

Tokeneer ID Station
Interface Specification

 S.P1229.41.3
Issue: 1.0
Status: Definitive
19th August 2008

 Originator

 David Painter

 Approver

 Janet Barnes

 Copies to:

 NSA Praxis High Integrity Systems
 Project File

 SPRE Inc

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 2 of 84

Contents

1 Introduction 3
1.1 Background 3
1.2 Identification 3
1.3 Structure 4

2 Certificate Contents 5
2.1 Common Data Type Representations 5
2.2 ID Certificate 11
2.3 Privilege Certificate 12
2.4 I&A Certificate 13
2.5 Auth Certificate 14

3 APIs 15
3.1 Token Reader Interface 15
3.2 Biometric Interface 26
3.3 Door Interface 30
3.4 Latch Interface 32
3.5 Alarm Interface 34
3.6 Display Interface 35
3.7 Crypto Library 38
3.8 Certificate Processing Library 49

4 Peripheral Simulator Message Interface 53
4.1 General Message Structure 53
4.2 Token Reader Interface 56
4.3 Biometric Interface 64
4.4 Door Interface 67
4.5 Latch Interface 69
4.6 Alarm Interface 72
4.7 Display Interface 75

A Example Walkthrough 80

Document Control and References 84
Changes history 84
Changes forecast 84
Document references 84

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 3 of 84

1 Introduction

1.1 Background

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to re-develop part of an existing secure system (the Tokeneer
System) in accordance with their own high-integrity development process. The component of the
Tokeneer System that is to be redeveloped is the core functionality of the Token ID Station (TIS). This re-
development work will then be used to show the security community that it is possible to develop secure
systems rigorously in a cost-effective manner.

1.2 Identification

There are five systems of interest:

• the operational Tokeneer system

• the operational ID Station (a component of the operational Tokeneer system)

• the re-developed ID Station(TIS) (non-operational, but functionally equivalent to the operational ID
Station)

• the re-developed TIS core functions (a subset of the software in the re-developed ID Station)

• the re-developed TIS support functions (all of the re-developed ID Station except the re-developed
ID Station core functions)

This specification defines the interfaces provided by the re-developed TIS support functions. The TIS
core functions and the peripheral simulators use these interfaces.

This document defines all the interfaces indicated by connectors in Figure 1. Interfaces internal to TIS
are implemented as APIs where procedure calls used by the core functions are defined. Interfaces
between the support functions and the peripheral simulators take the form of messages transmitted
using TCP/IP.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 4 of 84

Core Functions

Biometric
Library Test

Stub

Display
Test Driver

Card
Readers

Test Driver

Door Test
Driver

API to Card
Readers

API to
Biometric

Library

API to
Display

API to Door

Certificate
processing lib

stub
Crypto lib stub

Time and Date

ID Station

Floppy
drive

Configuration
data

Initialisation
information from

Enrolment Station

Mimic GUI by
inputing

configuration data
by file

Latch Test
Driver

API to Latch

UI

Figure 1: Interfaces with TIS support functions.

1.3 Structure

Section 2 defines the structured content of certificates. The structured content is a model of the actual
content of certificates, for example signatures will be used to encode whether they work rather than
being true signatures of the data.

Section 3 defines the APIs of each of the TIS support functions provided for use by the TIS core.

Section 4 defines the TCP/IP message content for messages transmitted between the TIS support
functions and the simulated peripherals.

Appendix A includes example walkthroughs to illustrate how the system uses the control data
embedded in the certificates.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 5 of 84

2 Certificate Contents

Each certificate contains various data fields signed by a digital signature. The data fields presented here
are intended to be representative of the true certificates used in practice although ASN.1 (Abstract
Syntax Notation One) and the associated Basic Encoding Rules (BER) and Distinguished Encoding Rules
(DER) typically used in these contexts will not be employed. Structures will be simplified considerably to
minimise the functionality that needs to be provided by the Certificate Processing Library. In particular
all fields are fixed width so the offset of a particular data item in the certificate is easy to determine.

2.1 Common Data Type Representations

2.1.1 Unsigned32

Used to represent a 32-bit unsigned word, therefore can take values in the range 0..2**32 – 1.

2.1.2 Time

All times will be presented to one-minute accuracy using the following format:

Field Representation Size
(32-bit words)

Valid values

Year Unsigned32 1 1990 – 2099

Month Unsigned32 1 01 – 12

Day Unsigned32 1 01 – 31

Hour Unsigned32 1 00 – 23

Minute Unsigned32 1 00 - 59

It will be assumed that the TIS system is working in the same time frame as appear on the certificates,
so time zones will not be recorded.

2.1.3 Validity

Validity periods are constructed from two times. A certificate is valid at any time t such that:

NotBefore <= t and t <= NotAfter

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 6 of 84

Field Representation Size
(32-bit words)

Valid values

NotBefore Time 5

NotAfter Time 5

2.1.4 Name

Names are used to identify the issuer of a certificate and the owner of an ID certificate.

A name will be represented by the following structure; this gives a unique ID for the name and a Text
string summary of the name. The text string will not be used for matching.

Field Representation Size
(32-bit words)

Valid values

ID Unsigned32 1 Any

Text Length Unsigned32 1 0 – 39

Text String40 10 null terminated string of ASCII
characters

2.1.5 BaseCertID

The base certificate ID identifies the ID certificate to which an attribute certificate belongs.

This includes the Issuer and Serial Number of the ID certificate.

Field Representation Size
(32-bit words)

Valid values

Issuer Name 12

SerialNumber Unsigned32 1 any

2.1.6 Role

The role of a token holder is defined as one of the following

 User (00)
 Guard (01)
 SecurityOfficer (02)
 AuditManager (03)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 7 of 84

Field Representation Size
(32-bit words)

Valid values

Role Unsigned32 1 0 - 3

2.1.7 Class

The class is the ordered classifications on documents, areas and people:

 Unmarked (00)
 Unclassified (01)
 Restricted (02)
 Confidential (03)
 Secret (04)
 TopSecret (05)

Field Representation Size
(32-bit words)

Valid values

Class Unsigned32 1 0 – 5

2.1.8 Privilege

The privilege information includes both role and class information. The padding allows future additions
to these.

Field Representation Size
(32-bit words)

Valid values

Role Role 1

Class Class 1

Padding Unsigned32 array 2 any

2.1.9 Template

The bio template contains information modelling a fingerprint template; those fields that are explicitly
named are extracted by the core TIS for processing. The Template is then passed, in its entirety, through
to the Biometrics Library and on to the Fingerprint reader simulator unmodified.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 8 of 84

Field Representation Size
(32-bit words)

Valid values

TemplateLength Unsigned32 1 1 – 500

RequiredMaxFAR Integer32 1 any valid RateType (see 3.2.1)

Padding Unsigned32 array 123 any

2.1.10 AlgorithmIdentifier

This is represented by MechanismType, based on Unsigned32; the valid values should be taken from
the crypto library (see section 3.7.1).

2.1.11 PublicKeyInfo

This is partially based on reality and partially fictional. The Algorithm ID is a true field. The remaining
data is fictional and replaces the public key data; it provides a numeric identifier for the key rather than
the key itself, followed by a key length in bytes. The data type is then padded.

Field Representation Size
(32-bit words)

Valid values

AlgorithmId AlgorithmIdentifier 1

KeyID Unsigned32 1 Any

KeyLength Unsigned32 1 0-128

Padding Unsigned32 array 36 any – data ignored

2.1.12 SignatureData

This represents the signature data that is held in the certificate.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 9 of 84

Field Representation Size
(32-bit words)

Valid values

AlgorithmId AlgorithmIdentifier 1

SignatureLength Unsigned32 1 0 - 128

Signature Signature 32

2.1.13 Signature

This is fictional in its content and replaces the encrypted hash, which forms the signature. The
remaining data provides the id of the key needed to verify the data and the id of the digest that was
signed to create the signature.

Field Representation size
(32-bit words)

Valid values

KeyID Unsigned32 1 any

DigestID Unsigned32 1 any

Padding Unsigned32 array 30 any – data ignored

2.1.14 DigestInfo

This is a fictional field, used to generate return values from the digest, sign and verify calculations. Note
that a digest is calculated prior to signing and verifying certificates. The padding is space reserved for
future use.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 10 of 84

Field Representation Size
(32-bit words)

Valid values

DigestID Unsigned32 1 any, zero will result in a new ID
being generated.

SignReturn Unsigned32 1 appropriate return values for
Crypto Library Sign

VerifyReturn Unsigned32 1 appropriate return values for
Crypto Library Verify

Padding Unsigned32 array 5 any

2.1.15 CryptoControl

This is a fictional field, used to generate return values from the digest calculations:

Field Representation Size
(32-bit words)

Valid values

DigestUpdateReturn Unsigned32 1 appropriate return values for
Crypto Library DigestUpdate

DigestFinalReturn Unsigned32 1 appropriate return values for
Crypto Library DigestFinal

DigestLength Unsigned32 1 0 - 32

Digest DigestInfo 8

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 11 of 84

2.2 ID Certificate

This is based on the real ID Certificate. Key differences are:

• in place of a version number there is an encoding of the certificate type; and

• there is an additional field CryptoControlData that drives the crypto library calls with this data.

Field Representation Size
(32-bit words)

Valid values

CertificateType Unsigned32 1 0

Serial Number Unsigned32 1 any

SignatureAlg AlgorithmIdentifier 1

Issuer Name 12

Validity Validity 10

Subject Name 12

SubjectPublicKeyInfo PublicKeyInfo 39

CryptoControlData CryptoControl 11

SignatureData SignatureData 34

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 12 of 84

2.3 Privilege Certificate

This is based on the real Privilege Certificate. Key differences are:

• in place of a version number there is an encoding of the certificate type; and

• there is an additional field CryptoControlData which drives the crypto library calls with this data.

Field Representation Size
(32-bit words)

Valid values

CertificateType Unsigned32 1 1

Holder BaseCertID 13

Issuer Name 12

SignatureAlg AlgorithmIdentifier 1

Serial Number Unsigned32 1 any

AttCertValidity Validity 10

Privilege Privilege 4

CryptoControl CryptoControlData 11

SignatureData SignatureData 34

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 13 of 84

2.4 I&A Certificate

This is based on the real I&A Certificate. Key differences are:

• in place of a version number there is an encoding of the certificate type; and

• there is an additional field CryptoControlData that drives the crypto library calls with this data.

Field Representation Size
(32-bit words)

Valid values

CertificateType Unsigned32 1 2

Holder BaseCertID 13

Issuer Name 12

SignatureAlg AlgorithmIdentifier 1

Serial Number Unsigned32 1 any

AttCertValidity Validity 10

Template Template 125

CryptoControl CryptoControlData 11

SignatureData SignatureData 34

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 14 of 84

2.5 Auth Certificate

This has exactly the same structure as a privilege certificate. The only distinguishing feature is the
certificate type value.

Field Representation Size
(32-bit words)

Valid values

CertificateType Unsigned32 1 3

Holder BaseCertID 13

Issuer Name 12

SignatureAlg AlgorithmIdentifier 1

Serial Number Unsigned32 1 any

AttCertValidity Validity 10

Privilege Privilege 4

CryptoControl CryptoControlData 11

SignatureData SignatureData 34

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 15 of 84

3 APIs

3.1 Token Reader Interface

This API mirrors definitions from the PC/SC ICC Resource Manager Definition [1]. Procedures model
those given in the Microsoft Security SDK, with one notable exception – the ScardTransmit function.
This generic function will be modeled in this system by specific procedures GetIDCert, GetPrivCert,
GetIACert, GetAuthCert and UpdateAuthCert. This can be reasoned as abstracting up a level e.g.
GetPrivCert is actually a number of Transmit calls, including the container selection, and the multiple
reads required to get the certificate. Because of this, and the fact that the returned raw certificate type
is being modeled with a fixed length, protocol information (both application-level and transmission-level)
need not be modeled. This will minimize the effort required by both Praxis and SPRE to make the
interface work. Note that a flag StatusOK has been added to these procedures, to represent the overall
status response returned with the data from ScardTransmit.

3.1.1 Types

The following enumerated types are used to represent parameters of the procedures internally to TIS. All
outputs from the test drivers to TIS are raw (Unsigned32) to allow erroneous data to be passed back
into TIS, which TIS must then deal with. The association between enumerated types and 32 bit values
are given at the foot of this section.

ResponseCode type provides a means of examining the success or otherwise of an executed command.
type ResponseCode is
 (Success, -- No error.
 InvalidHandle, -- Supplied handle is invalid
 InvalidValue, -- Parameter Value(s) could not be
 -- properly interpreted
 Cancelled, -- Action was cancelled by the
 -- application.
 NoMemory, -- Not enough memory to complete

-- command.
 InsufficientBuffer, -- Data buffer to receive returned

-- data is too small
 UnknownReader, -- Reader name is not recognized
 Timeout, -- Timeout has expired
 SharingViolation, -- ICC cannot be accessed –
 -- outstanding connections
 NoSmartcard, -- Required ICC not in device
 UnknownCard, -- Specified name is not recognized
 ProtoMismatch, -- Requested protocols incompatible

 -- with protocol currently in use

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 16 of 84

-- with the ICC.
 NotReady, -- Device or card not ready for

-- commands
 SystemCancelled, -- Action cancelled by system
 ReaderUnavailable, -- Device not currently available

-- for use
 UnsupportedCard, -- Reader cannot communicate, due to
 -- ATR conflicts.
 UnresponsiveCard, -- Card not responding to a reset.
 UnpoweredCard, -- Power has been removed from the
 -- card
 ResetCard, -- Card has been reset, so any

-- shared state info is invalid.
 RemovedCard); -- ICC has been removed.

CardStateType reflects the possible states of a card in a reader:
type CardStateType is
 (Absent, -- No card in the reader
 Present, -- Card in the reader, but not in position
 -- for use
 Swallowed, -- Card in reader, in position for use. Card
 -- is not powered.
 Powered, -- Power is being provided to the card, but
 -- reader driver is unaware of the mode of
 -- the card
 Negotiable, -- Card has been reset and is awaiting PTS

-- negotiation.
 Specific); -- Card has been reset and specific
 -- protocols have been established.

ReaderStateType represents the possible states of a reader.
type ReaderStateType is
 (Unaware, -- State is unknown by the application
 Ignore, -- Reader should be ignored
 Unavailable, -- Reader is not available for use
 Empty, -- No card in the reader
 Present, -- A card is present in the reader
 Mute); -- An unresponsive card is in the reader

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 17 of 84

String8 is used to represent all possible reader names. These will be null terminated, so actual name
length is up to 7 characters.

type String8 is String(1..8);
type String8Array is Array(1..10) of String8;

ATRType represents the card’s answer-to-reset that is sent from the card to the reader after a successful
reset. The only part of this that we are interested in is the token’s ID, which is used in the validation of
certificates held on the card (The ID certificate’s serial number is equal to this).

type ATRPadding is Array(1..7) of Unsigned32;
type ATRType is record
 TokenID : Unsigned32;
 Padding : ATRPadding;
end record;

Certificate types sent and returned to the card are considered to be raw, i.e. a sequence of 32-bit
unsigned words. The structure, order and size of the data contained within the certificates is as defined
in section 2. GenericRawCert is used to represent any kind of certificate, and contains two fields.
CertData is the certificate itself which will be entered at offset 0 and take up as much of the array as
necessary; CertLength is the actual amount of data (in bytes) stored in the CertData array.

type GenericCertArray is Array(1..250) of Unsigned32;
type GenericRawCert is record
 CertData: GenericCertArray;
 CertLength: Unsigned32;
end record;

3.1.2 Initialize
procedure Initialize (ResponseCode: out Unsigned32);

3.1.2.1 Usage

Initialize is called at TIS initialisation.

3.1.2.2 Behaviour

This allows the application access to the card readers via the resource manager. It sets up the TCP/IP
connection (note one connection for the resource manager, not one for each of the readers).

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.3 Finalize
procedure Finalize (ResponseCode: out Unsigned32);

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 18 of 84

3.1.3.1 Usage

Finalize is called at TIS shut-down.

3.1.3.2 Behaviour

This discontinues communication between TIS and the resource manager, by closing the TCP/IP
connection.

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.4 ListReaders
procedure ListReaders (List: out String8Array;
 Number: in out Unsigned32;

 ResponseCode: out Unsigned32);

3.1.4.1 Usage

ListReaders will be called at initialisation to provide the TIS with a list of strings used to interface with
visible token readers.

⎯ Number will be determined by TIS as the number of readers it is expecting to find.

3.1.4.2 Behaviour

Provides a list of known readers.

⎯ Number is set to the actual number of readers found.

⎯ List will not contain more strings than the expected amount given by the imported ‘Number’, so
may not contain all readers. In normal operation, would expect “INTREAD” and “EXTREAD” to be
returned (in that order), representing the reader internal to the enclave and the reader external to
the enclave respectively.

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.5 GetStatusChange
procedure GetStatusChange (Timeout: in Unsigned32;
 Reader: in String8;
 CurrentState: in ReaderStateType;
 NewState: out Unsigned32;
 ResponseCode: out Unsigned32);

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 19 of 84

3.1.5.1 Usage

GetStatusChange will be used by TIS as a means of ‘polling’ the reader, to determine whether a card is
present.

⎯ Timeout (in milliseconds) will be provided by TIS, and will determine how long to wait for a state
change.

⎯ Reader will be one of those returned by ListReaders.

⎯ CurrentState will be what TIS believes to be the state of the reader;

3.1.5.2 Behaviour

Provides the current state of the named reader.

⎯ NewState is set to the actual current state of the reader. This may or may not be the same as
CurrentState.

⎯ ResponseCode will be set to:

• ‘TimedOut’, if no state change was detected after waiting for Timeout milliseconds;

• ‘Ok’, if a state change was detected, and no other errors occurred; or

• some other error code.

3.1.6 Connect
procedure Connect (Reader: in String8;
 CardHandle: out Unsigned32;
 ResponseCode: out Unsigned32);

3.1.6.1 Usage

Connect is called once GetStatusChange has determined that a card is present in a reader.

⎯ Reader will be one of the strings returned by ListReaders.

3.1.6.2 Behaviour

This establishes a connection between TIS and the card in the reader.

⎯ CardHandle is set to an identifier that can be used by TIS for communicating with that card. The
handle must be calculated in a way that does not allow a card in the ‘INTREAD’ reader to have the
same handle as a card in the ‘EXTREAD’ reader.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 20 of 84

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.7 Status
procedure Status (CardHandle: in Unsigned32;
 CState: out Unsigned32;
 ATR: out ATRType;
 ResponseCode: out Unsigned32);

3.1.7.1 Usage

Status will be called once a card has been connected to provide TIS with the status of the card. This is
primarily used to obtain the card’s unique ID, contained in the answer-to-reset (ATR). The ATR is only
defined if the card is in ‘Negotiable’ or ‘Specific’ state, so is ignored when the card is in any other state.

⎯ CardHandle will have been returned from the Connect procedure.

3.1.7.2 Behaviour

This provides the status of the referenced card.

⎯ CState is set to the current state of the card referenced by CardHandle.

⎯ ATR is set to the Answer-To-Reset response if the card is ‘Negotiable’ or ‘Specific’; otherwise it is
don’t care.

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.8 Disconnect
procedure Disconnect (CardHandle: in Unsigned32;
 ResponseCode: out Unsigned32);

3.1.8.1 Usage

Disconnect is called once TIS has finished communications with the card.

⎯ CardHandle will be that introduced by the corresponding Connect call.

3.1.8.2 Behaviour

This terminates the connection opened by a previously called Connect procedure.

⎯ ResponseCode will either indicate success, or will be an error code.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 21 of 84

3.1.9 GetIDCert
procedure GetIDCert (CardHandle: in Unsigned32;
 RawIDCert: out GenericRawCert;
 StatusOK: out Boolean;
 ResponseCode: out Unsigned32);

3.1.9.1 Usage

GetIDCert is called by TIS once it is in communication with a card, it is used to obtain the ID certificate
from the card.

⎯ CardHandle will be that returned from a Connect procedure call, and corresponds to the card
currently being processed.

3.1.9.2 Behaviour

Attempts to read the ID certificate from the referenced card.

⎯ RawIDCert.CertData will contain the 32-bit words that make up the ID Cert held on the card.
The data will start at an offset of 0, and will be ordered as specified in section 2.2.

⎯ RawIDCert.CertLength will be set to the actual length of the certificate data (in bytes). Note
that, given the definition in section 2.2, the valid length for an ID Cert is 484.

⎯ StatusOK represents the overall ‘flavour’ of the protocol status words returned with the blocks of
data. For the purposes of this system, this will either be ‘True’ (all blocks of data read successfully)
or ‘False’ (e.g. applet failure, memory failure, etc).

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.10 GetPrivCert
procedure GetPrivCert (CardHandle: in Unsigned32;
 RawPrivCert: out GenericRawCert;
 StatusOK: out Boolean;
 ResponseCode: out Unsigned32);

3.1.10.1 Usage

GetPrivCert is called by TIS once it is in communication with a card, it is used to obtain the privilege
certificate from the card.

⎯ CardHandle will be that returned from a Connect procedure call, and corresponds to the card
currently being processed.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 22 of 84

3.1.10.2 Behaviour

Attempts to read the Privilege certificate from the referenced card.

⎯ RawPrivCert.CertData will contain the 32-bit words that make up the Priv Cert held on the
card. The data will start at an offset of 0, and will be ordered as specified in section 2.3.

⎯ RawPrivCert.CertLength will be set to the actual length of the certificate data (in bytes).
Note that, given the definition in section 2.3, the valid length for an Priv Cert is 348.

⎯ StatusOK represents the overall ‘flavour’ of the protocol status words returned with the blocks of
data. For the purposes of this system, this will either be ‘True’ (all blocks of data read successfully)
or ‘False’ (e.g. applet failure, memory failure, etc).

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.11 GetIACert
procedure GetIACert (CardHandle: in Unsigned32;
 RawIACert: out GenericRawCert;
 StatusOK: out Boolean;
 ResponseCode: out Unsigned32);

3.1.11.1 Usage

GetIACert is called by TIS once it is in communication with a card, it is used to read the I&A certificate
from that card.

⎯ CardHandle will be that returned from a Connect procedure call, and corresponds to the card
currently being processed.

3.1.11.2 Behaviour

Attempts to read the I&A certificate from the referenced card.

⎯ RawIACert.CertData will contain the 32-bit words that make up the I&A Cert held on the card.
The data will start at an offset of 0, and will be ordered as specified in section 2.4.

⎯ RawIACert.CertLength will be set to the actual length of the certificate data (in bytes). Note
that, given the definition in section 2.4, the valid length for an I&A Cert is 832.

⎯ StatusOK represents the overall ‘flavour’ of the protocol status words returned with the blocks of
data. For the purposes of this system, this will either be ‘True’ (all blocks of data read successfully)
or ‘False’ (e.g. applet failure, memory failure, etc).

⎯ ResponseCode will either indicate success, or will be an error code.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 23 of 84

3.1.12 GetAuthCert
procedure GetAuthCert (CardHandle: in Unsigned32;
 RawAuthCert: out GenericRawCert;
 Exists: out Boolean;
 StatusOK: out Boolean;
 ResponseCode: out Unsigned32);

3.1.12.1 Usage

GetAuthCert is called by TIS once it is in communication with a card, it is used to read the Auth
certificate from that card.

⎯ CardHandle will be that returned from a Connect procedure call, and corresponds to the card
currently being processed.

3.1.12.2 Behaviour

Attempts to read the Auth certificate from the referenced card. There may not be an Auth Cert on the
card.

⎯ RawAuthCert.CertData will be:

• the 32-bit words that make up the Auth Cert held on the card, if it exists (the data will start at
an offset of 0, and will be ordered as specified in section 2.5); or

• don’t care if there is not an Auth Cert on the card.

⎯ RawAuthCert.CertLength will be:

• set to the actual length of the certificate data (in bytes), if it exists (note that, given the
definition in section 2.5, the valid length for an Auth Cert is 348); or

• don’t care if there is not an Auth Cert on the card.

⎯ Exists will be ‘True’ if there is an Auth Cert on the card, ‘False’ otherwise.

⎯ StatusOK represents the overall ‘flavour’ of the protocol status words returned with the blocks of
data. For the purposes of this system, this will either be ‘True’ (all blocks of data read successfully)
or ‘False’ (e.g. applet failure, memory failure, etc).

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.13 UpdateAuthCert
procedure UpdateAuthCert (CardHandle: in Unsigned32;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 24 of 84

 RawAuthCert: in GenericRawCert;
 StatusOK: out Boolean;
 ResponseCode: out Unsigned32);

3.1.13.1 Usage

UpdateAuthCert is called if a new Auth Cert has been created for a user

⎯ CardHandle will be that returned from a Connect procedure call, and corresponds to the card
currently being processed.

⎯ RawAuthCert will have been created and signed by TIS.

3.1.13.2 Behaviour

Attempts to write the provided Auth Cert to the user’s card.

⎯ StatusOK represents the overall ‘flavour’ of the protocol status words returned by the card. For
the purposes of this system, this will either be ‘True’ (all blocks of data read successfully) or ‘False’
(e.g. applet failure, memory failure, etc).

⎯ ResponseCode will either indicate success, or will be an error code.

3.1.14 Application Inputs

The following numerical representations will be defined for inputs into the application (i.e. those
returned by SPRE).

Response codes:

0x00000h Success,
0x00001h InvalidHandle,
0x00002h InvalidValue,
0x00003h Cancelled,
0x00004h NoMemory,
0x00005h InsufficientBuffer,
0x00006h UnknownReader,
0x00007h TimedOut,
0x00008h SharingViolation,
0x00009h NoSmartcard
0x0000Ah UnknownCard
0x0000Bh ProtoMismatch,
0x0000Ch NotReady,
0x0000Dh SystemCancelled,
0x0000Eh ReaderUnavailable,
0x0000Fh UnsupportedCard,

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 25 of 84

0x00010h UnresponsiveCard,
0x00011h UnpoweredCard,
0x00012h ResetCard,
0x00013h RemovedCard.

The following card states will be modeled:

0x00001h Absent,
0x00002h Present,
0x00003h Swallowed,
0x00004h Powered,
0x00005h Negotiable,
0x00006h Specific.

The following reader states will be defined.

0x00001h Unaware,
0x00002h Ignore,
0x00003h Unavailable,
0x00004h Empty,
0x00005h Present,
0x00006h Mute.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 26 of 84

3.2 Biometric Interface

This API has been modeled on the BioAPI specification [2].

3.2.1 Types and Constants

BioApiReturnType models the possible errors that could be raised performing library actions.
type BioApiReturnType is Unsigned32;
BioApiOk : constant BioApiReturnType := 0;

(A full list of possible error types is given in section 3.1.14.)

RateType is used to model FAR rates. It is a signed 32 bit integer (N) and non-negative values
represents a probability of N/(2**31 – 1). –1 indicates the rate is not set. The MaxFAR value used in
the Verify function will be the default value, unless there is a valid FAR rate in the individual’s Biometric
Template.

type RateType is Integer range –(2**31)..(2**31 – 1)
RateNotSet : constant RateType := -1;

DefaultMaxFAR : constant RateType := defaultFAR;

TemplateType represents the biometric template extracted from the I&A certificate. It will be modeled as
a 125 32-bit word array (to represent the max space required by the current Identicator format). The
first four bytes give the actual length n in bytes of the biometric data, including these four bytes; the
next four bytes give the MaxFAR to be used in a match. The next n–8 bytes is the rest of the biometric
data (The core does not actually need to know this, as it simply passes the whole template, as well as
the extracted length and MaxFAR criterion, to the Bio library via the Verify procedure).

type TemplateType is array (1..125) of Unsigned32;

3.2.2 Initialize
procedure Initialize (BioReturn: out BioApiReturnType);

3.2.2.1 Usage

Initialize is called at TIS initialisation.

3.2.2.2 Behaviour

This is intended to model the Initialisation of the library, and the loading and attaching of the BSP
module, as detailed in [2]. It allows the application access to the fingerprint reader via the library. It sets
up the TCP/IP connection for this driver.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 27 of 84

⎯ A BioReturn other than 0 represents an error.

3.2.3 Finalize
procedure Finalize (BioReturn: out BioApiReturnType);

3.2.3.1 Usage

Finalize is called at TIS shut-down.

3.2.3.2 Behaviour

This is intended to model the Termination of the library, including the detaching and unloading of the
BSP module, as detailed in [2]. It discontinues communication between the application and the
fingerprint reader via the library, by closing the TCP/IP connection.

⎯ A BioReturn other than 0 represents an error.

3.2.4 SamplePresent
function SamplePresent return Boolean;

3.2.4.1 Usage

SamplePresent is used as a means of ‘polling’ the reader, to determine whether there is a finger
present to sample, and is called prior to attempting a Verify.

3.2.4.2 Behaviour

Returns ‘True’ if a finger is present, ‘False’ otherwise.

3.2.5 Verify
procedure Verify (Template: in TemplateType;
 TemplateLength: in Unsigned32;
 MaxFAR: in RateType;
 Matched: out Boolean;
 FARAchieved: out RateType;
 BioReturn: out BioApiReturnType);

3.2.5.1 Usage

Verify is called by TIS when it is ready to check the user’s fingerprint against the template held on the
user’s card.

⎯ Template is the unmodified biometric template extracted from the I&A certificate by TIS.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 28 of 84

⎯ TemplateLength will have been extracted from the fictional field in Template.

⎯ MaxFAR will be:

• DefaultMaxFAR, if the fictional RequiredMaxFAR field in the Template is –1; or

• RequiredMaxFAR otherwise.

3.2.5.2 Behaviour

This is intended to model the BioAPI_Verify function, as detailed in [2].

Verify captures the latest livescan data from the fingerprint reader, and compares it against Template.
The match is considered a success if the FAR achieved is better or equal to the imported MaxFAR.

⎯ Matched is set to ‘True’ if a match was made given the MaxFAR criterion, ‘False’ otherwise.

⎯ FARAchieved indicates the closeness of the match. This is returned even if Matched is ‘False’.

⎯ A BioReturn other than 0 represents an error.

3.2.6 Application Inputs

Error codes have been modeled to mirror those introduced in [2].

3.2.6.1 High Level framework errors:
(0x0001) InternalError
 -- Internal error at library level
(0x0002) MemoryError
 -- Memory error at library level
(0x000A) FunctionFailed
 -- Function failed for an unknown reason
(0x0046) InvalidData
 -- Data in an input parameter is invalid
(0x0102) BioApiNotInitialized
 -- A function is called prior to initializing the
 -- API.
(0x0116) ModuleLoadFailed
 -- BSP Module Load function failed
(0x0118) ModuleUnloadFailed
 -- BSP Module Load function failed

3.2.6.2 BSP Level errors:
(0x1001) BspInternalError

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 29 of 84

 -- Internal error at BSP level
(0x1002) BspMemoryError
 -- Memory error at BSP level
(0x100A) BspFunctionFailed
 -- Function failed for unknown reason
(0x1046) BspInvalidData
 -- Data in an input parameter is invalid
(0x1101) BspUnableToCapture
 -- Unable to capture raw samples from the device
(0x1103) BspTimeoutExpired
 -- Function terminated due to timeout
(0x1105) BspBirSignatureFailure
 -- Unable to validate signature on the BIR
(0x110D) BspInconsistentPurpose
 -- Purpose recorded in the BIR, and the requested
 -- purpose, are inconsistent with the function
 -- being performed.

3.2.6.3 Device Level Errors:
(0x2001) DeviceLevelError
 -- A generic device level error

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 30 of 84

3.3 Door Interface

3.3.1 Types

Enumerated type to model the state of the Door.
type DoorState is (Uninitialized, Error, Open, Closed);

Open means the door does not prevent a human from entering or leaving the enclave.
Closed means the door prevents a human from entering or leaving the enclave. To enter or leave, the
door must first be opened.
Uninitialized is the state prior to the Initialize function being called.
Error is the state when the Initialize function has been called, but the ‘expected’ state cannot be
determined (Open/Closed).

The door state returned by SPRE is raw (Unsigned32), to allow erroneous data to be returned. The
numerical representation of DoorState is:

Uninitialized => 1
Error => 2
Open => 3
Closed => 4

3.3.2 InitializeDoor
procedure InitializeDoor(Success: out Boolean);

3.3.2.1 Usage

This procedure is called at TIS initialisation.

3.3.2.2 Behaviour

It gains access to the door test driver, by setting up the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.3.3 FinalizeDoor
procedure FinalizeDoor(Success: out Boolean);

3.3.3.1 Usage

This procedure is called to relinquish access to the door test driver.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 31 of 84

3.3.3.2 Behaviour

It closes the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.3.4 GetDoorState
function GetDoorState return Unsigned32;

3.3.4.1 Usage

GetDoorState is used by TIS as a means of ‘polling’ the door to determine the state of the door.

3.3.4.2 Behaviour

Should return the current state of the door, a value of the enumeration type DoorState.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 32 of 84

3.4 Latch Interface

3.4.1 InitializeLatch
procedure InitializeLatch(Success: out Boolean);

3.4.1.1 Usage

This procedure is called at TIS initialisation

3.4.1.2 Behaviour

It gains access to the latch test driver, by setting up the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.4.2 FinalizeLatch
procedure FinalizeLatch(Success: out Boolean);

3.4.2.1 Usage

This procedure is called to relinquish access to the latch test driver.

3.4.2.2 Behaviour

It closes the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.4.3 Unlock
procedure Unlock;

3.4.3.1 Usage

Called by TIS when a user has been granted access to the enclave.

3.4.3.2 Behaviour

Sends a request to unlock the latch immediately. Note that the Unlock procedure does not attempt to
lock the latch after a timeout period. We are intending to build an abstraction layer to implement this
behaviour internally.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 33 of 84

3.4.4 Lock
procedure Lock;

3.4.4.1 Usage

Called by TIS to lock the latch immediately to return the enclave to a secure state.

3.4.4.2 Behaviour

Sends a request to lock the latch immediately.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 34 of 84

3.5 Alarm Interface

3.5.1 Initialize
procedure Initialize(Success: out Boolean);

3.5.1.1 Usage

This procedure is called at TIS initialisation.

3.5.1.2 Behaviour

It gains access to the alarm test driver, by setting up the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.5.2 Finalize
procedure Finalize(Success: out Boolean);

3.5.2.1 Usage

This procedure is called to relinquish access to the alarm test driver.

3.5.2.2 Behaviour

It closes the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.5.3 Activate/Deactivate
procedure Activate;
procedure Deactivate;

3.5.3.1 Usage

These procedures are used to switch the alarm between ‘Silent’ and ‘Alarming’

3.5.3.2 Behaviour

Send messages to active and de-active the alarm.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 35 of 84

3.6 Display Interface

3.6.1 Types

String50 is used to represent all possible messages to be displayed. Messages will be null terminated,
so actual maximum length is 49 characters. It has been assumed that 49 characters is sufficient to
display all required messages. The allowed character set is yet to be determined.

type String50 is String(1..50);

3.6.2 Initialize
procedure Initialize(Success: out Boolean);

3.6.2.1 Usage

This procedure is called at TIS initialisation.

3.6.2.2 Behaviour

It gains access to the Display test driver, by setting up the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.6.3 Finalize
procedure Finalize(Success: out Boolean);

3.6.3.1 Usage

This procedure is called to relinquish access to the Display test driver.

3.6.3.2 Behaviour

It closes the TCP/IP connection.

⎯ Success indicates whether the action was performed successfully.

3.6.4 GetMaxTextSizeTop/GetMaxTextSizeBottom
function GetMaxTextSizeTop return Unsigned32;
function GetMaxTextSizeBottom return Unsigned32;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 36 of 84

3.6.4.1 Usage

These two functions will be called at TIS initialisation.

3.6.4.2 Behaviour

These determine the size (in characters) of the top and bottom rows of the display.

The lowest size these functions can return is 20. Based on the assumption that a 49 character string is
the largest that can be written to a line, we would expect the size returned here to be less than or equal
to 49.

3.6.5 SetTopText
procedure SetTopText(TopText: in String50;
 Length: in Unsigned32;
 Written: out Boolean);

3.6.5.1 Usage

SetTopText is called when TIS wishes to display a message on the top line of the display.

⎯ TopText will be such that the length of the string contained within it is less than or equal to the
size of the display line, returned by GetMaxTextSizeTop.

⎯ Length should be equal to the number of printable characters contained in TopText.

3.6.5.2 Behaviour

Writes the supplied text to the top line of the display.

⎯ Written indicates whether the string was written to the top line.

3.6.6 SetBottomText
procedure SetBottomText(BottomText: in String50;
 Length: in Unsigned32;
 Written: out Boolean);

3.6.6.1 Usage

SetBottomText is called when TIS wishes to display a message on the bottom line of the display.

⎯ BottomText will be such that the length of the string contained within it is less than or equal to
the size of the display line, returned by GetMaxTextSizeBottom.

⎯ Length should be equal to the number of printable characters contained in BottomText.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 37 of 84

3.6.6.2 Behaviour

Writes the supplied text to the bottom line of the display.

⎯ Written indicates whether the string was written to the bottom line.

3.6.7 SetTopTextScrollable
procedure SetTopTextScrollable(ScrollText: in String50;
 Length: in Unsigned32;
 Written: out Boolean);

3.6.7.1 Usage

SetTopTextScrollable is used when a message is too long to be displayed statically on the top and
botton lines of the display.

⎯ ScrollText should be such that the length of the string contained within it is greater than the
size of the display line (returned by GetMaxTextSizeTop), but less than 50 characters.

⎯ Length should be equal to the number of printable characters contained in ScrollText.

3.6.7.2 Behaviour

Scrolls the supplied text on the top line of the display.

⎯ Written indicates whether the string was written to the top line.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 38 of 84

3.7 Crypto Library

The Crypto Library is a stub which is controlled by the inputs used in calls to the library.

The procedures used are based very closely on those given in the Cryptoki interface [4]. The library’s
main tasks are to store the ID station’s key pair and the public keys of other entities, and to perform
digesting, signing and verifying. As our Crypto facility is most likely to be a ‘soft’ token, there is a single
software slot that we are aware of, and the token is (permanently) inserted. Because of this we only
require one session, and we won’t need to model the C_GetSlotList and C_GetSlotInfo functions.

Keys are stored as objects (a group of attributes), and are only accessible by a KeyHandle, supplied by
the library:

KeyHandle Æ {Owner; KeyID; KeyLength; IsPublic}

This data is extracted at enrolment from the ID certificates. The CA ID certificates are tackled first, since
these have been self signed, so all required data is stored within the certificate. Once these keys have
been extracted, all other key data can be obtained. The only private key that should be stored in the
database is that of the TIS itself.

A limitation of the stub is that it will not maintain the database through a power down i.e. enrolment will
need to take place each time the TIS is powered up.

3.7.1 Types

As this library will only be storing key objects we are only interested in Key templates. Key data in this
system is replaced by dummy keys, consisting of an Owner, a Key ID, a KeyLength, and a Boolean flag
indicating whether the key is public or private. KeyTemplate includes these as attributes, and a mask to
determine which of the attributes are defined (this is primarily for the Find procedure (see 3.7.5 - 3.7.7),
where we may want to find e.g. all public keys). Padding is included to retain a sensible size (128 bytes).

type KeyPadding is array(1..67) of Unsigned8;
type KeyTemplate is record
 AttrMask : Unsigned32; -- 4 bytes
 Owner : NameType; -- 48 bytes
 KeyID : Unsigned32; -- 4 bytes
 KeyLength : Unsigned32; -- 4 bytes
 IsPublic : Boolean; -- 1 byte
 Padding : KeyPadding; -- 128 – 61 = 67 bytes
 end record;

Each attribute will have a corresponding bit in AttrMask, which will be set if the attribute is defined:
OwnerMask : constant Unsigned32 := 1;
KeyIDMask : constant Unsigned32 := 2;
KeyLengthMask : constant Unsigned32 := 4;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 39 of 84

IsPublicMask : constant Unsigned32 := 8;

DigestType and SignatureType mirror DigestInfo and Signature defined in section 2.
type DigestPadding is array(1..5) of Unsigned32;
type DigestType is record
 DigestID : Unsigned32;
 SignReturn : Unsigned32;
 VerifyReturn : Unsigned32;
 Padding : DigestPaddingType;
end record;

type SignaturePadding is array(1..30) of Unsigned32;
type SignatureType is record
 KeyID : Unsigned32;
 DigestID : Unsigned32;
 Padding : SignaturePaddingType;
end record;

MechanismType represents the Mechanism to be used in the crypto operations. The recognised
mechanisms have defined numerical values, and are such that combinations of mechanisms are the
dot products of the single mechanisms. We are proposing that the library stub support the following
mechanisms:

type MechanismType is Unsigned32;
-- signing/verifying
RSA : constant MechanismType := 0x00000001h;
-- digesting
MD2 : constant MechanismType:= 0x00000200h;
MD5 : constant MechanismType:= 0x00000210h;
SHA_1 : constant MechanismType:= 0x00000220h;
RIPEMD128 : constant MechanismType:= 0x00000230h;
RIPEMD160 : constant MechanismType:= 0x00000240h;
-- combined mechanisms…
MD2_RSA : constant MechanismType:= 0x00000201h;
MD5_RSA : constant MechanismType:= 0x00000211h;
SHA1_RSA : constant MechanismType:= 0x00000221h;
RIPEMD128_RSA : constant MechanismType:= 0x00000231h;
RIPEMD160_RSA : constant MechanismType:= 0x00000241h;

If any other mechanism is passed to the TIS, the library will return MechanismInvalid when attempting to
digest/verify.

100ByteArray is an array of 25 32-bit unsigned words.
type 100ByteArray is array(1..25) of Unsigned32;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 40 of 84

3.7.2 Initialize
procedure Initialize(ReturnValue: out Unsigned32);

3.7.2.1 Usage

This operation is used to initialize the crypto library at TIS startup.

3.7.2.2 Behaviour

Models C_Initialize and C_OpenSession.

⎯ ReturnValue will be:

• ‘Ok’ if the library has not already been initialized; or

• ‘CryptokiAlreadyInitialized’ if the library has already been initialized.

3.7.3 Finalize
procedure Finalize(ReturnValue: out Unsigned32);

3.7.3.1 Usage

This operation is used to finalize the crypto library at TIS startup.

3.7.3.2 Behaviour

Models C_CloseSession and C_Finalize.

⎯ From Finalize, ReturnValue will be:

• ‘Ok’ if the library has been initialized; or

• ‘CryptokiNotInitialized’ if the library has not been initialized.

3.7.4 CreateObject
procedure CreateObject(Template : in KeyTemplate;
 ObjectHandle : out Unsigned32;
 ReturnValue : out Unsigned32);

3.7.4.1 Usage

CreateObject will be used to store a key.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 41 of 84

⎯ Template will have been constructed from information held on the enrolment floppy. For example,
for public keys:

• Owner will be IDCert.Subject;

• KeyID will be IDCert.SubjectPublicKeyInfo.KeyID;

• KeyLength will be IDCert.SubjectPublicKeyInfo.KeyLength; and

• IsPublic will be True.

3.7.4.2 Behaviour

Stores the supplied key.

⎯ ObjectHandle will be determined internally, and will be unique to that key.

⎯ ReturnValue will always be ‘Ok’.

3.7.5 FindObjectsInit
procedure FindObjectsInit(Template : in KeyTemplate;
 ReturnValue : out Unsigned32);

3.7.5.1 Usage

The FindObjects set of procedures are used to search the crypto library for an object matching a given
template.

⎯ Template imported to FindObjectsInit will be:

• extracted from the Issuer field of the certificate currently being validated, if a key is required
for validation (that is the Owner attribute will be defined); or

• some other template derived by TIS, depending on the information sought (i.e. if ALL public
keys are wanted, then the only defined attribute of Template will be IsPublic).

3.7.5.2 Behaviour

Models C_FindObjectsInit.

FindObjectsInit obtains the Template on which to base the search.

⎯ ReturnValue will be ‘Ok’, unless:

• a find is already underway (‘OperationActive’); or

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 42 of 84

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.6 FindObjects
procedure FindObjects(HandleCount : in out Unsigned32;
 ObjectHandles : out HandleArray;
 ReturnValue : out Unsigned32);

3.7.6.1 Usage

FindObjects is called after FindObjectsInit.

⎯ HandleCount as an input is the number of matches we want/are expecting.

3.7.6.2 Behaviour

Models C_FindObjects.

FindObjects continues the search, returning found matches.

⎯ Each handle in ObjectHandles will be determined internally, and will be unique to that key. The
number of handles returned in ObjectHandles will be less than or equal to the imported
HandleCount.

⎯ HandleCount as an output will be the actual number found.

⎯ ReturnValue will be ‘Ok’, unless:

• the find has not been initialised (‘OperationNotInitialized’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.7 FindObjectsFinal
procedure FindObjectsFinal(ReturnValue : out Unsigned32);

3.7.7.1 Usage

Used to terminate a search.

3.7.7.2 Behaviour

Models C_FindObjectsFinal.

FindObjectsFinal finalizes the find operation.

⎯ ReturnValue will be ‘Ok’, unless:

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 43 of 84

• the find has not been initialised (‘OperationNotInitialized’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.8 DigestInit
procedure DigestInit(Mechanism : in MechanismType;
 ReturnValue : out Unsigned32);

3.7.8.1 Usage

The digest operations will be used when verifying signed certificates, and when the system is signing an
authorization certificate.

⎯ Mechanism will have been extracted by TIS from the Signature field of the certificate.

3.7.8.2 Behaviour

DigestInit initializes the operation, and models C_DigestInit. The digest mechanism to be used is
determined from Mechanism using a bit mask.

⎯ ReturnValue will be ‘Ok’, unless:

• The mechanism derived from Mechanism is not used for digesting (‘MechanismInvalid’);

• The mechanism derived from Mechanism is not recognized (‘MechanismInvalid’);

• a digest operation is already in progress (‘OperationActive’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.9 DigestUpdate
procedure DigestUpdate(DataBlock : in 100ByteArray;
 ByteCount : in Unsigned32;
 ReturnValue : out Unsigned32);

3.7.9.1 Usage

DigestUpdate is called a number of times to read all of the raw certificate data, held in a
GenericRawCert array. The whole of the certificate must be read in to ensure that the CryptoControl field
is visible.

⎯ DataBlock is the (100 byte maximum) block of certificate data to be added to the digest.

⎯ ByteCount represents the actual number of certificate data bytes held in DataBlock, and will
be determined from the CertLength field of the raw cert.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 44 of 84

3.7.9.2 Behaviour

Models C_DigestUpdate – the activity of performing a digest.

⎯ ReturnValue will be ‘Ok’, unless:

• it is the last call of DigestUpdate (set to the DigestUpdateReturn value in the CryptoControl
field of the certificate);

• the digest is not initialized (‘OperationNotInitialized’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.10 DigestFinal
procedure DigestFinal(Digest : out DigestType;
 DigestLength : out Unsigned32;
 ReturnValue : out Unsigned32);

3.7.10.1 Usage

Called after all of the certificate has been read in via DigestUpdate.

3.7.10.2 Behaviour

Models C_DigestFinal. Finalizes the digest operation, and returns the digest.

⎯ Digest will be determined by the Cert.CryptoControl.Digest data, as follows:

• DigestID – set to DigestID if it is non-zero, otherwise set to the sum of the 32-bit integers
(unsigned) that make up the raw certificate data, multiplied by its position in the certificate,
modulo 2**32 i.e.

[Σpos (pos * RawIDCert.CertData(pos))] mod (232)

 where pos ∈ 1 .. RawXXCert.CertLength

• SignReturn – set to SignReturn;

• VerifyReturn – set to VerifyReturn;

• Padding – an array of 5 32-bit words, of value don’t care.

⎯ DigestLength is set to Cert.CryptoControl.DigestLength.

⎯ ReturnValue is set to Cert.CryptoControl.DigestFinalReturn, unless:

• the DigestLength is invalid (‘DataLenRange’);

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 45 of 84

• not all of the certificate is read in (‘FunctionFailed’);

• the digest is not initialized (‘OperationNotInitialized’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.11 Sign
procedure Sign(Mechanism : in MechanismType;
 KeyHandle : in Unsigned32;
 Digest : in DigestType;
 DigestLength : in Unsigned32;
 Signature : out SignatureType;
 SigLength : out Unsigned32;
 ReturnValue : out Unsigned32);

3.7.11.1 Usage

Used when TIS has created an Auth Cert.

⎯ Mechanism will be RSA – TIS will always use the RSA mechanism to sign Authorization certificates.

⎯ KeyHandle should represent the private key of the ID station, and will be obtained from the crypto
library by the find procedures.

⎯ Digest and DigestLength are those produced from the digest procedures.

3.7.11.2 Behaviour

Models C_SignInit and C_Sign. Sign produces a signature from the given data.

⎯ Signature will be:

• KeyID, determined by the imported KeyHandle.

• DigestID, extracted from the imported Digest.

• Padding - an array of 30 32-bit words, of value don’t care.

⎯ SigLength will be set to the KeyLength, determined by the imported KeyHandle.

⎯ ReturnValue will be SignReturn from the imported Digest, unless:

• the library is not initialized (‘CryptokiNotInitialized’).

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 46 of 84

3.7.12 Verify
procedure Verify(Mechanism : in MechanismType;
 KeyHandle : in Unsigned32;
 Digest : in DigestType;
 DigestLength : in Unsigned32;
 Signature : in SignatureType;
 SigLength : in Unsigned32;
 ReturnValue : out Unsigned32);

3.7.12.1 Usage

The Verify procedure is called to perform the verification of the signature appended to a certificate.

⎯ Mechanism will be extracted from the Signature field of the Cert being processed.

⎯ KeyHandle will have been obtained from the library using the find procedure.

⎯ Digest and DigestLength will have been produced from the digest procedures, and will
represent the digest of the Cert being processed.

⎯ Signature and SigLength will be taken from the SignatureData of the Cert being processed.

3.7.12.2 Behaviour

Models C_VerifyInit and C_Verify; the process of verifying the signature against the supplied digest.

The verify mechanism to be used is determined from Mechanism using a bit mask.

⎯ ReturnValue is set to the VerifyReturn field of the Digest, unless:

• The mechanism derived from Mechanism is not for verifying (‘MechanismInvalid’);

• The mechanism derived from Mechanism is not recognized (‘MechanismInvalid’);

• KeyHandle does not ‘match’ the KeyID in the Signature (‘SignatureInvalid’);

• the DigestIDs contained in Digest and Signature don’t match (‘SignatureInvalid’);

• SigLength is greater than the key length (‘SignatureLenRange’); or

• the library is not initialized (‘CryptokiNotInitialized’).

3.7.13 GetAttributeValue
procedure GetAttributeValue(KeyHandle : in Unsigned32;
 Template : in out KeyTemplate;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 47 of 84

 ReturnValue : out Unsigned32);

3.7.13.1 Usage

⎯ KeyHandle will have been obtained from the library using the find procedure.

⎯ As an input, Template indicates the attributes of interest, by having the relevant bits set in the
AttrMask field (at least one bit must be set).

3.7.13.2 Behaviour

Attempts to extract attribute data from the object pointed to by KeyHandle. Models
C_GetAttributeValue.

⎯ As an output, Template will be filled in with the attributes of interest, taken from the object
pointed to by KeyHandle.

⎯ ReturnValue will always be ‘Ok’, since the nature of the database is that all objects have the
same template, so all possible attributes will be defined.

3.7.14 Return Values.

The following return values are defined to model those in Cryptoki [4]. Note that not all errors have been
mirrored:

Ok 0x00000000
HostMemory 0x00000002
GeneralError 0x00000005
FunctionFailed 0x00000006
ArgumentsBad 0x00000007
AttributeReadOnly 0x00000010
AttributeTypeInvalid 0x00000012
AttributeValueInvalid 0x00000013
DataInvalid 0x00000020
DataLenRange 0x00000021
DeviceError 0x00000030
DeviceMemory 0x00000031
FunctionCanceled 0x00000050
KeyHandleInvalid 0x00000060
KeySizeRange 0x00000062
KeyTypeInconsistent 0x00000063
KeyFunctionNotPermitted 0x00000068
MechanismInvalid 0x00000070
MechanismParamInvalid 0x00000071
ObjectHandleInvalid 0x00000082

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 48 of 84

OperationActive 0x00000090
OperationNotInitialized 0x00000091
SignatureInvalid 0x000000C0
SignatureLenRange 0x000000C1
TemplateIncomplete 0x000000D0
TemplateInconsistent 0x000000D1
BufferTooSmall 0x00000150
CryptokiNotInitialized 0x00000190
CryptokiAlreadyInitialized 0x00000191

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 49 of 84

3.8 Certificate Processing Library

This stub essentially performs two functions – to extract data from ‘raw’ certificates, and to construct
‘raw’ authorization certificates.

3.8.1 Types

Type GenericRawCert is defined in 3.1.1. MechanismType, DigestType and SignatureType are defined in
3.7.1.

The XXCertData types represent the actual data stored in the certificate and as such, don’t include the
signature data or the fictional CryptoControl data. Certificate structures are defined in section 2.

type IDCertData is record
 CertType : Unsigned32;
 SerialNumber : Unsigned32;
 SigAlgId : MechanismType;
 Issuer : NameType;
 Validity : ValidityType;
 Subject : NameType;
 SubjectPublicKeyInfo : PublicKeyInfoType;
end record;

type PrivCertData is record
 CertType : Unsigned32;
 Holder : BaseCertID;
 Issuer : NameType;
 SigAlgId : MechanismType;
 SerialNumber : Unsigned32;
 AttCertValidity : ValidityType;
 Privilege : PrivilegeType;
end record;

type AuthCertData is new PrivCertData;

type IACertData is record
 CertType : Unsigned32;
 Holder : BaseCertID;
 Issuer : NameType;
 SigAlgId : MechanismType;
 SerialNumber : Unsigned32;
 AttCertValidity : ValidityType;

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 50 of 84

 Template : TemplateType;
end record;

SignatureData includes the signature algorithm ID and SignatureLength as well the actual Signature.
type SignatureData is record
 AlgorithmID : MechanismType;
 SigLength : Unsigned32;
 Signature: SignatureType;
end record;

3.8.2 ExtractXXCertData
procedure ExtractIDCertData(RawIDCert : in GenericRawCert;
 IDCert : out IDCertData;
 ExtractSuccess : out Boolean);
procedure ExtractPrivCertData(RawPrivCert : in GenericRawCert;
 PrivCert : out PrivCertData;
 ExtractSuccess : out Boolean);
procedure ExtractIACertData(RawIACert : in GenericRawCert;
 IACert : out IACertData;
 ExtractSuccess : out Boolean);
procedure ExtractAuthCertData(RawAuthCert : in GenericRawCert;
 AuthCert : out AuthCertData;
 ExtractSuccess : out Boolean);

3.8.2.1 Usage

The Extract procedures are used to take the raw certificate data extracted from the user’s token, and
convert into the correct (internal) certificate structure.

⎯ RawXXCert is the data obtained from the Token reader interface.

3.8.2.2 Behaviour

Extracts the constituent components of a certificate from its raw representation.

⎯ XXCert is constructed from RawXXCert, using appropriate offsets to find particular fields. The
32-bit words are checked to determine whether the values are in the valid ranges (e.g.
CertificateType for an ID certificate is 0), and then inserts them into the certificate record structure.

⎯ ExtractSuccess will be:

• ‘True’ if all the range checks pass; or

• ‘False’ If one or more of the range checks fail.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 51 of 84

3.8.3 ObtainSignatureData
procedure ObtainSignatureData(RawCert : in GenericRawCert;
 SigData : out SignatureData;
 ObtainSuccess : out Boolean);

3.8.3.1 Usage

⎯ RawCert is the data obtained from the Token reader interface.

3.8.3.2 Behaviour

This procedure extracts the signature data from the raw certificate.

⎯ SigData is extracted from RawCert using the CertLength field to determine the offset of the
signature data (possible since SignatureData is a fixed size). No range checks are performed on the
signature data.

⎯ ObtainSuccess will be:

• ‘False’ If the CertLength field is not as expected; or

• ‘True’ otherwise.

3.8.4 ConstructAuthCert
procedure ConstructAuthCert(AuthCert: in AuthCertData;
 UnsignedRawAuthCert: out GenericRawCert);

3.8.4.1 Usage

This procedure is called when a user has been granted authorization, and constructs a raw
authorization certificate. This will then be ready to be digested and signed by the crypto library.

⎯ AuthCert will have been constructed by TIS. The CryptoControl data will have been copied from
the user’s Privilege certificate, with the DigestID overwritten with 0. This ensures that when the
certificate is digested by the crypto library, we will get a new DigestID, and allows the success of
signing the Auth Cert to be controlled by SPRE via PrivCert.CryptoControl.DigestInfo.SignReturn.

3.8.4.2 Behaviour

Constructs a raw authorization certificate from its constituent parts.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 52 of 84

⎯ UnsignedRawAuthCert.CertData will be made up of the unstructured AuthCert, the
CryptoControl data, and padding (value don’t care), in that order.

⎯ UnsignedRawAuthCert.CertLength will be set to 212 (the number of bytes in an
Authorization Certificate prior to being signed).

3.8.5 AddAuthSignature
procedure AddAuthSignature(UnsignedRawAuthCert: in GenericRawCert;
 SigData: in SignatureData;
 SignedRawAuthCert : out GenericRawCert);

3.8.5.1 Usage

AddAuthSignature is called once a signature has been generated by the crypto library.

⎯ UnsignedRawAuthCert is that produced by ConstructAuthCert.

⎯ SigData is that produced by the Crypto library Sign operation.

3.8.5.2 Behaviour

It appends the supplied signature it to the certificate data, ready for writing to the user’s card.

⎯ SignedRawAuthCert is UnsignedRawAuthCert with SigData appended to the CertData
field, and the CertLength field updated to 348.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 53 of 84

4 Peripheral Simulator Message Interface

4.1 General Message Structure

The general message structure to be sent by both Praxis and SPRE is as follows:

i.e. a variable length stream of 32-bit words.

Sections 4.2 to 4.6.1 define the messages to be used for each interface, and includes examples (with
variable data in italics). Outgoing messages are those from Praxis to SPRE. Incoming messages are
those from SPRE to Praxis.

4.1.1 Direction

This is the first 32-bit word of the stream and indicates the direction of the message – incoming or
outgoing. Incoming will be represented as 11 00 00 00h; Outgoing will be 00 00 00 00h.

4.1.2 ProcID

ProcID is a unique 32-bit word identifying the procedure call in progress. The MS byte indicates the API:

• 01h for Door;

• 02h for Display;

• 04h for Card Reader;

• 08h for Biometric;

• 10h for Alarm.

• 20h for Latch.

The LS 3 bytes will indicate the procedure/function name. Values will be pre-determined. So, for the
Biometric API:

Direction Value a ProcID ParamID1 Value a Value end ParamIDn Value end

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 54 of 84

ProcID Procedure/Function

08 00 00 01h Initialize

08 00 00 02h Finalize

08 00 00 04h SamplePresent

08 00 00 08h Verify

This should be the same for both incoming and outgoing messages.

4.1.3 ParamID

A 32-bit number representing a parameter of a particular procedure/function (return values of functions
are treated as parameters).

So, for Verify in the Biometric API:

ParamID Parameter

0x001h Template

0x002h TemplateLength

0x004h MaxFAR

0x008h Matched

0x010h FARAchieved

0x020h BioReturn

For outgoing messages, only in or in out parameters are sent.

For incoming messages, only in out or out parameters (or return value if a function) are sent.

Ordering of parameters in the message will be numerically increasing.

4.1.4 Value a .. Value end

The data value will be split into 32-bit words for sending. Data will be padded to ensure 32-bit alignment
e.g. an unsigned 8 bit value would be sent as [XX 00 00 00h].

Boolean values shall be represented as a byte: False – 0; True – any non-zero value.

Characters will be sent as ASCII byte values.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 55 of 84

Records, such as GenericRawCert (from the card reader API), will be treated as a single data object.
That is, no padding between fields.

Certificates, and data contained within them, will be structured and ordered as defined in the tables in
section 2, and will start at offset 0 in the GenericRawCert type.

Large variable length data values, such as a biometric template, will be modeled in the system as a
fixed size array (usually of 32-bit words), and have a corresponding variable (n) which records the
length, in bytes, of the actual data held in the array. For API procedure calls, these will usually be two
separate parameters. The first n bytes of the array will hold the data, and the rest are don’t care.

e.g. For the Template parameter of Verify in the Biometric API:

Template : TemplateType :=
 (00h, 00h, 01h, E2h, 00h, 00h, 7Fh, FFh, ..)
1st chunk to send will be [00 00 01 E2h]
2nd chunk will be [00 00 7F FFh]
etc.

From this, TemplateLength = 482 and MaxFAR = 32767.

As each parameter is a fixed size, the length of a message is pre-determinable, so a message length
field is not required.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 56 of 84

4.2 Token Reader Interface

4.2.1 ProcIDs

Procedure ProcID

Initialize 04 00 00 01h

Finalize 04 00 00 02h

ListReaders 04 00 00 04h

GetStatusChange 04 00 00 08h

Connect 04 00 00 10h

Status 04 00 00 20h

Disconnect 04 00 00 40h

GetIDCert 04 00 00 80h

GetPrivCert 04 00 01 00h

GetIACert 04 00 02 00h

GetAuthCert 04 00 04 00h

UpdateAuthCert 04 00 08 00h

4.2.2 Initialize

4.2.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 ResponseCode 00 00 00 01h 1

4.2.2.2 Example

Outgoing:

[00 00 00 00h][04 00 00 01h]

Incoming:

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 57 of 84

[11 00 00 00h][04 00 00 01h][00 00 00 01h][00 00 00 00h]
 (Success)

4.2.3 Finalize

4.2.3.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 ResponseCode 00 00 00 01h 1

4.2.3.2 Example

Outgoing:

[00 00 00 00h][04 00 00 02h]

Incoming:

[11 00 00 00h][04 00 00 02h][00 00 00 01h][00 00 00 00h]
 (Success)

4.2.4 ListReaders

4.2.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 Number 00 00 00 02h 1

Incoming 27 List 00 00 00 01h 20

 Number 00 00 00 02h 1

 ResponseCode 00 00 00 04h 1

4.2.4.2 Example

Outgoing:

[00 00 00 00h][04 00 00 04h][00 00 00 02h][00 00 00 02h]
 (Expect 2 readers)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 58 of 84

Incoming:

[11 00 00 00h][04 00 00 04h]
[00 00 00 01h][49 4E 54 52h][45 41 44 00h] (INTREAD)
[45 58 54 52h][45 41 44 00h] (EXTREAD)
[..further 16 list chunks..]
[00 00 00 02h][00 00 00 02h] (Found 2 readers)
[00 00 00 04h][00 00 00 00h] (Success)

4.2.5 GetStatusChange

4.2.5.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 9 Timeout 00 00 00 01h 1

 Reader 00 00 00 02h 2

 CurrentState 00 00 00 04h 1

Incoming 6 NewState 00 00 00 08h 1

 ResponseCode 00 00 00 10h 1

4.2.5.2 Example

Outgoing:

[00 00 00 00h][04 00 00 08h]
[00 00 00 01h][00 00 00 0Eh] (Wait 15ms)
[00 00 00 02h][45 58 54 52h][45 41 44 00h] (EXTREAD)
[00 00 00 04h][00 00 00 04h] (Empty)

Incoming:

[11 00 00 00h][04 00 00 08h]
[00 00 00 08h][FF DD EE 23h] (Unrecognized state)
[00 00 00 10h][00 00 00 00h]

4.2.6 Connect

4.2.6.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 59 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 5 Reader 00 00 00 01h 2

Incoming 6 CardHandle 00 00 00 02h 1

 ResponseCode 00 00 00 04h 1

4.2.6.2 Example

Outgoing:

[00 00 00 00h][04 00 00 10h][00 00 00 01h]
[49 4E 54 52h][45 41 44 00h] (Connect to card in ‘INTREAD’)

Incoming:

[11 00 00 00h][04 00 00 10h]
[00 00 00 02h][AB CD EF 10h] (card handle)
[00 00 00 04h][00 00 00 13h] (card removed)

4.2.7 Status

4.2.7.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 15 CState 00 00 00 02h 1

 ATR 00 00 00 04h 8

 ResponseCode 00 00 00 08h 1

4.2.7.2 Example

Outgoing:

[00 00 00 00h][04 00 00 20h][00 00 00 01h][FE DC BA 98h]

Incoming:

[11 00 00 00h][04 00 00 20h]
[00 00 00 02h][00 00 00 10h] (Card is in “specific” state)
[00 00 00 04h][01 23 45 67h] (Token ID)
[89 AB CD EFh][FF EE DD CCh][BB AA 99 88h][77 66 55 44h]
[33 22 11 00h][01 23 45 67h][89 AB CD EFh]

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 60 of 84

(28 bytes don’t care)
[00 00 00 08h][00 00 00 00h]

4.2.8 Disconnect

4.2.8.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 4 ResponseCode 00 00 00 02h 1

4.2.8.2 Example

Outgoing:

[00 00 00 00h][04 00 00 40h][00 00 00 01h][A9 4E 54 45h]

Incoming:

[11 00 00 00h][04 00 00 40h][00 00 00 02h][00 00 00 01h]
 (invalid handle)

4.2.9 GetIDCert

4.2.9.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 258 RawIDCert 00 00 00 02h 251

 StatusOK 00 00 00 04h 1

 ResponseCode 00 00 00 08h 1

4.2.9.2 Example

Outgoing:

[00 00 00 00h][04 00 00 80h]
[00 00 00 01h][11 22 33 44h]

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 61 of 84

Incoming:

[11 00 00 00h][04 00 00 80h]
[00 00 00 02h][00 00 00 00h]
[..249 RawIDCert.CertData chunks..]
[00 00 01 E8h] (RawIDCert.CertLength = 484 bytes)
[00 00 00 04h][FF 00 00 00h] (Status is OK)
[00 00 00 08h][00 00 00 00h]

4.2.10 GetPrivCert

4.2.10.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 258 RawPrivCert 00 00 00 02h 251

 StatusOK 00 00 00 04h 1

 ResponseCode 00 00 00 08h 1

4.2.10.2 Example

Outgoing:

[00 00 00 00h][04 00 01 00h]
[00 00 00 01h][11 22 33 44h]

Incoming:

[11 00 00 00h][04 00 01 00h]
[00 00 00 02h][00 00 00 01h]
[..249 RawPrivCert.CertData chunks..]
[00 00 01 4Fh] (RawPrivCert.CertLength < 348 bytes)
[00 00 00 04h][00 00 00 00h] (Status is not OK)
[00 00 00 08h][00 00 00 00h]

4.2.11 GetIACert

4.2.11.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 62 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 258 RawIACert 00 00 00 02h 251

 StatusOK 00 00 00 04h 1

 ResponseCode 00 00 00 08h 1

4.2.11.2 Example

Outgoing:

[00 00 00 00h][04 00 02 00h]
[00 00 00 01h][11 22 33 44h]

Incoming:

[11 00 00 00h][04 00 02 00h]
[00 00 00 02h][00 00 00 02h]
[..249 RawIACert.CertData chunks..]
[00 00 03 44h] (RawIACert.CertLength = 832 bytes)
[00 00 00 04h][FF 00 00 00h] (Status is OK)
[00 00 00 08h][00 00 00 00h]

4.2.12 GetAuthCert

4.2.12.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 4 CardHandle 00 00 00 01h 1

Incoming 260 RawAuthCert 00 00 00 02h 251

 Exists 00 00 00 04h 1

 StatusOK 00 00 00 08h 1

 ResponseCode 00 00 00 10h 1

4.2.12.2 Example

Outgoing:

[00 00 00 00h][04 00 04 00h]
[00 00 00 01h][11 22 33 44h]

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 63 of 84

Incoming:

[11 00 00 00h][04 00 04 00h]
[00 00 00 02h][00 00 00 00h]
[..249 RawAuthCert.CertData chunks..]
[00 00 00 00h] (RawAuthCert.CertLength = 0, but...)
[00 00 00 04h][00 00 00 00h] (Cert does not exist)
[00 00 00 08h][01 00 00 00h] (Status is OK)
[00 00 00 10h][00 00 00 00h]

4.2.13 UpdateAuthCert

4.2.13.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 256 CardHandle 00 00 00 01h 1

 RawAuthCert 00 00 00 02h 251

Incoming 6 StatusOK 00 00 00 04h 1

 ResponseCode 00 00 00 08h 1

4.2.13.2 Example

Outgoing:

[00 00 00 00h][04 00 08 00h]
[00 00 00 01h][11 22 33 44h]
[00 00 00 02h][00 00 00 03h]
[..249 RawAuthCert.CertData chunks..]
[00 00 01 5Ch]

Incoming:

[11 00 00 00h][04 00 08 00h]
[00 00 00 04h][00 00 00 00h] (Status is not OK)
[00 00 00 08h][00 00 00 00h]

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 64 of 84

4.3 Biometric Interface

4.3.1 ProcIDs

Procedure ProcID

Initialize 08 00 00 01h

Finalize 08 00 00 02h

SamplePresent 08 00 00 04h

Verify 08 00 00 08h

4.3.2 Initialize

4.3.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 BioReturn 00 00 00 01h 1

4.3.2.2 Example

Outgoing:

[00 00 00 00h][08 00 00 01h]

Incoming:

[11 00 00 00h][08 00 00 01h][00 00 00 01h][00 00 00 01h]
 (Internal Error)

4.3.3 Finalize

4.3.3.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 65 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 BioReturn 00 00 00 01h 1

4.3.3.2 Example

Outgoing:

[00 00 00 00h][08 00 00 02h]

Incoming:

[11 00 00 00h][08 00 00 02h][00 00 00 01h][00 00 01 18h]
 (ModuleUnload failed)

4.3.4 SamplePresent

4.3.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Return Value 00 00 00 01h 1

4.3.4.2 Example

Outgoing:

[00 00 00 00h][08 00 00 04h]

Incoming:

[11 00 00 00h][08 00 00 04h][00 00 00 01h][0F 00 00 00h]
 (Sample is present)

4.3.5 Verify

4.3.5.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 66 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 132 Template 00 00 00 01h 125

 TemplateLength 00 00 00 02h 1

 MaxFAR 00 00 00 04h 1

Incoming 8 Matched 00 00 00 08h 1

 FARAchieved 00 00 00 10h 1

 BioReturn 00 00 00 20h 1

4.3.5.2 Example

Outgoing:

[00 00 00 00h][08 00 00 08h]
[00 00 00 01h][00 00 00 C7h]
[..a further 124 template chunks..]
[00 00 00 02h][00 00 00 C7h] (Template Length is 199 bytes)
[00 00 00 04h][00 00 FF FFh] (MaxFAR is 65535)

Incoming:

[11 00 00 00h][08 00 00 08h]
[00 00 00 10h][00 00 00 00h] (Match not made)
[00 00 00 20h][0E EE EE EEh] (FARAchieved is 250539758)
[00 00 00 40h][00 00 00 00h] (No Error)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 67 of 84

4.4 Door Interface

4.4.1 ProcIDs

Procedure ProcID

InitializeDoor 01 00 00 01h

FinalizeDoor 01 00 00 02h

GetDoorState 01 00 00 04h

4.4.2 InitializeDoor

4.4.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.4.2.2 Example

Outgoing:

[00 00 00 00h][01 00 00 01h]

Incoming:

[11 00 00 00h][01 00 00 01h][00 00 00 01h][FF 00 00 00h]
 (Successful)

4.4.3 FinalizeDoor

4.4.3.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 68 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.4.3.2 Example

Outgoing:

[00 00 00 00h][01 00 00 02h]

Incoming:

[11 00 00 00h][01 00 00 02h][00 00 00 01h][00 00 00 00h]
 (Unsuccessful)

4.4.4 GetDoorState

4.4.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Return Value 00 00 00 01h 1

4.4.4.2 Example

Outgoing:

[00 00 00 00h][01 00 00 04h]

Incoming:

[11 00 00 00h][01 00 00 04h][00 00 00 01h][00 00 00 03h]
 (Door is open)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 69 of 84

4.5 Latch Interface

4.5.1 ProcIDs

Procedure ProcID

InitializeLatch 20 00 00 01h

FinalizeLatch 20 00 00 02h

Unlock 20 00 00 04h

Lock 20 00 00 08h

4.5.2 InitializeLatch

4.5.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.5.2.2 Example

Outgoing:

[00 00 00 00h][20 00 00 01h]

Incoming:

[11 00 00 00h][20 00 00 01h][00 00 00 01h][00 00 00 00h]
 (Unsuccessful)

4.5.3 FinalizeLatch

4.5.3.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 70 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.5.3.2 Example

Outgoing:

[00 00 00 00h][20 00 00 02h]

Incoming:

[11 00 00 00h][20 00 00 02h][00 00 00 01h][01 00 00 00h]
 (Successful)

4.5.4 Unlock

4.5.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 0 - - -

4.5.4.2 Example

Outgoing:

[00 00 00 00h][20 00 00 04h]

Incoming:

No Message

4.5.5 Lock

4.5.5.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 71 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 0 - - -

4.5.5.2 Example

Outgoing:

[00 00 00 00h][20 00 00 08h]

Incoming:

No Message

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 72 of 84

4.6 Alarm Interface

4.6.1 ProcIDs

Procedure ProcID

Initialize 10 00 00 01h

Finalize 10 00 00 02h

Activate 10 00 00 04h

Deactivate 10 00 00 08h

4.6.2 Initialize

4.6.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.6.2.2 Example

Outgoing:

[00 00 00 00h][10 00 00 01h]

Incoming:

[11 00 00 00h][10 00 00 01h][00 00 00 01h][FF 00 00 00h]
 (Successful)

4.6.3 Finalize

4.6.3.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 73 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.6.3.2 Example

Outgoing:

[00 00 00 00h][10 00 00 02h]

Incoming:

[11 00 00 00h][10 00 00 02h][00 00 00 01h][00 00 00 00h]
 (Unsuccessful)

4.6.4 Activate

4.6.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 0 - - -

4.6.4.2 Example

Outgoing:

[00 00 00 00h][10 00 00 04h]

Incoming:

No Message

4.6.5 Deactivate

4.6.5.1 Message Definition

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 74 of 84

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 0 - - -

4.6.5.2 Example

Outgoing:

[00 00 00 00h][10 00 00 08h]

Incoming:

No Message

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 75 of 84

4.7 Display Interface

4.7.1 ProcIDs

Procedure ProcID

Initialize 02 00 00 01h

Finalize 02 00 00 02h

GetMaxTextSizeTop 02 00 00 04h

GetMaxTextSizeBottom 02 00 00 08h

SetTopText 02 00 00 10h

SetBottomText 02 00 00 20h

SetTopTextScrollable 02 00 00 40h

4.7.2 Initialize

4.7.2.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.7.2.2 Example

Outgoing:

[00 00 00 00h][02 00 00 01h]

Incoming:

[11 00 00 00h][02 00 00 01h][00 00 00 01h][FF 00 00 00h]
 (Successful)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 76 of 84

4.7.3 Finalize

4.7.3.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.7.3.2 Example

Outgoing:

[00 00 00 00h][02 00 00 02h]

Incoming:

[11 00 00 00h][02 00 00 02h][00 00 00 01h][00 00 00 00h]
 (Unsuccessful)

4.7.4 GetMaxTextSizeTop

4.7.4.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Return Value 00 00 00 01h 1

4.7.4.2 Example

Outgoing:

[00 00 00 00h][02 00 00 04h]

Incoming:

[11 00 00 00h][02 00 00 04h][00 00 00 01h][00 00 00 14h]
 (20 character Top Line)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 77 of 84

4.7.5 GetMaxTextSizeBottom

4.7.5.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 2 - - -

Incoming 4 Success 00 00 00 01h 1

4.7.5.2 Example

Outgoing:

[00 00 00 00h][02 00 00 08h]

Incoming:

[11 00 00 00h][02 00 00 08h][00 00 00 01h][00 00 00 20h]
 (32 character Bottom Line)

4.7.6 SetTopText

4.7.6.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 18 TopText 00 00 00 01h 13

 Length 00 00 00 02h 1

Incoming 4 Written 00 00 00 04h 1

4.7.6.2 Example

Outgoing:

[00 00 00 00h][02 00 00 10h][00 00 00 01h]
[49 4E 53 45h][52 54 nn nnh][nn nn nn nnh] (INSERTdontcare..)
[..10 further string chunks ..]
[00 00 00 02h][00 00 00 06h]

Incoming:

[11 00 00 00h][02 00 00 10h][00 00 00 04h][01 00 00 00h]

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 78 of 84

 (‘INSERT’ written)

4.7.7 SetBottomText

4.7.7.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 18 BottomText 00 00 00 01h 13

 Length 00 00 00 02h 1

Incoming 4 Written 00 00 00 04h 1

4.7.7.2 Example

Outgoing:

[00 00 00 00h][02 00 00 20h][00 00 00 01h]
[53 4D 41 52h][54 20 43 41h][52 44 nn nnh] (SMART CARDblah..)
[..10 further string chunks ..]
[00 00 00 02h][00 00 00 0Ah]

Incoming:

[11 00 00 00h][02 00 00 20h][00 00 00 04h][00 00 00 00h]
 (‘SMART CARD’ not written)

4.7.8 SetTopTextScrollable

4.7.8.1 Message Definition

Direction Message Length
(32-bit words)

Parameter(s) ParamID Value Size
(32-bit words)

Outgoing 18 ScrollText 00 00 00 01h 13

 Length 00 00 00 02h 1

Incoming 4 Written 00 00 00 04h 1

4.7.8.2 Example

Maximum number of characters on top line is e.g. 20 characters.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 79 of 84

Outgoing:

[00 00 00 00h][02 00 00 40h][00 00 00 01h]
[46 49 4E 47h][45 52 50 52h][49 45 54 20h] (‘FINGERPRINT ’
[54 45 4D 50h][4C 41 54 45h][20 49 53 20h] ‘TEMPLATE IS ’)
[..7 further string chunks ..] (dontcare..)
[00 00 00 02h][00 00 00 18h]

Incoming:

[11 00 00 00h][02 00 00 40h][00 00 00 04h][01 00 00 00h]
 (text written)

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 80 of 84

A Example Walkthrough

The following two walkthroughs are intended to illustrate how the certificate data is used to drive the
internal library stubs. The walkthroughs are based on following information:

⎯ The TIS has been enroled.

⎯ The Crypto library has been initialized.

⎯ TIS is aware of the existence of a CA called “TOK-CA1” (with ID 109) and an AA called “TOK-AA2”
(with ID 218).

⎯ The key database contains among others, the following keys:

Key
Handle

Æ { Owner; KeyID; KeyLength; IsPublic }

1 Æ { { 109; 7; “TOK-CA1” } 20436548 64 True }

3 Æ { { 218; 7; “TOK-AA2” } 666 128 True }

6 Æ { { 436; 7; “PRAXTIS” } 1 128 False }

⎯ The privilege certificate RawPrivCert has been read from a user’s token and is in raw form. The data
within has the following values:

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 81 of 84

 RawCert
offset (32-
bit words)

Field Subfield Sub-subfield Value

0 CertificateType - - 1

1

2

3

13

Holder Issuer

SerialNumber

ID

TextLength

Text

-

109

7

“TOK-CA1”

1234

14

15

16

Issuer ID

TextLength

Text

-

-

-

218

7

“TOK_AA2”

26 SignatureAlg - - SHA1_RSA

27 Serial Number - - 2468

28

33

AttCertValidity NotBefore

NotAfter

-

-

1990; 01; 01; 00; 00

2004; 01; 01; 00; 00

38

39

40

Privilege Role

Class

Padding

-

-

-

0 (User)

1 (Unclassified)

don’t care

42

43

44

45

46

47

48

CryptoControl DigestUpdateReturn

DigestFinalReturn

DigestLength

Digest

-

-

-

DigestID

SignReturn

VerifyReturn

Padding

‘Ok’

‘Ok’

20

4321

‘DeviceError’

‘Ok’

don’t care

53

54

55

56

57

SignatureData AlgorithmId

SignatureLength

Signature

-

-

KeyID

DigestID

Padding

SHA1_RSA

128

666

4321

don’t care

{--

Ce

rt
D

at
a-

-}

86 CertData Padding - - don’t care

 250 CertLength - - 348

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 82 of 84

A.1 Verifying a Privilege Certificate

1 CertProcess.ObtainSignatureData is used to extract the signature. This makes use of CertLength,
and we obtain SignatureData.

2 The raw data is then digested:

a CryptoLib.DigestInit is called. A mask is used on SignatureAlg to determine the mechanism to
use – this returns SHA-1.

b CryptoLib.DigestUpdate is called a total of three times, since the whole certificate (minus
signature data) is 212 bytes. The first two times, the ReturnValue is ‘Ok’. The final call returns
CryptoControl.DigestUpdateReturn (which is ‘Ok’).

c CryptoLib.DigestFinal is called and returns CryptoControl.Digest as the produced digest. The
DigestLength is set to CryptoControl.DigestLength. The DigestLength is valid, all of the
certificate was read in, the digest operation was initialized, and the library is initialized, so the
ReturnValue is CryptoControl.DigestFinalReturn, which is ‘Ok’.

3 The digest was ‘Ok’, so the data is obtained ready to verify the signature:

a The CryptoLib find operations are called to determine the KeyHandle. The template searched
for has just one attribute – the owner, which is set to Issuer. “TOK-AA2” is known, so find
returns the handle for its public key (3).

b RSA is the mechanism to use – determined by applying a mask to SignatureAlg.

c The Digest and DigestLength are those produced by step 2, and equal CryptoControl.Digest
and CryptoControl.DigestLength respectively.

d Signature and SigLength are extracted from the SigData obtained in step 1, and equal
SignatureData.Signature and SignatureData.SignatureLength respectively.

4 Call CryptoLib.Verify. ReturnValue is set to CryptoControl.Digest.VerifyReturn, since:

a The mechanism (RSA) is recognized and valid.

b SignatureData.Signature.KeyID and the KeyID in the CryptoLib match.

c SignatureData.Signature.DeviceID and CryptoControl.Digest.DigestID match.

d SignatureData.SignatureLength is not greater than the KeyLength in the CryptoLib.

e The library is initialized

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 83 of 84

5 The certificate has been verified. TIS can now use the data contained within the certificate by
calling CertProcess.ExtractPrivCertData to extract it. All fields have valid values, so the call is
successful.

A.2 Constructing an Authorization Certificate

1 The user has been authorized, so the TIS has produced the data to be put into an authorization
certificate. CertProc.ConstructAuthCertificate is called. This copies PrivCert.CryptoControl, but
overwrites PrivCert.CryptoControl.Digest.DigestID with 0.

2 The raw certificate data produced in step 1 is then digested.

a CryptoLib.DigestInit is called. A mask is used on (the TIS generated) AuthCert.SignatureAlg to
determine the mechanism to use.

b CryptoLib.DigestUpdate is called a total of three times, since the whole certificate (minus
signature data) is 212 bytes. The first two times, the ReturnValue is ‘Ok’. The final call returns
CryptoControl.DigestUpdateReturn.

c CryptoLib.DigestFinal is called. Since the CryptoControl.DigestID is 0, the certificate data is
summed modulo 2**32 to produce a new DigestID. The DigestLength is set to
CryptoControl.DigestLength. The DigestLength is valid, all of the certificate was read in, the
digest operation was initialized, and the library is initialized, so the ReturnValue is
CryptoControl.DigestFinalReturn, which is ‘Ok’.

3 The digest was successful, so set up data to attempt a sign:

a A mask is used on (the TIS generated) AuthCert.SignatureAlg to determine the mechanism to
use.

b The CryptoLib find procedures are called to obtain a handle for the TIS private key.

4 CryptoLib.Sign is called.

a Signature.KeyID is set to the KeyID of the TIS private key.

b Signature.DigestID is set to the DigestID produced in step 2.

c ReturnValue is set to PrivCert.CryptoControl.Digest.SignReturn since the library is initialized.

5 The sign operation has returned ‘DeviceError’, so the data has not been signed. The user has not
been issued an authorization certificate.

Tokeneer ID Station
Interface Specification

S.P1229.41.3
Issue: 1.0

 Page 84 of 84

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright © (2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved.

This material was originally developed by Praxis High Integrity Systems Ltd. under contract to the
National Security Agency.

Changes history

Issue 0.1 (14 April 2003): Draft for internal review.

Issue 0.2 (17 April 2003): Provisional for external review.

Issue 1.0 (19 August 2008): Updated for public release.

Changes forecast

Updates following review.

Document references

1 Interoperability Specification for ICCs and Personal Computer Systems Part 5. ICC Resource
Manager Definition, Bull CP8 et al, Revision 1.0, December 1997.

2 BioAPI Specification, The BioAPI consortium, Version 1.1, 16th March 2001.

3 TIS System Requirements Specification, S.P1229.41.1

4 Cryptographic Token Interface Standard, RSA Laboratories, PKCS #11 v2.11, Revision 1,
November 2001

