Praxis
High Integrity
Systems

Document Set

Title

Synopsis

Contents
Status

I ssue Number
Date

Copied To

Front Sheet
Originators

Approver

Tokeneer ID Station Reference S.P1229.41.2

Formal Specification

This document is the formal specification of the core Token ID
Station (T1S), which forms part of Tokeneer.

See table of contents

Definitive

14

14th August 2008

NSA Praxis High Integrity
Randolph Johnson Systems

SPRE Inc. Project Team

Quality

Janet Barnes Signed

David Cooper Approved

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 2
0 DOCUMENT CONTROL

Copyright (©(2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved. This material was originally developed by Praxis High Integrity Sys-
tems Ltd. under contract to the National Security Agency.

Changes History

All issues of this document have been type-checked with fuzz and have given no errors.

Issue 0.1 (28th March 2003) First draft issued for comments within Praxis.
Issue 0.2 (5th April 2003) Draft incorporating comments from David Cooper.
Issue 0.3 (14th April 2003) Draft sent to Randolph Johnson (NSA).

Issue 0.4 (8th May 2003) Final Draft for formal review.

Issue 1.0 (9th May 2003) Provisional issue to client following internal review.

Issue 1.1 (27th June 2003) Definitive issue incorporating client feedback and correction to faults
S.P1229.6.1-5.

Issue 1.2 (22nd July 2003) Definitive issue correcting faults

e SP1229.6.6 - Tearing a user token mid-entry should constitute a failed entry and be
logged as such within the statistics.

e S.P1229.6.7 - Remove the ability to retry fingerprint validation following afailure.
e S.P1229.6.19 - Correct typographical error on page 51.

Issue 1.3 (22nd August 2003) Definitive issue correcting faults.
e S.P1229.6.32 - Improve poor text messages on screen.
e SP1229.6.33 - Make initial configuration realistic.
e S.P1229.6.36 - Screen should show busy message when a user entry isin progress.
e S.P1229.6.38 - Operation failures not reported on screen.

Issue 1.4 (14th August 2008) Updated for public release.

Changes Forecast
None. This document is now under change control.

References

1 The Z Notation: A Reference Manual, JM Spivey, Prentice Hall, Second Edition, 1992
2 TIS Software Requirements Specification, Version 2.0, S.P1229.41.1.

3 TISKernel Protection Profile, SPRE Inc, Version 1.0, 5 February 2003.

4 TIS Security Target, S.P1229.40.1.

Praxis

Tokeneer ID Station

High Integrity Formal Specification

Systems

Abbreviations

AA
ATR
CA
1&A
RSA
SPARK
SRS
TIS

Attribute Authority

Answer-to-Reset

Certification Authority

I dentification and Authentication

Rivest Shamir Adelman algorithm

SPADE Ada Kernel (analysable Ada subset from Praxis)
Software Requirements Specification

Token ID Station

Reference S.P1229.41.2
Issue 1.4

Page 3

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4

Systems Page 4

TABLE OF CONTENTS

0 Document Control

1 Table Of Contents

2 Introduction
2.1 Structure of this Specification. 6
22 TraceunitsS. 7
23 ZDESICS . . . 7
24 TISBaSICTYPES . . o v o o e e 8
25 KeysandEncryption 10
2.6 Certificates, Tokensand EnrolmentData 10
27 WorldoutsidethelD Station 15

3 TheToken ID Station
3.1 ConfigurationData e 19
32 AUdIitLOg 20
33 KeyStore e 20
34 SystemStatistics e 21
35 Administration 21
36 Rea WorldEntities 22
37 Interna State 24
3.8 ThewholeTokenID Station 25

4 Operations interfacing to the ID Station
41 RedWorldChanges i e e 27
4.2 Obtaining inputs fromtherealworld 27
4.3 ThelD Stationchangestheworld 29

5 Interna Operations
51 Updatingthe AuditLog e 33
52 Updating System Statistics 37
53 OperatingtheDoor 38
54 CertificateOperations e 38
55 UpdatingtheKey Store 40
56 Administrator Changes 41

6 The User Entry Operation
6.1 UserToKenTears o v v v i i e e e e e e e e e e e 45
6.2 ReadingtheUser Token., 46
6.3 ValidatingtheUser Token. 46
6.4 Readingafingerprint 49
6.5 Validating afingerprint 50
6.6 WritingtheUser Token 52
6.7 ValidatingEntry 53
6.8 UnlockingtheDoor 54
6.9 Terminatingafalledaccess 56

6.10 TheCompleteUser Entry 57

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 5
7 Operations Within the Enclave
7.1 Enrolmentof anID Station 58
7.2 Administrator TokenTear e 62
7.3 Administrator Login e 63
74 Administrator Logout L e e 68
7.5 Administrator Operations 69
7.6 Starting Operations 71
7.7 ArchivingthelLog 73
7.8 Updating ConfigurationData 76
7.9 ShuttingDownthelD Station. 78
7.10 Unlockingthe Enclave Door e 80
8 Thelnitia System and Startup
8.1 Thelnitia System. e 81
8.2 StartingthelD Station 83
9 Thewhole ID Station
91 Startup. 85
9.2 Themanloop e 85
Appendix:
A Reading Z, asmall introduction
B Commentary on this Specification
B.1 ThestructureoftheZ 89
B.2 ISSUBS 89
C Jusdtification of Preconditions
C.l Properties e 93
C.2 Jdustifications e 94
D Tracing of SRS Requirements
D.1 Mapping of: User gains allowed initial accesstoEnclave 101
D.2 Requirementsoutof scope e 104
D.3 General Requirements e 105
E Tracing of ST Reguirements
E.1 Mapping of Functional Security Requirements 107
E.2 Reguirementsoutof SCOPE e 110
E.3 General Reguirements 111
F Zindex
G Traceunit index

Reguirements index

21

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4

Systems Page 6

INTRODUCTION

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteriais possible, the NSA has asked Praxis High Integrity
Systemsto undertake aresearch project to re-devel op part of an existing secure system (the Tokeneer
System) in accordance with their high-integrity development process. This re-development work
will then be used to show the security community that is is possible to develop secure systems
rigorously in acost effective manner.

This document isthe formal specification, written using the Z notation. This document specifies the
behaviour of the core of the Token ID Station (T1S) that is being re-developed. It documents the
second step in the Praxis high integrity systems development approach. The whole process consists
of:

1. Requirements Analysis (the REVEAL process)

2. Formal Specification (using the formal notation Z)
3. Design (the INFORMED process)

4. Implementation in SPARK Ada

5. Verification (using the SPARK Examiner toolset).

Structure of this Specification

This specification is a forma model of the TIS core function presented using the Z notation. The
specification models TIS as a number of state components and a number of operations that change
the state. The operations presented in this specification cover:

e user authentication and entry into the enclave;
enrolment of TIS;

e administrator logon/logoff;

archiving the log;

updating of configuration data;
shutdown;
overriding the enclave door.

This specification specifically does not model user exit from the enclave; there could also be further
administrative operations above and beyond those presented in this specification but these are not
considered. It isintended that the structure of the specification should not preclude the addition of
further administrative operations.

The specification is structured by presenting type constructs useful in the modelling of TIS in the
remainder of this section.

Section 3 introduces the state that defines the TIS.

Section 4 covers accepting data from the real world and updating the real world.

2.2

2.3

231

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4

Systems Page 7

Section 5 presents a number of partial operations on parts of the TIS state, these are later used in
the construction of the TIS system operations.

Section 6 presents the multi-phase user authentication and entry operation.

Section 7 describes al the system operations that take place within the enclave. These are adminis-
trative operations.

Section 8 defines the initial system and the state of TIS at start-up.

Section 9 describes how the whole TIS core works. Here we pull together the operations described
through the remainder of the specification.

Appendix A gives abrief introduction to reading Z.
Appendix B discusses anumber of issues that were raised during the production of this specification.

Appendix C givesan informal justification of the precondition of the whole operation by considering
the preconditions of its constituent parts.

Appendix D provides acommentary on the tracing of this document to the SRS[2]. It also liststhose
requirements from the SRS that do not trace to the body of this specification. These are categorised
by the reason for exclusion.

Appendix E provides acommentary on the tracing of this document to the Security Target [4].
Trace units

Each section of the specification has been tagged with a named traceunit which will be used as
a reference from later design documents. All trace units in this document have the prefix “FS’
identifying them as originating in the Formal Specification.

Most traceunits contain alist of requirements that are relevent to that part of the specification. These
are taken from the SRS [2] and Security Target [4].

For example consider the traceunit on page 12. Here the section on tokens is identified by the name
FS.Types. Tokens and this section isrelevant to the satisfaction of a number of requirements from the
Protection Profile [3] including FCO_NRO.2.1.

Z basics
This formal specification iswritten using the Z formal notation. [1]
Z comments

The intention is that someone unfamiliar with Z should be able to read this specification and gain a
complete understanding of the functionality of the TIS system specified within.

We have attempted to make the informal commentary as complete and unambiuous as possible. We
have also separated out the parts of the commentary that are only relevant for understanding the
formal model, as below:

> Readers who are not interested in the formal model can skip these sections of the commentary.

232

233

24

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 8
Reading Z

Readers of this specification are encouraged to read the Z formal notation. Reading the Z in the
context of the commentary should disambiguate the English.

In Appendix A we explain the basics of how to read Z. These basic ideas should be sufficient to aid
reading this specification. For a more detailed description of the Z notation refer to [1].

Defining Optional Items

In order to be able to define optiona items we make the following definitions.
optional X == {x: F X | #x < 1}

nil[X] == Q[X]
the[X] == {x: X & {x} — x}

TISBasic Types

FS.Types.Time

Time and date is some universal clock, which for our purposes can be modelled as just the naturals.

TIME ==

We define a constant zeroTime used at system initialisation.

zeroTime ==

FS.Types.Presence

Many entities such as tokens, fingers and floppy disks may be presented to the system and removed
by the user. We monitor the presence of these entities.

PRESENCE ::= present | absent

FS.Types.Clearance

CLASS s the ordered classifications on document, areas, and people.

CLASS ::=unmarked | unclassified | restricted | confidential | secret | topsecret

There may be other aspects to classification but these are not modelled here.

Clearance
Tcla$: CLASS

> See: CLASS(p. 8)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4

Systems Page 9

There is an ordering on the type Clearance. The function minClearance gives the minimum of a
pair of elements of type Clearance. This will be the Clearance with the lowest class. The ordering
on classisformally defined within the design, informally unmarked isthe lowest class and topsecret
isthe highest class.

| minClearance : Clearance x Clearance — Clearance

> See: Clearance (p. 8)

FS.Types.Privilege

PRIVILEGE is the role held by the Token user. This will determine the privileges that the Token
user has when interacting with the ID station.

PRIVILEGE ::=userOnly | guard | securityOfficer | auditManager

FS.Types.User

A USERisaunique identification of a certificate owner. For the purpose of this specification itisa
given type.

[USER

FS.Types.| ssuer

An ISSUERisaunique identification of an issuing body. Issuers are privileged users with the ability
to issue certificates.

| ISSUER: P USER

FS.Types.Fingerprint

FINGERPRINT will need to include sufficient control information to alow us to compare with
templates and decide a match or not.

[FINGERPRINT]

FS.Types.FingerprintTemplate

A FINGERPRINTTEMPLATE contains abstracted information, derived from a number of sample
readings of afingerprint.

[FINGERPRINTTEMPLATE]

The fingerprint template and will be accompanied by additional information, such as the threshold
level to be applied to any comparisons. Thisis not currently modelled.

FingerprintTemplate
Ftempl ate : FINGERPRINTTEMPLATE

2.5

2.6

26.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 10

Keys and Encryption

FS.KeyTypes.Keys

The signing and validation of certificates used in Tokeneer relies on the use of asymmetric keys,
which comprise two parts, one which is public and one which is private.

[KEYPART]
Certificates are signed by an issuer using the private part, and can be verified by anyone who holds
the public part.

Abstractly, only the public part isvisible, and it isthe only part we need to model. In the design we
will introduce the private part too.

Knowing an issuer is equivalent to having a copy of the issuer’s public key part. While possessing
an issuer’s private key part means that you are that issuer.

Certificates, Tokensand Enrolment Data

Certificates

FS.Types.Certificates

All certificates consist of data and a signature. A number of attributes are encoded within the data.
Some attributes are common to all certificates.

All certificates can be uniquely identified by their issuer and the serial number supplied by the issuer
when the certificate is created. The only aspect of the certificate ID which is significant at this level
is the issuer, so we will model the certificate ID as containing an ISSUER only.

Certificateld
’> issuer : ISSUER

> See: ISSUER (p. 9)

In addition to the unique certificate id all certificates contain a validity period during which time
they are valid. We will model this validity period as a set of TIMES during which they are valid,
which is more general and easier to state.

Each certificate is signed and can be verified using a key, typically the public key of an issuer. We
model this by associating with each certificate the key required to validate the certificate. Note that
the key is optional since in the case that the signature or data is corrupt, no key will validate the
certificate.

Certificate
id : Certificateld

validityPeriod : P TIME
isvValidatedBy : optional KEYPART

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 11

> See: Certificateld (p. 10), TIME (p. 8), optional (p. 8)

Each type of certificate potentialy expands on these attributes.

Certificate
ID Attribute
Certificate Certificate
Privilege Authentication 1&A
Certificate Certificate Certificate

Figure 2.1: Hierarchy of certificate types

The ID certificate is an X.509 certificate. 1D certificates are used during enrolment as well as being
present on tokens.

The subject is the name of the entity being identified by the certificate and the key is the entity’s
public key.

We don’'t need to know about the key of the Token unless we implement the TOKENEER Authenti-
cation Protocol or some other secure comminications protocol between TIS and the Token. Secure
communications with the Token are outside the current scope of this system.

IDCert
Certificate

subject : USER
subjectPubK : KEYPART

> See: Certificate (p. 10)

In general an ID certificate is not validated by the keypart held on the certificate.

The ID Certificate of a CA (Certification Authority) isaroot certificate and is signed by itself. The
chain of trust has to start somewhere.

__CAldCert
IDCert

isvalidatedBy = { subjectPubK }

> See! IDCert (p. 11)

The certificates containing attributes all share some common attributes.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 12

All attribute certificates contain the ID of the Token and the identification of the ID certificate.
Specific types of attribute certificate build on this common structure.

AttCertificate
Certificate
baseCertld : Certificateld
tokenID : TOKENID

> See: Certificate (p. 10), Certificateld (p. 10)

A privilege certificate additionally contains arole and clearance.

PrivCert
AttCertificate

role : PRIVILEGE
clearance : Clearance

> See: AttCertificate (p. 12), PRIVILEGE (p. 9), Clearance (p. 8)

An authorisation certificate has the same structure as a privilege certificate.

AuthCert
AttCertificate

role : PRIVILEGE
clearance : Clearance

> See: AttCertificate (p. 12), PRIVILEGE (p. 9), Clearance (p. 8)

Anl&A (identification and authentication) certificate additionally contains a fingerprint template.

landACert

AttCertificate
template : FingerprintTemplate

> See: AttCertificate (p. 12), FingerprintTemplate (p. 9)

26.2 Tokens
FS.Types.Tokens
FCO_NRO.2.1 FDP_DAU.2.2
FCO_NRO.2.2 FIA_UAU.3.1
FCO_NRO.2.3 FAI_UAU.3.2
FDP_DAU.2.1

> Refer to Section 2.2 for explanation of the above tracing block.

Each Token has a unique ID, ensured unique by the smartcard supplier.

[TOKENID)]

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 13

A Token contains a number of certificates. The authorisation certificate is optional while the others
must be present.

Token
tokenlD : TOKENID

idCert : IDCert

privCert : PrivCert
iandACert : landACert
authCert : optional AuthCert

> See! IDCert (p. 11), PrivCert (p. 12), landACert (p. 12), optional (p. 8), AuthCert (p. 12)

A Token is valid if all of the certificates on it are well-formed, each certificate correctly cross-
references to the ID Certificate, and each certificate correctly cross-references to the Token ID.

A token need not contain avalid Authorisation certificate to be considered valid.

__ValidToken
Token

privCert.baseCertld = idCert.id
iandACert.baseCertld = idCert.id

privCert.tokenlD = tokenlD
iandACert.tokenlD = tokenlD

> See: Token (p. 13)

If the Authorisation certificate is present it will only be used if it isvalid, in that it correctly cross-
references to the Token ID and the ID Certificate.

__TokenWithValidAuth
Token

authCert # nil
A (theauthCert).tokenID = tokenlD
A (theauthCert).baseCertld = idCert.id

> See: Token (p. 13), nil (p. 8), the (p. 8)

A Token is current if al of the Certificates are current, or if only the Auth Cert is non-current.
Currency needs atime, which isincluded in the schema, and will need to be tied to the relevent time
when this schemaiis used.

__CurrentToken
ValidToken
now : TIME

now € idCert.validityPeriod
N privCert.validityPeriod
N iandACert.validityPeriod

> See: ValidToken (p. 13), TIME (p. 8)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 14

2.6.3 Enrolment Data

FS.Types.Enrolment
FMT_MSA.2.1 FMT_MTD.3.1

Enrolment datais the information the ID station needs in order to know how to authenticate tokens
presented to it, and to produce its own authentication certificates such that they can be authenticated
by workstations in the enclave.

Enrolment data consists of a number of ID certificates;

e thisID Station’s ID Certificate, which will be signed by a CA.
e A number of other Issuers’ ID Certificates. These will belong to
— CAs, who authenticate AAs (Attribute Authorities) and ID Stations. These will be self
signed.
— AAs, who authenticate privilege and 1& A certificates.

The ID Station’s certificate is just one of the issuer certificates, although we will want to be able to
identify it as belonging to this ID station.

__Enrol
idSationCert : IDCert
issuerCerts : P IDCert

idSationCert ¢ issuerCerts

> See! IDCert (p. 11)

For the Enrolment data to be considered valid each certificate must be signed correctly and the
Issuer’s certificate must be present for it to be possible to check that the signatures are correct. Note
that CA ID certificates are self signed but AA and IDStation certificates are signed by an CA.

__ValidEnrol
Enrol

issuerCertsn {CAldCert} # &

Vcert : issuerCerts o
cert.isvalidatedBy # nil
A (FissuerCert : issuerCerts o issuerCert € CAldCert
A thecert.isValidatedBy = issuerCert.subjectPubK
A cert.id.issuer = issuerCert.subject)

> See: Enrol (p. 14), CAldCert (p. 11), nil (p. 8), the (p. 8)

> There must be an ID certificate for at least one CA.

> For each certificate the enrolment data must include the I D certificate for the issuer of the certificate, the certificate
must be validated by the issuer’'s key and the issuer of the certificate must be a CA.

2.7

271

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 15

World outsidethe ID Station

We choose to model the real world (or at least the real peripherals) as being outside the ID Station.
When the user inserts a token, they are providing input to the ID Station. It is up to the ID Station
to then respond by reading the real world input into its own, internal representation. The ID Station
receives stimulus from the real world and itself changes the real world. All real world entities are
modelled as components of the Real\World.

We will distingush between real world entities that we use (eg. finger), we control (eg. alarm) and
we may change (eg. user Token or floppy).

Real World types

FS.Types.RealWorld

There are several types associated with the real world. The door, latch and aarm al have two
possible states.

DOOR ::= open | closed

LATCH ::= unlocked | locked

ALARM ::= silent | alarming

Display messages are the short messages presented to the user on the small display outside the
enclave.

DISPLAYMESSAGE ::= blank | welcome | insertFinger | openDoor | wait |
removeToken | tokenUpdateFailed | doorUnlocked

The messages that appear on the display are presented in table 2.1.

Displayed text
M essage Top line Bottom line
blank SYSTEM NOT OPERATIONAL
welcome WELCOME TO TIS ENTER TOKEN
insertFinger AUTHENTICATING USER INSERT FINGER
wait AUTHENTICATING USER PLEASE WAIT
openDoor REMOVE TOKEN AND ENTER
removeToken ENTRY DENIED REMOVE TOKEN
tokenUpdateFailed TOKEN UPDATE FAILED
doorUnlocked ENTER ENCLAVE

Table 2.1: Display Messages

Because it is possible to be trying to read a token that is not inserted, or afingerprint when no finger
isinserted, or an invalid token or fingerprint, we introduce free types to capture the absence or poor
quality of these.

The values badFP and badT represent al possible error codes that occur when trying to capture this
data. The system will behave the same way in all failure cases with only the audit log capturing the
different error codes that actually occur.

FINGERPRINTTRY ::= noFP | badFP | goodFP{(FINGERPRINT))
TOKENTRY ::= noT | badT | goodT ((Token})

2.17.2

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 16

> See: Token (p. 13)

When modelling data supplied on afloppy disk we model the posibility of the disk not being present,
being empty or being corrupt as well as containing valid data. We make the assumption that each
floppy disk will only contain one datafile, either enrolment data, configuration data or audit data.

FLOPPY ::= noFloppy | emptyFloppy | badFloppy | enrolmentFile{(ValidEnrol)) |
auditFile((F Audit)) | configFile{Config))

> See: ValidEnrol (p. 14)

Inputs may be supplied by an administrator at the keyboard. We model input values representing no
data, invalid data or avalid request to perform an adminstrator operation.

KEYBOARD ::= noKB | badKB | keyedOps({(ADMINOP))

There are a number of messages that may appear on the TIS screen within the enclave. Some of
these are simple messages, the text of these is supplied in Table 2.2. Others involve more complex
presentation of data, such as configuration data or system statistics, the details of this presentation
isleft to design.

SCREENTEXT ::= clear | welcomeAdmin | busy | removeAdminToken | closeDoor |
requestAdminOp | doingOp | invalidRequest | invalidData |
insertEnrolmentData | validatingEnrolmentData | enrolmentFailed |
archiveFailed | insertBlankFloppy | insertConfigData |

displayStats((Stats)) | displayConfigData((Config))

In addition to the messages statistics and the current configuration data may be displayed on the
screen.

Screen
screenSats : SCREENTEXT
screenMsg : SCREENTEXT
screenConfig : SCREENTEXT

> See: SCREENTEXT (p. 16)

The Real World

Within this section we consider the entities with which TIS will interact at an abstract level. We
do not consider protocol information or any flows of information that are not visible to an external
observer. For instance typical fingerprint readers need to have stale data cleared by TIS to ensure
that T1S always reads fresh data. This is not modelled in this specification but will be introduced
during the design.

The real world entities that are controlled by TIS are as follows:

e thelatch on the door into the enclave.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 17

M essage Displayed text

clear

welcomeAdmin WELCOME TO TIS

busy SYSTEM BUSY PLEASE WAIT

removeAdminToken REMOVE TOKEN

closeDaoor CLOSE ENCLAVE DOOR

requestAdminOp ENTER REQUIRED OPERATION

doingOp PERFORMING OPERATION PLEASE WAIT
invalidRequest INVALID REQUEST: PLEASE ENTER NEW OPERATION
invalidData INVALID DATA: PLEASE ENTER NEW OPERATION
archiveFailed ARCHIVE FAILED: PLEASE ENTER NEW OPERATION
insertEnrolmentData PLEASE INSERT ENROLMENT DATA FLOPPY
validatingEnrolmentData | VALIDATING ENROLMENT DATA PLEASE WAIT
enrolmentFailed INVALID ENROLMENT DATA

insertBlankFloppy INSERT BLANK FLOPPY

insertConfigData INSERT CONFIGURATION DATA FLOPPY

Table 2.2: Short Screen Messages

the audible alarm.

the display that resides outside the enclave.

the screen on the ID Station within the enclave with which the administrator interacts.

TISControlledReal\World
latch : LATCH

alarm : ALARM
display : DISPLAYMESSAGE
screen : Screen

v

See: LATCH (p. 15), ALARM (p. 15), DISPLAYMESSAGE (p. 15), Screen (p. 16)
The real world entities that are used by TIS are as follows:

e thereal world has a concept of time. Thisis taken from an external time source.
e the door into the enclave that is monitored by the ID Station.

e fingerprints are read, viathe biometric reader, into the ID Station for comparison with finger-
print templates.

e auser, trying to enter the enclave will supply their token to the ID station viathe token reader
that resides outside the enclave.

e auser within the enclave who has administrator privileges will supply their token to the 1D
station via the token reader that resides inside the enclave.

e the ID Station accepts enrolment data and configuration data on afloppy disk. The disk drive
resides in the enclave.

e the ID Station has a keyboard within the enclave which the administrator uses to control TIS.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 18
__ TISMonitoredRealWorld
now : TIME
door : DOOR

finger : FINGERPRINTTRY

user Token, adminToken : TOKENTRY
floppy : FLOPPY

keyboard : KEYBOARD

> See: TIME (p. 8), DOOR (p. 15), FINGERPRINTTRY (p. 15), TOKENTRY (p. 15), FLOPPY (p. 16),
KEYBOARD (p. 16)

In addition TIS may change some of the entities that it uses from the real world.

e The D station may need to update the user Token token (with an Authentication Certificate).
e the ID Station archives the Audit Log to floppy disk so may write to floppy.

The Whole real world is given by:

RealWorld = TISControlledRealWorld A TISMonitoredReal\World

> See: TISControlledRealWorld (p. 17), TISMonitoredReal\World (p. 18)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 19

THE TOKEN ID STATION

TIS maintains various state components, these are described and elaborated within this section.

Configuration Data

FS.ConfigData.State

Config will be a structure with all the configuration data. Configuration data can only be modified
by an administrator. This dataincludes:

e Durations for internal timeouts. These effect how long the system waits before raising an
audible alarm, how long the system leaves the door unlocked for, and how long the system
waits for a successful token removal.

e The security classification of the enclave.

e Therules for alocating validity periods to authorisation certificates. These rules will depend
on the time at which the certificate was issued, and may also depend on the role of the user,
for example some roles may not be given use of the workstations “out of hours”.

e Therules for allowing entry to the enclave. These rules will depend on the role and security
classification of the user, for example some roles may not be given access to the enclave “out
of hours’.

e The minimum size of the audit log before truncation may occur, minPreservedLogS ze, which
is configured to be within available file store capacity of the TIS. A dightly smaller value,
alarmThresholdSize, setsthe size of the audit log at which an alarm israised, with the intention
that the audit log will be archived and cleared before the truncation occurs. We acknowledge
that there will be a system limit which affects the largest size of log that can be guaranteed to
be preserved.

| maxSupportedLogSize : N

__Config
alarmSlentDuration, latchUnlockDuration : TIME
tokenRemovalDuration : TIME

enclaveClearance : Clearance

authPeriod : PRIVILEGE — TIME — P TIME
entryPeriod : PRIVILEGE — CLASS— P TIME
minPreservedLogSize : N

alarmThresholdSize : N

alarmThresholdSize < minPreservedLogSze
minPreservedLogSze < maxSupportedLogSze

> See: TIME (p. 8), Clearance (p. 8), PRIVILEGE (p. 9), CLASS (p. 8), maxSupportedLogSze (p. 19)

In practice there will be constraints on the authorisation periods and entry periods. These constraints
will be considered during the design. There will also be constraints on the maximum FAR permitted
by the biometic verification. Thiswill be introduced in the design.

32

3.3

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 20
Audit Log

FS.AuditLog.State

TIS maintains an audit log. Thisisalog of all auditable events and actions performed or monitored
by TIS. The audit log will be used to analyse the interactions with the TIS.

Audit will be a structure for each audit record, recording at least time of event, type of event, user if
known. We use title case because we know thisis atype we will be elaborating | ater.

[Audit]
Each audit element has associated with it a size, which may vary between audit elements. The size
of an audit log can be determined from the size of its elements.

sizeElement : Audit — N
sizeLog : F Audit — N

sizeLogd =0
Vlog : F Audit; entry : Audit e
entry € log = sizeLoglog = sizeLog (log \ {entry}) + sizeElement entry

The Audit log consists of a number of Audit elements. An audit error alarm will be raised if the
audit log becomes full and needs to be archived and cleared.

AuditLog
’»auditLog : F Audit

auditAlarm : ALARM

> See: ALARM (p. 15)
All audit elements have associated with them atimestamp so it is possible to determine the times of
the newest and oldest entries in the log.

oldestLogTime : F Audit — TIME
newestLogTime : F Audit — TIME

VA, B: F Audit e
newestLogTime(A U B) > newestLogTimeA
A oldestLogTime(A U B) < oldestLogTimeA

> See: TIME (p. 8)

> Both these functions are monotonic. In particular the newestLogTime & isthe earliest time and the oldestLogTime &
isthe latest possible time.

Key Store

FS.KeyStore.State

34

35

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 21

TIS maintains a key store which contains al Issuer keys relevant to its function. This will include
known CAs, AAs and its own key. Once enrolled, the key store also contains the ID station’s name
and own key.

__KeyStore
issuerKey : ISSUER + KEYPART
ownName : optional ISSUER

ownName # nil = theownName € dom issuerKey

> See! ISSUER (p. 9), optional (p. 8), nil (p. 8), the (p. 8)

> An|D Station isissued with aname at enrolment. Prior to enrolment it will not have a name.

> ThisID Station, once named, will have its key held with the other issuers’ keys.

System Statistics

FS.Stats.State

TIS keeps track of the number of times that a entry to the enclave has been attempted (and denied)
and the number of times it has succeeded. It also records the number of times that a biometric
comparison has been made (and failed) and the number of times it succeeded.

By retaining these statistics it is possible for the performance of the system to be monitored.

Sats
successEntry : N
failEntry : N
successBio : N
failBio: N

Administration

FS.Admin.State

SFP_DAC FMT_MOF.1.1
FDP_ACC.1.1 FIA_LUSB.1.1
FDP_ACF.1.1 FMT_MSA.1.1
FDP_ACF.1.2 FMT_MTD.1.1
FDP_ACF.1.3 FMT_SMR.2.1
FDP_ACF.1.4 FMT_SAE.1.1

In addition to its role of authorising entry to the enclave, TIS supports a number of administrative
operations.

Archivelog - writes the archive log to floppy and truncates the internally held archive log.
UpdateConfiguration - accepts new configuration data from afloppy.

OverrideDoorL ock - unlocks the enclave door.

Shutdown - stops TIS, leaving the protected entry to the enclave secure.

3.6

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 22

ADMINOP ::= archivelLog | updateConfigData | overrideLock | shutdownOp

Other operations that could be supported are Displaylog, Cancel Alarm, Clear Sats, Decommission,
Addissuers, Removelssuers. These additional operations will be considered out of scope of this
re-devel opment.

Only users with administrator privileges can make use of the TIS to perform administrative func-
tions. There are anumber of different administrator privileges that may be held.
ADMINPRIVILEGE == {guard, auditManager, securityOfficer }

> See: guard (p. 9), auditManager (p. 9), securityOfficer (p. 9)

The role held by the administrator will determine the operations available to the administrator. An
administrator can only hold one role.

—Admin
rolePresent : optional ADMINPRIVILEGE
availableOps : P ADMINOP
currentAdminOp : optional ADMINOP

rolePresent = nil = availableOps = &
(rolePresent # nil A therolePresent = guard) = availableOps = {overrideLock}
(rolePresent = nil A therolePresent = auditManager) = availableOps = {archivelLog}
(rolePresent # nil A therolePresent = securityOfficer) = availableOps = {updateConfigData, shutdownOp}
currentAdminOp # nil =
(thecurrentAdminOp € availableOps A rolePresent # nil)

> See! optional (p. 8), ADMINPRIVILEGE (p. 22), ADMINOP (p. 22), nil (p. 8), the (p. 8), guard (p. 9),
overrideLock (p. 22), auditManager (p. 9), archiveLog (p. 22), securityOfficer (p. 9), updateConfigData (p. 22),
shutdownOp (p. 22)

> The availableOps are completely determined by the roles present.

In order to perform an administrative operation an administrator must be present. Presence will be
determined by an appropriate token being present in the administrator’s card reader.

Real World Entities

FS.RealWorld.State

FAU_ARP.1.1 FAU_SAA.1.2
FAU_SAA.1.1 FPT_RVM.1.1

Thelatch isallowed to bein two states: locked and unlocked. When thelatch is unlocked, latchTimeout
will be set to the time at which the lock must again be locked.

The alarm is similar to the latch, in that it has a silent, and alarming, with an alarmTimeout. Once
the door and latch move into a potentially insecure state (door open and latch locked) then the
alarmTimeout is set to the time at which the alarm will sound.

The state of currentLatch is entirely derived from whether the latchTimeout has fired or not. The
state of doorAlarmisalso entirely derived — if the stateis potentially insecure and the alarmTimeout
has fired, the alarm must be alarming.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 23

__DoorLatchAlarm
currentTime : TIME
currentDoor : DOOR
currentLatch : LATCH
doorAlarm : ALARM
latchTimeout : TIME
alarmTimeout : TIME

currentLatch = locked < currentTime > latchTimeout
doorAlarm = alarming <
(currentDoor = open
A currentLatch = locked
A currentTime > alarmTimeout)

> See: TIME (p. 8), DOOR (p. 15), LATCH (p. 15), ALARM (p. 15), locked (p. 15), alarming (p. 15), open (p. 15)

The ID Station holds internal representations of all of the Real World, plus its own data. It holds
separate indications of the presence of input in the real world peripherals of the User Token, Admin
Token, Fingerprint reader, and Floppy disk. Thisis so that once the input has been read, and the
card, finger or disk removed, the ID Station can continue to know what the value was, eveniif it later
detects that the real world entity has been removed.

UserToken
currentUser Token : TOKENTRY
user TokenPresence : PRESENCE

> Seet TOKENTRY (p. 15), PRESENCE (p. 8)

AdminToken
currentAdminToken : TOKENTRY
adminTokenPresence : PRESENCE

> See: TOKENTRY (p. 15), PRESENCE (p. 8)

Finger
currentFinger : FINGERPRINTTRY
finger Presence : PRESENCE

> Seet FINGERPRINTTRY (p. 15), PRESENCE (p. 8)

We need to retain an internal view of the last data written to the floppy as well as the current data on
the floppy, this is because we need to check that writing to floppy works when we archive the log.

Floppy
currentFloppy : FLOPPY

writtenFloppy : FLOPPY
floppyPresence : PRESENCE

> See: FLOPPY (p. 16), PRESENCE (p. 8)

37

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 24

Keyboard
currentKeyedData : KEYBOARD
keyedDataPresence : PRESENCE

> See: KEYBOARD (p. 16), PRESENCE (p. 8)

Internal State

FS.Internal.State

FPT_RVM.1.1

STATUS and ENCLAVESTATUS are purely interna records of the progress through processing.
STATUS tracks progress through user entry, while ENCLAVESTATUS tracks progress through all
activities performed within the enclave.

STATUS ::= quiescent |

gotUser Token | waitingFinger | gotFinger | waitingUpdateToken | waitingEntry |
waitingRemoveTokenSuccess | waitingRemoveTokenFail

ENCLAVESTATUS ::= notEnrolled | waitingEnrol | waitingEndEnrol |
enclaveQuiescent |
gotAdminToken | waitingRemoveAdminTokenFail | waitingStartAdminOp | waitingFinishAdminOp |
shutdown

The states quiescent and enclaveQuiescent represent the enclave interface and the user entry inter-
face being quiescent.

The states gotUserToken, .. waitingRemoveTokenFail are all associated with the process of user
authentication and entry. These are described futher in Section 6.

The states notEnrolled, .. waitingEnrolEnd reflect enrolment activity that must be performed be-
fore TIS can offer any of its normal operations. Once the TIS is successfully enrolled it becomes
quiescent.

The states gotAdminToken, .. waitingFinishAdminOp reflect activity at the TIS console relating to
administrator use of TIS.

The state shutdown models the system when it is shutdown.

Internally the system maintains knowledge of the status of the user entry operation and the enclave.
It also holds atimeout which is only relevant when the status is on waitingRemoveTokenSuccess.

Internal
status : STATUS

enclaveStatus : ENCLAVESTATUS
tokenRemoval Timeout : TIME

> Seer STATUS (p. 24), ENCLAVESTATUS (p. 24), TIME (p. 8)

3.8

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 25

Thewhole Token ID Station

FS.TIS. State

The whole Token ID Station is constructed from combining the described state components.

In addition there is a display outside the enclave and screen within the enclave. The ID Station
screen within the enclave may display many pieces of information. The majority of this datawill be
determined by state invariants.

The aarm, door and latch conform to their consistency rules. The relationships between available
operations and roles present are preserved.

If the authentication protocol has moved on to requesting a fingerprint, then the User Token will
have passed its validation checks.

Similarly if the system considers there to be an administrator present then the Admin Token will
have passed its validation checks.

Once the ID station has been enrolled it has a name.

TISisonly ever in the two states waitingStartAdminOp or waitingFinishAdminOp when then thereis
acurrent admin operation in progress. For single phase operations the state waitingFinishAdminOp
is not used.

TISwill only read the Admin Token to log on an administrator if there is not an administrator role
currently present.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 26

__IDSation
UserToken
AdminToken
Finger
DoorLatchAlarm
Floppy
Keyboard
Config
Stats
KeyStore
Admin
AuditLog
Internal

currentDisplay : DISPLAYMESSAGE
currentScreen : Screen

status € { gotFinger, waitingFinger, waitingUpdateToken, waitingEntry } =
((3 ValidToken e goodT (#ValidToken) = currentUser Token)
V (3 TokenWithValidAuth e goodT (6 TokenWithValidAuth) = currentUser Token))

rolePresent # nil =
(3 TokenWithvalidAuth e goodT (dTokenWithValidAuth) = currentAdminToken)

enclaveStatus ¢ { notEnrolled, waitingEnrol, waitingEndEnrol } =
(ownName # nil)

enclaveStatus € { waitingStartAdminOp, waitingFinishAdminOp } < currentAdminOp # nil

(currentAdminOp # nil A thecurrentAdminOp € { shutdownOp, overridelock })
= enclaveStatus = waitingStartAdminOp

enclaveSatus = gotAdminToken = rolePresent = nil

currentScreen.screenStats = displaySats(0Stats)
currentScreen.screenConfig = displayConfigData(#Config)

> See: UserToken (p. 23), AdminToken (p. 23), Finger (p. 23), DoorLatchAlarm (p. 22), Floppy (p. 23),
Keyboard (p. 24), Config (p. 19), Sats (p. 21), KeyStore (p. 21), Admin (p. 22), AuditLog (p. 20), Internal (p. 24),
DISPLAYMESSAGE (p. 15), Screen (p. 16), gotFinger (p. 24), waitingFinger (p. 24),
waitingUpdateToken (p. 24), waitingEntry (p. 24), ValidToken (p. 13), goodT (p. 15), TokenWithValidAuth (p. 13),
nil (p. 8), notEnrolled (p. 24), waitingEnrol (p. 24), waitingEndEnrol (p. 24), waitingStartAdminOp (p. 24),
waitingFinishAdminOp (p. 24), the (p. 8), shutdownOp (p. 22), overrideLock (p. 22), displayStats (p. 16),
displayConfigData (p. 16)

> Note that the token may not still be current since time will have moved on since the checks were performed.

> Operations that can be performed in a single phase do not result in TIS entering the state waitingFinishAdminOp
as they are finished when they are started.

> TISonly enters the state gotAdminToken when there is no administrator present.
> Invariants define many of the screen components.

4.1

4.2

421

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 27

OPERATIONSINTERFACING TO THE ID STATION

Real World Changes

The monitored components of the real world can change at any time. The only assumption we make
of the real world is that the time supplied by the external time source increases. If the external time
source does hot supply increasing times then our system is not guaranteed to work.

—RealWorldChanges
ARealWorld

now > now

> See: RealWorld (p. 18)

Obtaining inputsfrom thereal world
In thismodel all datais polled from the real world on aperiodic basis.

Polling the real world

FS.Interface.T1SPoll
FPT_STM.1.1

We poll al of the real world entities.
Changes to the time, may affect the state of the latch.
__PollTime

ADoorLatchAlarm
Real\World

currentTime¢’ = now

> See: DoorLatchAlarm (p. 22), RealWorld (p. 18)

When polling the door, we do not change the alarm timeout or latch timeout. The internal repre-
sentation of the latch or the alarm may change as a result of changes to the attributes that influence
their values.

__PollDoor
ADoorLatchAlarm
Real\World

currentDoor’ = door
latchTimeout’ = latchTimeout
alarmTimeout’ = alarmTimeout

> See: DoorLatchAlarm (p. 22), Real\World (p. 18)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 28

The system polls the tokens, finger, floppy and keyboard and the last present value is stored. This
alows the peripheral to be removed before TIS has completed use of the data.

__PollUserToken
AUserToken
RealWorld

user TokenPresence’ = present <> userToken # noT
currentUser Token' = if userToken # noT then userToken else currentUser Token

> See: UserToken (p. 23), RealWorld (p. 18), present (p. 8), noT (p. 15)

__PollAdminToken
AAdminToken
Real\World

adminTokenPresence = present < adminToken # noT
currentAdminToken’ = if adminToken # noT then adminToken else currentAdminToken

> See: AdminToken (p. 23), RealWorld (p. 18), present (p. 8), noT (p. 15)

__PollFinger
AFinger
Real\World

fingerPresence’ = present < finger # noFP
currentFinger’ = if finger # noFP then finger else currentFinger

> See: Finger (p. 23), RealWorld (p. 18), present (p. 8), noFP (p. 15)

__PollFloppy
AFloppy
RealWorld

floppyPresence’ = present < floppy # noFloppy
currentFloppy = if floppy # noFloppy then floppy else currentFloppy
writtenFloppy = writtenFloppy

> See: Floppy (p. 23), Real\World (p. 18), present (p. 8), noFloppy (p. 16)

__PollKeyboard
AKeyboard
RealWorld

keyedDataPresence = present < keyboard # noKB
currentKeyedData' = if keyboard # noKB then keyboard else currentKeyedData

> See: Keyboard (p. 24), RealWorld (p. 18), present (p. 8), noKB (p. 16)

Asaresult of polling the time and door the alarm may become raised or cleared and the latch locked
or unlocked. Both of these events should be recorded in the audit. The opening and shutting of the
door isaso audited (auditing is defined later in the specification).

4.3

431

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 29

So the overdl poll operation is obtained by combining all the individual polling actions.

If the user is currently being invited to enter the enclave on the display and the door becomes latched
then the display will change to indicate that the system is no longer offering entry.

We assume that while polling occurs the RealWorld does not change.

__TISPall
AlDSation
=RealWorld

PollTime
PollDoor
PollUser Token
Poll AdminToken
PollFinger
PollFloppy
PollKeyboard
LogChange

=Config
=KeyStore
ZAdmin
=3ats
Zinternal

currentScreen’ = currentScreen

currentDisplay = doorUnlocked A currentLatch = locked
A (status # waitingRemoveTokenFail A currentDisplay’ = welcome
V status = waitingRemoveTokenFail A currentDisplay = removeToken)
V = (currentDisplay = doorUnlocked A currentLatch’ = locked)
A currentDisplay’ = currentDisplay

> See: IDSation (p. 25), RealWorld (p. 18), PollTime (p. 27), PollDoor (p. 27), PollUser Token (p. 28),
Poll AdminToken (p. 28), PollFinger (p. 28), PollFloppy (p. 28), PollKeyboard (p. 28), Config (p. 19),
KeySore (p. 21), Admin (p. 22), Sats (p. 21), Internal (p. 24), doorUnlocked (p. 15), locked (p. 15),
waitingRemoveTokenFail (p. 24), welcome (p. 15)

ThelD Station changesthe world
Periodic Updates

We consider the process of updating the real world with the current internal representation, one
variable at atime.

__UpdateLatch
=DoorLatchAlarm
RealWorldChanges

latch’ = currentLatch

> See: DoorLatchAlarm (p. 22), RealWorldChanges (p. 27)

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 30
__UpdateAlarm
=DoorLatchAlarm
AuditLog

RealWorldChanges

alarm’ = alarming < doorAlarm = alarming Vv auditAlarm = alarming

> See: DoorLatchAlarm (p. 22), AuditLog (p. 20), Real\WorldChanges (p. 27), alarming (p. 15)

__UpdateDisplay
AlDSation
RealWorldChanges

display’ = currentDisplay
currentDisplay’ = currentDisplay

> See: IDSation (p. 25), RealWorldChanges (p. 27)

Configuration Data is only displayed if the security officer is present. System statistics are only
displayed if an administrator is present.

—UpdateScreen
AlDSation
ZAdmin
RealWorldChanges

screen’.screenMisg = currentScreen.screenMsy
screen’ .screenConfig = if therolePresent = securityOfficer then currentScreen.screenConfig else clear
screen’ .screenSats = if rolePresent # nil then currentScreen.screen3ats else clear

> See: IDSation (p. 25), Admin (p. 22), RealWbrldChanges (p. 27), the (p. 8), securityOfficer (p. 9), clear (p. 16),
nil (p. 8)

All these can be combined, along with no change in the remaining real world variables, to represent
the regular updating of the world.

When updates to the real world occur it is possible that interfacing with external devices will result
in a system fault that is audited. Not other aspects of TIS will change during updates of the red
world.

FS.Interface.TISEarlyUpdate

ScGainlnitial.Suc.Locked FAU_ARP.1.1
ScGainRepeat.Suc.Locked FAU_SAA.1.1
ScUnlock.Suc.Locked

The alarm and the door latch will need to be updated as soon as possible after polling the real world,
this ensures that the system is kept secure.

TISEarlyUpdate = Updatelatch A UpdateAlarm
A [RealWorldChanges | screen’ = screen A display’ = display]
A [AlDSation | currentDisplay = currentDisplay']
A EUserToken A ZAdminToken A ZFinger A ZFloppy A
=Keyboard A EConfig A ESats
A EKeyStore A ZAdmin A Zlnternal
A (AddElementsToLog Vv ZAuditLog)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 31

> See: UpdatelLatch (p. 29), UpdateAlarm (p. 29), RealWorldChanges (p. 27), IDStation (p. 25), User Token (p. 23),
AdminToken (p. 23), Finger (p. 23), Floppy (p. 23), Keyboard (p. 24), Config (p. 19), Sats (p. 21),
KeySore (p. 21), Admin (p. 22), Internal (p. 24), AuditLog (p. 20)

FS.Interface.TISUpdate

ScGainlnitial.Suc.Locked FAU_SAA.1.2
ScGainRepeat. Suc.Locked SFP.DAC
ScUnlock.Suc.Locked FMT_MSA1.1
FAU_ARP1.1 FMT_SMR 2.2
FAU_SAA1.1 FMT_SAE.1.1

The alarm, door latch, display and T1S screen will be updated after performing any calculations.

TISUpdate = UpdateLatch A UpdateAlarm A UpdateDisplay A UpdateScreen
A EUserToken A ZAdminToken A ZFinger A ZFloppy A
=Keyboard A EConfig A EStats
A ZEKeyStore A ZAdmin A Zlnternal
A (AddElementsToLog Vv ZAuditLog)

> See: UpdatelLatch (p. 29), UpdateAlarm (p. 29), UpdateDisplay (p. 30), UpdateScreen (p. 30), User Token (p. 23),
AdminToken (p. 23), Finger (p. 23), Floppy (p. 23), Keyboard (p. 24), Config (p. 19), Sats (p. 21),
KeySore (p. 21), Admin (p. 22), Internal (p. 24), AuditLog (p. 20)

4.3.2 Updating the user Token

FS.Interface.UpdateToken

We have a further operation, which writes to the User Token only. We treat this separately because
we expect to update the other devices regularly and frequently, but we will only be updating the
User Token when we have something to write.

_UpdateUser Token
ZIDSation
RealWorldChanges

=TISControlledRealWorld

userToken’ = currentUser Token

> See: IDSation (p. 25), RealWorldChanges (p. 27), TISControlledRealWorld (p. 17)

4.3.3 Updating the Floppy

FS.Interface.UpdateFloppy

We have an operation which writes to the Floppy only. We will only be updating the Floppy disk
when we have something to write.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 32

—UpdateFloppy
AlDSation
RealWorldChanges

=User Token
=AdminToken
=ZFinger
=DoorLatchAlarm
=Keyboard
=Config
=Sats
=KeySore
=Admin
ZAuditLog
Zlnternal

=TISControlledRealWorld
floppy = writtenFloppy

currentFloppy’ = badFloppy
floppyPresence = floppyPresence
currentDisplay’ = currentDisplay
currentScreen’ = currentScreen

> See! IDSation (p. 25), RealWorldChanges (p. 27), UserToken (p. 23), AdminToken (p. 23), Finger (p. 23),
DoorLatchAlarm (p. 22), Keyboard (p. 24), Config (p. 19), Sats (p. 21), KeySore (p. 21), Admin (p. 22),
AuditLog (p. 20), Internal (p. 24), TISControlledReal\World (p. 17), badFloppy (p. 16)

> Having written the floppy we can assume nothing about the currentFloppy until we next poll. We do not know
what datais on the floppy as it may have been corrupted during the write. This ensures that the readback we do is
forced to be effective.

5.1

511

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 33

INTERNAL OPERATIONS

In this section we present anumber of operations performed internally by the TIS. These operations
are combined to create the operations available to the user.

Updating the Audit L og

Adding elements to the Log

FS.AuditL og.AddElementsToL og

ScGeneral .Fail Audit ScLogOn.Fail.AuditPreserve
ScGainlnitial .Fail. AuditPreserve ScLogOff.Fail . AuditPreserve
ScProhibitlnitial.Fail AuditPreserve FAU_ARP1.1
ScGainRepeat.Fail . AuditPreserve FAU_SAA.1.1

ScSart.Fail AuditPreserve FAU_SAA.1.2
ScShutdown. Fail . AuditPreserve FAU_STG.2.3

ScConfig.Fail .AuditPreserve FAU_STG.4.1

ScUnlock.Fail. AuditPreserve

When we add a set of entries to the log, either there is sufficient room in the log for the new entries,
in which case the new entries are added to the log, or there is insufficient room in the log to add
the new entries and the oldest part of the log is truncated to make room for the new log entries. We
don't specify here how much of the log is truncated although it is likely to be sufficient to continue
adding some data without further truncations. If the log istruncated or is close to its maximum size,
an darmisraised to notify the administrator that the log isfull.

— AddElementsToLog
Config
AAuditLog

JnewElements : F, Audit o
oldestLogTime newElements > newestLogTime auditLog

A (auditLog’ = auditLog U newElements
A (sizeLogauditLog’ < alarmThresholdSize A auditAlarnd = auditAlarm
V sizeLogauditLog’ > alarmThresholdSze A auditAlarm’ = alarming)
V
sizeLog auditLog + sizel og newElements > minPreservedLogS ze
A (FoldElements : F Audit e
oldElements U auditLog’ = auditLog U newElements
A oldestLogTimeauditLog’ > newestLogTime ol dElements)
A sizeLogauditLog’ > minPreservedLogSze
A auditAlarm’ = alarming)

> See: Config (p. 19), AuditLog (p. 20), oldestLogTime (p. 20), alarming (p. 15)

> We make an assuption that all data added to the log is no older than the data already in the log.

> This operation is non-deterministic when the addition of the set of newElements will make the log larger than the
minPreservedLogSize. At this point the log may, or may not be truncated.

> If the configuration data changes it is possible that the minPreservedLogS ze becomes larger or smaller, any new
value for this configurable item will not take effect until configuration is complete.

512

513

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 34

Archiving the Log

FS.AuditL og.Archivel og

When we archive the log an audit element is added to the log and an archive is generated which can
be written to floppy.

This activity does not clear the log since a check will be made to ensure the archive was successful
before clearing the log.

__ArchiveLog
Config
AAuditLog
archive : F Audit

3 notArchived, newElements : F Audit e
archive C auditLog U newElements
A auditLog’ C archive U notArchived
A newestLogTimearchive < oldestLogTime notArchived
A AddElementsToLog

> See: Config (p. 19), AuditLog (p. 20), oldestLogTime (p. 20), AddElementsToLog (p. 33)

> Theexplicit contraints on this schema define the component of the audit |og that will be the archive. The constraints
ensure that the archive includes the ol dest elements and has no gapsin it.

> This operation is used in the total operation that writes the archive log to floppy. archive is the audit log that is
written to floppy.

> The archive only contains some of the fina log. The part of the log that is not archived is represented by
notArchived.

Clearing the Log

FS.AuditLog.ClearL og
FAU_ARP1.1

The log should only be cleared if it can be verified that an archive has been created of the data that
is about to be cleared.

When the log is cleared the component that has been archived is eliminated from the log. There
may still be some elements in the log, these will have been added since the archive. Where the log
has overflowed since the time of the archive the archive may contain entries older than those in the
log.

If thelog iscleared successfully then the auditAlarmis cancelled (provided that the size of the audit
log is not larger than the alarm threshold size).

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 35
_ ClearLog
Config
AAuditLog

archive : F Audit

(3 sinceArchive, lostSinceArchive : F Audit e
archive U sinceArchive = lostSinceArchive U auditLog
A oldestLogTimesinceArchive > newestLogTimearchive
A newestLogTimelostSnceArchive < oldestLogTimeauditLog
A auditLog’ = sinceArchive)

(sizeLog auditLog’ < alarmThresholdSze A auditAlarmf = silent
V sizeLogauditLog’ > alarmThresholdSze A auditAlarm’ = alarming)

> See: Config (p. 19), AuditLog (p. 20), oldestLogTime (p. 20), silent (p. 15), alarming (p. 15)

> Thisoperationisnot total, it will only be used to construct atotal operation that makes archive the value read back
successfully from the floppy. Thus archive will have been the whole audit log at some point in the past.

514 Auditing Changes

FS.AuditL og.L ogChange

ScGainlnitial.Suc.Audit FAU_ARP.1.1
ScProhibitlnitial.Suc.Audit FAU_SAA1.1
ScGainRepeat. Suc.Audit FAU_SAA.1.2
ScUnlock.Suc.Audit

TIS adds audit entries whenever any of the following changes occurs:

e The door is opened or closed.

e Thedoor islatched or unlatched.

e The alarm starts alarming or becomes silenced.

e The audit alarm starts alarming or becomes silenced.
e Thetext displayed on the display changes.

e Thetext displayed on the screen changes.

__AuditDoor
ADoorLatchAlarm
AddElementsToLog

currentDoor # currentDoor’

> See: DoorLatchAlarm (p. 22), AddElementsToLog (p. 33)

__AuditLatch
ADoorLatchAlarm
AddElementsToLog

currentLatch’ # currentLatch

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 36

> See: DoorLatchAlarm (p. 22), AddElementsToLog (p. 33)

__AuditAlarm
ADoorLatchAlarm
AddElementsToLog

doorAlarm ## doorAlarn'

> See: DoorLatchAlarm (p. 22), AddElementsToLog (p. 33)

__AuditLogAlarm
AddElementsToLog

auditAlarm # auditAlarm’

> See: AddElementsToLog (p. 33)

__AuditDisplay
AddElementsToLog
AlDSation

currentDisplay’ # currentDisplay

> See: AddElementsToLog (p. 33), IDStation (p. 25)

—AuditScreen
AlDSation
AddElementsToLog

currentScreen’ .screenMsg # currentScreen.screenMsg

> See: IDSation (p. 25), AddElementsToLog (p. 33)

If none of these changes occur then the audit log may still be updated due to the operation being
executed; if no operation driven events occur it will not change.

__NoChange
AlDSation

currentDoor = currentDoor’

currentLatch’ = currentLatch

doorAlarm = doorAlarm’

auditAlarm = auditAlarm’

currentDisplay’ = currentDisplay

currentScreen’ .screenMsg = currentScreen.screenMsg

AddElementsToLog v ZAuditLog

> See: IDSation (p. 25), AddElementsToLog (p. 33), AuditLog (p. 20)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 37

> Thisisavery weak statement in the specification, because we are postponing elaboration of Audit elements until
the design.

LogChange = AuditAlarm v AuditLatch v AuditDoor Vv AuditLogAlarm v AuditScreen v AuditDisplay
Vv NoChange

> See: AuditAlarm (p. 36), AuditLatch (p. 35), AuditDoor (p. 35), AuditLogAlarm (p. 36), AuditScreen (p. 36),
AuditDisplay (p. 36), NoChange (p. 36)

5.2 Updating System Statistics

FS.Stats.Update

System statistics are updated as actions that are being monitored for the statistics occur.

We provide operations to increment the count of each of the events being monitored.

— AddSuccessful EntryToStats
AStats

failEntry’ = failEntry
successEntry’ = successEntry + 1
failBio’ = failBio
successBio’ = successBio

> See Sats(p. 21)

__AddFailedEntryToStats
AStats

failEntry’ = failEntry + 1
successEntry’ = successEntry
failBio’ = failBio
successBio’ = successBio

> See Sats(p. 21)

__ AddSuccessful BioCheckToStats
ASats

failEntry’ = failEntry
successEntry’ = successEntry
failBio’ = failBio

successBio’ = successBio + 1

> See: Stats (p. 21)

__ AddFailedBioCheckToStats
ASats

failEntry’ = failEntry
successEntry’ = successEntry
failBio’ = failBio + 1
successBio’ = successBio

> See Sats(p. 21)

53

54

54.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 38

Operating the Door

FS.Door.Unlock Door

The door is unlatched by updating the timeouts on the door latch and alarm.

__UnlockDoor
ADoorLatchAlarm
Config

latchTimeout’ = currentTime 4 latchUnlockDuration
alarmTimeout’ = currentTime + latchUnlockDuration 4 alarmSlentDuration
currentTime’ = currentTime
currentDoor’ = currentDoor

> See: DoorLatchAlarm (p. 22), Config (p. 19)

FS.Door.L ockDoor

The door is explicitly latched and timeouts on the door latch and alarm are reset. Resetting the
timeouts to the current time will ensure that the door will be latched directly and the alarm sound if
there is a breach of security.

__LockDoor
ADoorLatchAlarm

currentLatch’ = locked
latchTimeout’” = currentTime
alarmTimeout’ = currentTime
currentTime¢/ = currentTime
currentDoor’ = currentDoor

> See: DoorLatchAlarm (p. 22), locked (p. 15)

Certificate Operations

Validating Certificates

FS.Certificate.CertificateOK

When acertificate is checked in the context of akey storeitisonly acceptable if the certificate i ssuer
is known to the key store and the signature can be verified by the key store.

A certificate must have been issued by a known issuer.
— CertlssuerKnown

KeyStore
Certificate

id.issuer € dom issuerKey

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 39

> See: KeyStore (p. 21), Certificate (p. 10)

A certificate must have been signed by the issuer.

__CertOK
CertlssuerKnown

issuerKey(id.issuer) € isvalidatedBy

> See: CertlssuerKnown (p. 38)

FS.Certificate. AuthCertificateOK

In addition the Authorisation certificate must have been issued by this ID station; we make the
assumption that asingle ID station protects an enclave.

__CertlssuerlsThisTIS
KeyStore
Certificate

ownName # nil
id.issuer = theownName

> See: KeyStore (p. 21), Certificate (p. 10), nil (p. 8), the (p. 8)

AuthCertOK = CertlssuerlsThisTIS A CertOK

> See: CertlssuerlsThisTIS (p. 39), CertOK (p. 39)

542 Generating Authorisation Certificates

FS.Certificate.NewAuthCert

FDP_UIT.1.1 FIA_UAU.3.2
FDP_UIT.1.2

An authorisation certificate can be constructed using information from avalid token and the current
configuration of TIS. TIS can only generate the authorisation certificate if it has its own key to
perform the signing with; thisis modelled as the TIS knowing its own name.

__NewAuthCert
ValidToken
KeyStore
Config
newAuthCert : AuthCert
currentTime : TIME

ownName = nil

newAuthCert.id.issuer = theownName

newAuthCert.validityPeriod = authPeriod privCert.rolecurrentTime
newAuthCert.baseCertld = idCert.id

newAuthCert.tokenlD = tokenlD

newAuthCert.role = privCert.role

newAuthCert.clearance = minClearance(enclaveClearance, privCert.clearance)
newAuthCert.isvalidatedBy = { issuerKey(the ownName) }

543

5.5

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 40

> See: ValidToken (p. 13), KeyStore (p. 21), Config (p. 19), AuthCert (p. 12), TIME (p. 8), nil (p. 8), the (p. 8),
minClearance (p. 9)

Adding Authorisation Certificates to User Token

FS.User Token.AddAuthCertToUser Token

If avalid user token is present in the system then an authorisation certificate can be added to it.

__ AddAuthCertToUser Token
AUserToken

KeyStore

Config

currentTime : TIME

user TokenPresence = present
currentUserToken € ran goodT

3 ValidToken; ValidToken’ e §ValidToken = (goodT™ currentUser Token)
A OValidToken’ = (goodT ™ currentUser Token')
A (3 newAuthCert : AuthCert o theauthCert’ = newAuthCert A NewAuthCert)
A tokenlD’ = tokenID
A idCert’ = idCert
A privCert’ = privCert
A iandACert’ = iandACert

user TokenPresence’ = user TokenPresence

> See: UserToken (p. 23), KeyStore (p. 21), Config (p. 19), TIME (p. 8), present (p. 8), goodT (p. 15),
ValidToken (p. 13), AuthCert (p. 12), the (p. 8), NewAuthCert (p. 39)

Updating the Key Store

FS.KeyStore.UpdateKeyStore

The key store is updated using the supplied enrolment data to add issuers and their public keys.

__UpdateKeyStore
AKeySore
ValidEnrol

theownName' = idSationCert.subject
issuerkey' = issuerkey @ {c : issuerCerts e c.subject — c.subjectPubK }
@ {theownName — idSationCert.subjectPubK }

> See: KeySore (p. 21), ValidEnrol (p. 14), the (p. 8)

> Thisoperation uses union and override so that it can be used to add issuers as well asinitial enrolment.

The enrolment data will always be supplied on afloppy disk.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 41
_UpdateKeyStoreFromFloppy
AKeySore
Floppy

currentFloppy € ran enrolmentFile
(3 ValidEnrol e 6ValidEnrol = enrolmentFile™ currentFloppy
A UpdateKeyStore)

> See: KeyStore (p. 21), Floppy (p. 23), enrolmentFile (p. 16), ValidEnrol (p. 14), UpdateKeyStore (p. 40)

5.6 Administrator Changes
An administrator may log on to the TIS console, logoff, or start an operation.

5.6.1 Logon Administrator

FS.Admin.AdminL ogon

An administrator can only log on if there is no-one currently logged on.

—_AdminLogon
AAdmin
AdminToken

rolePresent = nil

3 ValidToken o
(goodT (6ValidToken) = currentAdminToken
A therolePresent’ = (theauthCert).role)

currentAdminOp’ = nil

> See: Admin (p. 22), AdminToken (p. 23), nil (p. 8), ValidToken (p. 13), goodT (p. 15), the (p. 8)

5.6.2 Logout Administrator

FS.Admin.AdminL ogout

An adminstrator, who is currently logged on can aways log off. This will terminate the current
operation.

__ AdminLogout
AAdmin

rolePresent # nil

rolePresent’ = nil
currentAdminOp’ = nil

> See: Admin (p. 22), nil (p. 8)

5.6.3

564

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 42

Administrator Starts Operation

FS.Admin.AdminStartOp

An adminstrator, who is currently logged on, can start any of the operations that he is allowed to
perform. An operation can only be started if there is no operation currently in progress.

—_ AdminSartOp
AAdmin
Keyboard

rolePresent £ nil
currentAdminOp = nil
currentKeyedData € keyedOps(availableOps)

rolePresent’ = rolePresent
the currentAdminOp’ = keyedOps™ currentKeyedData

> Seer Admin (p. 22), Keyboard (p. 24), nil (p. 8), keyedOps (p. 16), the (p. 8)

Administrator Finishes Operation

FS.Admin.AdminFinishOp

An adminstrator, who is currently logged on, can finish an operation.

__ AdminFinishOp
AAdmin

rolePresent # nil
currentAdminOp # nil

rolePresent’ = rolePresent
currentAdminOp’ = nil

> See: Admin (p. 22), nil (p. 8)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 43

THE USER ENTRY OPERATION

This operation is a multi-stage operation and will be presented as a number of operations with
preconditions on the internal status. The state transition diagram for user authentication and entry
isgiven in Figure 6.1. Before user authentication and entry the system isin the quiescent state, on
completion of the user authentication and entry the system will return the to quiescent state.

ReadUserTeken

UserTokenTear

UserTokenTear

gotUserToken
BioCheckRequired

BioCheckNotRequired

UserTokenTear

waitingFinger
UnlockDoo UserTokenTear e

UserTokenTear ReadFingerOK

gotFinger
FingerTimeout

ValidateFingerOK

ValidateFingerFail
waitingUpdateToken

WriteUserTokenOK
WriteUserTokenFailed

waitingRemove
TokenSuccess

EntryOK

ValidateUserTokenFail

TokenRemovalTimeout

FailedAccessTokenRemoved EntryNotAllowed

waitingRemove
‘ TokenFail

Figure 6.1: User Authentication and Entry state transitions

The process of user authentication and entry follows the following stages:

e Before any user attempts access, the system is quiescent.

¢ Oncethetoken hasbeen inserted and the information read off, the status movesto gotUser Token,
waiting for the system to validate the token.

Praxis Tokeneer ID Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 44

Once the token has been successfully validated the status moves to waitingFinger, waiting for
the user to give afingerprint.

Once the fingerprint has been read, the status moves to gotFinger, waiting for the system to
validate the fingerprint.

Once afingerprint has been successfully validated, the status moves to waitingUpdateToken,
waiting to write the Auth Cert to the token.

Once the Auth Cert has been written, the status moves to waitingEntry, where it determines
whether the role has current entry privileges.

If the role has current entry privileges the status moves to waitingTokenRemoveSuccess, where
the system waits for the token to be removed.

Once the token has been removed the latch will be unlocked if the role has current access
privileges to the enclave and the ID Station will return to quiescent.

In the case of afailure in the user validation process the status moves to waitingRemoveTokenFail,
waiting until the token has been removed before returning to a quiescent state.

This specification separates opening the door from having avalid Auth Certificate. It is possible for
arole to be entitled to enter the enclave but not use the workstations (for example such clearence
might be given to a buildings maintenance engineer). It islikely that TIS configurations will ensure
that having avalid Auth Certificate will guarantee that entry to the enclave is permitted.

FS.Enclave.Reset ScreenM essage

The message displayed on the screen will indicate that the system is busy while a user entry isin
progress that blocks administrator activity. Once the user entry activity becomes non-blocking then
an appropriate message is displayed on the screen.

__ResetScreenMessage
Alnternal
AAdmin
currentScreen, currentScreen’ : Screen

status’ ¢ {quiescent, waitingRemoveTokenFail }
A currentScreen’ .screenMsg = busy
V
status’ € {quiescent, waitingRemoveTokenFail }
A (enclaveStatus’ = enclaveQuiescent A rolePresent’ = nil
A currentScreen’ .screenMsg = welcomeAdmin
V enclaveStatus' = enclaveQuiescent A rolePresent’ # nil
A currentScreen’ .screenMsg = requestAdminOp
V enclaveStatus’ = waitingRemoveAdminTokenFail
A currentScreen’.screenMsg = removeAdminToken
V enclaveStatus’ ¢ {enclaveQuiescent, waitingRemoveAdminTokenFail }
A currentScreen’ .screenMsg = currentScreen.screenMsg)

> See! Internal (p. 24), Admin (p. 22), Screen (p. 16), quiescent (p. 24), waitingRemoveTokenFail (p. 24),

busy (p. 16), nil (p. 8), welcomeAdmin (p. 16), waitingRemoveAdminTokenFail (p. 24), removeAdminToken (p. 16)

Theuser entry operation leaves much of the IDSation state unchanged. The context of this operation
is summarised:

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity =~ Formal Specification Issue 1.4
Systems Page 45
— UserEntryContext

AlDSation

RealWorldChanges

=Config

ZAdminToken

=KeyStore

ZAdmin

=Keyboard

=Floppy

=ZFinger

ETISControlledReal\World

ResetScreenMessage

enclaveXtatus = enclaveStatus

status # waitingEntry = tokenRemoval Timeout’ = tokenRemoval Timeout

> See! IDSation (p. 25), RealWorldChanges (p. 27), Config (p. 19), AdminToken (p. 23), KeyStore (p. 21),
Admin (p. 22), Keyboard (p. 24), Floppy (p. 23), Finger (p. 23), TISControlledRealWorld (p. 17),
ResetScreenMessage (p. 44), waitingEntry (p. 24)

> The following state components may change User Token, DoorLatchAlarm, Sats, Internal and AuditLog.
> The components of the real world controlled by TIS remain unchanged.

> The tokenRemoval Timeout is only updated if the current status is waitingEntry.

Each of the following sub-operations is performed within the above context.

User Token Tears

FS.UserEntry.User TokenTorn

ScGainlnitial.Suc.Audit ScProhibitlnitial.Fail.ReadCard
ScGainlnitial .Fail.ReadCard ScGainRepeat. Suc.Audit
ScProhibitlnitial.Suc.Audit

During the operation the user may tear his token from the reader prematurely. There are a number
of internal states during which token removal is deamed erroneous.

If the user tears the Token out before the operation is complete then the operation is terminated
unsuccessfully.

__UserTokenTorn
User EntryContext

=User Token
ZDoorLatchAlarm
AddFailedEntryToStats

AddElementsToLog

status € {gotUser Token, waitingUpdateToken, waitingFinger, gotFinger, waitingEntry}
user TokenPresence = absent

currentDisplay = welcome
status’' = quiescent

6.2

6.3

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 46

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), AddFailedEntryToStats (p. 37),

AddElementsToLog (p. 33), waitingUpdateToken (p. 24), waitingFinger (p. 24), gotFinger (p. 24),
waitingEntry (p. 24), absent (p. 8), welcome (p. 15), quiescent (p. 24)

Reading the User Token

FS.UserEntry.TISReadUser Token

ScGainlnitial.Ass.Quiescent ScProhibitInitial.Suc.Audit
ScGainlnitial.Suc.Audit ScGainRepeat.Ass.Quiescent
ScGainlnitial.Con.Nolnterleave ScGainRepeat.Suc.Audit
ScProhibitlnitial .Ass.Quiescent ScGainRepeat.Con.Nol nterleave
ScProhibitlnitial.Con.Nol nterleave FIA_UID.2.1

The User Entry operation is initiated when TISisin a quiescent state and detects the presence of a
token in the user token reader (which resides outside the enclave).

A user entry operation may start while the enclaveStatus is quiescent (enclaveQuiescent) or the
enclave iswaiting for afailed admin token to be removed.

When the user token is first detected as present, its presence is audited and the interna status
changes. No other aspects of the system are modified.

_ReadUserToken
UserEntryContext

ZUserToken
=DoorLatchAlarm
=Sats

AddElementsToLog
enclaveStatus € {enclaveQuiescent, waitingRemoveAdminTokenFail }

status = quiescent
user TokenPresence = present

currentDisplay’ = wait
status’' = gotUser Token

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), Sats (p. 21),
AddElementsToLog (p. 33), waitingRemoveAdminTokenFail (p. 24), quiescent (p. 24), present (p. 8), wait (p. 15)

The operation to read the user token is as follows:

TISReadUser Token = ReadUser Token

> See: ReadUserToken (p. 46)

Validating the User Token
Once TIS has read a user token it must validate the contents of that token.

A user token is valid for entry into the enclave, without the need for Biometric checks if the token
contains an Authorisation certificate that cross-checks correctly with the Token ID and the ID cer-
tificate, is current and both the Authorisation certificate and ID certificate can be validated using the
keys held in the TIS KeyStore.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 47
__ User TokenWithOK AuthCert
KeyStore
UserToken

currentTime : TIME

currentUser Token € ran goodT
3 TokenWithValidAuth e
(goodT (8 TokenWithValidAuth) = currentUser Token
A currentTime € (theauthCert).validityPeriod
A (31DCert o 91DCert = idCert A CertOK)
A (3 AuthCert o AuthCert = theauthCert A AuthCertOK))

> See: KeyStore (p. 21), UserToken (p. 23), TIME (p. 8), goodT (p. 15), TokenWithValidAuth (p. 13), the (p. 8),
IDCert (p. 11), CertOK (p. 39), AuthCert (p. 12), AuthCertOK (p. 39)

A user token isvalid for entry into the enclave if thetoken is consistent, current and the ID certificate,
Privilege certificate and I& A certificate can be validated. Thisis regardless of the presence or state
of the Authorisation certificate. However in this circumstance biometric checks will be required.

__UserTokenOK
KeyStore
UserToken
currentTime : TIME

currentUser Token € ran goodT
3 CurrentToken o
(goodT (6ValidToken) = currentUserToken
A now = currentTime
A (3 IDCert o 91DCert = idCert A CertOK)
A (I PrivCert o GPrivCert = privCert A CertOK)
A (F1andACert o flandACert = iandACert A CertOK))

> See: KeySore (p. 21), UserToken (p. 23), TIME (p. 8), goodT (p. 15), CurrentToken (p. 13), ValidToken (p. 13),
IDCert (p. 11), CertOK (p. 39), PrivCert (p. 12), landACert (p. 12)

FS.User Entry.BioCheckNotRequired

ScGainlnitial .Ass.GoodAC FCO_NRO.2.3
ScGainRepeat. Suc.Audit FDP_DAU.2.1
FCO_NRO.2.1 FDP_DAU.2.2
FCO_NRO.2.1

In the case where there isavalid Authorisation certificate the biometric checks are bypassed.

__BioCheckNotRequired
User EntryContext

=User Token
=DoorLatchAlarm
=Sats

AddElementsToLog

status = gotUser Token
user TokenPresence = present

User TokenWithOK AuthCert

status' = waitingEntry
currentDisplay’ = wait

Praxis Tokeneer 1D Station
High Integrity Formal Specification

Systems

Reference S.P1229.41.2
Issue 1.4

Page 48

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), Sats (p. 21),
AddElementsToLog (p. 33), present (p. 8), User TokenWMthOKAuthCert (p. 46), waitingEntry (p. 24), wait (p. 15)

> The userTokenValidElement is the audit entry recording that the token has been succesfully validated.

> The authCertValidElement is the audit entry recording that the token has a valid authorisation certificate.

FS.User Entry.BioCheckRequired

ScGainlnitial . Ass.ValidUser
ScGainlnitial .Ass.PoorAC
ScGainlnitial.Suc.Audit
FCO_NRO.2.1

FCO_NRO.2.1
FCO_NRO.2.3
FDP_DAU.2.1
FDP_DAU.2.2

The biometric checks are only required if the Authorisation Certificate is not present or not valid.
In this case the remaining certificates on the card must be checked.

__BioCheckRequired

UserEntryContext

ZUserToken
=DoorLatchAlarm
=Sats

AddElementsToLog

status = gotUser Token
user TokenPresence = present

status' = waitingFinger

— User TokenWithOKAuthCert A User TokenOK

currentDisplay = insertFinger

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), Sats (p. 21),
AddElementsToLog (p. 33), present (p. 8), User TokenWWithOK AuthCert (p. 46), User TokenOK (p. 47),

insertFinger (p. 15), waitingFinger (p. 24)

ValidateUser TokenOK = BioCheckRequired Vv BioCheckNotRequired

> See: BioCheckRequired (p. 48), BioCheckNotRequired (p. 47)

FS.UserEntry.ValidateUser TokenFail

ScGainlnitial .Fail.ReadCard
ScProhibitlnitial . Ass.Fal seUser
ScProhibitlnitial . Ass.PoorAC

ScProhibitlnitial.Suc.Audit
ScProhibitlnitial .Fail.ReadCard
ScGainRepeat.Fail.ReadCard

There arelots of things that may go wrong with validation of the user token. I1n each case the system

will terminate the operation unsuccessfully.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 49

__ValidateUser TokenFail
User EntryContext

=User Token
=DoorLatchAlarm
=Sats

AddElementsToLog

status = gotUser Token
user TokenPresence = present

- UserTokenWithOK AuthCert A — User TokenOK

currentDisplay’ = removeToken
status’ = waitingRemoveTokenFail

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), Sats (p. 21),
AddElementsToLog (p. 33), present (p. 8), User TokenWMithOK AuthCert (p. 46), User TokenOK (p. 47),
waitingRemoveTokenFail (p. 24)

TISvalidateUser Token = ValidateUser TokenOK Vv ValidateUser TokenFall
V [UserTokenTorn | status = gotUser Token]

> See: ValidateUser TokenOK (p. 48), ValidateUser TokenFail (p. 48), UserTokenTorn (p. 45)

6.4 Reading a fingerprint

FS.UserEntry.ReadFinger OK
ScGainlnitial.Suc.Audit ScProhibitlnitial.Suc.Audit

A finger will be read if the system is currently waiting for it and the user Token isin place.

_ReadFingerOK
User EntryContext

=DoorLatchAlarm
ZUserToken
=Sats

AddElementsToLog

status = waitingFinger
finger Presence = present
user TokenPresence = present

currentDisplay’ = wait
status’' = gotFinger

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), UserToken (p. 23), Sats (p. 21),
AddElementsToLog (p. 33), waitingFinger (p. 24), present (p. 8), wait (p. 15), gotFinger (p. 24)

FS.User Entry.NoFinger

If there is no finger present then either nothing happens, since we have not allowed sufficient at-
tempts to get and validate a finger...

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 50
__NoFinger
=IDSation

RealWorldChanges
ZTISControlledReal World

status = waitingFinger
finger Presence = absent
user TokenPresence = present

> See: IDStation (p. 25), RealWorldChanges (p. 27), TISControlledReal\World (p. 17), waitingFinger (p. 24),
absent (p. 8), present (p. 8)

FS.User Entry.Finger Timeout

ScGainlnitial .Fail.Fingerprint ScProhibitinitial .Fail.Fingerprint
ScProhibitlnitial.Suc.Audit

...or TIS may have tried to obtain avalid finger for too long, in which case the user is requested to
remove the token and the operation is terminated unsuccessfully. Abstractly this decision is made
non-deterministicaly.

__FingerTimeout
UserEntryContext

ZUserToken
=DoorLatchAlarm
=Sats

AddElementsToLog

status = waitingFinger
user TokenPresence = present

currentDisplay’ = removeToken
status’ = waitingRemoveTokenFail

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), Sats (p. 21),
AddElementsToLog (p. 33), waitingFinger (p. 24), present (p. 8), waitingRemoveTokenFail (p. 24)

TISReadFinger = ReadFingerOK v FingerTimeout \V NoFinger
V [UserTokenTorn | status = waitingFinger |

> See: ReadFingerOK (p. 49), Finger Timeout (p. 50), NoFinger (p. 49), UserTokenTorn (p. 45),
waitingFinger (p. 24)

6.5 Validating a fingerprint

FS.UserEntry.ValidateFinger OK
ScGainlnitial . Ass.ValidUser ScGainlnitial.Suc.Audit

A finger must match the template information extracted from the userToken for it to be consid-
ered acceptable. The match criterion is not modelled formally here athough it is necessary for the
fingerprint to at least be good.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 51
__FingerOK
Finger
User Token

currentFinger € ran goodFP

> See: Finger (p. 23), UserToken (p. 23), goodFP (p. 15)

Within this specification the fingerprint will non-deterministically match or not, assuming it is good.

The fingerprint being successfully validated is a prerequisite for generating an authorisation certifi-
cate and adding it to the user token. Validating the fingerprint is performed first.

__ValidateFingerOK
User EntryContext

=DoorLatchAlarm
=User Token

AddSuccessful BioCheckToStats
AddElementsToLog

status = gotFinger
user TokenPresence = present

FingerOK

status’ = waitingUpdateToken
currentDisplay’ = wait

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), UserToken (p. 23),
AddSuccessful BioCheckToStats (p. 37), AddElementsToLog (p. 33), gotFinger (p. 24), present (p. 8),
FingerOK (p. 50), waitingUpdateToken (p. 24), wait (p. 15)

FS.UserEntry.ValidateFinger Fail

ScGainlnitial.Fail.Fingerprint ScProhibitlnitial.Suc.Audit
ScProhibitlnitial . Ass.Fal seUser

If the fingerprint is not successfully validated the user is asked to remove their token and the entry
attempt is terminated. The biometric check failure is recorded.

__ValidateFingerFail
User EntryContext

=User Token
=DoorLatchAlarm

AddFailedBioCheckToStats
AddElementsToLog

status = gotFinger
user TokenPresence = present

currentDisplay’ = removeToken
status’ = waitingRemoveTokenFail

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), AddFailedBioCheckToStats (p. 37),
AddElementsToLog (p. 33), gotFinger (p. 24), present (p. 8), waitingRemoveTokenFail (p. 24)

6.6

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 52

TISvalidateFinger = ValidateFingerOK V ValidateFingerFail
V [UserTokenTorn | status = gotFinger |

> See: ValidateFingerOK (p. 51), ValidateFingerFail (p. 51), User TokenTorn (p. 45), gotFinger (p. 24)

Writing the User Token

FS.UserEntry.WriteUser TokenOK

ScGainlnitial.Suc.GoodAC ScGainlnitial.Suc.Audit
ScGainlnitial.Suc.PersistCerts

An attempt is made to write this certificate to the token. The write of the authorisation certificate

may be successful...

__ WriteUser TokenOK
User EntryContext

=DoorLatchAlarm
=Sats

AddElementsToLog
AddAuthCertToUser Token

status = waitingUpdateToken
user TokenPresence = present

status’ = waitingEntry
currentDisplay’ = wait

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), Stats (p. 21), AddElementsToLog (p. 33),

AddAuthCertToUser Token (p. 40), waitingUpdateToken (p. 24), present (p. 8), waitingEntry (p. 24), wait (p. 15)

FS.UserEntry.WriteUser TokenFail
ScGainlnitial .Fail WriteCard

... or may fail. The failure case models circumstances where the T1S can detect the failure, through
awrite failure for instance. Asthere isno read back of the authorisation certificate we cannot guar-
antee that the audit log indicating a successful write means that the token contains the authorisation
certificate. The user will still subsequently be admitted to the enclave if the conditions are correct.

__ WriteUser TokenFail
User EntryContext

=DoorLatchAlarm
=Sats

AddElementsToLog
AddAuthCertToUser Token

status = waitingUpdateToken
user TokenPresence = present

status’ = waitingEntry
currentDisplay’ = tokenUpdateFailed

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), Stats (p. 21), AddElementsToLog (p. 33),
AddAuthCertToUser Token (p. 40), waitingUpdateToken (p. 24), present (p. 8), waitingEntry (p. 24),
tokenUpdateFailed (p. 15)

6.7

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 53

Abstractly, whether the authorisation certificate is successfully written or not is non-deterministic.

The failure will actually happen during the physical write to the token, during UpdateUser Token.
However, as the operations WriteUser Token and UpdateUser Token are both used to build the atomic
operation TISWriteUser Token, the non-deterministic failure still happens sometime within this atomic
operation.

WriteUser Token = WriteUser TokenOK v WriteUser TokenFail
> See: WriteUser TokenOK (p. 52), WriteUser TokenFail (p. 52)

TISWriteUser Token = (WriteUser Token § UpdateUser Token)
V [UserTokenTorn | status = waitingUpdateToken |

> See: WriteUser Token (p. 53), UpdateUser Token (p. 31), UserTokenTorn (p. 45), waitingUpdateToken (p. 24)

Validating Entry

The door will only be unlocked if the current TIS configuration allows the user to enter the enclave
a thistime. It islikely that TIS configurations will ensure that having a valid Auth Certificate will
guarantee that entry to the enclave is permitted, but such a constraint is not specified here.

TIS checks to ensure that the current configuration allows the user to enter the enclave:

—UserAllowedEntry
UserToken

Config
currentTime : TIME

(3 ValidToken o
goodT (fValidToken) = currentUser Token
A currentTime € entryPeriod privCert.roleprivCert.clearance.class)
V (3 TokenWithvalidAuth e
goodT (f TokenWithValidAuth) = currentUser Token
A currentTime € entryPeriod (theauthCert).role (the authCert).clearance.class)

> See: UserToken (p. 23), Config (p. 19), TIME (p. 8), ValidToken (p. 13), goodT (p. 15),
TokenWithvalidAuth (p. 13), the (p. 8)

FS.UserEntry.EntryOK

Only if entry is permitted at the current time will the user be admitted to the enclave.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 54

— EntryOK
User EntryContext

=DoorLatchAlarm
=User Token
=Sats

AddElementsToLog

status = waitingEntry
user TokenPresence = present

User AllowedEntry

currentDisplay’ = openDoor
status’ = waitingRemoveTokenSuccess
tokenRemoval Timeout’ = currentTime -+ tokenRemoval Duration

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), UserToken (p. 23), Sats (p. 21),
AddElementsToLog (p. 33), waitingEntry (p. 24), present (p. 8), UserAllowedEntry (p. 53), openDoor (p. 15)

FS.UserEntry.EntryNotAllowed

If the user isnot allowed entry at this time they will be requested to remove their token.

__EntryNotAllowed
User EntryContext

=DoorLatchAlarm
ZUserToken
=Sats

AddElementsToLog

status = waitingEntry
user TokenPresence = present

— UserAllowedEntry

currentDisplay’ = removeToken
status’ = waitingRemoveTokenFail
tokenRemoval Timeout’ = tokenRemoval Timeout

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), UserToken (p. 23), Sats (p. 21),
AddElementsToLog (p. 33), waitingEntry (p. 24), present (p. 8), UserAllowedEntry (p. 53),
waitingRemoveTokenFail (p. 24)

TISvalidateEntry = EntryOK
V EntryNotAllowed
V [UserTokenTorn | status = waitingEntry|

> See! EntryOK (p. 53), EntryNotAllowed (p. 54), UserTokenTorn (p. 45), waitingEntry (p. 24)

6.8 Unlocking the Door

FS.User Entry.UnlockDoor OK

ScGainlnitial.Suc.UserCard ScGainRepeat.Suc.UserCard
ScGainlnitial.Suc.UserIn ScGainRepeat.Suc.UserIn
ScGainlnitial.Suc.Audit ScGainRepeat. Suc.Audit

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 55

The door will only be unlocked once the user has removed their token. This helps remind the user
to take their token with them.

__UnlockDoorOK
UserEntryContext

=User Token

UnlockDoor
AddSuccessful EntryToStats
AddE!lementsToLog

status = waitingRemoveTokenSuccess
user TokenPresence = absent

currentDisplay’ = doorUnlocked
status’ = quiescent

> See: UserEntryContext (p. 44), UserToken (p. 23), UnlockDoor (p. 38), AddSuccessful EntryToStats (p. 37),
AddElementsToLog (p. 33), absent (p. 8), doorUnlocked (p. 15), quiescent (p. 24)

FS.User Entry.WaitingTokenRemoval

The system will wait indefinitely for atoken to be removed, however the system will deny entry to
auser who takes too long to extract their token.

__WaitingTokenRemoval
ZIDSation
RealWorldChanges

=TISControlledReal\World

status € {waitingRemoveTokenSuccess, waitingRemoveTokenFail }
status = waitingRemoveTokenSuccess = currentTime < tokenRemoval Timeout
user TokenPresence = present

> See: IDSation (p. 25), RealWorldChanges (p. 27), TISControlledRealWorld (p. 17),
waitingRemoveTokenFail (p. 24), present (p. 8)

FS.User Entry.TokenRemoval Timeout

If the user waits too long to remove their token then this islogged and the system continues to wait
for the token to be removed but will no longer allow access to the enclave.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 56

__TokenRemoval Timeout
User EntryContext

=DoorLatchAlarm
=User Token
=Sats

AddElementsToLog

status = waitingRemoveTokenSuccess
currentTime > tokenRemoval Timeout
user TokenPresence = present

status’ = waitingRemoveTokenFail
currentDisplay’ = removeToken

> See: UserEntryContext (p. 44), DoorLatchAlarm (p. 22), UserToken (p. 23), Sats (p. 21),
AddElementsToLog (p. 33), present (p. 8), waitingRemoveTokenFail (p. 24)

TISUnlockDoor = UnlockDoor OK
V [WaitingTokenRemoval | status = waitingRemoveTokenSuccess|
V TokenRemoval Timeout

> See: UnlockDoorOK (p. 55), WaitingTokenRemoval (p. 55), TokenRemoval Timeout (p. 55)

6.9 Terminating a failed access

FS.User Entry.FailedAccessTokenRemoved

ScGainlnitial.Suc.Audit ScProhibitlnitial.Suc.Audit
ScProhibitlnitial.Suc.UserCard

If an access attempt has failed the system waits for the token to be removed before a new user entry
operation can commence. Once the token has been removed a new user entry may start.

The operations in the enclave are not blocked on the presence of a failed user token in the token
reader.

__FailedAccessTokenRemoved
User EntryContext

=User Token
=DoorLatchAlarm

AddFailedEntryToStats
AddElementsToLog

status = waitingRemoveTokenFail
user TokenPresence = absent

currentDisplay = welcome
status’' = quiescent

> See: UserEntryContext (p. 44), UserToken (p. 23), DoorLatchAlarm (p. 22), AddFailedEntryToStats (p. 37),
AddElementsToLog (p. 33), waitingRemoveTokenFail (p. 24), absent (p. 8), welcome (p. 15), quiescent (p. 24)

TISCompleteFailedAccess = FailedAccessTokenRemoved
V [WaitingTokenRemoval | status = waitingRemoveTokenFail]

> See: FailedAccessTokenRemoved (p. 56), WaitingTokenRemoval (p. 55), waitingRemoveTokenFail (p. 24)

6.10

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 57

The Complete User Entry

FS.UserEntry.TISUser EntryOp

FIA_UAU.7.1

The complete authentication process, triggered by TIS reading a User Token, involves validating
the user Token, reading and validating the fingerprint, writing an authorisation certificate to the user
token, waiting for the user to remove the token, opening the door to the enclave and in the case of a
failure waiting for the system to be in a state where it can admit another user.

TISUserEntryOp = TISReadUserToken Vv TISvalidateUser Token v TISReadFinger Vv TISvalidateFinger
V TISWFriteUser Token Vv TISvalidateEntry vV TISUnlockDoor Vv TISCompleteFailedAccess

> See: TISReadUserToken (p. 46), TISvalidateUser Token (p. 49), TISReadFinger (p. 50), TISvalidateFinger (p. 52),
TISWriteUser Token (p. 53), TISvalidateEntry (p. 54), TISUnlockDaoor (p. 56), TISCompleteFailedAccess (p. 56)

7.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 58

OPERATIONSWITHIN THE ENCLAVE

A number of interactions with TIS may occur within the Enclave. These interactions |eave some of
the IDSation state unchanged.

__EnclaveContext
AlDSation
RealWorldChanges

=TISControlledRealWorld

ZUserToken
=AdminToken
=Finger
=Sats

tokenRemoval Timeout’ = tokenRemoval Timeout

> See: IDSation (p. 25), RealWorldChanges (p. 27), TISControlledRealWorld (p. 17), User Token (p. 23),
AdminToken (p. 23), Finger (p. 23), Sats (p. 21)

> The following state components may change KeyStore, Floppy, Config, Admin, Keyboard, DoorLatchAlarm,
Internal and AuditLog.

> The components of the real world controlled by TIS remain unchanged.

The operations that may occur within the enclave include administrator operations and the ID station
enrolment. These are described in this section.

Enrolment of an ID Station

FS.Enclave.TISEnrolOp

Before TIS can be used it must be enrolled.
We assume that the initial enrolment isthe only possible enrolment activity.

Enrolment is a multi-phase activity, the state transistions for an enrolment are given in Figure 7.1.
Before enrolment the system is in state notEnrolled and, on successful completion, it enters the
quiescent state.

The context for all enrolment operations is given below.

__EnrolContext
EnclaveContext

=Keyboard
ZAdmin
=ZDoorLatchAlarm
=Config

=Floppy

> See: EnclaveContext (p. 58), Keyboard (p. 24), Admin (p. 22), DoorLatchAlarm (p. 22), Config (p. 19),
Floppy (p. 23)

711

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 59

RequestEnrolment

/f notEnrolled enclaveQuiescent

FailedEnrolFloppyRemoved

ReadEnrolmentFloppy
ValidateEnrolmentDataOK
@dEnrol

waitingEnrol

ValidateEnrolmentDataFail

Figure 7.1: Enrolment state transitions

> The following state components may change KeyStore, Internal and AuditLog.

Requesting Enrolment

FS.Enclave.RequestEnrolment

The ID station will request enrolment while there is no Floppy present. This will occur until a
successful enrolment is achieved.

—ReguestEnrolment
Enrol Context

=KeyStore
ZAuditLog
Elnternal

enclaveSatus = notEnrolled
floppyPresence = absent

currentScreen’ .screenMsg = insertEnrolmentData

currentDisplay’ = blank

> See: EnrolContext (p. 58), KeyStore (p. 21), AuditLog (p. 20), Internal (p. 24), notEnrolled (p. 24), absent (p. 8),
blank (p. 15)

FS.Enclave.ReadEnrolmentFloppy
ScSart.Ass.Data ScSart.Con.Nolnterleave

If afloppy is present then TIS goes on to validate the contents. Nothing is written to the log at this
stage as log entries will be made on successful or failed enrolment.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 60
__ReadEnrolmentFloppy
Enrol Context
=KeyStore

enclaveStatus = notEnrolled
floppyPresence = present

currentScreen’.screenMsg = validatingEnrolmentData

enclaveXtatus' = waitingEnrol
status’ = status
currentDisplay’ = blank

> See: EnrolContext (p. 58), KeyStore (p. 21), notEnrolled (p. 24), present (p. 8), validatingEnrolmentData (p. 16),
waitingEnrol (p. 24), blank (p. 15)

ReadEnrolmentData = ReadEnrolmentFloppy v RequestEnrolment

> See: ReadEnrolmentFloppy (p. 59), RequestEnrolment (p. 59)

7.1.2 Vdidating Enrolment data from Floppy

For the enrolment data to be acceptable the data on the floppy must be valid enrolment data with the
ID Station certificate containing this ID station’s public key.

__EnrolmentDataOK

Floppy
KeyStore

currentFloppy € ran enrolmentFile
(3 ValidEnroal e 6ValidEnrol = enrolmentFile™ currentFloppy)

> See: Floppy (p. 23), KeyStore (p. 21), enrolmentFile (p. 16), ValidEnrol (p. 14)

FS.Enclave.ValidateEnrolmentDataOK

ScStart.Suc.Running FMT_MSA.2.1
ScSart.Suc.Audit FMT_MTD.3.1

If the data on the floppy is acceptable to be used for enrolment then the Key store is updated. From
this point the system is available for use both by users entering the enclave and by administrators.

__ValidateEnrolmentDataOK
Enrol Context

UpdateKeySoreFromFloppy
AddE!lementsToLog

enclaveStatus = waitingEnrol
EnrolmentDataOK
currentScreen’ .screenMsg = welcomeAdmin

enclaveStatus = enclaveQuiescent
status' = quiescent
currentDisplay = welcome

7.13

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 61

> See: EnrolContext (p. 58), UpdateKeyStoreFromFloppy (p. 40), AddElementsToLog (p. 33), waitingEnrol (p. 24),
EnrolmentDataOK (p. 60), welcomeAdmin (p. 16), quiescent (p. 24), welcome (p. 15)

FS.Enclave.ValidateEnrolmentDataFail
ScStart.Fail.ReadFloppy

If the enrolment fails then TIS waits for the floppy to be removed before prompting for new enrol-
ment data.

__ValidateEnrolmentDataFail
EnrolContext

=KeyStore

AddElementsToLog

enclaveStatus = waitingEnrol

— EnrolmentDataOK

currentScreen’ .screenMsg = enrolmentFailed

enclaveStatus' = waitingEndEnrol
status’ = status
currentDisplay’ = blank

> See: EnrolContext (p. 58), KeyStore (p. 21), AddElementsToLog (p. 33), waitingEnrol (p. 24),
EnrolmentDataOK (p. 60), enrolmentFailed (p. 16), waitingEndEnrol (p. 24), blank (p. 15)

ValidateEnrolmentData = ValidateEnrolmentDataOK Vv ValidateEnrolmentDataFail

> See: ValidateEnrolmentDataOK (p. 60), ValidateEnrolmentDataFail (p. 61)

Completing afailed Enrolment

A failed enrolment will only terminate once the floppy has been removed, otherwise the system
would repeatedly try to validate the same floppy.

FS.Enclave.FailedEnrolFloppyRemoved

Once the floppy has been removed the administrator is prompted for enrolment data again. We do
not log the removal of the floppy in the audit log.

__FailedEnrol FloppyRemoved
Enrol Context

=KeyStore

enclaveStatus = waitingEndEnrol
floppyPresence = absent
currentScreen’.screenMsg = insertEnrolmentData

enclaveStatus' = notEnrolled
status' = status
currentDisplay’ = blank

714

7.2

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 62

> See: EnrolContext (p. 58), KeyStore (p. 21), waitingEndEnrol (p. 24), absent (p. 8), notEnrolled (p. 24),
blank (p. 15)

FS.Enclave.WaitingFloppyRemoval

TIS will wait indefinately for the floppy to be removed after an unsuccessful enrolment, this is
because enrolment is triggered by the presence of the floppy alone.

__WaitingFloppyRemoval
EnclaveContext

=IDSation

enclaveStatus = waitingEndEnrol
floppyPresence = present

> See: EnclaveContext (p. 58), IDStation (p. 25), waitingEndEnrol (p. 24), present (p. 8)

CompleteFailedEnrolment = FailedEnrol FloppyRemoved v WaitingFloppyRemoval

> See: FailedEnrol FloppyRemoved (p. 61), WaitingFloppyRemoval (p. 62)

The Complete Enrolment

The complete enrolment process involves reading the enrolment data, validating it and, in the case
of afailure waiting for the system to bein a state where it can try another enrolment.

TISEnrolOp = ReadEnrolmentData Vv ValidateEnrolmentData
Vv CompleteFailedEnrolment

> See: ReadEnrolmentData (p. 60), ValidateEnrolmentData (p. 61), CompleteFailedEnrolment (p. 62)

Administrator Token Tear

The action of removing the administrator Token will result in the administrator being logged out of
the system.

This may happen at any point once a token has been inserted into the reader. As soon as the
adminitrator’'s token is torn this action will be logged. The screen message will be reset if the
system is hot busy with processing a user entry.

—_AdminTokenTear
EnclaveContext

=Config

=Floppy

=Keyboard
=DoorLatchAlarm
=KeyStore
ResetScreenMessage

adminTokenPresence = absent

status’ = status
currentDisplay’ = currentDisplay

enclaveStatus = enclaveQuiescent

7.3

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 63
> See: EnclaveContext (p. 58), Config (p. 19), Floppy (p. 23), Keyboard (p. 24), DoorLatchAlarm (p. 22),
KeySore (p. 21), ResetScreenMessage (p. 44), absent (p. 8)

If the admin token is torn while the system is processing an activity within the enclave then the
activity will be stopped.

__BadAdminTokenTear
AdminTokenTear

AddElementsToLog

enclaveStatus € {gotAdminToken, waitingStartAdminOp, waitingFinishAdminOp}

> See: AdminTokenTear (p. 62), AddElementsToLog (p. 33), waitingStartAdminOp (p. 24),
waitingFinishAdminOp (p. 24)

FS.Enclave.BadAdminL ogout

ScLogOff.Ass.LoggedOn ScLogOff.Suc.Audit
ScLogOff.Suc.LoggedOff

If the administrator is performing an operation when the token is torn then the administrator will be
logged off.

__BadAdminLogout
BadAdminTokenTear
AdminLogout

enclaveStatus € {waitingStartAdminOp, waitingFinishAdminOp}

> See: BadAdminTokenTear (p. 63), AdminLogout (p. 41), waitingStartAdminOp (p. 24),
waitingFinishAdminOp (p. 24)

FS.Enclave.L oginAborted

If the token is torn during the log on validation process then there is no need to log off the adminis-
trator.

__LoginAborted
BadAdminTokenTear
=Admin

enclaveStatus = gotAdminToken

> See: BadAdminTokenTear (p. 63), Admin (p. 22)

Administrator Login

An Administrator logs into TIS by inserting avalid token into the adminToken reader. The authori-
sation certificate is verified and the user islogged in with the privileges indicated on the card.

Oncethe administrator is successfully logged into TIS, the system records that thereisarole present.
The process of logging on is given by the state transition diagram in Figure 7.2

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 64

enclaveQuiescent
rolePresent = nil

i

FailedAdminTokenRemoved

| LoginAborted
TokenRemovedAdminLogout _ S

waitingRemoveAdminTokenFail
rolePresent = nil

ReadAdminToken

gotAdminToken
rolePresent = nil
alidateAdminTokenFai

AdminTokenTimeout

ValidateAdminTokenO
enclaveQuiescent
rolePresent /= nil

Figure 7.2: Administrator logon/logoff state transitions

The context for administrator login is given below.

—_LoginContext
EnclaveContext

=Keyboard
=KeySore
=DoorLatchAlarm
=Config

=Floppy

status’ = status
currentDisplay’ = currentDisplay

> See: EnclaveContext (p. 58), Keyboard (p. 24), KeySore (p. 21), DoorLatchAlarm (p. 22), Config (p. 19),
Floppy (p. 23)

> The following state components may change Admin, Internal and AuditLog.

731 Read Administrator Token

FS.Enclave. ReadAdminToken

ScLogOn.Ass.Quiescent FIA_UID.2.1
ScLogOn.Suc.Audit FMT_SMR.3.1
ScLogOn.Con.Nolnterleave

When the admin token is read the action is audited and the internal status changes. No other aspects
of the system are modified.

7.3.2

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 65

An administrator can only log on when there is no user entry activity in progress or TISis waiting
for afailed user token to be removed from the token reader outside of the enclave.

__ReadAdminToken
LoginContext

=Admin

AddElementsToLog
status € { quiescent, waitingRemoveTokenFail }

enclaveSatus = enclaveQuiescent
rolePresent = nil
adminTokenPresence = present

enclaveStatus = gotAdminToken
currentScreen’ = currentScreen

> See: LoginContext (p. 64), Admin (p. 22), AddElementsToLog (p. 33), quiescent (p. 24),
waitingRemoveTokenFail (p. 24), nil (p. 8), present (p. 8)

The operation to read the token is as follows:

TISReadAdminToken = ReadAdminToken

> See: ReadAdminToken (p. 65)

Validate Administrator Token

An administrator’s token is considered valid if it cotains a current authorisation certificate that cor-
rectly cross references to the token ID and the ID certificate and both these certificates can be val-
idated using the keys held in the KeyStore. Additionally the privileges assigned to the user within
the authorisation certificate must indicate that the user is actually an administrator.

__ AdminTokenOK
AdminToken
KeyStore
currentTime : TIME

currentAdminToken € ran goodT

3 TokenWthValidAuth e
(goodT (dTokenWithvalidAuth) = currentAdminToken
A (31DCert o 91DCert = idCert A CertOK)
A (3 AuthCert o AuthCert = theauthCert A AuthCertOK)
A (theauthCert).role € ADMINPRIVILEGE
A currentTime € (theauthCert).validityPeriod)

> See: AdminToken (p. 23), KeyStore (p. 21), TIME (p. 8), goodT (p. 15), TokenWithValidAuth (p. 13),
IDCert (p. 11), CertOK (p. 39), AuthCert (p. 12), the (p. 8), AuthCertOK (p. 39), ADMINPRIVILEGE (p. 22)

> Only the AuthCert and IDCert are checked at this point. The remaining certificates were checked on entry to the
enclave.

> The Token must indicate that the user has an administrator privilege.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 66
FS.Enclave.ValidateAdminTokenOK

ScLogOn.Ass.ValidAdmin FDP_ACF.1.2

ScLogOn.Suc.LogOn FDP_ACF.1.3

ScLogOn.Suc.Audit FDP_ACF.1.4

SFPDAC FIA_USB.1.1

FCO_NRO.2.1 FMT_MSA.1.1

FCO_NRO.2.2 FMT_MTD.1.1

FCO_NRO.2.3 FMT_SAE.11

FDP_ACC.1.1 FMT_SVR2.1

FDP_ACF.1.1 FMT_SMR2.2

If the token can be validated then the administrator islogged onto TIS.

__ValidateAdminTokenOK
LoginContext

AdminLogon
AddElementsToLog

enclaveStatus = gotAdminToken
adminTokenPresence = present

AdminTokenOK
currentScreen’ .screenMsg = requestAdminOp

enclaveStatus' = enclaveQuiescent

> See: LoginContext (p. 64), AdminLogon (p. 41), AddElementsToLog (p. 33), present (p. 8),
AdminTokenOK (p. 65)

FS.Enclave.ValidateAdminTokenFail
ScLogOn.Fail.ReadCard

If the token can not be validated then TIS waits for it to be removed.

__ValidateAdminTokenFail
LoginContext

=Admin

AddElementsToLog

enclaveStatus = gotAdminToken
adminTokenPresence = present

— AdminTokenOK
currentScreen’ .screenMsg = removeAdminToken

enclaveStatus = waitingRemoveAdminTokenFail

> See: LoginContext (p. 64), Admin (p. 22), AddElementsToLog (p. 33), present (p. 8), AdminTokenOK (p. 65),
removeAdminToken (p. 16), waitingRemoveAdminTokenFail (p. 24)

TISvalidateAdminToken = ValidateAdminTokenOK Vv ValidateAdminTokenFail
V LoginAborted

> See: ValidateAdminTokenOK (p. 66), ValidateAdminTokenFail (p. 66), LoginAborted (p. 63)

7.3.3

734

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 67

Complete Failed Administrator Logon

If an administrator token has failed to be accepted by TIS then no further actions can take place in
the enclave until it has been removed.

FS.Enclave.FailedAdminTokenRemoved

The administrator token may be removed at any point during a user entry, hence the context for this
activity does not place restrictions on the value of status.

When the admin token isremoved TISreturnsto a state ready to accept another administrator logon.

__FailedAdminTokenRemoved
LoginContext

ZAdmin
AddElementsToLog

enclaveSatus = waitingRemoveAdminTokenFail
adminTokenPresence = absent

currentScreen’ .screenMsg = welcomeAdmin

enclaveStatus' = enclaveQuiescent

currentDisplay’ = currentDisplay

> See: LoginContext (p. 64), Admin (p. 22), AddElementsToLog (p. 33), waitingRemoveAdminTokenFail (p. 24),
absent (p. 8), welcomeAdmin (p. 16)

FS.Enclave.WaitingAdminTokenRemoval

TISwill wait indefinitely for the Admin Token to be removed after afailed attempt to logon.

—WaitingAdminTokenRemoval
EnclaveContext

=IDSation

enclaveStatus = waitingRemoveAdminTokenFail
adminTokenPresence = present

> See: EnclaveContext (p. 58), IDStation (p. 25), waitingRemoveAdminTokenFail (p. 24), present (p. 8)
TISCompleteFailedAdminLogon = FailedAdminTokenRemoved Vv WaitingAdminTokenRemoval

> See: FailedAdminTokenRemoved (p. 67), WaitingAdminTokenRemoval (p. 67)

The Complete Administrator Logon

FS.Enclave.TISAdminLogin

7.4

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 68

The complete administrator logon process, from the point that the system has detected the presence
of atoken in the administrator reader, involves validating the administrator token and, in the case of
afailure waiting for the system to be in a state where it can try another logon.

TISAdminLogon = TISReadAdminToken v TISvalidateAdminToken v Tl SCompl eteFailedAdminLogon

> See! TISReadAdminToken (p. 65), TISValidateAdminToken (p. 66), TISCompleteFailedAdminLogon (p. 67)

Administrator L ogout

Administrator logout can be achieved in two ways, either the administrator removes their token
from TIS, or the Authorisation certificate on the token expires, causing the system to automatically
log off the administrator.

FS.Enclave.AdminL ogout

ScLogOff.Ass.LoggedOn ScLogOff.Suc.Audit
ScLogOff.Suc.LoggedOff

If TISis not performing an administrator operation then the token may be removed to log out the
administrator.

__TokenRemovedAdminLogout
AdminTokenTear
AdminLogout

AddElementsToLog

enclaveSatus = enclaveQuiescent
rolePresent £ nil

> See: AdminTokenTear (p. 62), AdminLogout (p. 41), AddElementsToLog (p. 33), nil (p. 8)

FS.Enclave AdminTokenTimeout

The TISwill automatically logout an administrator whose token expires. This occurs if the validity
period on the Authorisation certificate expires.

__ AdminTokenTimeout
LoginContext

AdminLogout
AddElementsToLog
ResetScreenMessage

enclaveStatus = enclaveQuiescent
adminTokenPresence = present
rolePresent # nil

— AdminTokenOK

enclaveStatus = waitingRemoveAdminTokenFail

> See: LoginContext (p. 64), AdminLogout (p. 41), AddElementsToLog (p. 33), ResetScreenMessage (p. 44),
present (p. 8), nil (p. 8), AdminTokenOK (p. 65), waitingRemoveAdminTokenFail (p. 24)

74.1

7.5

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 69

FS.Enclave.TI SCompleteTimeoutAdminL ogout

If the administrator’s token expires then it must be removed before further activities can take place
a the TIS console. This behaviour is identical to the behaviour when the system waits for a the
administrator to remove their token following afailed logon.

TISCompleteTimeoutAdminLogout = TISCompl eteFailedAdminLogon

> See: TISCompleteFailedAdminLogon (p. 67)

Complete Administrator Logout

FS.Enclave.TI SAdminL ogout

THe complete administrator logout process, from the point that it decides to log out an administrator
to the point that it isin a state where it can try another logon is givien below.

TISAdminLogout = TokenRemovedAdminLogout vV AdminTokenTimeout \ TI SCompl eteTimeoutAdminLogout

> See: TokenRemovedAdminLogout (p. 68), AdminTokenTimeout (p. 68), TISCompleteTimeoutAdminLogout (p. 69)

Administrator Operations

An administrator operation can take place as long as an administrator is present. The operation is
started by receiving avalid request to perform an operation from the keyboard. TISwill ensure that
the requested operation is one compatible with the current role present.

Once the operation is started the behaviour depends on the type of operation. Operations are either
short, and can be implemented in one phase or they are multi-phase operations.

shutdown and overrideLock are short operations, while archivelLog and updateCofigData are multi
phase operations.

The state transition diagram for administrator operations is given in Figure 7.3

All administrator operations have a common context, in which the AdminToken does not change.
An administrator can only perform an operation when there is no user entry activity in progress or
TISiswaiting for afailed user token to be removed from the token reader outside of the enclave.

AdminOpContext
EnclaveContext

=Keyboard
=KeyStore

> See: EnclaveContext (p. 58), Keyboard (p. 24), KeyStore (p. 21)

> The following state components may change Floppy, Config, Admin, DoorLatchAlarm, Internal and AuditLog.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 70

enclaveQuiescent
rolePresent = nil

TokenRemovedAdminLogout

enclaveQuiescent
rolePresent /= nil

FinishArchiveLogOK
FinishArchiveLogFail
FinishUpdateConfigDataOK
FinishUpdateConfigDataFail

waitingFinishAdminOp StartArchiveLogOK
rolePresent /= nil StartUpdateConfigOK

Figure 7.3: Administrator operation state transitions

BadAdminLogout

BadAdminLogout
ValidateOpRequestFail

ValidateOpRequestOK

ShutdownOK
OverrideDoorLockOK

waitingStartAdminOp
rolePresent /= nil

StartArchiveLogWaitingFloppy
StartUpdateConfigWaitingFloppy
ShutdownWaitingDoor

Once an operation has been started its context is given by:

_ AdminOpStartedContext
AdminOpContext

enclaveSatus = waitingStartAdminOp
adminTokenPresence = present

status' = status

> See: AdminOpContext (p. 69), waitingStartAdminOp (p. 24), present (p. 8)

> The adminToken will be present, its removal is erroneous.
> The system has arecord of the name of the current operation.

Some operations are multi-phase, the context for completing a multi-phase operation is given by:

__ AdminOpFinishContext
AdminOpContext

AdminFinishOp

enclaveStatus = waitingFinishAdminOp
adminTokenPresence = present

status’ = status
currentDisplay’ = currentDisplay

enclaveStatus = enclaveQuiescent

7.6

7.6.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 71

> See: AdminOpContext (p. 69), AdminFinishOp (p. 42), waitingFinishAdminOp (p. 24), present (p. 8)

> The adminToken will be present, its removal is erroneous.

> The enclaveStatus value implies that TIS has a record of the name of the current operation from the IDStation
invariant.

Starting Oper ations

All administrator operations are initiated in the same way. This involves validating the latest key-
board input and determining whether it isavalid operation request.

TIS only attempts to start an operation if there is an administrator present and there is no current
activity in the enclave. An administrator can only start an operation when there is no user entry
activity in progress or TIS is waiting for a failed user token to be removed from the token reader
outside of the enclave.

_ SartOpContext
EnclaveContext

=DoorLatchAlarm
=Keyboard
=Config

=Floppy
=KeySore

enclaveSatus = enclaveQuiescent
adminTokenPresence = present

rolePresent £ nil

status € { quiescent, waitingRemoveTokenFail }

status’ = status
currentDisplay’ = currentDisplay

> See: EnclaveContext (p. 58), DoorLatchAlarm (p. 22), Keyboard (p. 24), Config (p. 19), Floppy (p. 23),
KeySore (p. 21), present (p. 8), nil (p. 8), quiescent (p. 24), waitingRemoveTokenFail (p. 24)

> The following state components may change Admin, Internal and AuditLog.

Validating an Operation Request

FS.Enclave.ValidateOpRequestOK

ScShutdown. Suc.Audit FDP_ACF14
ScConfig.Suc.Audit FIA_USB.1.1
ScUnlock.Suc.Audit FMT_MOF.1.1
SFPDAC FMT_MSA.1.1
FDP_ACC.1.1 FMT_MTD.1.1
FDP_ACE1.1 FMT_SMR2.1
FDP_ACF.1.2 FMT_SAE.1.1
FDP_ACF1.3

Once the data from the keyboard has been read this must be validated to ensure it corresponds to a
valid operation.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 72
__ValidateOpReguestOK
SartOpContext
AdminSartOp
AddElementsToLog

keyedDataPresence = present
currentKeyedData € keyedOps(availableOps)

currentScreen’ .screenMsg = doingOp

enclaveStatus = waitingStartAdminOp

> Seer StartOpContext (p. 71), AdminSartOp (p. 42), AddElementsToLog (p. 33), present (p. 8), keyedOps (p. 16),
doingOp (p. 16), waitingStartAdminOp (p. 24)

FS.Enclave.ValidateOpRequestFail

If the data from the keyboard doesn’t correspond to an operation that can be performed at present
then the operation is not started and the attempt to start an illegal operation islogged.

__ValidateOpRequestFail
SartOpContext

ZAdmin
AddElementsToLog

keyedDataPresence = present
currentKeyedData ¢ keyedOps(availableOps)

currentScreen’ .screenMsg = invalidRequest

enclaveStatus = enclaveStatus

> See: SartOpContext (p. 71), Admin (p. 22), AddElementsToLog (p. 33), present (p. 8), keyedOps (p. 16),
invalidRequest (p. 16)

FS.Enclave.NoOpRequest

If there is no data at the keyboard then TIS waits for user interaction.

_NoOpReqguest
SartOpContext

=IDSation

keyedDataPresence = absent

> See:r StartOpContext (p. 71), IDSation (p. 25), absent (p. 8)

ValidateOpRequest = ValidateOpRequestOK V/ ValidateOpRequestFail v NoOpRequest

> See: ValidateOpRequestOK (p. 71), ValidateOpRequestFail (p. 72), NoOpReguest (p. 72)

7.6.2

7.7

7.7.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 73

Complete Operation Start

FS.Enclave.TISStartAdminOp

The process of starting an administrator operation involves exactly the validation of an operation
request.

TISStartAdminOp = ValidateOpRequest
> See: ValidateOpRequest (p. 72)

ArchivingtheLog
When the log is archived it is copied to floppy and the internally held log is truncated.
Theinternally held log can only be truncated if the write to floppy succeeds.

To check that the archive succeeded the floppy isread back and the data compared with that held by
the system.

This is atwo phase operation, during the first phase the log is written to floppy, during the second
phase the data on the floppy is validated.

Writing the archive Log

FS.Enclave.StartArchivel ogOK
ScAudit.Ass.LoggedOn ScAudit.Con.Nolnterleave

Thefirst phase of this operation isto write the archive log to floppy.

—_ StartArchiveLogOK
AdminOpSartedContext

=Config
=Admin
=DoorLatchAlarm

the currentAdminOp = archivel.og
floppyPresence = present

floppyPresence = floppyPresence
currentFloppy = currentFloppy

currentScreen’ .screenMsg = doingOp
currentDisplay’ = currentDisplay

enclaveStatus’ = waitingFinishAdminOp
(Farchive : F Audit e ArchiveLog A writtenFloppy = auditFilearchive)

> See: AdminOpSartedContext (p. 70), Config (p. 19), Admin (p. 22), DoorLatchAlarm (p. 22), the (p. 8),
archivelLog (p. 22), present (p. 8), doingOp (p. 16), waitingFinishAdminOp (p. 24), ArchiveLog (p. 34)

FS.Enclave.StartArchivel ogWaitingFloppy

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 74

We wait indefinitely for afloppy to be present.

__SartArchivelogWaitingFloppy
AdminOpSartedContext

=Config
=Admin
=DoorLatchAlarm
=Floppy

the currentAdminOp = archivel.og
floppyPresence = absent

currentScreen’.screenMsg = insertBlankFloppy
currentDisplay’ = currentDisplay

enclaveStatus = enclaveStatus

> See: AdminOpStartedContext (p. 70), Config (p. 19), Admin (p. 22), DoorLatchAlarm (p. 22), Floppy (p. 23),
the (p. 8), archivelLog (p. 22), absent (p. 8), insertBlankFloppy (p. 16)

SartArchiveLog = (SartArchiveLogOK § UpdateFloppy)
Vv SartArchivelLog\WaitingFloppy
V [BadAdminLogout | enclaveStatus = waitingStartAdminOp
A thecurrentAdminOp = archivelLog]

> See: StartArchiveLogOK (p. 73), UpdateFloppy (p. 31), SartArchiveLog\WaitingFloppy (p. 74),
BadAdminLogout (p. 63), waitingStartAdminOp (p. 24), the (p. 8), archiveLog (p. 22)

7.7.2 Clearing the archive Log

FS.Enclave.FinishArchivelL ogOK
ScAudit.Suc.Clear ScAudit.Suc.Written

The audit log is only truncated after a check has been made to ensure that the actual floppy data
matches what the system believes is on the floppy.

Having cleared the log an entry will be made in the log indicating that the archive was successful.

ClearLogThenAddElements = ClearLog 5 AddElementsToLog
> See: ClearLog (p. 34), AddElementsToLog (p. 33)

—FinishArchiveLogOK
AdminOpFinishContext

=Config

=Floppy
=DoorLatchAlarm

the currentAdminOp = archivelog
floppyPresence = present

writtenFloppy = currentFloppy
(Farchive : F Audit e ClearLogThenAddElements A writtenFloppy = auditFilearchive)

currentScreen’ .screenMsg = requestAdminOp

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 75

> See: AdminOpFinishContext (p. 70), Config (p. 19), Floppy (p. 23), DoorLatchAlarm (p. 22), the (p. 8),
archiveLog (p. 22), present (p. 8), ClearLogThenAddElements (p. 74)

FS.Enclave.FinishArchiveL ogNoFloppy
ScAudit.Fail Write

If the administrator is impatient and removes the floppy early then the archive fails as the system
cannot check that the archive was taken.

__FinishArchivel.ogNoFloppy
AdminOpFinishContext

=Config
=Floppy
=DoorLatchAlarm

AddElementsToLog

the currentAdminOp = archivel.og
floppyPresence = absent

currentScreen’ .screenMsg = archiveFailed

> See: AdminOpFinishContext (p. 70), Config (p. 19), Floppy (p. 23), DoorLatchAlarm (p. 22),
AddElementsToLog (p. 33), the (p. 8), archiveLog (p. 22), absent (p. 8)

FS.Enclave.FinishArchivel ogBadM atch
ScAudit.Fail Write

If the data read back from the floppy does not match what the ID station believes should be on the
floppy then the archive fails.

__FinishArchiveLogBadMatch
AdminOpFinishContext

=Config

=Floppy
=DoorLatchAlarm

AddElementsToLog

the currentAdminOp = archivel.og
floppyPresence = present

writtenFloppy # currentFloppy

currentScreen’ .screenMsg = archiveFailed

> See: AdminOpFinishContext (p. 70), Config (p. 19), Floppy (p. 23), DoorLatchAlarm (p. 22),
AddElementsToLog (p. 33), the (p. 8), archiveLog (p. 22), present (p. 8)

FinishArchivel.ogFail = FinishArchivelogBadMatch Vv FinishArchivel. ogNoFloppy

FinishArchiveLog = FinishArchiveLogOK V FinishArchivel ogFail
V [BadAdminLogout | enclaveStatus = waitingFinishAdminOp
A thecurrentAdminOp = archivelLog |

> See: FinishArchiveLogBadMatch (p. 75), FinishArchiveLogNoFloppy (p. 75), FinishArchiveLogOK (p. 74),
BadAdminLogout (p. 63), waitingFinishAdminOp (p. 24), the (p. 8), archivelLog (p. 22)

7.7.3

7.8

7.8.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 76

The complete archive Log operation

FS.Enclave. Tl SArchivel ogOp

Combining the start and finish phase of this operation gives the compl ete operation.

TISArchiveLogOp = StartArchiveLog \ FinishArchivel.og

> See: SartArchivelLog (p. 74), FinishArchiveLog (p. 75)

Updating Configuration Data

The operation to update the configuration data is a two phase operation. During the first phase the
configuration datais read from floppy. During the second phase the configuration data provided on
the floppy is checked (currently the check is purely that the data is configuration data) and the TIS
configuration datais replaced by the new data.

Reading Configuration Data

FS.Enclave.StartUpdateConfigDataOK

ScConfig.Ass.LoggedOn FMT_MSA.2.1
ScConfig.Con.Nolnterleave FMT_MTD.3.1

In order to update configuration data the administrator must supply replacement configuration data
on afloppy disk.

__SartUpdateConfigOK
AdminOpSartedContext

=Floppy

=Config

=Admin
=DoorLatchAlarm

the currentAdminOp = updateConfigData
floppyPresence = present

currentScreen’ .screenMsg = doingOp
currentDisplay’ = currentDisplay

enclaveXtatus' = waitingFinishAdminOp

> See: AdminOpStartedContext (p. 70), Floppy (p. 23), Config (p. 19), Admin (p. 22), DoorLatchAlarm (p. 22),
the (p. 8), updateConfigData (p. 22), present (p. 8), doingOp (p. 16), waitingFinishAdminOp (p. 24)

FS.Enclave.StartUpdateConfigWaitingFloppy

We wait indefinitely for afloppy to be present.

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 77
__ SartUpdateConfig\WaitingFloppy

AdminOpSartedContext

=Config

ZAdmin

=Floppy

=DoorLatchAlarm

the currentAdminOp = updateConfigData
floppyPresence = absent

currentScreen’ .screenMsg = insertConfigData
currentDisplay’ = currentDisplay

enclaveStatus' = enclaveStatus

> See: AdminOpStartedContext (p. 70), Config (p. 19), Admin (p. 22), Floppy (p. 23), DoorLatchAlarm (p. 22),
the (p. 8), updateConfigData (p. 22), absent (p. 8), insertConfigData (p. 16)

SartUpdateConfigData = StartUpdateConfigOK v SartUpdateConfig\Waiti ngFloppy
V [BadAdminLogout | enclaveStatus = waitingStartAdminOp
A thecurrentAdminOp = updateConfigData |

> See: StartUpdateConfigOK (p. 76), StartUpdateConfig\WaitingFloppy (p. 76), BadAdminLogout (p. 63),
waitingStartAdminOp (p. 24), the (p. 8), updateConfigData (p. 22)

7.8.2 Storing Configuration Data

FS.Enclave.FinishUpdateConfigDataOK
ScConfig.Suc.Config ScConfig.Suc.Audit

The supplied data will be used to replace the current configuration data if it is valid configuration
data.

__FinishUpdateConfigDataOK
AdminOpFinishContext

=Floppy
=DoorLatchAlarm

AddElementsToLog

the currentAdminOp = updateConfigData
currentFloppy € ran configFile

0Config’ = configFile™ currentFloppy
currentScreen’.screenMsg = requestAdminOp

> See: AdminOpFinishContext (p. 70), Floppy (p. 23), DoorLatchAlarm (p. 22), AddElementsToLog (p. 33),
the (p. 8), updateConfigData (p. 22), configFile (p. 16), Config (p. 19)

FS.Enclave.FinishUpdateConfigDataFail
ScConfig.Fail.Read

7.8.3

7.9

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 78

If the supplied data is not valid configuration data the operation terminates without changing the
TIS configuration data.

__FinishUpdateConfigDataFail
AdminOpFinishContext

=Config
=Floppy
=DoorLatchAlarm

AddE!lementsToLog
the currentAdminOp = updateConfigData
currentFloppy ¢ ran configFile

currentScreen .screenMsg = invalidData

> See: AdminOpFinishContext (p. 70), Config (p. 19), Floppy (p. 23), DoorLatchAlarm (p. 22),
AddElementsToLog (p. 33), the (p. 8), updateConfigData (p. 22), configFile (p. 16), invalidData (p. 16)

FinishUpdateConfigData = FinishUpdateConfigDataOK Vv FinishUpdateConfigDataFail
V [BadAdminLogout | enclaveStatus = waitingFinishAdminOp
A thecurrentAdminOp = updateConfigData |

> See: FinishUpdateConfigDataOK (p. 77), FinishUpdateConfigDataFail (p. 78), BadAdminLogout (p. 63),
waitingFinishAdminOp (p. 24), the (p. 8), updateConfigData (p. 22)

The compl ete update configuration data operation

FS.Enclave.TI SUpdateConfigDataOp

Combining the start and finish phase of this operation gives the compl ete operation.

TISUpdateConfigDataOp = StartUpdateConfigData \ FinishUpdateConfigData

> See: StartUpdateConfigData (p. 77), FinishUpdateConfigData (p. 78)

Shutting Down the I D Station
Shutting down the ID Station is a single phase operation.

When the ID Station is shutdown the door is automatically locked so the system isin a secure state.
The ID Station cannot be shutdown if the door is currently open, this prevents the enclave being | eft
in an insecure state once TISis shutdown.

FS.Enclave.ShutdownOK

ScShutdown.Ass.LoggedOn ScShutdown. Suc.Audit
ScShutdown. Suc.Shutdown ScShutdown.Con.Nonl nterleave
ScShutdown.Suc.Secure

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 79

__ ShutdownOK
AdminOpContext

=Config
=Floppy
AddE!lementsToLog

LockDoor
AdminLogout

enclaveSatus = waitingStartAdminOp
the currentAdminOp = shutdownOp
currentDoor = closed

currentScreen’ .screenMsg = clear

enclaveStatus' = shutdown
currentDisplay’ = blank

> See: AdminOpContext (p. 69), Config (p. 19), Floppy (p. 23), AddElementsToLog (p. 33), LockDoor (p. 38),
AdminLogout (p. 41), waitingStartAdminOp (p. 24), the (p. 8), shutdownOp (p. 22), closed (p. 15), clear (p. 16),
blank (p. 15)

FS.Enclave.ShutdownWaitingDoor

TISwaits indefinitely for the door to be closed before completing the shutdown.

_ ShutdownWaitingDoor
AdminOpContext

=Config

=Floppy
=DoorLatchAlarm
=Admin

enclaveSatus = waitingStartAdminOp
the currentAdminOp = shutdownOp
currentDoor = open

currentScreen’ .screenMsg = closeDoor

enclaveStatus = enclaveStatus
currentDisplay’ = currentDisplay

> See: AdminOpContext (p. 69), Config (p. 19), Floppy (p. 23), DoorLatchAlarm (p. 22), Admin (p. 22),
waitingStartAdminOp (p. 24), the (p. 8), shutdownOp (p. 22), open (p. 15), closeDoor (p. 16)

FS.Enclave. Tl SShutdownOp

There is nothing that can go wrong with the shutdown operation. Thisis the only operation that is
not prevented by tearing the admin token, as soon as the door is closed TIS will shut down.

TISShutdownOp = ShutdownOK Vv Shutdown\aitingDoor

> See: ShutdownOK (p. 78), ShutdownWaitingDoor (p. 79)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 80

7.10 Unlocking the Enclave Door

Unlocking the enclave door is a single phase operation.

FS.Enclave.OverrideDoor L ockOK

ScUnlock.Ass.LoggedOn ScUnlock.Suc.Audit
ScUnlock.Ass.Quiescent ScUnlock.Con.Nol nterleave
ScUnlock.Suc.UserIn

A guard may need to open the enclave door to admit someone who cannot be admitted by the
system.

__OverrideDoor LockOK
AdminOpSartedContext

=Floppy
=Config

AddElementsToLog
AdminFinishOp
UnlockDoor

the currentAdminOp = overrideLock

currentScreen’ .screenMsg = requestAdminOp
currentDisplay’ = doorUnlocked

enclaveStatus = enclaveQuiescent

> See: AdminOpStartedContext (p. 70), Floppy (p. 23), Config (p. 19), AddElementsToLog (p. 33),
AdminFinishOp (p. 42), UnlockDoor (p. 38), the (p. 8), overridelLock (p. 22), doorUnlocked (p. 15)

FS.Enclave.TI1 SUnlockDoor Op

This operation has no failures other than the administrator tearing their token before the operation
compl etes.

TISOverrideDoorLockOp = OverrideDoor LockOK
V [BadAdminLogout | enclaveStatus = waitingStartAdminOp
A thecurrentAdminOp = overridelock]

> See: OverrideDoorLockOK (p. 80), BadAdminLogout (p. 63), waitingStartAdminOp (p. 24), the (p. 8),
overrideLock (p. 22)

8.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 81

THE INITIAL SYSTEM AND STARTUP

Thelnitial System

FS.TIS.InitIDStation

FMT_M&A3.1

After initial installation the system has the following properties

e an empty key store, which meansit is unable to authorise entry to anyone;
default configuration data, which does not permit entry to anyone;

the door latched;

an empty audit log;

theinternal times all set to zero (atime before the current time).

The door is assumed closed at initialisation, this ensures that the alarm will not sound before the
first time that datais polled.

__InitDoorLatchAlarm
DoorLatchAlarm

currentTime = zeroTime
currentDoor = closed
latchTimeout = zeroTime
alarmTimeout = zeroTime

> See: DoorLatchAlarm (p. 22), zeroTime (p. 8), closed (p. 15)

There are no keys held by the system and the TIS does not know its name, thisis supplied as part of
enrolment.

__InitkeyStore

KeyStore
issuerkKey = &

ownName = nil

> See: KeyStore (p. 21), nil (p. 8)

This default configuration assumes the lowest classification possible for the enclave. This ensures
that it does not give inadvertently high clearance to the authorisation certificate. The authPeriod
and entryPeriod functions are set to enable a securityOfficer to enter the enclave and re-configure
the TIS. This configuration will allow Auth Certificates to be generated with a validity of 2 hours
fron the point of issue (assuming that the unit of timeis 1/10 sec).

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 82
__InitConfig
Config

alarmSlentDuration = 10

latchUnlockDuration = 150

tokenRemovalDuration = 100

enclaveClearance.class = unmarked

authPeriod = PRIVILEGE x {{t: TIME e t — t..t+ 72000}}
entryPeriod = PRIVILEGE x {CLASS x {TIME}}

> See: Config (p. 19), unmarked (p. 8), PRIVILEGE (p. 9), TIME (p. 8), CLASS (p. 8)

Initially no administrator islogged on and no administator operations are taking place.

__InitAdmin
Admin

rolePresent = nil
currentAdminOp = nil

> See: Admin (p. 22), nil (p. 8)

Initialy the statistics are set to zero, indicating no use of the system to date.

__InitSats
Sats

successEntry = 0
failEntry = 0
successBio = 0
failBio =0

> See: Stats (p. 21)

Theinitial audit Log isempty and there is no audit alarm.

__InitAuditLog
AuditLog

auditLog = @
auditAlarm = silent

> See! AuditLog (p. 20), silent (p. 15)

Entities that model the real world and are polled and have no security implications are not set at
initialisation, these will be updated at the first poll of the real world entities.

Initially the screen and the display are clear and the internal state is notEnrolled.

Praxis Tokeneer 1D Station
High Integrity Formal Specification

Systems

__InitiIDSation

Reference S.P1229.41.2
Issue 1.4

Page 83

IDSation

InitDoor LatchAlarm
InitConfig
InitkeyStore
InitSats
InitAuditLog
InitAdmin

currentScreen.screenMsg = clear

currentDisplay = blank
enclaveStatus = notEnrolled
status = quiescent

> See! IDSation (p. 25), InitDoorLatchAlarm (p. 81), InitConfig (p. 81), InitkeyStore (p. 81), InitStats (p. 82),
InitAuditLog (p. 82), InitAdmin (p. 82), clear (p. 16), blank (p. 15), notEnrolled (p. 24), quiescent (p. 24)

8.2 Starting the ID Station

FSTISTISStartup
FPT_FLS1.1

We assume that some of the state within TIS is persistent through shutdown and some is not. The
persistent items are Config, KeyStore and AuditLog al other state components are set at startup.
Those values that are polled can take any valid value, we assume for simplicity that they remain

unchanged.

__SartContext

AlDSation

=Config
=KeySore

InitSats’
InitAdmin’

ZUserToken
ZAdminToken
=Finger
=Floppy
=Keyboard

RealWorldChanges

InitDoor LatchAlarm’

> See: IDSation (p. 25), RealWorldChanges (p. 27), Config (p. 19), KeyStore (p. 21), InitDoorLatchAlarm (p. 81),
InitStats (p. 82), InitAdmin (p. 82), UserToken (p. 23), AdminToken (p. 23), Finger (p. 23), Floppy (p. 23),

Keyboard (p. 24)

In the case that TIS does not have an allocated name the ID station is assumed to require enrolment.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 84

___SartNonEnrolledSation
SartContext

ownName = nil
currentScreen’ .screenMsg = insertEnrolmentData

currentDisplay’ = blank
enclaveStatus = notEnrolled
status’ = quiescent

(3 newElements : F Audit; startUnenrolledTISElement : Audit e AddElementsToLog
A startUnenrolledTI SElement € newElements)

> See: StartContext (p. 83), nil (p. 8), blank (p. 15), notEnrolled (p. 24), quiescent (p. 24),
AddElementsToLog (p. 33)

> The startUnenrolledTI SElement is the audit entry recording that the TIS has been started and requires enrolment.

In the case that TIS does have an alocated name the ID station is assumed to have been previously
enrolled.

__SartEnrolledSation
SartContext

ownName = nil
currentScreen’ .screenMsg = welcomeAdmin

currentDisplay = welcome
enclaveStatus' = enclaveQuiescent
status’ = quiescent

(3 newElements : F Audit; startEnrolledTISElement : Audit e AddElementsToLog
A startEnrolledTISElement € newElements)

> See: StartContext (p. 83), nil (p. 8), welcomeAdmin (p. 16), welcome (p. 15), quiescent (p. 24),
AddElementsToLog (p. 33)

> The startEnrolledTI SElement is the audit entry recording that an enrolled TIS has been started.

The compl ete startup operation is given by:

TISSartup = SartEnrolledSation v SartNonEnrolledStation

> See: StartEnrolledStation (p. 84), SartNonEnrolledStation (p. 83)

9.1

9.2

921

9.22

9.23

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 85

THE WHOLE ID STATION

Startup

When the TIS is powered up it needs to establish whether it is enrolled or not. This is formally
described by

TISSartUp

Themain loop

FSTISTISMainL oop

The TIS achieves its function by repeatedly performing a number of activities within amain loop.

The main loop is broken down into several phases:

e Poll - Polling reads the simple real world entities (door, time) and the reads the complex
entities (user token reader, admin token reader, fingerprint reader, floppy).

e Early Updates - Critical updates of the door latch and alarm are performed as soon as new
polled datais available.

e TIS processing - TIS processing is the activity performed by TIS, this is influenced by the
current status of TIS and the recently read inputs.

e Updates - Critical updates of the door latch and alarm are repeated once the processing is com-
plete to ensure any internal state changes result in the latch and alarm being set correctly. Less
critical updates of the screen and display are also performed once the processing is complete.

Polling
The polling activity is captured by the schema:

TISPoll

Early Updates
The early updates, which only update security critical outputs, are described by:

TISEarlyUpdate

Processing
The the TIS processing depends on the current internal status and enclaveStatus.
Initially the only activity that can be performed is enrolment, formally captured as TISEnrol.

When itisin aquiescent state it can start a number of activities. These are started by either reading
auser token, an adminstrator token or keyboard data. In addition an administrator may logoff.

Praxis Tokeneer ID Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 86
Formally the quiecent activities are:
TISReadUser Token v TISReadAdminToken Vv TISStartAdminOp Vv TISAdminLogout

> TISReadUser Token and TISReadAdminToken are the first stages of TISUserEntry and TI SAdminLogon.

Alternatively there is no token present, and no-one logged on, in thiscase TISisidle.

__TISdle
=IDSation
=TISControlledRealWorld

status = quiescent
enclaveSatus = enclaveQuiescent
user TokenPresence = absent
adminTokenPresence = absent
rolePresent = nil

> See: IDSation (p. 25), TISControlledReal\World (p. 17), quiescent (p. 24), absent (p. 8), nil (p. 8)

Once a user token has been presented to TIS the only activities that can be performed are stages in
the multi-phase user entry authentication operation, formally captured as TISUserEntry. Since the
user entry process islong lived it is hecessary to check whether the admin token has been removed
during each stage of this operation and act accordingly.

Once an administrator token has been presented to TIS the administrator is logged onto the ID
Station, formally captured as TISAdminLogon. Having logged the administrator on TIS returnsto a
quiescent state waiting for the administrator to perform an operation, without preventing user entry.

Once an operation request has been made by alogged on administrator TIS performsthe, potentially
multi-phase, administrator operation, formally captured as TISAdminOp captured bel ow:

TISADmMinOp = TISOverrideDoorLockOp Vv TISShutdownOp
V TISUpdateConfigDataOp V TISArchivel.ogOp

> See: TISOverrideDoorLockOp (p. 80), TISShutdownOp (p. 79), TISUpdateConfigDataOp (p. 78),
TISArchiveLogOp (p. 76)

The overall processing activity is described by:

TISProcessing = (TISEnrolOp
Vv TISUserEntryOp
V TISAdminLogon
Vv TISStartAdminOp
V TISAdminOp
Vv TISAdminLogout
v TISdle) A LogChange

> See: TISEnrolOp (p. 62), TISUserEntryOp (p. 57), TISAdminLogon (p. 68), TISStartAdminOp (p. 73),
TISAImMInOp (p. 86), TISAdminLogout (p. 69), TISdle (p. 86), LogChange (p. 37)

9.24 Final Updates

The updates performed following processing are described by:
TISUpdate

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 87

APPENDIX: READING Z, A SMALL INTRODUCTION

In this section we explain the basics of how to read Z.

The main building block in Z isa schema. A Z schema takes the form of a number of state compo-
nents and, optionally, constraints on the state.

__SchemaName
declarations

constraints

For example we might declare a counter with an upper bound. The counter variable x is declared
and it is constrained to be less than 100.

__Counter
X: N

X < 100

Within the declarative part of a schema we can include schema names. The effect of this inclusion
isto bring into scope all the variables and constraints of the schemas that have been included. So
in the following NewCounter is a counter with alower bound as well as the upper bound inherited
from Counter.

__NewCounter
Counter

40 < x

> See: Counter (p. 87)

Schemas are used to describe behaviour under change. Using a convention of decorating state with
a’ after change we can describe an effect of an operation by describing the new values of the state
in terms of its relationship to the old value of the state.

We can describe a simple increment of our counter by the following schemain which the new value
of x is the old value of x incremented by 1. Note that the underlying constraints on the variables
from the Counter schema still apply, so X < 100 is till true.

__IncrementCounter
Counter
Counter’

X =x+1

> See: Counter (p. 87)

In general, instead of writing Counter, Counter’ in our schema declaration we make use of the
definition

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 88
ACounter
Counter
Counter’

> See: Counter (p. 87)

the A indicating a change to the variables in the schema Counter.

Another useful definition is Z=Counter which is describes the case where the state of the schemais
unchanged

___=Counter
ACounter

fCounter = OCounter’

> See: Counter (p. 87)

> The # hereisread as “the state of ”.

In addition to schemas, Z alows us to define basic types which give the types of the basic compo-
nents of our schemas. We might want to introduce the concept of a “string” as a basic type in our
system, this will appear as:

[STRING]

We can define constants and functions. Here we define a constant clearSring and print function
that turns natural numbers into strings.

clearSring : STRING
printNat : N >— STRING

Where we know all the possible entities of abasic typewe can declareit asafreetype. NEWSTRING
is a free type with a named value element clearNewSring and a function, newPrintNat returning
elements of type NEWSTRING.

NEWSTRING ::= clearNewString | newPrintNat((N})
A key property of the free type is that all elements of the free type are distinct.

These ideas, aong with a basic appreciation of predicate logic, should be sufficient to aid reading
this specification. For amore detailed description of the Z notation refer to [1].

B.1

B.2

B.2.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 89

APPENDIX: COMMENTARY ON THISSPECIFICATION

This specification is intended to give a representative formal specification of a redlistic system.
Budgetary restricitions have meant that the number of administrative operations have been kept
to a minimum, although we intend that sufficient have been provided to make the specification
representative.

The structure of theZ

Throughout the specification care has been taken to ensure that each schema is relatively simple.
This is an important characteristic in ensuring that a reader can understand the purpose of each
schema. Excessive complexity risks making the specification obscure. Schema composition has
been used to build up complex operations from simple schemas.

This Z specification islarger than was originally anticipated. We have considered the reason for this
and conclude that it is because

¢ the functionality is larger than originally expected (especialy at the administrative interface).

e The core TIS has a fairly large number of interfaces to its environment, two card readers,
biometric verifier, door, latch, alarm, internal and external display, floppy disk and keyboard.
Each of these has been modelled and the formal notation requires us to explicitly describe
what happens to each of these during every operation.

e The entry process contains more steps than originally expected - each interaction with an
interface requires a new step.

The relatively large number of interfaces and the desire to compose the system from a number of
relatively simple schemas has resulted in the size of specification presented here.

| ssues

A few issues arose while writing this specification; this is expected when formalizing requirements
that are stated in any natural language.

We present the more interesting observations here:
The choice of Rea World Model

The way in which the real world was modelled is interesting. We would conventionaly use Z
inputs? and outputs!, however, these are global through schema composition, which means that one
cannot compose two schemas with common inputs or outputs without constraining these entities to
be the same.

Within our main loop we want to be able to update the alarm and latch twice; once directly after
polling and once after the main processing. Avoiding inputs? and outputs! allows us to reason about
the main loop as a composition of polling, calculations and updates.

This has resulted in us defining the real world using a state schema RealWbrld and modelling the
possible changes to this state. Thisgivesamodel that iseasier to reason about formally. In particular
we can sensibly consider the effect of composing several iterations around the main loop.

B.2.2

B.2.3

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 90

We are also able to state and reason about security properties involving real world entities.
Denial of service

When this specification was written the assumption was taken that only one operation could be per-
formed at atime, so once a user had started to attempt authentication and entry in to the enclave, no
administrive functions could be supported within the enclave. This assumption was first introduced
in the SRS [2]. With this assumption it seemed natural that there only need be one internal state
component tracking what the system was doing.

The model does not cover the details of how atoken interacts with the card reader, in particular there
is no modelling of the Answer-to-Reset (ATR), which is transmitted when atoken is first presented
to areader. Thiswas a deliberate abstraction. Within the model we capture the presence of atoken
and the values held on the token. For operations that are triggered by the presence of atoken we
alow the operation to start if the system is quiescent and the token is present. One such operation is
the user authentication and entry operation. We also require that the token is removed in order for
the user authentication and entry process to be considered complete. Otherwise, the system would
countinually reprocess a token with bad data until the point that it is removed. The result of this
modelling assumption was that we needed an internal state where the system was waiting for atoken
to be removed following a failure.

Theresult of having only oneinternal state component wasthat placing aninvalid token in the reader
outside the enclave and leaving it there would block any adminstrator use of the system. Similarly
leaving an invalid token in the reader inside the enclave and leaving it there would block any attempt
by auser to enter the enclave. This was an unacceptable denial of service. A malicious user could
lockup the system. To overcome this problem the internal state was divided in two. One part,
status, manages the multi-phase user authentication and entry process, the other part, enclaveStatus,
manages all the activities which involve interaction with TIS from within the enclave. The result of
this change was that we were able to eliminate the denial of service attack resulting from a token
being left in areader. A token left in areader now only blocks other activities that would make use
of that reader.

There are other points in the model where the system will wait indefinitely, these have been left
as they all arise during operations that can only be performed by an authenticated administrator.
We make the assumption that an administrator with privileges to perform these operations will not
maliciously leave the system waiting for afloppy disk in order to deny user entry.

The Audit Log

The audit log was the most complex component of the system to model. We wanted the model of the
log to be abstract within this specification and we wanted to postpone details of the exact elements
that would be placed in the log until the formal design. However we did want to capture some of
the key points such as the effect of log overflow and the fact that entries were made to the audit log
when key events occurred.

We had to take care that the specification was not too tight, for example we need to allow both
the specification and the design to add severa entries to the log during the course of an operation
and the design may introduce more log entries than are captured in the specification. If the model
had been too prescriptive in this area then there would be no viable refinement relation alowing
additional log entries in the design over those introduced in the specificaiton. To achieve thiswithin
this model we allow a number of entries to be added to the log at atime.

B.24

B.25

B.2.6

B.2.7

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 91

This specification only details when the audit log must be updated, it places no restriction on further
entries being added than are detailed in this specification. Once al audit entries have been defined
in the design we can place further restrictions on when values may or may not be added to the log.

Malicious attack on the audit log

The Protection Profile [3] requires that old entries in the audit log should be overwritten in the event
of the audit log becoming full. This has been modelled in this specification. However this func-
tionality raises the possibility of data being erased from the audit log by performing events that are
audited. For example a user could replace the audit log with events corresponding to repeated at-
tempts to log on as an administrator. We did consider preventing all operations, other than archiving
the log once the auditAlarm has been raised, but since this requires the AuditManager to be logged
on to the system we cannot exclude the administrator logon activity.

The only other obvious solution would be to shutdown TIS once there was a risk of the audit log
becoming full. This assumes that there is a mechanism outside of the TIS function for archiving the
log. We have therefore left the functionality allowing unlimited overwriting on the grounds that the
aarm is sufficient protection.

Relating enclave entry and Auth Cert generation

The final specification presented here uses indepentent configuration information to determine the
authorisation period applied to authorisation certificates and the times at which entry to the enclave
should be allowed.

Originally we only alowed entry if the current time was within the authorisation period on the
certificate. This seemed to confuse the distinct activities of issuing an Authorisation Certificate and
alowing user entry. The original restriction can still be achieved by constraints on the configuration
data.

We have also decided not to write an authorisation certificate if its authorisation period is empty.
Thisisarequirements issue that was raised during the production of the specification.

Detail postponed until the design

There are anumber of points of detail which are not required to express the system functionality at
the abstract level presented within this specification.

One example of thisis the deliberate omission of the serial number from the forma model of the
certificate Id. It was found that for the purpose of describing the functionality of the TIS the seria
number of acertificate wasirrelevant. Thisis because there is no need to demonstrate uniqueness of
certificate ids. All that isimportant within this model is that we can deduce who issued a certificate;
this enables us to validate the certificate. The serial number will be introduced in the design where
it appears in the detailed information that is audited.

Assumptions on Real World behaviour

In order for the specified TISto function correctly we need to make anumber of assumptions on the
behaviour of the modelled real world and its interactions with TIS.

The first assumption is made explicitly in Section 4.1 and is a requirement that the time source can
be trusted to provide us with time that increases.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 92

The second assumption is more subtle and was uncovered while performing the precondition proof
for TISPoll (see page 93). The second assumption is that TIS polls the real world sufficiently fre-
quently that it will always observe the absence of a token before it observes the presence of the
next token. This assumption ensures that the Tokens in the reader cannot be swapped without TIS
noticing. TISis capable of noticing token tears, the case where atoken is removed mid-processing.
However the system as specified will not notice a change in the token contents if it can be swapped
without TIS detecting the absence of the first token. This assumption ensures that TIS only makes
use of atoken that it has previoudly validated and guarantees that errors such as writing an Autho-
risation certificate to the wrong token do not occur.

It is necessary to validate both these assumptions to ensure that the system implemented from this
specification is indeed secure. If, for example, analysis of the second assumption indicates that it
is unreasonable then it would be necessary to reconsider the mechanism by which we monitor the
token readers. For instance, it might be necessary to introduce an interrupt triggered by the removal
of atoken.

Cl

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 93

APPENDIX: JUSTIFICATION OF PRECONDITIONS

Properties
We claim the following important properties of the whole system:

Thereisaninitial state:

FSTIS.State.l nitPOB

F JInitiIDSation e true

If there is no state that satisfies the system state invariants then other proof obligations become

vacoudly trivial. It istherefore important to demonstrate that an initial state exists.

The start-up operation istotal.

FS.TIS.StartUp.PreTotal

IDSation - pre TIStartUp

The processing operation is available whenever the system is not in a shutdown state.

FS.TIS.Processing.PreExp

The processing is not total, however we can show that it's precondition is no weaker than enclaveStatus #
shutdown. Theinternal state shutdown represents the system once it is not running so we would expect no
processing to occur under this circumstance.

IDStation; RealWorld |
- (enclaveStatus = shutdown A status = quiescent) + pre TISProcessing

The polling operation is available on the assumption that the tokens are not changed in the reader
so fast that TI'S misses observing the absence of the first token before detecting the presence of the

second token.

We need to know that while TIS is making use of a validated token the token does not change

without TIS noticing it has been removed. This can be expressed formally as follows:

_WorldChangesS owly
RealWorld
IDStation

status € {gotFinger, waitingFinger, waitingUpdateToken, waitingEntry} =
(userToken = currentUserToken V userToken = noT)

rolePresent # nil = (adminToken = currentAdminToken \ adminToken = noT)

> See: RealWorld (p. 18), IDSation (p. 25), gotFinger (p. 24), waitingFinger (p. 24), waitingUpdateToken (p. 24),

waitingEntry (p. 24), noT (p. 15), nil (p. 8)

C.2

c21

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 94

FS.TIS.Poll.PreExp
Polling is not total, it relies on changes to the tokens in the token reader occurring sufficiently slowly that
the absence of atoken is observered before the presence of a second token is observed.

WorldChangesSowly + pre TISPoll

The update and early update operations are total.

FS.TIS.EarlyUpdate.PreTotal

IDStation; RealWorld + pre TISEarlyUpdate

FS.TIS.Update.PreTotal

IDStation; RealWorld F pre TISUpdate

Justifications

Justification of FS.TIS.State.lnitPOB

FS.TIS.State.InitPOB

F JInitiIDSation e true

To demonstrate this it is sufficient to show that the state invariants hold with the constraints on the
initial values. We also need to ensure that each value is in type, however by simple inspection we
can deduce this to be the case.

For all state components that are left free by the initial state schemait is sufficient to ensure that the
types are non-empty. Thisisthe casein al places.

We need to consider the invariants on each of the schemas that are used to build IDSation as well
as the invariants on the overall IDSation.

The invariants on DoorLatchAlarm completely define currentLatch and currentAlarm, the values
given in InitDoorLatchAlarm result in currentLatch = locked and currentAlarm = silenced.

The invariants on Admin completely define availableOps, the values given in InitAdmin result in
availableOps = . The remaining constraint is only applicable when currentAdminOp # nil sois
true by false implication.

The invariants on Config can be satisfied by the following arbitrary choice of variable bindings.

(minPreservedLogSize = 10, alarmThresholdSze = 5)

Considering the constraints on the IDSation in turn we note that:

C22

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 95

e Asstatus = quiescent first constraint is true by false implication.

e AsrolePresent = nil the second constraint is true by false implication.

e AsenclaveStatus = notEnrolled the third and sixth constraints are true by false implication.

e AsenclaveStatus = notEnrolled and currentAdminOp = nil the forth constraint reduces to
false < false, which istrue.

e AscurrentAdminOp’ = nil thefifth constraint is true by false implication.

e thefinal constraints define the screen elements screenStats and screenConfig. As displayStats
and displayConfigData are total functions, we can deduce that these constraints hold.

We therefore deduce that an initial state exists.

Justification of FS.TI1S.StartUp.PreTotal

FS.TIS.StartUp.PreTotal

IDSation - pre TISSartUp

To demonstrate this we need to show that for any initial values held by IDStation there is a binding
to the variables in IDSation that preserves the state invariant.

Wefirst note that, from properties of pre and disunctions and the definition of TISStartUp
pre TISSartUp = pre SartEnrolledSation Vv pre StartNonEnrolledStation

so we can reduce the problem to considering the preconditions of each of these schemas and ensur-
ing that their digunction istotal.

Inaformal proof wewould need to ensure that each schema preserves all system and subsystem state
invariants. Care has been taken in writing this specification to ensure that operations are sufficiently
simple that the preservation of state invariants is easy to check.

We claim that

pre SartEnrolledStation = [IDStation | ownName # nil |
pre SartNonEnrolledSation = [IDSation | ownName = nil]

The required result follows.

We consider pre StartEnrolledStation here by way of an example of the type of arguments that are
required to deduce the preconditions of an operation schema.

We need to determine the conditions on the initial state that guarantee that a final state exists and
thisfinal state satisfies all the state invariants of 1DStatior

We note that the state components User Token, AdminToken, Finger, Floppy, Keyboard, Config and
KeySore are defined as not changing. We therefore need not consider invariants that only refer to
these state components.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 96

The invariants on DoorLatchAlarm completely define currentLatch and currentAlarm, the values
given in InitDoorLatchAlarnd result in currentLatch = locked and currentAlarm = silenced.

We note that the precondition on AddElementsTolLog is a requirement that the newElements are no
older than the elements already in the log. Without loss of generality we can assume the element
startUnenrolledTI SElement satisifies this property so newElements = {startUnenrolledTI SElements}
is apossible solution. Hence the new auditLod is defined by AddElementsToLog.

Considering the constraints on the IDSation in turn we note that:

e Asstatus = quiescent first constraint is true by false implication.
e AsrolePresent’ = nil the second constraint is true by false implication.

e AsenclaveSatus = enclaveQuiescent we need to note that ownName ## nil and KeyStore is
unchanged to deduce the the third constraint holds.

e AsenclaveSatus = enclaveQuiescent and currentAdminOg = nil the forth constraint re-
duces to false < false.

e AscurrentAdminOp’ = nil thefifth constraint is true by false implication.
e AsenclaveStatus = enclaveQuiescent the sixth constraint is true by false implication.

e thefinal constraints define the screen elements screenStats and screenConfig'. AsdisplayStats
and displayConfigData are total functions so we can deduce that these constraints hold.

So the only constraint isthe explicit contraint on the before state of the StartEnrolledStation, namely
ownName = nil. Giving the result.

pre SartEnrolledStation = [IDSation | ownName # nil |

C.23 Justification of FS.TIS.Processing.PreExp

FS.TIS.Processing.PreExp

The processing operation is not total, however we can show that it's precondition is no wesker than
enclaveStatus # shutdown. The interna state shutdown represents the system once it is not running so
we would expect processing not to occur under this circumstance.

IDStation; RealWorld |
- (enclaveStatus = shutdown A status = quiescent) + pre TISProcessing

To prove thiswe rely heavily on the following property:
For any schemas Sand T, pre distributes through disjunction

pre (SVT) = (preS) V (pre T)

Expanding the definition of TISProcessing.

pre TISProcessing
= pre ((TISEnrolOp V TISUserEntryOp Vv TISAdminLogon
V TISSartAdminOp Vv TISAdminOp Vv TISAdminLogout Vv TISdle) A LogChange)

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 97

We should at this point distribute the LogChange through the disjunction and consider the precon-
dition of TISEnrolOp A LogChange etc. However it transpires that LogChange does not add any
constraints to the preconditions of each of these operations, it only modifies the AuditLog and all
operations on the audit log are sufficiently free to alow these modifications in al circumstances.

So we consider the preconditions of each of the components of the operations. We decompose
TISUserEntryOp (which is constructed as a disjunction) and consider the preconditions of each of
the components:

pre TISReadUserToken =
[IDStation; RealWorld | status = quiescent A user TokenPresence = present
A enclaveStatus € {enclaveQuiescent, waitingRemoveAdminTokenFail } |

pre TISvalidateUser Token = [IDSation; RealWorld | status = gotUser Token |

pre TISReadFinger = [IDSation; Real\World | status = waitingFinger |

pre TISvalidateFinger = [IDStation; Real\World | status = gotFinger |

pre TISMriteUserToken = [IDStation; RealWorld | status = waitingUpdateToken |

pre TISvalidateEntry = [IDStation; RealWorld | status = waitingEntry|

pre TISUnlockDoor = [IDSation; RealWorld | status = waitingRemoveTokenSuccess |

pre TISCompleteFailedAccess = [IDStation; RealWorld | status = waitingRemoveTokenFail |

We decompose TISAdmMinOp and consider the preconditions of each of the components.

pre TISSartArchiveLog =
[IDSation; RealWorld | enclaveStatus = waitingStartAdminOp
A currentAdminOp # nil A currentAdminOp = archivelog |

pre TISFinishArchiveLog =
[IDStation; RealWorld | enclaveStatus = waitingFinishAdminOp
A currentAdminOp # nil A currentAdminOp = archivelog |

pre TISSartUpdateConfigData =
[IDStation; RealWorld | enclaveStatus = waitingStartAdminOp
A currentAdminOp # nil A currentAdminOp = updateConfigData |

pre TISFinishUpdateConfigData =
[IDStation; RealWorld | enclaveStatus = waitingFinishAdminOp
A currentAdminOp # nil A currentAdminOp = updateConfigData |

pre TISShutdownOp =
[IDSation; RealWorld | enclaveStatus = waitingStartAdminOp
A currentAdminOp # nil A currentAdminOp = shutdownOp |

pre TISOverrideDoorLockOp =
[IDStation; RealWorld | enclaveStatus = waitingStartAdminOp
A currentAdminOp # nil A currentAdminOp = overridelock |

From these and the IDSation invariants:

enclaveStatus € { waitingStartAdminOp, waitingFinishAdminOp } < currentAdminOp # nil

(currentAdminOp # nil A thecurrentAdminOp € { shutdownOp, overridel.ock })
= enclaveStatus = waitingStartAdminOp

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 98

we can deduce

pre TISAdminOp =
[IDStation; RealWorld | enclaveStatus € { waitingStartAdminOp, waitingFinishAdminOp } |

We decompose TISEnrol and consider the preconditions of each of the components.

pre ReadEnrolmentData = [IDStation; RealWorld | enclaveStatus = notEnrolled |
pre ValidateEnrolmentData = [IDStation; RealWorld | enclaveStatus = waitingEnrol |

pre CompleteFailedEnrolment = [IDStation; RealWorld | enclaveStatus = waitingEndEnroal |

We decompose TISAdminLogon and consider the preconditions of each of the components.

pre TISReadAdminToken =
[IDSation; Real\World |
enclaveStatus = enclaveQuiescent A adminTokenPresence = present
A status € {quiescent, waitingRemoveTokenFail } |

pre TISValidateAdminToken = [IDStation; RealWbrld | enclaveStatus = gotAdminToken |

pre TISCompleteFailedAdminLogon =
[IDStation; RealWorld | enclaveStatus = waitingRemoveAdminTokenFail |

We decompose Tl SAdminLogout and consider the preconditions of each of the components.

pre TokenRemovedAdminLogout =
[IDSation; RealWorld | rolePresent # nil
A enclaveStatus = enclaveQuiescent A adminTokenPresence = abscent |

pre AdminTokenTimeout =
[IDSation; RealWorld | rolePresent # nil
A enclaveStatus = enclaveQuiescent A adminTokenPresence = present A — AdminTokenOK |

pre TISCompleteTimeoutAdminLogout =
[IDSation; RealWorld | enclaveStatus = waitingRemoveAdminTokenFail |

The remaining operations are TISStartAdminOp, TISAdminLogout and TIS dle;

pre TISStartAdminOp =
[IDSation; RealWorld | rolePresent # nil
A enclaveStatus = enclaveQuiescent A adminTokenPresence = present
A status € {quiescent, waitingRemoveTokenFail } |

pre TISdle =
[IDSation; RealWorld | rolePresent = nil
A enclaveSatus = enclaveQuiescent A adminTokenPresence = absent
A status = quiescent, A user TokenPresence = absent |

By considering properties of conjunction and disjunction we can deduce

pre (TISStartAdminOp Vv TISAdminLogout VvV TISdle

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 99

V TISReadUser Token Vv TI SReadAdminToken)
= [IDSation; RealWorld |

(status = quiescent A enclaveStatus = enclaveQuiescent)

V (status = waitingRemoveTokenFail A enclaveStatus = enclaveQuiescent
A adminTokenPresence = present)

V (status = quiescent A enclaveStatus = waitingRemoveAdminTokenFail
A user TokenPresence = present)

V (enclaveStatus = enclaveQuiescent A rolePresent # nil
A adminTokenPresence = absent)

V (enclaveStatus = enclaveQueiscent A rolePresent # nil
A adminTokenPresence = present A — AdminTokenOK |

By considering the coverage of the values of status and enclaveStatus we can deduce

pre (TISEnrolOp Vv TISUserEntryOp Vv TISAdminLogon
V TISSartAdminOp V TISAdminOp Vv TISAdminLogout Vv TISIdle)
= [IDSation; RealWorld |
(status = quiescent A enclaveStatus = enclaveQuiescent)
V (status # quiescent)
V (enclaveStatus # enclaveQuiescent A enclaveSatus # shutdown) |

rearranging this gives:

pre (TISEnrolOp Vv TISUserEntryOp Vv TISAdminLogon
V TISStartAdminOp v TISAdminOp Vv TISAdminLogout v TISIdle
= [IDSation; RealWorld | status # quiescent \V enclaveStatus # shutdown |

We have aready argued that LogChange does not effect the precondition, and hence the required
result follows.

C.24 Justification of FS.TIS.Poll.PreExp

FS.TIS.Poll.PreExp
Polling is not total, it relies on changes to the tokens in the token reader occurring sufficiently slowly that
the absence of atoken is observered before the presence of a second token is observed.

WorldChangesSowly + pre TISPoll

To demonstrate this we notice that there are no constraints on the initial state in the TISPoll schema.
It is thus sufficient to check that all system invariants are maintained. The only invariants that need
be checked are those that involve entities that change. There are two of these:

Firstly
status € { gotFinger, waitingFinger , waitingUpdateToken, waitingEntry } =

((3 ValidToken e goodT (9ValidToken) = currentUser Token')
V (3 TokenWithvalidAuth e goodT (9 TokenWithValidAuth) = currentUser Token'))

This holds under the assumptions of WorldChangesSowly since by the definition of PollUserToken
we can deduce currentUser Token' = currentUser Token under these conditions.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 100

The second invariant

rolePresent # nil =
(3 TokenWithValidAuth e goodT (#TokenWithValidAuth) = currentAdminToker)

Adgain, this holds under the assumptions of WorldChangesS owly since by the definition of Poll AdminToken
we can deduce currentAdminToken’ = currentAdminToken under these conditions.

C.25 Judtification of FS.TIS.EarlyUpdate.PreTotal

FS.TIS.EarlyUpdate.PreTotal

IDStation; RealWorld + pre TISEarlyUpdate

To demonstrate this we notice that there are no constraints on the initial state in the TISEarlyUpdate
schema. It is thus sufficient to check that al system invariants are maintained. The only invariants
that need be checked are those that involve entities that change, as there are no invariants involving
state changed by this operation we can deduce that the operation istotal.

C.26 Judtification of FS.TIS.Update.PreTotal

FS.TIS.Update.PreTotal

IDSation; RealWorld F pre TISUpdate

To demonstrate this we notice that there are no constraints on the initia state in the TISUpdate
schema. It is thus sufficient to check that al system invariants are maintained. The only invariants
that need be checked are those that involve entities that change, as there are no invariants involving
state changed by this operation we can deduce that the operation istotal.

D.1

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 101

APPENDIX: TRACING OF SRSREQUIREMENTS

One of the scenarios has been mapped to the Formal Functional Specification to show the type
of mapping that would normally be done for high integrity development. The remaining will be
completed if timeallows, and if errors found through the mapping process and subsequently suggest
it will be cost effective.

Mapping of: User gains allowed initial access to Enclave

Description

A User who should be allowed access to the enclave is given access, making use of biometric authentication.
Stimulus

User inserts a smartcard into the smartcard reader.

Assumptions

ScGainlnitial.Ass.ValidStart
The ID Station has valid start-up data

This cannot be false, as there is no concept in the specification of non-valid start-up (enrolment)
data. In practice,

pre TISUserEntryOp = enclaveStatus ¢ {notEnrolled, waitingEnrolled, waitingEndEnrol }
which implies that enrolment has been carried out successfully.

ScGainlnitial. Ass.ValidConfig
The ID Station has a valid data configuration.

This cannot be false, as there is no concept in the specification of non-valid start-up (enrolment)
data. In practice,

pre TISUserEntryOp = enclaveStatus ¢ {notEnrolled, waitingEnrolled, waitingEndEnrol }
which implies that enrolment has been carried out successfully.

ScGainlnitial. Ass.Quiescent
The ID Station is quiescent (no other access attempts, configuration changes or start-up activities are in progress).

pre TISUserEntryOp = enclaveStatus € {quiescent, waitingRemoveAdminTokenFail }
which is a state from which no other access attempts can be in progress, or configuration or start-up
activities.
ScGainlnitial.Ass.Secure
The User is outside the enclave; the door is closed and locked.

The implementation does not need to make this assumption.

ScGainlnitial.Ass.ValidUser
The card inserted by the User has a valid ID Certificate, I&A Certificate, and Privilege Certificate, and the card inserted
by the User has a valid fingerprint template that matches the fingerprint of the User’s finger.

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 102

This, together with the next condition, are both met by:

status = waitingRemoveTokenSuccess
A
pre BioCheckRequired = postBioCheckRequired A postValidateFinger OK

ScGainlnitial.Ass.PoorAC
The card inserted by the User does not have a valid, current Authorisation Certificate.

See condition above.

Success End-conditions

ScGainlnitial.Suc.UserCard
The User has possession of the card he originally inserted.

post UnlockDoor = user TokenPresence = absent

ScGainlnitial.Suc.GoodAC
The card inserted by the User contains a current, valid Authorisation Certificate with

o validity time: from now until now+(length of timespecified in ID Station configuration data)

e security level: equal to the minimum of (the security level defined in the ID Station configuration data) and (the
security level in the Permission Certificate on the card inserted by the User)

status = waitingRemoveTokenSuccess A pre BioCheckRequired = postWriteUser TokenOK

ScGainlnitial.Suc.PersistCerts
The card inserted by the User contains the same, unchanged ID Certificate, 1& A Certificate, and Privilege Certificate it
had at the beginning of the scenario.

All possible sequences of operations to achieve this scenario have Xi UserToken at each stage,
except in WriteUserToken, where there are explicit predicates to preserve these certificates.

ScGainlnitial.Suc.UserIn
The User isin the Enclave.

post UnlockDoor leaves atime interval after the door has been opened. Thistimeinterval will only
be completed (and the door latched again) as part of Poll, and the passage of time. Thiswill allow
auser that chooses to, to enter the enclave.

ScGainlnitial.Suc.Locked
The Enclave door is closed and locked.

Poll occurs frequently and regularly, and given sufficient time, thiswill force the timeout on the door
(currentTime to exceed latchTimeout), causing the door to lock (invariant in DoorLatchAlarm, and
updating the real latch in TISEarlyUpdate and TISUpdate). The value of latchTimeout is only ever
set to currentTime + latchUnlockDuration, (in UnlockDoor) or currentTime (in LockDoor), and so
the definition of ”sufficient time” isthe value of latchUnlockDuration.

ScGainlnitial.Suc.Audit
The following events have been recorded in the Audit Log (in any order), and the existing audit records are preserved:

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 103

AddElementsToLog isthe schemathat adds audit events, and it preserves the logs (except when there
isan overflow, in which case it conforms to the failure condition SCGainlnitial.Fail . AuditPreserve).
The occurrences of the individual audit events are given below.

e Insertion of card
ReadUser Token

e Removal of card
User TokenTear, UnlockDoor, FailedAccessTokenRemoved

e Reading data from card (possibly multiple failures, but at least one success)
ReadUser Token

. Wri_ting data to the card (possibly multiple failures, but at least one success)
WriteUser TokenOK

e Reading fingerprintimage
ReadFinger OK

e Setting the door to locked.
AuditLatch

e Setting the door to unlocked.

Auditlatch

e Door opening

AuditDoor

e Door closing
AuditDoor

e Writing data to the display.
AuditDisplay

e Validation of any certificate (possibly multiple failures, but at least one success)
This is not visible at this level, athough the success or failure of parts of the process are
audited, and there is room in the refinement to add explicit auditing of certificate operations.

e Creation or modification of signed Authorisation certificate
WriteUser TokenOK

e Comparison of fingerprint image and template (possibly multiple failures, but at least one success)

ValidateFinger OK

Failure Conditions

All error conditions in the formal functional specification explicitly state Xi on the state (except for
the audit part of the state)

ScGainlnitial.Fail. ReadCard

The card inserted by the User does not allow all its data to be successfully read, possibly due to being incorrectly inserted
in thefirst place; being a faulty card; having the incorrect information on it; or being removed before al the information
has been read. The set of datato beread is at least:

e ID Certificate

1&A Certificate

e Privilege Certificate

Authorisation Certificate

e Fingerprint Template (contained in the I& A Certificate)

ScGainlnitial.Fail.Fingerprint
A matching fingerprint has not been read, possibly due to no finger being presented to the fingerprint reader within
X seconds of the display requesting a fingerprint; or the fingerprint not being successfully read within X seconds of

D.2

D.21

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 104

the display requesting a fingerprint; or the fingerprint that was successfully read not being successfully matched to the
template read from the card. The value X shall be taken from configuration data of the ID Station.

ScGainlnitial.Fail. WriteCard

The card originally inserted by the User does not allow a new Authorisation Certificate to be successfully written, possibly
due to being incorrectly inserted in the first place; being a faulty card; or being removed before all the information has
been written.

ScGainlnitial.Fail.UserSlow
The User is too slow in opening the door, so the door locks with the user still outside the enclave. Or the user opens the
door, but chooses not to pass through, closing the door again.

Not implemented.

ScGainlnitial.Fail.DoorPropped
Once the door has been opened, it is not allowed to close (it is propped open).

Not implemented.

ScGainlnitial.Fail. Audit
Audit files cannot be successfully written. Result: the Door is locked and the system is shutdown.

Not currently in the formal specification.

ScGainlnitial.Fail. AuditPreserve
Space for audit files has been exhausted. Result: the oldest audit records are overwritten with the new audit records, and
an alarm is raised to the Guard.

AddElementsToLog

Constraints

ScGainlnitial. Con.Nolnterleave
No ID Station restart or Configuration data changes will be allowed during this scenario.

status # quiescent = — pre ValidateOpRequestOK

Requirements out of scope

This section lists the requirements from the SRS [2] that are not referenced from this document,
with ajustification for their omission.

Not Implemented
The following requirements have not been implemented within this formal specification.

These requirements al relate to the action following failure to write to the audit log.

FS.NotInScope.Notl mplemented

ScGainlnitial .Fail Audit ScConfig.Fail Audit
ScProhibitlnitial .Fail Audit ScAudit.Fail.Audit

ScGainRepeat. Fail . Audit ScUnlock.Fail . Audit
ScStart.Fail . Audit ScLogOn.Fail . Audit

ScShutdown. Fail . Audit ScLogOff.Fail. Audit

D.22

D.23

D.24

D.3

D.31

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 105

User behaviour

The following requirements have not been captured within the formal specification of the software
software since they are the result of human behaviour alone.

FS.Notl nScope.User Behaviour

ScGainlnitial.Fail.Door Propped ScGainRepeat.Fail.UserSow
ScGainlnitial.Fail.UserSow ScUnlock.Fail.Door Propped
ScGainRepeat.Fail.Door Propped ScUnlock.Fail.UserSow

Assumption of Secure Enclave

The following assumptions are not enforced within the Formal Specification. It wasfelt unnecessar-
ily restrictive to enforce the assumption that the door was closed and locked prior to commencement
of an operation. However guarantees of the resulting security of the enclave following an operation
can only be made within the context of the state of the environment at the start of the operation. For
example, if the door is open there is nothing to stop a user who does not have a valid token from
entering the enclave.

FS.Notl nScope.Secur eAssumption

ScGainlnitial Ass.Secure ScConfig.Ass.Secure
ScProhibitlnitial .Ass.Secure ScAudit.Ass.Secure
ScGainRepeat.Ass.Secure ScUnlock.Ass.Secure
ScSart.Ass.Secure ScLogOn.Ass.Secure
ScShutdown.Ass. Secure ScLogOff.Ass.Secure

Performance Limitations

Due to performance limitations the system does not read back the user token after writing data to it
S0 we cannot be sure whether the write was successful or not.

FS.NotlnScope.PerformanceL imitations
ScGainlnitial.Fail WriteCard

General Requirements

Several of the requirements are of a general nature and demonstration of their satisfaction by this
specification requires analysis of the whole specification rather than reference to a single (or small
number of) operation schemas. These are detailed in the following sections.

Valid Start

This cannot be false, there is no concept in this specification of non-valid start-up data. In practice
all operations other than enrolment have a precondition which implies

enclaveStatus ¢ {notEnrolled, waitingEnrolled, waitingEndEnrol }

from this we can deduce that enrolment has been carried out successfully.

FS.General.ValidStart

ScGainlnitial Ass.ValidSart ScGainRepeat.Ass.ValidSart
ScProhibitlnitial Ass.ValidStart

D.3.2

D.3.3

D.34

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 106
Valid Config

This cannot be false, there is no concept in this specification of non-valid start-up data. In practice
all operations other than enrolment have a precondition which implies

enclaveStatus ¢ {notEnrolled, waitingEnrolled, waitingEndEnrol }

from this we can deduce that enrolment has been carried out successfully.

FS.General.ValidConfig

ScGainlnitial.Ass.ValidConfig ScGainRepeat.Ass.ValidConfig
ScProhibitlnitial .Ass.ValidConfig

Persistent Certificates

The formal specification indicates that it does not change the user token by the presence of the
=UserToken on the mgjority of the operations. The only operation that does not have this constraint
is WriteUser Token, this operation does not form part of any of the scenarios traced below.

FS.Gereral .PersistCertificates
ScProhibitinitial.Suc.PersistCerts ScGainRepeat.Suc.PersistCerts

Enclave Security

The formal specification indicates that it does not modify the timer that controls the latch unless the
conditions for the partial operations UnlockDoorOK or OverrideDoorLockOK are satisfied. So if
the system was secure prior to the start of a senario then it will be secure at the end for all senarios
that do not permit these operations. The following scenarios do not satisfy the preconditions of
UnlockDoorOK or OverrideDoorLockOK.

FS.Gener al.Door RemainsL ocked

ScProhibitinitial.Suc.UserOut ScConfig.Suc.Secure
ScProbibitlnitial.Suc.Locked ScLogOn.Suc.Secure
ScStart.Suc.Secure ScLogOff.Suc.Secure

E.l

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 107

APPENDIX: TRACING OF ST REQUIREMENTS

Mapping of Functional Security Requirements

This section justifies the manner in which this specification satisifies the security requirements pre-
sented in the Security Target [4].

SFP.DAC (new table):

Admin invariants define available Ops for each role. ValidateOpRequestOK checks the requested op
against the role. ValidateAdminTokenOK logs the user on based on their Authorisation Certificate.
Viewing is controlled by UpdateScreen, which defines the information displayed on the screen.
It displays configuration data only if the security officer is present. System statistics are deamed
non-secure, and are displayed when any administrator is logged on.

FAU_ARP.1.1:

Defined class of dlarms are: door open, latched, too long; audit files truncating with loss.
DoorLatchAlarminvariant defines the internal decision to alarm the door. Thisiseffected inthe real
world with UpdateAlarm, done twice on each main loop.

AddElementsToLog and ClearLog modify the audit alarm internally. This is effected in the real
world with UpdateAlarm, done twice on each main loop.

Alarming is audited in AuditAlarm and AuditLogAlarm, part of LogChange. invoked once every
main loop.

FAU_GEN.1.1:

Every significant schema audits. A check will need to be done at the code level that the actual col-
lection of eventsisas desired. Confirm necessary list of audit events only once the other exclusions
arein place.

FAU_GEN.1.2:
Free type Audit is not elaborated in this specification. Will need to be checked when elaborated in
the design.

FAU_GEN.2.1:
See FAU_GEN.1.2

FAU_SAA.1.1:
Alarming is the mechanism for responding immediately to audited events, and so this requirement
ismet by the FAU_ARP.1.1 above.

FAU_SAA.1.2:
See FAU_SAA.11

FAU_STG.2.3:
AddElementsToLog

FAU_STG.4.1:
AddElementsToLog

FCO_NRO.2.1:
ValidToken defines some of the checks on all the certificates, TokenWithValidAuthCert including the
Authorisation Certificate. Thisisinvoked in User TokenOK and User TokenWithOKAuthCert, which

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 108

add the remaining checks.

FCO_NRO.2.2:
See FCO_NRO.2.1

FCO_NRO.2.3:
See FCO_NRO.2.1

FDP_ACC.1.1:

Accessto system objectsis controlled by giving admin usersroles, and controlling which operations
they have access to. Thisis covered in SFP_DAC. Access to user objects (certificates on tokens)
is restricted by the basic design of the system: certificates are read and validated during user entry
(TISUserEntryOp) for asingle user at atime, and then discarded. There is no opportunity for any
other user or administrator to access these objects.

FDP_ACF.1.1;
see FDP_ACC.1.1

FDP_ACF.1.2:
see FDP_ACC.1.1

FDP_ACF.1.3;
see FDP_ACC.1.1

FDP_ACF.1.4:
see FDP_ACC.1.1

FDP_DAU.2.1:

Thisrefersto ensuring validity of the users' credentias, i.e. the cryptographic processes that ensure

the certificates are signed correctly. Thisistherefore covered in ValidToken, and TokenWithvalidAuthCert
which define some of the checks on all the certificates, including the Authorisation Certificate, and

the invoking User TokenOK and User TokenWithOK AuthCert, which add the remaining checks. En-
suring the Authorisation Certificate is valid is carried out in TISAriteUser Token. But note that as

the cryto is simulated, this validity checking and guarantee is not real.

FDP_DAU.2.2:
See FDP_DAU.2.1

FDP_RIP.2.1:
Not really afunctiona requirement. But the specification overall does not provide any function to
access the previous information in aresource. This requirement is deferred.

FDP_UIT.1.1:
Authorisation Certificates are created by NewAuthCert, which ensures they can be validated by the
key of the ID Station.

FDP_UIT.1.2:
See FDP_UIT.1.1.

FIA_UAU.2.1:

Thisisthe basic operation of the TIS, and is implemented by the whole behaviour - not permitting
user entry until authorisation and not letting administrators carry out operations until they have
logged on. This cannot be mapped to any specific part of the specification, but the property is

Praxis Tokeneer 1D Station Reference S.P1229.41.2
High Integrity Formal Specification Issue 1.4
Systems Page 109

captured in the formal security policy, and the proof follows from there.

FIA_UAU.3.1:
Only detection of forgery of token information isin scope. This maps to ValidToken and the cryp-
tographic check implied by this.

FIA_UAU.3.2:

The design choice of using biometric data means that copying the token is not an effective attack,
because it is not possible to copy the other person’s actual biometric object (e.g. their finger). Copy-
ing the authorisation certificate without copying the token is prevented by ValidToken, which checks
the token ID in the certificate is the same as on the Token, and NewAuthCert, which constructs auth
certs with the correct token ID in them. This does depend on the token ID being unique.

FIA_UAU.7.1:

The series of updates to the display given in the TISUser EntryOp operation presents information to
the user only at major milestones in the authentication process, and so leaks no useful information
to the user.

FIA_UID.2.1:

The first action a user must carry out is to present their token, from which the certificates are ex-
tracted (ReadUser Token and ReadAdminToken). These certificates identify the user to the system
before they can do anything else.

FIA_USB.1.1:

For user entry, no operation is possible other than to unlock the door, which is done only if the user
is allowed entry, so this requirement does not really apply. For administrators, the actions allowed
to auser are based on their role, as covered by SFPDAC.

FMT_MOF.1.1:

This table has been modified by the ST, making it clear that only configuration data will be mod-
ifiable, and then only by the security officer. The alocation of operations to the security offi-
cer is covered in the Admin invariant, which gives him (and only him) only updateConfigData.
ValidateOpReguest will therefore limit him to modification of the configuration data.

FMT_MSA.1.1:
See SFPDAC.

FMT_MSA.2.1:

Configuration data and enrolment data, the only security information, is entered via a floppy. The
definition of the possible content of afloppy includes enrolmentFile{ValidEnrol})), configFile{Config))
and badFloppy. The invariants on ValidEnrol and Config ensure that if the floppy is regarded as
having enrolment or configuration data, it will be correctly constructed (secure). If the data is
not correct, the floppy will be regarded as having badFloppy data, and EnrolmentDataOK and
FinishUpdateConfigDataOK will not read it. (Invariants will need to be defined for al security
values in Config and ValidEnrol in discussion with the client).

FMT_MSA.3.1;
InitlDStation

FMT_MSA.3.2:
No information is created by the Security Officer, and so this requirement does not need to be
implemented.

E.2

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 110
FMT_MTD.1.1:
See SFPDAC
FMT_MTD.3.1:

SeeFMT_MSA.2.1

FMT_SAE.1.1:
See SFPDAC.

FMT_SAE.1.2:
Not implemented. Behaviourally, whether the authorisation cert is there and out of validity, or not
there, isinvisible to the user.

FMT_SMR.2.1:
See SFP.DAC

FMT_SMR.2.2:
ValidateAdminTokenOK associates a user with the role given to them in their authorisation certifi-
cate.

FMT_SMR.3.1:
The Administrator must insert their admin token and haveit read by the system (ReadAdminTokenOK)
before they are given any admin role.

FPT_FLS.1.1:
Power failure or crash will require the system to be re-started. There is no persistent state, and a
re-start will require the system to be re-started in a secure state, as with any start-up.

FPT_RVM.1.1:

The invariant in DoorLatchAlarm ensures that the latch never remains unlocked beyond the time
set by the TIS. It also ensures that the alarm will sound if the door remains open for too long. The
variables status and enclaveStatus act as state-machine controls, and ensure that each operation can
only be performed when the system isin the correct state.

FPT_STM.1.1:
PollTime reads the time from an external source (assumed reliable). This is done once per main
loop.

FRU_PRS.1.1:

The variables status and enclaveStatus act as state-machine controls and ensure that once User Entry
or Admin validation have started, they continue to appropriate points, ignoring other accesses. This
in effect assures that an action in hand has priority over new actions - new subjects have lower
priority to old subjects.

FRU_PRS.1.2:
See FRU_PRS.1.1

Requirements out of scope

This section lists the requirements that are not referenced from this document, with a justification
for their omission.

E21

E.2.2

E.3

Praxis Tokeneer ID Station Reference S.P1229.41.2

High Integrity Formal Specification Issue 1.4
Systems Page 111
Deferred

The following requirements have been deferred to the design due to their detailed nature.

FS.NotlnScope.Deferred

FAU_GEN.1.2 FDP_RIP2.1
FAU_GEN.2.1

Notlmplemented

Thefollowing requirements have not been implemented, the justification for their non-implementation

is covered in section E.1.

FS.NotlnScope.STNotl mplemented
FMT_SAE.1.2

General Requirements

Several of the security requirements are of a general nature and demonstration of their satisfaction
by this specification requires analysis of the whole specification rather than reference to asingle (or
small number of) operation schemas. The justification of satisfaction of each of these requirements

is presented in section E.1.

FS.General .STRequirements
FRU_PRS1.1 FRU_PRS1.2

Tokeneer 1D Station
Formal Specification

Praxis
High Integrity
Systems

APPENDIX: Z INDEX

Reference S.P1229.41.2
Issue 1.4

Page 112

This section contains an index of Z terms. This contains al the Z schemas, types and functions

defined in the specification.

8
ADSENE . e 8
AddAuthCertToUserTokenooviiiiiiiiinninnn 40
AddEIementSTOLOg .. .o.vvve e 33
AddFailedBioCheckToStatscovvieieiiiininnen... 37
AddFailedEntryTOSatsovvniiiiiiiiii e 37
AddSuccessfulBioCheckToSatsovvvvniiniennenn.. 37
AddSuccessfulEntryToStatsvvvveeiiiiiiieiiennes 37
AMIN 22
ADMINFINIShOP ... 42
ADMINLOGON ... 41
AMINLOGOUL 41
ADMINORP ...ttt 22
ADMINOPCONEEXE ... vttt 69
AdminOpFinishContext ...t 70
AdminOpStartedContextoveviieiiiiieninnen... 70
ADMINPRIVILEGEooiiiiiiiii e 22
AMINSArtOP ..o 42
ADMINTOKEN 23
ADMINTOkeNOK 65
AMINTOKENTEAr ..ot 62
ADMINTOKeNTIMEOULoeieiii e 68
ALARM Lo 15
AArMING 15
ACNIVELOG . ..ot 22
ArChiVeLOog ..o 34
AttCertificate 12
AUdItAIArM . 36
AUditDISplay 36
AUItDOOr .. 35
AuditLatch 35
AUdITLOG oo 20
AUItLOGAIAIM ..o e 36
auditManagero 9
AUITSCrEeNn ... 36
AULNCEIt . 12
AUthCErtOK ... 39
BadAdmMIiNLOGOULoutie i 63
BadAdminTokenTearooviiiiiiiiiiiiininnnn. 63
badFIopPY . 16
badFP ... 15
BadKB ... 16
badT 15
BioCheckNotRequiredc.cooiiiiiiiiiiniinnnn.. 47
BioCheckRequiredo 48
Blank 15
BUSY . 16
CAIACEIT e 11
Certificateooirii e 10
Certificateld ..o 10
CertlssuerIsThisTIS ... 39
CertlssuerKnoWNoeie i 38
CeartOK 39
CLASS . 8
Clear o 16
ClEAIrANCE . .o\ttt et e e 8
ClearLog . ..o 34
ClearLogThenAddElementsovviiiiiinenannns 74

ClearNeWSITING . ..o 88

ClearSIring . ..o 88
ClOSEd ..o 15
ClOSEDOON ..ttt e 16
CompleteFailedEnrolmentcooiiiiiiiiinien... 62
confidential i 8
CONfIg et 19
configFileo 16
COUNEEr .. 87
CUrrentTOKENo e 13
displayConfigDatac.vuiiiiiiiii i 16
DISPLAYMESSAGE ...\ttt 15
displayStats 16
dOINGOP . et 16
DOOR ..o 15
DoorLatchAlarmooiei e 22
doorunlockedooiiiiii 15
EMPEYFIOPPY v et 16
EnclaveContextc.veiriiii i 58
ENCLAVESTATUS ... 24
ENrol ... e 14
EnrolContextooieii e 58
EnrolmentDataOKoiuiiiiii i 60
enrolmentRailed 16
enrolmentFile 16
EntryNotAllowedt 54
EntryOK ... 53
FailedAccessTokenRemovedccooviiiiiininnn, 56
FailedAdminTokenRemovedcooviiiiniinnen. 67
FailedEnrolFloppyRemovedcccoviiiininn... 61
FiNger e 23
FingerOK ..o 50
FingerprintTemplateot 9
FINGERPRINTTRY ... i 15
FingerTimeoutcoovriiii i 50
FinishArchiveLogoovii e 75
FinishArchiveLogBadMatchcooiiiiinnt. 75
FinishArchiveLogFailt 75
FinishArchiveLogNoFIoppyYovviiiiiii e 75
FinishArchiveLogOKcoiiiiiiiiiiiiiii i 74
FinishUpdateConfigDataccoovvvieiiiiinninaen.. 78
FinishUpdateConfigDataFailccccovivnnnn 78
FinishUpdateConfigDataOKcooviiiiiinnennnn.. 77
FlOPPY -t 23
FLOPPY 16
GOOOFP .. 15
GOOOT . 15
OOtFINGEY . e 24
QUAND e e 9
1ANAACEIT .. 12
IDCEIt . 11
IDSALION ..ttt 25
IncrementCountero 87
INILADMIN .. e 82
INEAULITLOG ... 82
INItCONTIG ..o e 81
InitDoorLatchAlarmooii e 81
INEIDSEALION ... 82
INItKEYSIOre . ..o 81
INIESALS . 82
insertBlankFIoppyvvii i 16

Tokeneer 1D Station
Formal Specification

Praxis
High Integrity
Systems

insertConfigData
insertFinger
Internal
invalidData
invalidRequest
ISSUER
Keyboard

locked
LogChange
LoginAborted
LoginContext
maxSupportedLogSize
minClearance
NewAuthCert
NewCounter
newPrintNat

NoChange
NoFinger

noFloppy

noFP
noKB
NoOpRequest
noT
notEnrolled
oldestLogTime
open
openDoor
optional
OverrideDoorLockOK
overridelock
Poll AdminToken
PollDoor

PollFinger
PollFloppy
PollKeyboard
PollTime
PollUser Token
PRESENCE
present

PrivCert
PRIVILEGE
quiescent
ReadAdminToken
ReadEnrolmentData
ReadEnrolmentFloppy
ReadFingerOK
ReadUser Token
Real\World
RealWorldChanges
removeAdminToken
RequestEnrolment

ResetScreenMessage
restricted

secret
securityOfficer
ShutdownOK
shutdownOp
ShutdownWaitingDoor

Reference S.P1229.41.2

Issue 1.4

Page 113
Slent ... 15
SIZEEIEmMeNt 20
SartArchiveLog .. .ove e 74
SartArchiveLogOK 73
SartArchiveLogWaitingFloppycovviviiiiiiiennn. 74
SArtCONEXt ...t 83
SartEnrolledStation ... 84
SartNonEnrolledStationcoooiiiiiiiiii. 83
SArtOPCONEXE ... 71
SartUpdateConfigDataovuiiiiiiiiiiiiann 77
SartUpdateConfigOKoiiiiiiiii e 76
SartUpdateConfig\WaitingFloppycoovvviininnn. 76
LS e 21
STATUS e 24
TN 8
TIME o 8
TISAAMINLOGON ...t 68
TISADMINLOGOUL ...ttt 69
TISAAMINOD . vt e 86
TISArChiveLogOp .. o.v e 76
TISCompleteFailedACCeSSovivi i 56
TISCompleteFailedAdminLogoncovivevuienenn 67
TISCompleteTimeoutAdminLogoutc.c.ovvnenn.. 69
TISControlledRealWorld ..o, 17
TISEarlyUpdateoonvnieii i 30
TISENrOIOP .. 62
TISAIE e 86
TISMonitoredRealWorld ... 18
TISOVerrideDoorLockODvvveieie e 80
TISPOIl e e 29
TISPrOCESSING .. ev ettt et et 86
TISReadAdMINTOKEN 65
TISREAdFINGEr ...t 50
TISReadUserTokenooviiiiiiiii i 46
TISShULAOWNOP ..o eee e aees 79
TISSArtAAMINOP . ..ot 73
TISSATUP .« v e 84
TISUNIOCKDOOr ... 56
TISUPALe . .o 31
TISUpdateConfigDataOpovveriiiiiiiieieaannns 78
TISUSEENtryOp ..o 57
TISValidateAdminTokenc..oviiiiiiiiiienannn 66
TISVAlidateEnNtryoouiiiie i 54
TISValidateFingerooiiiiii et 52
TISvValidateUserTokencooviiiiiiiiiiiinnnn.. 49
TISMiteUSerTOKENovieii e 53
TOKEN .. 13
TokenRemoval Timeoutcocoviiiiiiiiiinn... 55
TokenRemovedAdmMIiNLOgoutovvivviniiininnennnnn. 68
TOKENTRY ottt 15
tokenUpdateFailed 15
TokenWithValidAutho 13
TOPSECIEL ..ttt e e e 8
unclassified ... 8
UnIoCKDOON .. 38
UnlockDOoOrOK ... 55
unfocked ... 15
unmarked 8
UpdateAlarm ... e 29
updateConfigDataouiiiiiii e 22
UpdateDisplayo.veeiiii 30
UpdateFlopPY - ... vee e 31
UpdateKeySXore ..o 40
UpdateKeyStoreFromFIoppyvveeeiiiiiiiiieinnes 40
Updatelatch ... 29
UpPdateSCreano.vriie e 30
UpdateUserTOKeNviniiiiiiiiiiiiiiiieiinennes 31
User AIOWEdENETY ...t 53

Tokeneer 1D Station
Formal Specification

Praxis
High Integrity
Systems

User EntryContext
userOnly
UserToken
User TokenOK

UserTokenTorn
User TokenWithOK AuthCert
ValidateAdminTokenFail
ValidateAdminTokenOK
ValidateEnrolmentData
ValidateEnrolmentDataFail
ValidateEnrolmentDataOK
ValidateFingerFail

ValidateFinger OK

ValidateOpRequest
ValidateOpRequestFail
ValidateOpRequestOK
ValidateUser TokenFail
ValidateUser TokenOK
validatingEnrolmentData
ValidEnrol
ValidToken

Reference S.P1229.41.2

Issue 1.4
Page 114

WAL L. 15
WaitingAdminTokenRemovalccoiiiiiiiiinnt 67
waitingEndEnrol 24
WaitingENrol 24
WaItINGENLIY ..o 24
WaItiNGFINGEr .. 24
waitingFinishAdmiNOpo 24
WaitingFloppyRemovalc..coiiiiiiii 62
waitingRemoveAdminTokenFail 24
waitingRemoveTokenFail ..., 24
waitingSartAdminOp ..ot 24
WaitingTokenRemovalccoiiiiiiiiii i 55
waitingUpdateTokencooiiiiiiiiiiiiaen. 24
WEICOMB . 15
WelCOmeAdMIN ... 16
WorldChangesSowlycovuiiniiiiiiiiiiiiannes 93
WriteUserTokenot 53
WriteUserTokenFailcccooiiiiiiiiiiininnnn. 52
WriteUserTokenOK 52
= (0] 11 "= S 8

Tokeneer 1D Station
Formal Specification

Praxis
High Integrity
Systems

APPENDIX: TRACEUNIT INDEX

Reference S.P1229.41.2
Issue 1.4

Page 115

An index of traceunits. This contains al the traceunits placed in the specification to enable the
elements of the specification to be traced to the design.

FSAdmMinAmMIinFiNishOpcooiiiiiii e 42
FSAMIiNADMINLOGONovii i 41
FSAdmMIiNAIMINLOGOULveiii e 41
FSAdminAdminStartOpcoviviiiiiiiiiiaennn. 42
FSAMINStAte 21
FS.AuditLog.AddElementSTOLOgovivvivivnannnn. 33
FS.AuditLog.ArchiveLogcccviiiiiiiiiiiininnen. 34
FSAuditLog.ClearLogcoviiiiiiiiii et 34
FS.AuditLog.LogChangeoeuiiiiiiiiiiininaen.. 35
FSAuditLOg.State 20
FS.Certificate AuthCertificateOKcoveenen. 39
FS.Certificate.CertificateOKccooiiiiiiiiiiinn.. 38
FS.Certificate.NewAuthCertt 39
FS.ConfigDataStatec.ovveiiiiiiiiiiiiann. 19
FS.DoOr.LOCKDOOr ...ttt 38
FS.Door.UnlockDOOro.uvieiiiii i 38
FS.Enclave. AdminLogoutcccoviiiiiiinannen... 68
FS.Enclave AdminTokenTimeoutc.ccuuenn. 68
FS.Enclave.BadAdminLogoutccoivieiinnnn.. 63
FS.Enclave.FailedAdminTokenRemoved 67
FS.Enclave.FailedEnrolFloppyRemoved 61
FS.Enclave.FinishArchiveLogBadMatch 75
FS.Enclave.FinishArchiveLogNoFloppy 75
FS.Enclave.FinishArchiveLogOKcoiiit. 74
FS.Enclave. FinishUpdateConfigDataFail 77
FS.Enclave.FinishUpdateConfigDataOK 7
FS.Enclave.LoginAborted ..o 63
FS.EnclaveNOOPREQUEStvviieiii e 72
FS.Enclave.OverrideDoorLockOK 80
FS.Enclave ReadAdminTokencooviiiniinn 64
FS.Enclave.ReadEnrolmentFloppyoovvvninnn 59
FS.Enclave.RequestEnrolmentcovvviin... 59
FS.Enclave.ResetScreenMessageoovvviveninnennnn 44
FS.Enclave.ShutdownOKcoviiiiiiiniinnnnnns. 78
FS.Enclave.ShutdownWaitingDoor 79
FS.Enclave.StartArchiveLogOKcoooiviinntt. 73
FS.Enclave. StartArchivel ogWaitingFloppy 73
FS.Enclave.StartUpdateConfigDataOK 76
FS.Enclave. StartUpdateConfigWaitingFloppy 76
FS.Enclave. TISADMINLOGINoviiiiiiii e 67
FS.Enclave. TISAdminLogoutc..coivviiniinnnnnn. 69
FS.Enclave TISArchiveLogOpoovivviiiiiiiiinnnn 76
FS.Enclave. TISCompleteTimeoutAdminLogout 69
FSEnclaveTISENrolOpcovviiiii i 58
FS.Enclave.TISShutdownOp ... 79
FS.Enclave TISStartAdminOpooviviiiiiininn.. 73
FS.Enclave.TISUNIockDoOorOpovviiiiiiiennenes 80
FS.Enclave.TISUpdateConfigDataOpc.ovvuennn 78
FS.Enclave.ValidateAdminTokenFail 66
FS.Enclave.ValidateAdminTokenOK 66
FS.Enclave.ValidateEnrolmentDataFail 61
FS.Enclave.ValidateEnrolmentDataOK 60
FS.Enclave.ValidateOpRequestFail 72
FS.Enclave.ValidateOpRequestOKc.covvvnnn.. 71
FS.Enclave.WaitingAdminTokenRemoval 67
FS.Enclave.WaitingFloppyRemoval 62
FS.General.DoorRemainsLockedc..ov.e 106

FS.General .STRequirementscoovveieiiinenann. 111

FS.Genera.ValidConfigcocoviiiiiiiiiinn, 106
FS.General.ValidStart ...t 105
FS.Gereral .PersistCertificatesoooennen. 106
FS.Interface. TISEarlyUpdateccoiiviinnennn. 30
FS.InterfaceTISPOIlo 27
FS.Interface.TISUpdatecooviiiiiiiiiiiiaenn. 31
FS.Interface.UpdateFloppyc.cocoiiiiiiniiniinn... 31
FS.Interface.UpdateTokenccoiiiiiiiiiiiannnns 31
FSInternal.Stateocooiiiiiiii 24
FSKeyStore.Stateoovviiii i 20
FS.KeyStore.UpdateKeyStorecoviiiiiiiinnnnn 40
FSKeyTypesKeys . ..o 10
FS.NotInScope.Deferredcooviiiiiiiiiiiiain.n. 111
FS.NotInScope.Notimplemented 104
FS.NotInScope.PerformanceLimitations 105
FS.NotInScope.SecureAssumptionc.covvnnn.. 105
FS.NotInScope.STNotimplemented 111
FS.NotInScope.UserBehaviour 105
FSRedWorld.Statecooiiiiiiiiiii i 22
FS.Stats.Statecovveii 21
FS.StatsUpdateovvriiiiii 37
FSTISInitIDStationcooiiiiiiiiiiiiii e 81
FSTISSEE ... 25
FSTISTISMANLOOPoviviiiii e 85
FSTISTISStartupovveiei e 83
FS.Types.Certificatesc.oiviiiiiiiiiiiiiiininnn. 10
FSTypes.ClearanCeouviuiiiiiii it 8
FSTypesEnrolment ... 14
FS.TypesFingerprintc.ouieiiiiiiiii et 9
FS.Types.FingerprintTemplatecccoovvivnan... 9
FSTYPES.ISSUES ...t 9
FSTYpesPresence ..o 8
FS.TypesPrivilegec.ooiii 9
FSTypesReadWorld ...t 15
FSTYPESTIME ..t 8
FSTYPESTOKENS ...t 12
FSTYPESUSEr . 9
FS.UserEntry.BioCheckNotRequired 47
FS.UserEntry.BioCheckRequiredc.covvnne. 48
FS.UserEntry.EntryNotAllowedocoviiinnt 54
FS.UserEntry.EntryOK 53
FS.UserEntry.FailedAccessTokenRemoved 56
FS.UserEntry.FingerTimeoutcccovviviinnn 50
FS.UserEntry.NOFINgerooiniiiiiiiiiiiiaens 49
FS.UserEntry.ReadFingerOKcooiiiiiinnn... 49
FS.UserEntry. TISReadUserTokencovvvvvvnnn.. 46
FS.UserEntry. TISUserEntryOpoevviiiiieieene 57
FS.UserEntry. TokenRemoval Timeout 55
FS.UserEntry.UnlockDoorOKcovviiiiiinnnnnnn. 54
FS.UserEntry.UserTokenTornc.ovvuvineinnnnnen. 45
FS.UserEntry.ValidateFingerFail 51
FS.UserEntry.ValidateFingerOKc.covvvenn.. 50
FS.UserEntry.ValidateUserTokenFail 48
FS.UserEntry.WaitingTokenRemoval 55
FS.UserEntry.WriteUserTokenFail 52
FS.UserEntry.WriteUserTokenOKcoocovennet. 52
FS.UserToken. AddAuthCertToUserToken 40

Tokeneer 1D Station
Formal Specification

Praxis
High Integrity
Systems

APPENDIX: REQUIREMENTSINDEX

Reference S.P1229.41.2
Issue 1.4

Page 116

Anindex of traceunits. This contains al the traceunits in the requirements documents . All require-
ments are listed with the pages from which they are referenced.

FAILUAU.3.2 Lo 12
FAU_ARPLL ... 22,30, 31, 33,34,35
FAU_GEN.L2 ... e 111
FAU_GEN.2.L ..o 111
FAU_SAA.LL ..o 22,30, 31, 33,35
FAU_SAAL2 ..o 22,31,33,35
FAU_STG.2.3 . et 33
FAU_STGAL .. 33
FCO_NRO.21 ...oioiiiiiiiiie 12, 47, 47, 48, 48, 66
FCO_NRO.2.2 ..t 12, 66
FCO_NRO.23 .. i 12, 47, 48, 66
FDP_ACC.L1 ..ottt 21,66, 71
FDP_ACFLL .ot 21, 66, 71
FDP_ACFL2 ..t 21, 66, 71
FDP_ACF.L3 . i 21,66, 71
FDP_ACFL4 .. ot 21, 66, 71
FDP_DAU.21 ...ttt 12, 47, 48
FDP_DAU.22 ... it 12, 47,48
FDP_RIP2.1 .. 111
FDP_UIT.LL oot 39
FDP_UIT.L2 oottt 39
FIALUAU.B.L oo 12
FIALUAU.3.2 Lo 39
FIALUAU.Z.L oo 57
FIALUID.2.L oo 46, 64
FIALUSB.LL oo 21,66, 71
FMT_MOFL1 ... 21,71
FMT_MSALL .. 21, 31, 66, 71
FMT_MSA 21 .. i 14, 60, 76
FMT _MSA B L e 81
FMT_MTD.11 oot 21, 66, 71
FMT_MTD.3.1 .ottt 14, 60, 76
FMT_SAE.LL ..o 21,31, 66,71
FMT_SAE. L2 oo 111
FMT_SMR.21 ..o 21,66, 71
FMT_SMR.2.2 e 31, 66
FMT_SMR.3.L o 64
FPT_FLSLL oot 83
FPT_RVM.LL oo 22,24
FPT_STM.LL oo 27
FRU_PRS.LL .. 111
FRU_PRS. L2 ..t 111
SFPDAC .. 31, 66, 71
SFP_DAC ..t 21
ScAuUdit. Ass.LoggedOno.iiiiii 73
SCAUIt.ASS.SECUNE . ..ot 105
ScAudit.Con.Nolnterleave ...t 73
ScAudit.Fall.Audit 104
ScAudit.Faill.Write ... 75,75
ScAudit.Suc.Clear 74
ScAudit.SUCWritten ... 74
ScConfig.Ass.LoggedOncovviiiiiiii 76
SCCONfIQASS.SECUN . .o e e et 105
ScConfig.Con.Nolnterleavecooviiiiiiiinn. 76
ScConfig.Fail.Audit ... 104
ScConfig.Fail. AuditPreservecoiiiiiiiiiiann 33
ScConfig.Fail.lRead ... 7
ScConfig.SuUCAuUdito 71,77
ScConfig.SUC.CONfig ..o 77

SCCONfig.SUC.SECUNE . .o e et 106

ScGainlnitial ASS.GOOdACooiiiiiiiii 47
ScGainInitial ASSPOOTAC 48
ScGainlinitia AsS.QUIESCENtovvvi i 46
ScGainlnitial ASS.SECUreviviiiiiiiiiii e 105
ScGainlnitial Ass.VaidConfigcooiiiintt. 106
ScGainlnitial Ass.ValidStarto 105
ScGaininitia Ass.ValidUsercooviiinn 48, 50
ScGainlnitial.Con.Nolnterleavecoovvuenn. 46
ScGainlnitial.Fail. Audit ... 104
ScGainlnitial.Fail AuditPreserve 33
ScGainlnitial.Fail.DoorProppedc.ccovviiiiiinnt. 105
ScGainlnitial.Fail.Fingerprint 50, 51
ScGainlnitial.Fail.ReadCardcoovvnnnn. 45, 48
ScGainlnitial.Fail.UserSlowcoooivviiininn... 105
ScGainlnitial.Fail. WriteCard 52, 105
ScGainlnitial.Suc.Audit 35, 45, 46, 48, 49, 50, 52, 54, 56
ScGainlnitial.Suc.GOOdACc.oviiiiiiiiiiiiians 52
ScGainlnitial.Suc.Lockedl 30, 31
ScGainlnitial.Suc.PersistCertsc..covvviiininnnn.. 52
ScGainlnitial.Suc.UserCardccooviviiiiinannn. 54
ScGainlnitial.Suc.Userln ... 54
ScGainRepeat. ASS.QUIESCENtvvviiiiiriiiiennn, 46
ScGaiNReEPeat. ASS.SECUME\t ii it 105
ScGainRepeat.Ass.VaidConfigccooiiiiiinnn. 106
ScGainRepeat. Ass.ValidStart ...l 105
ScGainRepeat.Con.Nolnterleavecocoveventn. 46
ScGainRepeat.Fail Audit ... 104
ScGainRepesat.Fail AuditPreservecoooonls. 33
ScGainRepeat.Fail.DoorProppedt 105
ScGainRepeat.Fail.ReadCardcoooviiiiiinnnn 48
ScGainRepeat.Fail.UserSlowcovvviiiiiiinnt. 105
ScGainRepeat.Suc.Audit 35, 45, 46, 47, 54
ScGainRepeat.Suc.Locked ... 30,31
ScGainRepeat.Suc.PersistCertscoooviiiiiiiian.. 106
ScGainRepeat.Suc.UserCardo.vviiiiiniiinann.. 54
ScGainRepeat.Suc.UserIn ... 54
ScGenera.Fail. Audit ... 33
ScLogOff.Ass.LoggedOnoovviiiiiiiii et 63, 68
SCLOGOff.ASS.SECUNE ..ottt 105
ScLogOff.Faill. Auditcoooiiiii 104
ScLogOff.Fail. AuditPreserve ..., 33
ScLogOff.SUCAUILoovviii i 63, 68
ScLogOff.Suc.LoggedOffcoviiiiiii 63, 68
ScLogOff.SUC.SECUMe ... 106
ScLOgON.ASS.QUIESCENt ... oviv et 64
SCLOGON.ASS.SECUNE ..t 105
ScLogOn.AssValidAdmin 66
ScLogOn.Con.Nolnterleavecoovviiiiiinen.. 64
ScLogOn.Fal.Audit ... 104
ScLogOn.Fail. AuditPreserve ...t 33
ScLogOn.Fail.ReadCardccovviiiniiiiiniinnnn. 66
ScLogOn.Suc Auditcooivii 64, 66
ScLogON.SUC.LOGON . ..vee e 66
SCLOGON.SUC.SECUM® ..ot 106
ScProbibitlnitial.Suc.Lockedo 106
ScProhibitlnitial. Ass.FalseUser 48,51
ScProhibitlnitial AsS.POOTACcoviiii 48
ScProhibitlnitial. Ass.Quiescent ... 46
ScProhibitlnitial. Ass.Secure ... 105
ScProhibitlnitial. Ass.ValidConfigc..coet. 106

Praxis Tokeneer ID Station

High Integrity Formal Specification

Systems

ScProhibitlnitial. Ass.VaidStart 105
ScProhibitlnitial.Con.Nolnterleave 46
ScProhibitlnitia.Fail. Auditcol 104
ScProhibitlnitial.Fail. AuditPreserve 33
ScProhibitlnitial.Fail.Fingerprintcooat 50
ScProhibitlnitial.Fail.ReadCard 45, 48
ScProhibitlnitial.Suc.Audit 35, 45, 46, 48, 49, 50, 51, 56
ScProhibitlnitial.Suc.PersistCertss 106
ScProhibitlnitial.SucUserCardcooviiinnn.s. 56
ScProhibitlnitial.Suc.UserOutccovvivininnn.. 106
ScShutdown.Ass.LoggedOno.vvvieiiiiiiiiiiainnn 78
SCShUtAOWN.ASS.SECUNE e et e e ieaeans 105
ScShutdown.Con.Noninterleavecoovivanet. 78
ScShutdown.Fail Audit ..., 104
ScShutdown.Fail AuditPreservecooviiiiiiiiinnn. 33
ScShutdown.Suc. Audit ... 71,78
SCShutdOWN.SUC.SECUE ..o vv e 78
ScShutdown.Suc.Shutdown ... 78

SCStart. ASS.Data ..o 59

Reference S.P1229.41.2

Issue 1.4
Page 117

SCStart. ASS.SECUNE .. v vttt 105
ScStart.Con.Nolnterleave 59
ScStart.Faill. Audit ... 104
ScStart.Fail. AuditPreserve ... 33
ScStart.Fail.ReadFloppyo 61
ScStart. SUCAUIL ..o e 60
ScStart.SUC.RUNNING ..o 60
SCStart.SUC.SECUNE ...t 106
ScUnlock.Ass.LoggedOnovveiiiiiiiiii e 80
ScUNIOCK. ASS.QUIESCENT ... vv vt 80
SCUNIOCK.ASS.SECUIE . ..ot ie et e e 105
ScUnlock.Con.Nolnterleavecovviiiiiiiinann. 80
ScUnlock.Fail Auditoooviii 104
ScUnlock.Fail AuditPreservecoovviiiiiiinannn. 33
ScUnlock.Fail.DoorProppedoovviiiiiii 105
ScUnlock.Fail.UserSIow ..o 105
ScUnlock.Suc.Audit ... 35,71, 80
ScUnlock.Suc.Locked ... 30, 31
ScUnlock.SucUserln ... 80

