allows the program-
mer to mix objects from different languages
and also permits him the use of features such
as dynamic dispatching, which are not limited
by language boundaries.

It is well known that several modern static
Object-Oriented languages offer similar sup-
port for single inheritance and multiple inher-
itance of abstract interface types. However, the
current C++ ABI does not completely fulfill all
the requirements of these languages. For exam-
ple, in this paper we have shown that this ABI
should be extended for languages with vari-
able sized objects like Ada. We think that it
would be desirable to extend this ABI with new
sections covering the basic data structures sup-
porting Object Oriented features, such as dy-
namic dispatching, in a language independent
way to give GCC full support to multi-language
programming at the class level. This would
improve interfacing capabilities between the
OO languages supported by GCC and would
open new opportunities for software reuse in
a world where programming language trends
evolve rapidly.

For this work to be of direct use to the GCC
users interested in reusing libraries written in
several languages (ie. Ada, C++, Java), a tool
for automating the generation of the interface
files would be hightly desirable. SWIG [20]
seems to offer a very promising framework for

developing such a tool since it provides all the
technology for generating shadow class hierar-
chies. In this context, languages with ABI com-
patibility have an important benefit: shadow
methods would not be wrappers anymore but
“direct” views of the real methods because the
need for shadow objects can be replaced by di-
rect views of the real object, thus improving the
efficiency of the code and eliminating all the
complexity related to memory management.

14



References

[1] Ada Rapporteur Group.Annotated Ada Reference
Manual with Technical Corrigendum 1 and Amend-
ment 1 (Draft 16): Language Standard and Li-
braries. (Working Document on Ada 2005). Ada-
Europe, 2006.

[2] G. Booch Object-Oriented Analysis and De-
sign Addison-Wesley, 2nd edition,1993. ISBN:
0805353402

[3] J. Byous. Java Technology: The Early Years,
2006. http://java.sun.com/features/
1998/05/birthday.html .

[4] E. Chailloux, G. Grégoire, R. MontelaticiMixing
the Objective Caml and C+ Programming Models
in the .NET FrameworkThe 3rd International Con-
ference on .NET Technologies, Plenz, Czech Re-
public May 30-June 1, 2005

[5] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red
Hat, and SGI.Itanium C++ Application Binary
Interface (ABI), Revision 1.86, 2005.http://
www.codesourcery.com/cxx-abi

[6] E. International.C# Language Specification (2nd
edition). Standard ECMA-334. Standardizing In-
formation and Communication Systems, Decem-
ber, 2002.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha.
The Java Language Specification (3rd edition).
Addison-Wesley, 2005. ISBN: 0-321-24678-0.

[8] Guide to GNU GCJ, 2005.http://gcc.gnu.
org/onlinedocs/gcj/

[9] Handbook for Object-Oriented Technology in Avi-
ation http://www.faa.gov/aircraft/
air_cert/design_approvals/air_
software/oot/

[10] ISO/IEC.Programming Languages: C++ (1st edi-
tion). ISO/IEC 14882: 1998(E). 1998.

[11] S. Liang.The Java Native Interface: Programmer’s
Guide and Specification. ISBN: 0-201-32577-2,
Addison-Wesley Professional; 1st edition (June 10,
1999).

[12] M. Matz, J. Hubicka, A. Jaeger, M. Mitchell.
System V Application Binary Interface - AMD64
Architecture Processor Supplement. June 2005,
Available from http://www.x86-64.org/
documentation/

[13] J. Miranda, E. Schonberg.GNAT: On the Road to
Ada 2005. SigAda’2004, November 14-18, Pages
51-60. Atlanta, Georgia, U.S.A.

[14] J. Miranda, E. Schonberg, G. Dismukes.The Imple-
mentation of Ada 2005 Interface Types in the GNAT
Compiler. 10th International Conference on Re-
liable Software Technologies, Ada-Europe’2005,
20-24 June, York, UK.

[15] J. Miranda, E. Schonberg, K. Kirtchov.The Imple-
mentation of Ada 2005 Synchronized Interfaces in
the GNAT Compiler. SigAda’2005, November 13-
17. Atlanta, Georgia, U.S.A.

[16] J. Miranda, E. Schonberg.Abstract Interface Types
in GNAT: Conversions, Discriminants, and C++.
11th International Conference on Reliable Soft-
ware Technologies, Ada-Europe’2006, June, Porto,
Portugal.

[17] N. Trifunovic. Calling Conventions Demystified.
http://www.codeproject.com/cpp/
calling_conventions_demystified.
asp

[18] Object Management Group.Common Object Re-
quest Broker Architecture: Core SpecificationVer-
sion 3.0.3, March 2004.

[19] System V Application Binary Interface - In-
tel 386 Architecture Processor Supplement.
Prentice Hall Trade, Third Edition 1994,
ISBN: 0-131-04670-5. Fourth Edition avail-
able from http://www.caldera.com/
developers/devspecs/abi386-4.pdf

[20] Welcome to SWIG. http://www.swig.org/

[21] B. Stroustrup Multiple Inheritance for C++
The C/C++ Users Journal, May 1999 issue
http://www-plan.cs.colorado.edu/
diwan/class-papers/mi.pdf

[22] S. Taft, R. A. Duff, and R. L. Brukardt and E.
Ploedereder (Eds).Consolidated Ada Reference
Manual with Technical Corrigendum 1. Language
Standard and Libraries. ISO/IEC 8652:1995(E).
Springer Verlag, 2000. ISBN: 3-540-43038-5.

15


