Praxis
High Integrity
Systems

Document Set

Title

Synopsis

Contents
Status

I ssue Number
Date

Copied To

Front Sheet
Originators

Approver

Tokeneer ID Station Reference S.P1229.50.1

Formal Design

This document is the formal design of the core Token ID Station
(T1S), which forms part of Tokeneer.

See table of contents

Definitive

13

19th August 2008

NSA Praxis High Integrity
Randolph Johnson Systems

SPRE Inc. Project Team

Quality

Janet Barnes Signed

David Cooper Approved

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 2
0 DOCUMENT CONTROL

Copyright (©(2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved. This material was originally developed by Praxis High Integrity Sys-
tems Ltd. under contract to the National Security Agency.

Changes History

All issues of this document have been type-checked with fuzz and have given no errors.

Issue 0.1 (16th April 2003) Initial draft for formal review.
Issue 0.2 (28th May 2003) Updated following review comments from David Cooper.

Issue 1.0 (4th July 2003) Updated following completion of precondition checks. Incorporates
changes resulting from NSA review comments on the Formal Specification.

Issue 1.1 (22nd July 2003) Updated following review comments from NSA. Added appendix con-
taining an example refinement proof. Updated to incorporate corrections detailed in incident
reports S.P1229.6.8-10, 16 and 18.

Issue 1.2 (22nd August 2003) Definitive issue correcting faults found during implementation and
system test

e S.P1229.6.21 - Token information cleared too early in shutdown.
e S.P1229.6.24 - Correct classification of audit entries.
e SP1225.6.28 - Audit Element descriptions missing for archive entries.
e S.P1229.6.30 - AdminFinishOpC missing from FinishArchivelLogContext.
e S.P1229.6.31 - Wrong description for audit entry in FinishArchiveLogBadMatchC.
e S.P1229.6.32 - Improve poor text messages on screen.
e SP1229.6.33 - Makeinitial configuration realistic.
e S.P1229.6.34 - Contraints required on config datato ensure issued auth certs allow entry.
e SP1229.6.35 - Audit entry required for AdminTokenTimeout.
e S.P1229.6.36 - Screen should show busy message when a user entry isin progress.
e S.P1229.6.38 - Operation failures should be reported on screen.
e S.P1229.6.42 - System faults need not always be critical.
Issue 1.3 (19th August 2008) Updated for public release.

Changes Forecast
None. This document is now under change control.
References

1 The Z Notation: A Reference Manual, J.M Spivey, Prentice Hall, Second Edition, 1992
2 TIS Software Requirements Specification, S.P1229.41.1.

3 TISKernel Protection Profile, SPRE Inc, Version 1.0, 5 February 2003.

4 TIS Formal Specification, S.P1229.50.1.

Praxis

Tokeneer ID Station

High Integrity Formal Design

Systems
Abbreviations

AA
ATR
CA
FAR
I&A
RSA
SPARK
SRS
TIS

Attribute Authority

Answer-to-Reset

Certification Authority

False Acceptance Rate

I dentification and Authentication

Rivest Shamir Adelman algorithm

SPADE Ada Kernel (analysable Ada subset from Praxis)
Software Requirements Specification

Token ID Station

Reference S.P1229.50.1
Issue 1.3

Page 3

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3

Systems Page 4

TABLE OF CONTENTS

0 Document Control

1 Table Of Contents

2 Introduction
21 Structureof thisDesign e 7
22 Designdecisions e e e 8
23 Traceunits. 10
24 ZDESICS . . . 10
25 TISBaSICTYPES . . o o o o e 10
2.6 Keys, EncryptionandtheCryptoLibrary 14
2.7 Certificates, Tokensand EnrolmentData 15
28 WorldoutsidethelD Station 21

3 TheToken ID Station
3.1 ConfigurationData e 26
32 AUdIitLOg 28
33 KeyStore 33
34 CeatificateStore L 33
35 SystemStatistics e 34
3.6 Administration L 34
3.7 Read WorldEntities 35
38 Interna State 37
3.9 ThewholeTokenID Station 38

4 Operations interfacing to the ID Station
41 RedWorldChanges i e 40
4.2 Obtaining inputs fromtherealworld 40
4.3 ThelD Stationchangestheworld 44
44 ClearingBiometricData 47

5 Interna Operations
51 Updatingthe AuditLog 48
52 Updating System Statistics 61
5.3 Updating CertificateStore 62
54 Operating the Door, Latchand Alarm 62
55 CertificateOperations e 65
5.6 UpdatingtheKey Store 68
5.7 TokenValidation 69
5.8 User Token OperationsandChecks. 72
5.9 AdminToken OperationsandChecks 74
5.10 Administrator OperationsandChecks 75
511 Prioritisation Checks 78

6 The User Entry Operation
6.1 UserTokenTears i i i i e e e e e e 84
6.2 ReadingtheUser Token. 85

6.3 VdidatingtheUserToken. 86

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3

Systems Page 5
6.4 Readingafingerprint 89
6.5 Vdidating afingerprint 91
6.6 WritingtheUserToken 93
6.7 VdidatingEntry e e 96
6.8 UnlockingtheDoor e 97
6.9 Terminatingafalledaccess 99
6.10 TheCompleteUser Entry i 100

7 Operations Within the Enclave
7.1 Enrolmentof anID Station 102
7.2 Administrator TokenTear e 107
7.3 Administrator Login e 109
74 Administrator Logout L e e 113
7.5 Administrator Operations 115
7.6 Starting Operations e e e e 117
7.7 ArchivingtheLog e 119
7.8 Updating ConfigurationData 123
7.9 Shutting DownthelD Station. 126
7.10 UnlockingtheEnclaveDoor 127

8 Thelnitia System and Startup
8.1 Thelnitial System. 129
8.2 StartingthelD Station 131

9 Thewhole ID Station
91 Startup. 134
9.2 Themanloop 134
Appendix:

A Commentary on this Design
A.l ThestructureoftheZ 137
A2 ISSUBS . . . e 137

B The Abstraction Relation
B.1 Fingerprint 143
B.2 Certificates 143
B.3 TOKENS 146
B4 Enrolment 147
B.5 ConfigurationData 147
B.6 RealWorld 148
B.7 AUuditLOg 150
B.8 KeyStore 150
B.9 SystemStatistics 151
B.10 Administration 151
B.11 Real World Entities 151
B.12 Internal State 153
B.13 Thewhole TokenID Station 153

C Example Refinement
C.1 Refinement proof obligations 155

Praxis Tokeneer ID Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3

Systems Page 6
C.2 Auditcorrectnessproof

D Zindex
E Traceunit index

F Requirements index

21

Praxis Tokeneer ID Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3

Systems Page 7

INTRODUCTION

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteriais possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer
System) in accordance with their high-integrity development process. This development work will
then be used to show the security community that isis possible to devel op secure systems rigorously
in acost effective manner.

This document is the formal design, written using the Z notation. This document specifies the
behaviour of the core of the Token ID Station (TIS) that is being developed. It documents the third
step in the Praxis high integrity systems devel opment approach. The whole process consists of:

1. Requirements Analysis (the REVEAL process)

2. Formal Specification (using the formal notation Z)
3. Formal Design and the INFORM ED process

4. Implementation in SPARK Ada

5. Verification (using the SPARK Examiner tool set).

Structure of this Design

This design is presented as aformal model of the TIS core function using concrete representations
for the state. The model is presented using the Z notation. The structure of this design follows very
closely the structure of the formal specification [4], from which it is refined.

The design models TIS as a number of state components and a number of operations that change
the state. The operations presented in this design cover:

e user authentication and entry into the enclave;
enrolment of TIS;

e administrator logon/logoff;

archiving the log;

updating of configuration data;
¢ shutdown;
e overriding the enclave door.

The design is structured by presenting type constructs useful in the modelling of TISin the remain-
der of this section.

Section 3 introduces the refined state that defines the TIS.
Section 4 covers accepting data from the real world and updating the real world.

Section 5 presents a number of operations on parts of the TIS state, these are later used in the
construction of the TIS system operations.

2.2

221

Praxis Tokeneer ID Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3

Systems Page 8

Section 6 presents the multi-phase user authentication and entry operation.

Section 7 describes all the system operations that take place within the enclave. These are adminis-
trative operations.

Section 8 defines the initial system and the state of TIS at start-up.

Section 9 describes how the whole TIS core works. Here we pull together the operations described
through the remainder of the specification.

Appendix A discusses anumber of issues that were raised during the production of this design.

Appendix B presents the refinement relation between the abstract state in the Formal Specification
[4] and the state presented here.

Appendix C presents part of the refinement argument that the Formal Design is a correct refinement
of the Formal Specification [4].

Design decisions

This section discusses the key design descisions that are addressed in this formal design.

Prioritisation

Within theformal specification there were anumber of activities that could happen non-deterministically,
in that the specification allowed a choice between two actions given the initial conditions.

Within the design we eliminate the non-determinism and thus define the priority of actions where
there was an arbitrary choice in the Formal Specification.

A logged on administrator may tear their token during a user entry operation. Processing the Admin
Token tear should take priority since information only presented to administrators will be displayed
on the TIS Console screen until the token tear is processed.

With thisin mind the assigned priority is as follows:

Progressing the initial system enrolment.

Handling an admin logout due to token tear or timeout.

Handling a user token tear.

Progressing any current user entry.

Handling any outstanding admin token tear (where the admin is not logged on).
Progressing any administrator activity.

Starting a user entry activity.

© N o gk~ wDdDPE

Starting an administrator logon or operation.

It should be noticed that constraints in the formal specification already prevent all administrator
activities (apart from token tears) occuring concurrently with user entry processing.

The structure of the administrator operations has been atered slightly from the specification to assist

222

2.2.3

224

225

2.2.6

2.2.7

Praxis Tokeneer ID Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3

Systems Page 9

in the implementation of this priorisation. Bad logouts due to atoken tear during an operation are no
longer presented as part of the operation, instead they are presented as part of administrator logout.

Clearing secure data

Data extracted from the tokens and held internally will be cleared when the token is removed or the
system shutdown. This ensures that it is not possible to inadvertently transfer information from one
user to another.

Fingerprint data is cleared from the fingerprint reader before and after datais read to ensure that no
stale datais inadvertently read asvalid.

Reading on demand

Within the Formal Specification it is assumed that all datais read from the real world on a periodic
basis. In reality much of the data is time consuming to read so should only be read when required.
Within the formal design we show which data should be polled frequently and which simply read
when it is neaded. The design till falls short in this respect in the area of the Tokens, since within
the implementation only sufficient data items will be read from a token to perform the validation,
however this design shows all of the token being read. Thisis discussed futher in Appendix A.

Elaboration of Audit

A magjor refinement in the design is to define the structure and types of audit entries that will be
logged. Also the definition of the audit log now models how this log should be implemented inter-
nally using a number of files.

Configuration Data

This design considers the configuration datain terms of simple parameters that can be supplied by
the operator to define aspects such as authentication periods. This significantly restricts the possible
system configurations as compared with the Formal Specification.

Encryption and Keys

Within the design the model of encryption and keys has been refined. However, since the core
TIS will make use of libraries to supply the crypto functions, the formal model makes several
assumptions about keys. The model simply aims to demonstrate the correct use of library utilities
to perform the desired validation.

Certificates

Thedesign model of certificatesisrefined to capture the concept that certificates take the form of raw
data and a signature. The validity of the data is checked using the signature and various fields can
be extracted from a certificate. This provides a more concrete model of how a certificate is formed
and used than the specification provided. The mechanism by which extraction and construction of
certificates is performed is not specified formally; this is because these facilities are provided by a
certificate processing library that is considered outside of the core TIS function.

2.3

24

24.1

24.2

243

2.5

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 10
Trace units

Each section of the design has been tagged with anamed traceunit which will be used as areference
from later design documents. All trace units in this document have the prefix “FD” identifying them
as originating in the Formal Design.

Most traceunits contain alist of requirements that are relevent to that part of the specification. These
are taken from the SRS [2].

Z basics
This formal design iswritten using the Z formal notation.

It provides a concrete implementation of the TIS system specified in the Formal Specification [4].
All state is refined to the concrete components that will be used in the implementation.

Z naming conventions

The convention used is to terminate each type, value and Schema name with the letter C where the
entity isadirect refinement of an entity presented in the Formal Specification. So AuditLogC isthe
concrete version of the AuditLog. Similarly retrieval relations names have the letter R as a suffix, so
AuditLogR is the retrieval relation between AuditLogC and AuditLog.

Z comments

The intention is that someone unfamiliar with Z should be able to read this specification and gain a
complete understanding of the functionality of the TIS system specified within.

We have attempted to make the informal commentary as complete and unambiguous as possible.
We have also separated out the parts of the commentary that are only relevant for understanding the
formal model, as below:

> Readers who are not interested in the formal model can skip these sections of the commentary.

Z type checking

In order to make this document stand alone for reading purposes al definitions used unchanged from
the specification are repeated in this document. Where this occurs the Z text is not type checked,
the reason being that this document is type checked with the formal specification and the original
declaration from the specification is used by the type checker. All Z statements repeated from the
formal specification are annotated as such.

Section B defines the retrieval relations between the abstract state and the concrete state. This
section makes reference to declaration in the formal specification [4] without representation.

TISBasic Types

FD.Types.RawTypes

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 11

Within the TIS implmentation many entities are stored using Unsigned 32 bit integers.

maxDigestLength == 32
maxSglLength == 128

BYTE==10..255
INTEGER32 == —2147483648 .. 2147483647
RAWDATA == seq BYTE

DIGESTDATA == {x : RAWDATA | #x < maxDigestLength}
SIGDATA == {x : RAWDATA | #x < maxSgLength}

> See: maxDigestLength (p. 11), maxSgLength (p. 11)

FD.Types.Time
FSTypes.Time

Time and date is some universal clock, which for our purposes can be modelled as just the naturals.
Our only requirement is that the granularity of our clock is sufficiently fine to distinguish times
differing by a second, although to order audit entries effectively we choose 1/10 second as the unit
of time.

TIME ==
> Definition repeated from Formal Specification [4]

We define a constant zeroTime used at system initialisation.

zeroTime ==

> Definition repeated from Formal Specification [4]

We introduce the concept of the length of aday. Thisis because some of the configuration data will
relate to a single day.

| dayLength: TIME
> See: TIME (p. 11)
DAYTIME == 0 .. (dayLength — 1)

> See: dayLength (p. 11)

FD.Types.Presence
FSTypes.Presence

Many entities such as tokens, fingers and floppy disks may be presented to the system and removed
by the user. We monitor the presence of these entities.

PRESENCE ::= present | absent

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 12

> Definitions repeated unchanged from Formal Specification [4]

FD.Types.Clearance
FSTypes.Clearance

CLASS s the ordered classifications on document, areas, and people.

CLASS ::=unmarked | unclassified | restricted | confidential | secret | topsecret

> Definition repeated unchanged from Formal Specification [4]

We define functions returning the minimum and maximum of a set of CLASSes.

minClass : P, CLASS— CLASS
maxClass : P, CLASS — CLASS

Jordering : seq CLASS o
ordering = (unmarked, unclassified, restricted, confidential, secret, topsecret)
A minClass = {S: P, CLASSe S+— (ordering (min (dom(ordering > S))))}
A maxClass = {S: P, CLASS e S+— (ordering (max (dom(ordering > S))))}

> See: CLASS(p. 12), unmarked (p. 12), unclassified (p. 12), restricted (p. 12), confidential (p. 12), secret (p. 12),
topsecret (p. 12)

Clearance
Tcla$: CLASS

> See: CLASS(p. 12)

> Definition repeated unchanged from Formal Specification [4]

There is an ordering on the type Clearance. The function minClearance and maxClearance give
the minimum and maximum of a pair of elements of type Clearance. Thisis defined in terms of the
ordering on class.

minClearance : Clearance x Clearance — Clearance
maxClearance : Clearance x Clearance — Clearance

Va,b: Clearance e
minClearance(a, b).class = minClass{a.class, b.class}

> See: Clearance (p. 12), minClass (p. 12)

> Declarations repeated unchanged from Formal Specification [4]. The definitions are new.

FD.Types.Privilege
FSTypes.Privilege

PRIVILEGE is the role held by the Token user. This will determine the privileges that the Token
user has when interacting with the ID station.

PRIVILEGE ::=userOnly | guard | securityOfficer | auditManager

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 13

> Definition repeated unchanged from Formal Specification [4]

FD.Types.User
FD.Types.User

An User isaunique identification of an certificate owner. An user will have acommon name which
does not contribute to the unique identification.

[USERID, USERNAME]

User

id : USERID
name : USERNAME

> Seet USERNAME (p. 13)

FD.Types.Issuer
FSTypes.Issuer

An Issuer isaunique identification of an issuing body. Issuers are privileged users with the ability
to issue certificates.

| ssuer

[

> See: User (p. 13)

FD.Types.Fingerprint
FSTypes.Fingerprint

FINGERPRINT will need to include sufficient control information to alow us to compare with
templates and decide a match or not.

[FINGERPRINT]

> Definition repeated unchanged from Formal Specification [4]

FD.Types.FingerprintTemplate
FSTypes.FingerprintTemplate

A FINGERPRINTTEMPLATE contains abstracted information, derived from a number of sample
readings of afingerprint.

[FINGERPRINTTEMPLATE]

> Definition repeated unchanged from Formal Specification [4]

2.6

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 14

The fingerprint template and will be accompanied by additional information, the FAR (False Ac-
ceptance Rate) threshold level to be applied to any comparisons.

A fingerprint template will need additional information, such as the False Acceptance Rate to be
applied.
FingerprintTemplateC

templateC : FINGERPRINTTEMPLATE
far : INTEGER32

> Seer INTEGER32 (p. 11)

The biometrics library provides facilities to tell whether a fingerprint read from a user matches a
template.

MATCHRESULT ::= match | noMatch

verifyBio : INTEGER32 — FINGERPRINTTEMPLATE — FINGERPRINTTRY — MATCHRESULT x INTEGER32

V maxFar : INTEGER32; fTemplate : FINGERPRINTTEMPLATE; finger : FINGERPRINTTRY e
Jresult : MATCHRESULT; achievedFar : INTEGER32 e
verifyBio maxFar fTemplatefinger = (result, achievedFar)
A result = match = achievedFar < maxFar

> Seer INTEGER32 (p. 11), MATCHRESULT (p. 14), match (p. 14)

Keys, Encryption and the Crypto Library

FD.KeyTypes.Keys
FSKeyTypes.Keys

The signing and validation of certificates used in Tokeneer relies on the use of asymetric keys, which
comprise two parts, one which is public and one which is private.

[KEYPART]

> Definition repeated unchanged from Formal Specification [4]
The core TIS makes use of a Crypto Library to maintain al the keys it knows about. This library
maintains a database of the currently known keys.

A key part has a number of characteristics that aid identification of the key, in addition to the key
data. It is either apublic or private key and it has an owner, the issuer who holds the private part.

KEYTYPE ::= public | private

KeyPart
keyType : KEYTYPE
keyOwner : |ssuer

keyData : KEYPART

2.7

271

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 15

> See! KEYTYPE (p. 14), Issuer (p. 13)

Certificates are signed by an issuer using the private part, and can be verified by anyone who holds
the public part.

The Crypto Library also provides utility functions that allow digests to be created and signatures
to be created and verified. These functions support a number of digest algorithms and asymmetric
signing alorithms.

ALGORITHM ::=rsa | md2 | md5 | shal | ripemd128 | ripemd160 | rsaWithMd2 |
rsaWthMd5 | rsaWthshal | rsaWthRipemd128 | rsaWithRipemd160

digest : ALGORITHM —+ RAWDATA — DIGESTDATA
sign : ALGORITHM —+ KEYPART — DIGESTDATA — SIGDATA
_ isVerifiedBy _ : (ALGORITHM x DIGESTDATA x SIGDATA) <— KEYPART

V privateKey, publicKey : KeyPart; data : RAWDATA; mechanism : ALGORITHM;
theDigest : DIGESTDATA; theSgnature : SGDATA e
mechanism € dom digest N dom sign
A privateKey.keyType = private A publicKey.keyType = public
A publicKey.keyOwner = privateKey.keyOwner
A theDigest = digest mechanismdata
A theSignature = sign mechanism privateKey.keyData theDigest <
(mechanism, theDigest, theSignature) isVerifiedBy publicKey.keyData

> See: ALGORITHM (p. 15), RAWDATA (p. 11), DIGESTDATA (p. 11), SSGDATA (p. 11), KeyPart (p. 14),
private (p. 14), public (p. 14)

Knowing an issuer is equivalent to having a copy of the issuer’s public key part. While possessing
an issuer’s private key part means that you are that issuer.

Certificates, Tokensand Enrolment Data

Certificates

FD.Types.Certificates
FSTypes.Certificates

All certificates consist of data and a signature. A number of attributes are encoded within the data.

__RawcCertificate
data : RAWDATA
signature : SSGDATA
signedData : RAWDATA

signedData = data ~ signature

> See: RAWDATA (p. 11), SIGDATA (p. 11)

Each certificate is signed and can be verified using akey, typically the public key of an issuer.

Some attributes are common to all certificates.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 16

All certificates can be uniquely identified by their issuer and the serial Number supplied by the
issuer when the certificate is created.

CertificateldC

> See! Issuer (p. 13)

In addition to the unique certificate id all certificates contain a validity period during which time
they arevalid. Thisis defined by two times notBefore and notAfter. The validity period isany timet
satisfying notBefore < t and t < notAfter. The mechanism is the althorithm by which the signature
is signed.
CertificateContents
idC : CertificateldC
notBefore : TIME

notAfter : TIME
mechanism : ALGORITHM

> See CertificateldC (p. 16), TIME (p. 11), ALGORITHM (p. 15)
certificateValidity : CertificateContents — P TIME
certificateValidity = (CertificateContents e notBefore . . notAfter)

> See: CertificateContents (p. 16), TIME (p. 11)

Each type of certificate potentialy expands on these attributes.

The ID certificate is an X.509 certificate. 1D certificates are used during enrolment as well as being
present on tokens.

The subject is the name of the entity being identified by the certificate and the key is the entity’s
public key.

We don’'t need to know about the key of the Token although we do need to know about the key of
an issuer supplied at enrolment.

IDCertContents
CertificateContents
subjectC : Issuer
subjectPubKC : KEYPART

> See: CertificateContents (p. 16), Issuer (p. 13)

The certificates containing attributes all share some common attributes.

An attribute certificate contains the identification of the ID certificate to which it relates, this ID
certificate isreferred to as the base certificate for the attribute certificate. The base certificate should
be the ID certificate on the Token.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 17
AttCertificateContents
CertificateContents
baseCertldC : CertificateldC

> See: CertificateContents (p. 16), CertificateldC (p. 16)

A privilege certificate additionally contains arole and clearance.

PrivCertContents
AttCertificateContents
roleC : PRIVILEGE
clearanceC : Clearance

> See: AttCertificateContents (p. 16), PRIVILEGE (p. 12), Clearance (p. 12)

An authorisation certificate has the same structure as a privilege certificate.

AuthCertContents
AttCertificateContents
roleC : PRIVILEGE
clearanceC : Clearance

> See: AttCertificateContents (p. 16), PRIVILEGE (p. 12), Clearance (p. 12)

Anl&A (ldentification and Authentication) certificate additionally contains a fingerprint template.

landACertContents
AttCertificateContents
templateC : FingerprintTemplateC

> See: AttCertificateContents (p. 16), FingerprintTemplateC (p. 14)

All certificates can be extracted from raw certificate data. The extraction functions are provided by
a Certificate Processing Library, which is outside the scope of the core TIS, but will be utilised by
TIS.

The certificate processing library aso provides a function to generate the raw certificate data from
an authorisation certificate contents.

extractl DCert : RawCertificate - |DCertContents
extractPrivCert : RawCertificate + PrivCertContents
extractlandACert : RawCertificate + |landACertContents
extractAuthCert : RawCertificate +— AuthCertContents
constructAuthCert : AuthCertContents — RAWDATA

> See: RawCertificate (p. 15), IDCertContents (p. 16), PrivCertContents (p. 17), landACertContents (p. 17),
AuthCertContents (p. 17), RAWDATA (p. 11)

2.7.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 18

Each type of certificate comprises a RawCertficate, from which the required certificate type can be
extracted.

We can extract the contents of an ID certificate from an ID certificate.

IDCertC = [RawCertificate | §RawCertificate € dom extractiDCert

> See: RawCertificate (p. 15), extractIDCert (p. 17)

In general an ID certificate is not validated by the keypart held on the certificate.

The ID Certificate of a CA (Certification Authority) is aroot certificate and is signed by itself.

__CAldCertC
IDCertC

3 1DCertContents; theDigest : DIGESTDATA o
0IDCertContents = extractl DCertdRawCertificate
A theDigest = digest mechanismdata
A (mechanism, theDigest, signature) isVerifiedBy subjectPubKC

> See! IDCertC (p. 18), IDCertContents (p. 16), DIGESTDATA (p. 11), extractIDCert (p. 17),
RawCertificate (p. 15), digest (p. 15)

We can extract the contents of a privilege certificate from a Priv Certificate.

PrivCertC = [RawCertificate | fRawCertificate € dom extractPrivCert]

> See: RawCertificate (p. 15)

We can extract the contents of an I&A certificate from an |& A Certificate.

landACertC = [RawCertificate | 9RawCertificate € dom extractlandACert]

> See: RawCertificate (p. 15)

We can extract the contents of an authorisation certificate from an Auth Certificate.

AuthCertC = [RawCertificate | §RawCertificate € dom extractAuthCert |

> See: RawCertificate (p. 15)

Tokens

FD.Types.Tokens
FS.Types.Tokens

Each Token has an ID. Token IDs are different for every token from a given smartcard supplier
(issuer). Tokens from different issuers may, however, share Token IDs.

TOKENIDC ==

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 19

A Token contains a number of certificates. The authorisation certificate is optional while the others
must be present.

TokenC
tokenIDC : TOKENIDC

idCertC : RawCertificate

privCertC : RawCertificate
iandACertC : RawCertificate
authCertC : optional RawCertificate

> See: TOKENIDC (p. 18), RawCertificate (p. 15)
A Token is valid if all of the certificates on it are well-formed, each certificate correctly cross-
references to the ID Certificate, and the ID Certificate correctly cross-references to the Token ID.
A token need not contain avalid Auth certificate to be considered valid.

__ValidTokenC
TokenC

idCertC € {IDCertC}
privCertC € {PrivCertC}
iandACertC € {landACertC}

(extractPrivCert privCertC).baseCertldC = (extractIDCertidCertC).idC
(extractlandACert iandACertC).baseCertldC = (extractlDCert idCertC).idC

(extractIDCert idCertC).idC.serial Number = tokenIDC

> See: TokenC (p. 19), IDCertC (p. 18), PrivCertC (p. 18), landACertC (p. 18), extractIDCert (p. 17)

If the Auth certificate is present it will only be used if it isvalid, inthat it correctly cross-references
to the Token ID and the ID certificate.

__TokenWithValidAuthC
TokenC
idCertC € {IDCertC}
(extractIDCert idCertC).idC.serial Number = tokenIDC

authCertC # nil
A theauthCertC € {AuthCertC}
A (extractAuthCert (theauthCertC)).baseCertldC.serialNumber = tokenIDC
A (extractAuthCert (theauthCertC)).baseCertldC = (extractlDCertidCertC).idC

> See: TokenC (p. 19), IDCertC (p. 18), extractIDCert (p. 17), AuthCertC (p. 18)

A Token is current if al of the Certificates are current, or if only the Auth Cert is non-current.
Currency needs atime, which isincluded in the schema, and will need to be tied to the relevent time
when this schema is used.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 20
__ CurrentTokenC
ValidTokenC
nowC : TIME

(3 IDCertContents o 6l DCertContents = extract|DCert idCertC
A nowC € certificateValidity fCertificateContents)

(3 PrivCertContents o OPrivCertContents = extractPrivCertidCertC
A nowC € certificateValidity 0CertificateContents)

(3 landACertContents e flandACertContents = extractlandACert idCertC
A nowC € certificateValidity dCertificateContents)

> See: ValidTokenC (p. 19), TIME (p. 11), IDCertContents (p. 16), extractlDCert (p. 17), certificateValidity (p. 16),
CertificateContents (p. 16), PrivCertContents (p. 17), landACertContents (p. 17)

2.7.3 Enrolment Data

FD.Types.Enrolment
FSTypes.Enrolment

Enrolment datais the information the ID station needs in order to know how to authenticate tokens
presented to it, and to produce its own authentication certificates such that they can be authenticated
by workstations in the enclave.

Enrolment data consists of a number of ID certificates:

e thisID Station’s ID Certificate, which will be signed by a CA.
e A number of other Issuers’ ID Certificates. These will belong to

— CAs, who authenticate AAs (Attribute Authorities) and ID Stations. These will be self
signed.
— AAs, who authenticate privilege and 1& A certificates.

The ID Station’s certificate is just one of the issuer certificates, although we will want to be able to
identify it as belonging to this ID station.

The certificates are ordered within the enrolment data.

__EnrolC
idSationCertC : IDCertC
issuerCertsC : iseq IDCertC

idSationCertC € ran issuerCertsC

> See: IDCertC (p. 18)

For the Enrolment data to be considered valid each certificate must be signed correctly and the
Issuer’s certificate must be present for it to be possible to check that the signatures are correct. Note
that CA ID certificates are self signed but AA and IDStation certificates are signed by an CA.

For each certificate that is not self signed the signing CA will appear earlier in the sequence of
issuers.

2.8

281

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 21

The ID station certificate is the second certificate in the enrolment data and must be preceded by the
certificate for the issuing CA.

__ValidEnrolC
EnrolC

ran issuerCertsC N {CAldCertC} # &

V cert : IDCertC; earlierCerts : seq IDCertC | earlierCerts — (cert) prefix issuerCertsC o

JissuerCert : IDCertC;

certContent, issuer Content : IDCertContents; theDigest : DIGESTDATA e
issuerCert € ran(earlierCerts — (cert))
A certContent = extractIDCert cert A issuerContent = extract!| DCert issuerCert
A certContent.idC.issuerC = issuerContent.subjectC
A theDigest = digest certContent.mechanismcert.data
A (certContent.mechanism, theDigest, cert.signature) isVerifiedBy issuerContent.subjectPubKC

issuer CertsC~idSationCertC = 2

v

See: EnrolC (p. 20), CAIdCertC (p. 18), IDCertC (p. 18), IDCertContents (p. 16), DIGESTDATA (p. 11),
extractIDCert (p. 17), digest (p. 15)

> There must be an ID certificate for at least one CA.

> For each certificate the enrolment data must include the ID certificate for the issuer of the certificate, the certificate
must be validated by the issuer’s key and the issuer of the certificate must be a CA.

> For each certificate the ID certificate of the issuer of the certificate must apear earlier in the enrolment data.
> The certificate for the ID Station isthe second certificate.

World outsidethe ID Station

We choose to model the real world (or at least the real peripherals) as being outside the ID Station.
When the user inserts a token, they are providing input to the ID Station. It is up to the ID Station
to then respond by reading the real world input into its own, internal representation. The ID Station
receives stimulus from the real world and itself changes the real world. All real world entities are
modelled as components of the Real\World.

We will distingush between real world entities that we use (eg. finger), we control (eg. alarm) and
we may change (eg. user Token or floppy).

Real World types

FD.Types.RealWorld
FSTypes.RealWorld

There are several types associated with the real world. The door, latch and aarm al have two
possible states.

DOOR ::= open | closed
LATCH ::= unlocked | locked
ALARM ::= silent | alarming

> Definitions repeated unchanged from Formal Specification [4].

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 22

Display messages are the short messages presented to the user on the small display outside the
enclave.

DISPLAYMESSAGE ::= blank | welcome | insertFinger | openDoor | wait |
removeToken | tokenUpdateFailed | doorUnlocked

> Definitions repeated unchanged from Formal Specification [4].

The messages that appear on the display are presented in the table 2.1.

Displayed text
M essage Top line Bottom line
blank SYSTEM NOT OPERATIONAL
welcome WELCOME TO TIS ENTER TOKEN
insertFinger AUTHENTICATING USER INSERT FINGER
wait AUTHENTICATING USER PLEASE WAIT
openDoor REMOVE TOKEN AND ENTER
removeToken ENTRY DENIED REMOVE TOKEN
tokenUpdateFailed TOKEN UPDATE FAILED
doorUnlocked ENTER ENCLAVE

Table 2.1: Display Messages

Because it is possible to be trying to read a token that is not inserted, or afingerprint when no finger
isinserted, or an invalid token or fingerprint, we introduce free types to capture the absence or poor
quality of these.

The values badFP and badT represent al possible error codes that occur when trying to capture this
data. The system will behave the same way in all failure cases with only the audit log capturing the
different error codes that actually occur.

FINGERPRINTTRY ::= noFP | badFP | goodFP{FINGERPRINT))
> Definition repeated unchanged from Formal Specification [4].
TOKENTRYC ::= noTC | badTC | goodTC{(TokenC}))

> See: TokenC (p. 19)

When modelling data supplied on a floppy disk we model the possibility of the disk not being
present, being empty or being corrupt as well as containing valid data. We make the assumption
that each floppy disk will only contain one data type, either enrolment data, configuration data or
audit data.

FLOPPYC ::= noFloppyC | emptyFloppyC | badFloppyC | enrolmentFileC{(EnrolC)) |
auditFileC{(F AuditC)) | configFileC{ConfigC))

> See: EnrolC (p. 20)

282

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 23

Inputs may be supplied by an administrator at the keyboard. We model input values representing no

data, invalid data or avalid request to perform an adminstrator operation.

KEYBOARD ::= noKB | badKB | keyedOps((ADMINOP))

> Definitions repeated unchanged from Formal Specification [4].

There are anumber of messages that may appear on the TIS screen within the enclave. Some of these
are simple messages, the text of these is supplied in the Table 2.2. Others involve more complex
presentation of data, such as configuration data or system statistics, the details of this presentation

isleft to design.

SCREENTEXTC ::= clearC | welcomeAdminC | busyC | removeAdminTokenC | closeDoorC |
requestAdminOpC | doingOpC | invalidRequestC | invalidDataC |
insertEnrolmentDataC | validatingEnrolmentDataC | enrolmentFailedC |
archiveFailedC | insertBlankFloppyC | insertConfigDataC |
displayStatsC({(StatsC)) | displayConfigDataC{(ConfigC}) |

displayAlarm{ALARM))

> Seet ALARM (p. 21)

insertEnrolmentDataC
validatingEnrolmentDataC
enrolmentFailedC

M essage Displayed text

clearC

welcomeAdminC WELCOME TO TIS

buwC SYSTEM BUSY PLEASE WAIT

removeAdminTokenC REMOVE TOKEN

closeDoorC CLOSE ENCLAVE DOOR

requestAdminOpC ENTER REQUIRED OPERATION

dOingOpC PERFORMING OPERATION PLEASE WAIT
invalidRequestC INVALID REQUEST: PLEASE ENTER NEW OPERATION
invalidDataC INVALID DATA: PLEASE ENTER NEW OPERATION
archiveFailedC ARCHIVE FAILED: PLEASE ENTER NEW OPERATION

PLEASE INSERT ENROLMENT DATA FLOPPY
VALIDATING ENROLMENT DATA PLEASE WAIT
INVALID ENROLMENT DATA

insertBlankFloppyC INSERT BLANK FLOPPY
insertConfigDataC INSERT CONFIGURATION DATA FLOPPY
Table 2.2: Short Screen Messages
The Real World

FD.ControlledRealWor|d.State

The real world entities that are controlled by TIS are as follows:

e thelatch on the door into the enclave.

o the audible aarm.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 24

e the display that resides outside the enclave.
e the screen on the ID Station within the enclave with which the administrator interacts.

TISControlledRealWor|dC
latchC : LATCH

alarmC : ALARM
displayC : DISPLAYMESSAGE
screenC : ScreenC

> See: LATCH (p. 21), ALARM (p. 21), DISPLAYMESSAGE (p. 22)

FD.MonitoredRealWorld.State

The real world entities that are used by TIS are as follows:

e thereal world has a concept of time.
e the door into the enclave that is monitored by the ID Station.

e fingerprints are read, viathe biometric reader, into the ID Station for comparison with finger-
print templates.

e auser, trying to enter the enclave will supply their token to the ID station viathe token reader
that resides outside the enclave.

e auser within the enclave who has administrator privileges will supply their token to the 1D
station via the token reader that resides inside the enclave.

e the ID Station accepts enrolment data and configuration data on afloppy disk. The disk drive
resides in the enclave.

e the ID Station has a keyboard within the enclave which the administrator uses to control TIS.

__TISMonitoredRealWorldC
nowC : TIME
doorC : DOOR
fingerC : FINGERPRINTTRY
user TokenC, adminTokenC : TOKENTRYC
floppyC : FLOPPYC
keyboardC : KEYBOARD

> See: TIME (p. 11), DOOR (p. 21), FINGERPRINTTRY (p. 22), TOKENTRYC (p. 22), FLOPPYC (p. 22),
KEYBOARD (p. 23)

In addition TIS may change some of the entities that it uses from the real world.

e ThelD station may need to update the user Token token (with an Authentication Certificate).
e The D Station archives the Audit Log to floppy disk so may write to floppy.

e The ID Station flushes fingerprint information from the biometric reader after validating the
data

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 25

The Whole real world is given by:

RealWorldC = TISControlledRealWorldC A TISMonitoredReal\WorldC

> See: TISControlledRealWorldC (p. 24), TISMonitoredRealWorldC (p. 24)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 26

THE TOKEN ID STATION
TIS maintains various state components, these are described and elaborated within this section.

Configuration Data

FD.ConfigData.State
FSConfigData. State

ConfigData will be a structure with all the configuration data. Configuration data can only be
modified by an administrator. This data includes:

e Durations for internal timeouts, these effect
— how long the system waits before raising an audible (door) aarm;
— how long the system leaves the door unlocked for;
— how long the system waits for a token to be removed before unloading the door; and
— how long the system attempts to capture a matching fingerprint.

e The security classification of the enclave. For this implementation only the CLASSis consid-
ered.

e A definition of the current working hours, thisisin terms of the start and end of the working
day. All days are considered working days, so there is no specia treatment of weekends.

e A definition of the current maximum authorisation period applied to an authorisation certifi-
cateif “all hours’ accessis given.

e The access policy used to determine the entry conditions and the authorisation period.
— The access policy is either “working hours only” or “all hours’.

— When the access policy is“working hours only” the authorisation period will be from the
current time to the end of the current working day. This may be empty if the current time
is after the end of the working day. The user will only be admitted to the enclave if the
current time is within working hours.

— When the access policy is “al hours’ the authorisation period will be from the current
time for the maximum authorisation duration. The user will always be allowed into the
enclave if all identification checks are satisified.

e Thelowest security classification auser must hold to gain entry to the enclave. If thiscondition
is not met then entry will be denied.

e minPreservedLogSzeC gives the minimum size of audit log that must be supported without
truncation. A dlightly smaller value, alarmThresholdSzeC, sets the number of audit entries
a which an aarm is raised, with the intension that the audit log will be archived and cleared
before the maximum size is reached.

e minEntryClass must be no higher class than enclaveClearanceC. This ensures that any autho-
risation certificate issued with this configuration data will also permit entry.

¢ systemMaxFAR gives the system minimum acceptable fal se accept rate. Thiswill override the
FAR provided within atemplate where the template FAR exceeds this system limit.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 27

ACCESS_POLICY ::= workingHours | allHours

__ConfigData
alarmSlentDurationC, latchUnlockDurationC : TIME
tokenRemovalDurationC : TIME
fingerWaitDuration : TIME
enclaveClearanceC : CLASS

workingHoursStart : DAYTIME
workingHoursEnd : DAYTIME
maxAuthDuration : DAYTIME
accessPolicy : ACCESS POLICY
minEntryClass : CLASS

minPreservedLogSzeC : N
alarmThresholdSzeC : N

systemMaxFar : INTEGER32

alarmThresholdSizeC < minPreservedLogSzeC
minPreservedLogSzeC < maxSupportedLogSze
minEntryClass = minClass{minEntryClass, enclaveClearanceC}

> See: TIME (p. 11), CLASS (p. 12), DAYTIME (p. 11), ACCESS_POLICY (p. 27), INTEGER32 (p. 11)

> The upper bound on the minPreservedLogSzeC ensures that the system can support the selected value for this.

Notice that the concrete configuration data is simplified so that authorisation periods and entry
criteria do not depend on the user’s privilege. Thisis adesign decision to smplify these.

The authorisation period is always a contiguous range of times. This is necessary due to the way
that the authorisation period is encoded in the authorisation certificate.

The entry period is the same for each day.

ConfigData defines the data that must be provided in order to perform a configuration. ConfigC
contains extra components which are derived from ConfigData.

32

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 28
__ConfigC
ConfigData

authPeriodC : TIME — P TIME
entryPeriodC : CLASS— P TIME
authPeriodlsEmpty : P TIME
getAuthPeriod : TIME -+ TIME x TIME
alarmThresholdEntries : N

accessPolicy = allHours
A authPeriodC = {t: TIME e t — t.. max{0, t + maxAuthDuration — 1}}
A entryPeriodC = {c : CLASS | maxClass{c, minEntryClass} = c e ¢ — TIME}
U{c: CLASS | maxClass{c, minEntryClass} # c e c — &}
v
accessPolicy = workingHours
A authPeriodC = {t : TIME e t — (t div dayLength) * dayLength + workingHoursStart. .
(t div dayLength) * dayLength + workingHoursEnd}
A entryPeriodC =
{c: CLASS | maxClass{c, minEntryClass} = c
e c— {t: TIME | t mod dayLength € workingHoursStart . . workingHoursEnd} }
U{c : CLASS | maxClass{c, minEntryClass} # c e ¢ — &}

authPeriodlsEmpty = {t : TIME | authPeriodCt = &}
getAuthPeriod = {t : TIME | authPeriodCt # & e t — (min (authPeriodC t), max (authPeriodCt))}

(alarmThresholdEntries — 1) * sizeAuditElement < alarmThresholdSzeC
alarmThresholdEntries * sizeAuditElement > alarmThresholdSzeC

> See: ConfigData (p. 27), TIME (p. 11), CLASS (p. 12), allHours (p. 27), workingHours (p. 27), dayLength (p. 11)

> Invarients on authPeriodC and entryPeriodC define these functionsin terms of the other configuration items. These
values will not be supplied as part of configuration data.

> Invarientson alarmThresholdEntries define thisvaluesin terms of other configuration items. alarmThresholdEntries
isthe number of elements in the log after which the audit alarm will be raised.

> getAuthPeriod and authPeriodlsEmpty are completely determined by invarients relating these entities to other
configuration items.

Audit Log

FD.AuditL og.State

FSAuditLog.State FAU_GEN.1.2
FAU_GEN.1.1

TIS maintains an audit log. Thisisalog of all auditable events and actions performed or monitored
by TIS. The audit log will be used to analyse the interactions with the TIS.

Audit will be a structure for each audit record, recording at least time of event, type of event, user
if known, the user isidentified from the ID Certificate on the token and a free text description. The
free text may contain additional information relating to the specific type of event.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 29

AUDIT_ELEMENT ::=
startUnenrolledTISElement | startEnrolledTISElement | enrolmentCompleteElement | enrolmentFailedElement
| displayChangedElement | screenChangedElement | door ClosedElement | door OpenedElement
| latchLockedElement | latchUnlockedElement | alarmRaisedElement | alarmSlencedElement
| truncateLogElement | auditAlarmRaisedElement | auditAlarmSilencedElement
| user TokenRemovedElement | user TokenPresentElement | user TokenlnvalidElement
| authCertValidElement | authCertlnvalidElement
| finger DetectedElement | finger TimeoutElement | finger MatchedElement | finger NotMatchedEl ement
| authCertWrittenElement | authCertWriteFailedElement
| entryPermittedElement | entryTimeoutElement | entryDeniedElement
| adminTokenPresentElement | adminTokenValidElement | adminTokenlnvalidElement
| adminTokenExpiredElement | adminTokenRemovedElement
| invalidOpRequestElement | operationStartElement
| archiveLogElement | archiveCompleteElement | archiveCheckFailedElement | updatedConfigDataElement
| invalidConfigDataElement | shutdownElement | overrideLockElement | systemFaultElement

AUDIT_SEVERITY ::= information | warning | critical

USER_INDEPENDENT_ELEMENTS == {systemFaultElement, displayChangedElement, screenChangedElement,
door ClosedElement, door OpenedElement, latchLockedElement, latchUnl ockedElement,
alarmRai sedElement, alarmS|encedElement, auditAlarmRai sedElement, auditAlarmSlencedElement, truncatel.ogElement }

USER_ENTRY_ELEMENTS == {user TokenRemovedElement, user TokenPresentElement,
user Tokenl nvalidElement, authCertValidElement, authCertlnvalidElement, finger DetectedElement,
finger TimeoutEl ement, finger MatchedElement, finger NotMatchedElement,
authCertWrittenElement, authCertWriteFail edElement,
entryPermittedElement, entryTimeoutElement, entryDeniedElement }

ADMIN_ELEMENTS == {adminTokenPresentElement, adminTokenValidElement,
adminTokenl nvalidElement, adminTokenExpiredElement, adminTokenRemovedElement,
invalidOpReguestElement, operationStartElement,
archivelLogElement, archiveCompleteElement, archiveCheckFailedElement, updatedConfigDataElement,
invalidConfigDataElement, shutdownElement, overridelockElement }

ENROL_ELEMENTS == {enrolmentCompl eteElement, enrolmentFailedElement }
STARTUP_ELEMENTS == {startUnenrolledTI SElement, startEnrolledTI SElement}

INFO_ELEMENTS == {startUnenrolledTI SElement, startEnrolledTI SElement, enrol mentCompl eteElement,
displayChangedElement, screenChangedElement, door ClosedElement, door OpenedElement,
|atchLockedElement, latchUnlockedElement, alarmSilencedElement, auditAlarmSlencedElement,
user TokenRemovedElement, user TokenPresentElement, authCertValidElement,
authCertlnvalidElement, finger DetectedElement, finger MatchedElement, finger NotMatchedElement,
authCertWrittenElement, entryPer mittedElement, adminTokenPresentElement, adminTokenValidElement,
adminTokenRemovedElement, operationStartElement, archiveLogElement, archiveCompleteElement,
updatedConfigDataElement, shutdownElement, overridel.ockElement }

WARNING_ELEMENTS == {enrolmentFailedElement, auditAlarmRaisedElement, user TokenRemovedEl ement,
user Tokenl nvalidElement, finger TimeoutElement, authCertWriteFailedElement, entryDeniedElement,
entryTimeoutElement, adminTokenlnvalidElement,
adminTokenExpiredElement, adminTokenRemovedEl ement, invalidOpRequestElement,
archiveCheckFail edElement, invalidConfigDataElement, systemFaultElement }

CRITICAL_ELEMENTS == {alarmRaisedElement, truncatel ogElement, systemFaultElement}

> See: systemFaultElement (p. 28), displayChangedElement (p. 28), screenChangedElement (p. 28),
door ClosedElement (p. 28), door OpenedElement (p. 28), latchLockedElement (p. 28),
latchUnlockedElement (p. 28), alarmRaisedElement (p. 28), alarmSlencedElement (p. 28),
auditAlarmRaisedElement (p. 28), auditAlarmSlencedElement (p. 28), truncateLogElement (p. 28),
user TokenRemovedElement (p. 28), user TokenPresentElement (p. 28), user TokenlnvalidElement (p. 28),
authCertValidElement (p. 28), authCertlnvalidElement (p. 28), finger DetectedElement (p. 28),

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 30

finger TimeoutElement (p. 28), finger MatchedElement (p. 28), finger NotMatchedElement (p. 28),
authCertWrittenElement (p. 28), authCertWriteFailedElement (p. 28), entryPer mittedElement (p. 28),
entryTimeoutElement (p. 28), entryDeniedElement (p. 28), adminTokenPresentElement (p. 28),
adminTokenValidElement (p. 28), adminTokenlnvalidElement (p. 28), adminTokenExpiredElement (p. 28),
adminTokenRemovedElement (p. 28), invalidOpRequestElement (p. 28), operationSartElement (p. 28),
archiveLogElement (p. 28), archiveCompleteElement (p. 28), archiveCheckFailedElement (p. 28),
updatedConfigDataElement (p. 28), invalidConfigDataElement (p. 28), shutdownElement (p. 28),
overrideLockElement (p. 28), enrolmentCompl eteElement (p. 28), enrolmentFailedElement (p. 28),
startEnrolledTI SElement (p. 28)

FD.AuditL og.ExtractUser

Each audit element has an associated user, if the user isnot relevant or not available then the noUser
value is used.

USERTEXT ::= noUser | thisUser ((Certificatel dC))

> See: CertificateldC (p. 16)

There is an extraction function which obtains the user from the current token. This will extract the
CertificateldC from any token sufficiently valid to contain one or return noUser.

| extractUser : TOKENTRYC — USERTEXT

> Seet TOKENTRYC (p. 22), USERTEXT (p. 30)

Each audit element has afreetext field. Thisisan informal description of the entry and may contain
no text.

[TEXT]
| noDescription : TEXT

AuditC
logTime : TIME

elementld : AUDIT_ELEMENT
severity : AUDIT_SEVERITY
user : USERTEXT

description : TEXT

> See: TIME (p. 11), AUDIT_ELEMENT (p. 28), AUDIT_SEVERITY (p. 28), USERTEXT (p. 30)

Most audit elements have a user associated with them, where this can be determined it will be
supplied.

Some audit elements have different severities depending on their context. A token removal is erro-
neous during an operation but not at the end of an operation for instance.

We define a function that gives the set of AUDIT_ELEMENTSs captured within a set of Audit ele-
ments.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 31

auditType : AuditC — AUDIT_ELEMENT
auditTypes : F AuditC — F AUDIT_ELEMENT

auditType = (A AuditC e elementld)
auditTypes = {A: F AuditC e A — auditType(A) }

> Seer AuditC (p. 30), AUDIT_ELEMENT (p. 28)

In this implementation the size of each audit element is fixed, we also note that the capacity of a
floppy isfixed.

sizeAuditElement : N
floppyCapacity : N

The Audit log consists of a number of Audit elements. An audit error alarm will be raised if the
audit log becomes full and needs to be archived and cleared.

The Audit log will be implemented as a number of files with afixed maximum capacity. The inten-
tion is to distribute the log across the these files, this should enable truncation to be implemented
simply. There will be an internal upper limit to the number of files supported. The size of each file
isfixed in terms of the number of audit elements it holds.

maxNumberLogFiles : N
maxLogFileEntries: N
maxNumber ArchivableFiles : N

maxNumber LogFiles > 2

maxLogFileEntries > 100

maxSupportedLogSize < sizeAuditElement * (maxNumberLogFiles — 1) * maxLogFileEntries
maxNumber ArchivableFiles > 1

maxNumber ArchivableFiles « maxLogFileEntries « sizeAuditElement < floppyCapacity

> See: sizeAuditElement (p. 31)

v

The system supports at least three files.
Each file can hold at least 100 elements.

The files have sufficient capacity to support the maximum supported log size defined in the specification, even
when onefileis empty. Thiswill ensure that truncation preserves the conditions within the specification.

v

v

> At least one file can be archived onto a floppy.

In order to simplify the implementation we make a number of assumptions about the internal im-
plementation of the log file.

e When datais archived only full logFiles are removed.

LOGFILEINDEX == 1 .. maxNumberLogFiles

> See: maxNumberLogFiles (p. 31)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 32

All audit elements have associated with them atimestamp so it is possible to determine the times of
the newest and oldest entries in the log.

oldestLogTimeC : F, AuditC — TIME
newestLogTimeC : F; AuditC — TIME

VA B:FAuditC e
newestLogTimeC(A U B) > newestLogTimeC A
A oldestLogTimeC(A U B) < oldestLogTimeC A

A A # @ = oldestLogTimeC A = min {audit : A e audit.logTime}
A A # & = newestLogTimeC A = max {audit : A e audit.logTime}

> See: AuditC (p. 30), TIME (p. 11)

> Both these functions are monotonic.

At any time each log file will either be empty and free for use, used (or in use) or archived, in that
an attempt has been made to archive the data.

LOGFILESTATUS ::= free | archived | used

As dl log entries are time stamped there is no requirement to impose an ordering on the entries in
an audit file, however we do insist that the log files can be ordered such that the all the elementsin
the oldest file are older than all the elementsin the other files.

__AuditLogC
logFiles : LOGFILEINDEX — F AuditC

currentLogFile : LOGFILEINDEX

usedLogFiles : iseq LOGFILEINDEX

freeLogFiles : P LOGFILEINDEX

logFilesStatus : LOGFILEINDEX — LOGFILESTATUS
numberLogEntries : N

auditAlarmC : ALARM

freeLogFiles = dom(logFilest> {&})
freeLogFiles = dom(logFilesStatus > {free})
ran usedLogFiles = dom (logFilestatus t> {archived, used})

Vfilel, file2 : ran usedLogFiles o
usedLogFiles™filel < usedLogFiles™file2 =
newestLogTimeC (logFilesfilel) < oldestLogTimeC (logFilesfile2)

usedLogFiles # ()
= (Vfile: LOGFILEINDEX | file € ran(front usedLogFiles) e #(logFilesfile) = maxLogFileEntries)

usedLogFiles # ()
A currentLogFile = last usedLogFiles
A numberLogEntries = (#usedLogFiles — 1) * maxLogFileEntries + #(logFilescurrentLogFile)
V
usedLogFiles = () A numberLogEntries = 0

> See: LOGFILEINDEX (p. 31), AuditC (p. 30), LOGFILESTATUS (p. 32), ALARM (p. 21), free (p. 32),
archived (p. 32), used (p. 32), oldestLogTimeC (p. 32)

> The freeLogFiles are exactly those which are empty.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 33

> The usedLogFilesis a sequence of log files which are non-empty.

> The usedLogFiles are ordered such that the oldest entries appear in the first log file in the sequence.
> All but the last usedLogFiles arefilled to their maximum capacity.

> The numberLogEntriesis completely derived and is maintained for convenience.

33 Key Store

FD.KeyStore.State
FSKeyStore. Sate

TISmaintains akey store, thisis managed by the Crypto Library. It contains al Issuer keys relevant
to its function. Thiswill include known CAs, AAs and its own key.

The only private key part held will befor TIS s own key. Having a private key within the set of keys
indicates that the TIS knows who it is.

TIS will generate its key at the first start-up and request an Id certificate from a CA. This activity
is not modelled here and will not be implemented. We model the private part of the TIS key as
theTISKey. This will be inserted into the keystore at enrolment. The private part of the TIS key is
used subsequently to sign authorisation certificates.

Only one public key is held for each Issuer.

__KeyStoreC
keys : F KeyPart
theTI Key : KEYPART

keyMatchinglssuer : USERID — optional KEYPART
privateKey : optional KeyPart

{key : keys | key.keyType = private e key.keyData} C {theTlISKey}

privateKey # nil =
(3 ownPub : keys e ownPub.keyType = public
A ownPub.keyOwner = (the privateKey).keyOwner)
#{key : keys | key.keyType = public} = #{key : keys | key.keyType = public e key.keyOwner }

keyMatchinglssuer = (USERID x {@}) @ {key : keys | key.keyType = public e key.keyOwner.id — {key.keyData}}
privateKey = {key : keys | key.keyType = private}

> See: KeyPart (p. 14), private (p. 14), public (p. 14)

> TheCrypto Library providesfacilitiesto query information, these are modelled by keysMatchingl ssuer and privateKeys.
> keysMatchinglssuer and privateKeys are completely defined by invarients.

34 Certificate Store

FD.CertificateStore.State

TIS issues certificates, these certificates have a unique identifier, which is composed of the unique
USERID identification given to TIS and a serial number.

35

3.6

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 34

TIS must maintain knowlege of the serial numbers already issued to ensure that new certificates are
issued with aunique serial number.

CertificateStore
FnextSerial Number : N

System Statistics

FD.Stats.State
FSSats.Sate

The system statistics recorded are as defined in the formal specification [4].

TIS keeps track of the number of times that a entry to the enclave has been attempted (and denied)
and the number of times it has succeeded. It also records the number of times that a biometric
comparison has been made (and failed) and the number of times it succeeded.

By retaining these statistics it is possible for the performance of the system to be monitored.

SatsC
successEntryC : N
failEntryC : N
successBioC : N
failBioC : N

Administration

FD.Admin.State
FSAdmin.Sate

This component of TIS is not refined from the specification.

In addition to its role of authorising entry to the enclave, TIS supports a number of administrative
operations.

Archivelog - writes the archive log to floppy and truncates the internally held archive log.
UpdateConfiguration - accepts new configuration data from a floppy.

OverrideDoorL ock - unlocks the enclave door.

Shutdown - stops TIS, leaving the protected entry to the enclave secure.

ADMINORP ::= archivelog | updateConfigData | overrideLock | shutdownOp

v

Definition repeated from Formal Specification [4]

Only users with administrator privileges can make use of the TIS to perform administrative func-
tions. There are anumber of different administrator privileges that may be held.

ADMINPRIVILEGE == {guard, auditManager, securityOfficer }

37

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 35

> See: guard (p. 12), auditManager (p. 12), securityOfficer (p. 12)
> Definition repeated from Formal Specification [4]

The role held by the administrator will determine the operations available to the administrator. For
security reasons an administrator can only hold onerole.

—_ AdminC
rolePresentC : optional ADMINPRIVILEGE
availableOpsC : P ADMINOP
currentAdminOpC : optional ADMINOP

rolePresentC = nil = availableOpsC = &
(rolePresentC # nil A therolePresentC = guard) =- availableOpsC = {overridelLock}
(rolePresentC # nil A therolePresentC = auditManager) = availableOpsC = {archivelLog}
(rolePresentC # nil A therolePresentC = securityOfficer) = availableOpsC = {updateConfigData, shutdownOp}
currentAdminOpC # nil =
(thecurrentAdminOpC € availableOpsC A rolePresentC # nil)

> See: ADMINPRIVILEGE (p. 34), ADMINORP (p. 34), guard (p. 12), overrideLock (p. 34), auditManager (p. 12),
archivelLog (p. 34), securityOfficer (p. 12), updateConfigData (p. 34), shutdownOp (p. 34)

> TheavailableOpsC are completely determined by the roles present and will be implemented using a constant table.

In order to perform an administrative operation an administrator must be present. Presence will be
determined by an appropriate token being present in the administrator’s card reader.

Real World Entities

FD.RealWorld.State
FSRealWorld.Sate

Thelatch isallowed to bein two states: |ocked and unlocked. When the latch isunlocked, latchTimeoutC
will be set to the time at which the lock must again be locked.

The darm is similar to the latch, in that it has a silent, and alarming, with an alarmTimeoutC.
Once the door and latch moveinto a potentially insecure state (door open and latch locked) then the
alarmTimeoutC is set to the time at which the alarm will sound.

Within theimplementation the currentLatchC and door AlarmC will be explicitly calculated athough
they can be entirely derived.

__DoorLatchAlarmC
currentTimeC : TIME
currentDoorC : DOOR
currentLatchC : LATCH
doorAlarmC : ALARM
latchTimeoutC : TIME
alarmTimeoutC : TIME

> See: TIME (p. 11), DOOR (p. 21), LATCH (p. 21), ALARM (p. 21)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 36

The ID Station holds internal representations of all of the Real World, plus its own data. It holds
separate indications of the presence of input in the real world peripherals of the User Token, Admin
Token, Fingerprint reader, and Floppy disk. Thisis so that once the input has been read, and the
card, finger or disk removed, the ID Station can continue to know what the value was, eveniif it later
detects that the real world entity has been removed.

UserTokenC
FcurrentUserTokenC : TOKENTRYC

user TokenPresenceC : PRESENCE

> Seet TOKENTRYC (p. 22), PRESENCE (p. 11)

AdminTokenC
currentAdminTokenC : TOKENTRYC
adminTokenPresenceC : PRESENCE

> See: TOKENTRYC (p. 22), PRESENCE (p. 11)
The core TIS does not need to know what the current fingerprint is since it is always read directly
from the real world by the Biometrics Library.

FingerC
TfingerPraenceC : PRESENCE

> Seet PRESENCE (p. 11)

The core TIS does not need to preserve the value of the current keyed data since it is always read
directly from the real world and the information does not need to be persistent.

KeyboardC
TkeyedDataPrwenceC : PRESENCE

> Seet PRESENCE (p. 11)

We need to retain an internal view of the last data written to the floppy as well as the current data on
the floppy, thisis because we need to check that writing to floppy works when we archive the log.

FloppyC
currentFloppyC : FLOPPYC
writtenFloppyC : FLOPPYC
floppyPresenceC : PRESENCE

> Seet FLOPPYC (p. 22), PRESENCE (p. 11)

The ID Station screen within the enclave may display many pieces of information. The mgjority of
this data will be determined by state invarients. In addition to those identified in the specification
we how identify the alarm states as being necessary display elements.

3.8

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 37

ScreenC
screenSatsC : SCREENTEXTC
screenMsgC : SCREENTEXTC
screenConfigC : SCREENTEXTC
screenDoorAlarm : SCREENTEXTC
screenLogAlarm : SCREENTEXTC

> Seet SCREENTEXTC (p. 23)

Internal State

FD.Internal.State
FD.Internal.State

STATUS and ENCLAVESTATUS are a purely internal records of the progress through processing.
STATUS tracks progress through user entry, while ENCLAVESTATUS tracks progress through all
activities performed within the enclave.

STATUS ::= quiescent |
gotUserToken | waitingFinger | gotFinger | waitingUpdateToken | waitingEntry |
waitingRemoveTokenSuccess | waitingRemoveTokenFail

ENCLAVESTATUS ::= notEnrolled | waitingEnrol | waitingEndEnrol |
enclaveQuiescent |
gotAdminToken | waitingRemoveAdminTokenFail | waitingStartAdminOp | waitingFinishAdminOp |
shutdown

> Definitions repeated from Formal Specification [4]

The states quiescent and enclaveQuiescent represent the enclave interface and the user entry inter-
face being quiescent.

The states gotUserToken, .. waitingRemoveTokenFail are all associated with the process of user
authentication and entry. These are described futher in Section 6.

The states notEnrolled, .. waitingEnrolEnd reflect enrolment activity that must be performed be-
fore TIS can offer any of its normal operations. Once the TIS is successfully enrolled it becomes
quiescent.

The states gotAdminToken, .. waitingFinishAdminOp reflect activity at the TIS console relating to
administrator use of TIS.

The state shutdown model s the system when it is shutdown.

There are two timeouts held internally, one of these controls the system wait for the user to remove
their token before opening the door in a successful user entry scenario. The other controls the
system wait for the user to provide a good fingerprint for verification before giving up on this part
of the authentication process.

InternalC
statusC : STATUS

enclaveSatusC : ENCLAVESTATUS
tokenRemoval TimeoutC : TIME
finger Timeout : TIME

3.9

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 38

> Seer STATUS (p. 37), ENCLAVESTATUS (p. 37), TIME (p. 11)

Thewhole Token ID Station

FD.TIS.State
FSTISSate

The whole Token ID Station is constructed from combining the described state components.

In addition there is adisplay outside the enclave and and screen within the enclave. The ID Station
screen within the enclave may display many pieces of information. The majority of this datawill be
determined by state invariants.

If the authentication protocol has moved on to requesting a fingerprint, then the User Token will
have passed its validation checks.

Similarly if the system considers there to be an administrator present then the Admin Token will
have passed its validation checks.

Once the ID station has been enrolled it has a private key, its own key.

TISisonly ever in the two states waitingStartAdminOp or waitingFinishAdminOp when then thereis
acurrent admin operation in progress. For single phase operations the state waitingFinishAdminOp
is not used.

TISwill only read the Admin Token to log on an administrator if there is not an administrator role
currently present.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 39

__IDSationC
UserTokenC
AdminTokenC
FingerC
DoorLatchAlarmC
FloppyC
KeyboardC
ConfigC

SatsC

KeyStoreC
CertificateStore
AdminC
AuditLogC
InternalC

currentDisplayC : DISPLAYMESSAGE
currentScreenC : ScreenC

statusC € { gotFinger, waitingFinger, waitingUpdateToken, waitingEntry } =
((3 ValidTokenC e goodTC(6ValidTokenC) = currentUser TokenC)
V (3 TokenWithValidAuthC e goodTC(6TokenWithValidAuthC) = currentUser TokenC))

rolePresentC # nil =
(3 TokenWithValidAuthC e goodTC(6TokenWithValidAuthC) = currentAdminTokenC)

enclaveStatusC ¢ { notEnrolled, waitingEnrol, waitingEndEnrol } =
#{key : keys | key.keyType = private} = 1
enclaveStatusC € { waitingStartAdminOp, waitingFinishAdminOp } < currentAdminOpC # nil

(currentAdminOpC # nil A the currentAdminOpC € { shutdownOp, overrideLock })
= enclaveStatusC = waitingStartAdminOp

enclaveStatusC = gotAdminToken = rolePresentC = nil

currentScreenC.screenStatsC = displaySatsC(6atsC)
currentScreenC.screenConfigC = displayConfigDataC(0ConfigC)
currentScreenC.screenDoor Alarm = displayAlarmdoor AlarmC
currentScreenC.screenLogAlarm = displayAlarmauditAlarmC

> See: UserTokenC (p. 36), AdminTokenC (p. 36), FingerC (p. 36), DoorLatchAlarmC (p. 35), FloppyC (p. 36),
KeyboardC (p. 36), ConfigC (p. 27), StatsC (p. 34), KeySoreC (p. 33), CertificateStore (p. 34), AdminC (p. 35),
AuditLogC (p. 32), InternalC (p. 37), DISPLAYMESSAGE (p. 22), ScreenC (p. 36), gotFinger (p. 37),
waitingFinger (p. 37), waitingUpdateToken (p. 37), waitingEntry (p. 37), ValidTokenC (p. 19), goodTC (p. 22),
TokenWthValidAuthC (p. 19), notEnrolled (p. 37), waitingEnrol (p. 37), waitingEndEnrol (p. 37), private (p. 14),
waitingStartAdminOp (p. 37), waitingFinishAdminOp (p. 37), shutdownOp (p. 34), overrideLock (p. 34),
displayStatsC (p. 23), displayConfigDataC (p. 23)

> Note that the token may not still be current since time will have moved on since the checks were performed.

> Operations that can be performed in a single phase do not result in TIS entering the state waitingFinishAdminOp
as they are finished when they are started.

> TISonly enters the state gotAdminToken when there is no administrator present.
> Invarients define many of the screen components.

4.1

4.2

421

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 40

OPERATIONSINTERFACING TO THE ID STATION

Real World Changes

The monitored components of the real world can change at any time. The only assumption we make
of the real world is that time increases.

__RealWorldTimeChanges
nowC, nowC’ : TIME

nowC’ > nowC

> See: TIME (p. 11)

Real\WorldChangesC = RealWorldTimeChanges A AReal\WorldC

> See: RealWorldTimeChanges (p. 40), RealWorldC (p. 25)

—RealWorldChanges
ARealWorld

now > now

Obtaining inputsfrom thereal world

Most datais polled from the real world on aperiodic basis. Someitems are however only read when
the system isin astate to receive data. Thisincludes reading the contents of Tokens, the floppy disk
and the keyboard.

Polling the real world

FD.Interface.TISPoll
FSiInterface. TISPoll

We poll al of the real world entities. For those entities that take time to read we ssmply check for
the presence of data.

FD.Interface.PollTime
FD.Interface.TISPoll

__PollTimeC
ADoorLatchAlarmC
RealWorldC

currentTimeC’ = nowC

> See: DoorLatchAlarmC (p. 35), RealWorldC (p. 25)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 41

FD.Interface.PollDoor
FD.Interface.TISPoll

When polling the door, we do not change the alarm timeout or latch timeout.

__PollDoorC
ADoorLatchAlarmC
RealWorldC

currentDoorC’ = doorC
latchTimeoutC’ = latchTimeoutC
alarmTimeoutC’ = alarmTimeoutC
doorAlarmC’ = doorAlarmC
currentLatchC’ = currentLatchC

> See: DoorLatchAlarmC (p. 35), RealWorldC (p. 25)

The internal representation of the latch or the alarm may need to be updated as a result of changes
to the attributes that influence their values.

PolI TimeAndDoor = (PollTimeC A PollDoorC) § Updatel nternalLatch § Updatel nternal Alarm
> See: PollTimeC (p. 40), PollDoorC (p. 41)

The system only polls for the presence of the tokens, finger, floppy and keyboard data. This is
a refinement from the Formal Specification [4], which made the assumption that al inputs could
be read sufficiently fast to perform the read regularly, see Section 2.2.3. These entities are either
required infrequently or are time consuming to read so within the design they are only read when
datais present and the system requires the information.

FD.Interface.PollUser Token
FD.Interface. TISPoll

___PollUserTokenC
AUserTokenC
RealWorldC

user TokenPresenceC’ = present <> user TokenC # noTC
currentUser TokenC’ = currentUser TokenC

> See: UserTokenC (p. 36), RealWorldC (p. 25), present (p. 11), noTC (p. 22)

FD.Interface.PollAdminToken
FD.Interface. TISPoll

__PollAdminTokenC
AAdminTokenC
RealWorldC

adminTokenPresenceC’ = present < adminTokenC # noTC
currentAdminTokenC' = currentAdminTokenC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 42

> See: AdminTokenC (p. 36), RealWorldC (p. 25), present (p. 11), noTC (p. 22)

FD.Interface.PollFinger
FD.Interface.TISPoll

__PollFingerC
AFingerC
RealWorldC

fingerPresenceC’ = present < fingerC # noFP

> See: FingerC (p. 36), RealWorldC (p. 25), present (p. 11), noFP (p. 22)

FD.Interface.PollFloppy
FD.Interface. TISPoll

—_PollFloppyC
AFloppyC
RealWorldC

floppyPresenceC’ = present <> floppyC # noFloppyC
currentFloppyC’ = currentFloppyC
writtenFloppyC’ = writtenFloppyC

> See: FloppyC (p. 36), RealWorldC (p. 25), present (p. 11), noFloppyC (p. 22)

FD.Interface.PollKeyboard
FD.Interface.TISPoll

__PollKeyboardC
AKeyboardC
RealWorldC

keyedDataPresenceC = present <> keyboardC # noKB

> See: KeyboardC (p. 36), RealWorldC (p. 25), present (p. 11), noKB (p. 23)

So the overdl poll operation is obtained by combining all the individual polling actions.

FD.Interface.DisplayPollUpdate
FD.Interface. TISPoll

If the user is currently being invited to enter the enclave on the display and the door becomes latched
then the display will change to indicate that the system is no longer offering entry.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 43

__DisplayPollUpdate
AlDSationC

currentLatchC’ = locked

A (currentDisplayC = doorUnlocked

A (statusC # waitingRemoveTokenFail A currentDisplayC’ = welcome
V statusC = waitingRemoveTokenFail A currentDisplayC’ = removeToken)
V currentDisplayC # doorUnlocked
A currentDisplayC’ = currentDisplayC)
V currentLatchC’ # locked
A currentDisplayC’ = currentDisplayC

> See! IDSationC (p. 38), locked (p. 21), doorUnlocked (p. 22), waitingRemoveTokenFail (p. 37), welcome (p. 22)

We assume that while polling occurs the RealWorld does not change. Thisis areasonable assump-
tion since al information polled is easy and quick to obtain.

__PollC
AlIDSationC
=RealWorldC

Poll TimeAndDoor
PollUser TokenC
Poll AdminTokenC
PollFingerC
PollFloppyC
PollKeyboardC
DisplayPollUpdate

=ConfigC
=KeyStoreC
ZCertificateSore
=AdminC
=3atsC
ZinternalC

currentScreenC’ = currentScreenC

> See: IDSationC (p. 38), RealWorldC (p. 25), PollTimeAndDoor (p. 41), PollUserTokenC (p. 41),
Poll AdminTokenC (p. 41), PollFingerC (p. 42), PollFloppyC (p. 42), PollKeyboardC (p. 42),
DisplayPollUpdate (p. 42), ConfigC (p. 27), KeySoreC (p. 33), CertificateSore (p. 34), AdminC (p. 35),
SatsC (p. 34), InternalC (p. 37)

Polling the real world may result in changes which need to be audited. The only events that will
appear in the audit log during polling are the user independent elements.

TISPolIC = PollC A LogChangeC
A [AddElementsToLogC | auditTypesnewElements? C USER_INDEPENDENT_ELEMENTS \ (newElements?)

> See: PolIC (p. 43), USER_INDEPENDENT_ELEMENTS (p. 29)

4.2.2 Reading Real World Values

Those entities that are read on demand are the tokens and floppy.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 44
_ ReadUser TokenC
AUserTokenC
RealWorldC

user TokenPresenceC’ = userTokenPresenceC
currentUser TokenC' = userTokenC

> See: UserTokenC (p. 36), RealWorldC (p. 25)

__ReadAdminTokenC
AAdminTokenC
RealWorldC

adminTokenPresenceC’ = adminTokenPresenceC
currentAdminTokenC’ = adminTokenC

> See: AdminTokenC (p. 36), Real\WorldC (p. 25)

—ReadFloppyC
AFloppyC
RealWorldC

floppyPresenceC’ = floppyPresenceC
currentFloppyC’ = floppyC
writtenFloppyC’ = writtenFloppyC

> See: FloppyC (p. 36), RealWorldC (p. 25)

4.3 ThelD Station changesthe world
4.3.1 Periodic Updates

We consider the process of updating the real world with the current internal representation, one
variable at atime.

FD.Interface.Updatel atch
FD.Interface. TISUpdates FD.Interface. TISEarlyUpdates

__UpdateLatchC
=DoorLatchAlarmC
RealWorldChangesC

latchC’ = currentLatchC

> See: DoorLatchAlarmC (p. 35), Real\WorldChangesC (p. 40)

FD.Interface.UpdateAlarm
FD.Interface. TISUpdates FD.Interface. TISEarlyUpdates

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 45
__UpdateAlarmC
=DoorLatchAlarmC
AuditLogC

RealWorldChangesC

alarmC’ = alarming < doorAlarmC = alarming Vv auditAlarmC = alarming

> See: DoorLatchAlarmC (p. 35), AuditLogC (p. 32), Real\WbrldChangesC (p. 40), alarming (p. 21)

FD.Interface.UpdateDisplay
FD.Interface. TISUpdates

__UpdateDisplayC
AlDSationC
RealWorldChangesC

displayC’ = currentDisplayC
currentDisplayC’ = currentDisplayC

> See: IDSationC (p. 38), RealWorldChangesC (p. 40)

Configuration Data is only displayed if the security officer is present. System statistics are only
displayed if an administrator islogged on.

FD.Interface.UpdateScreen
FD.Interface. TISUpdates

—UpdateScreenC
ZIDSationC
ZAdminC
RealWorldChangesC

screenC’.screenMsgC = currentScreenC.screenMsgC

screenC’.screenConfigC = if therolePresentC = securityOfficer then displayConfigDataC(6ConfigC) else clearC
screenC’.screenSatsC = if rolePresentC # nil then displaySatsC(6SatsC) else clearC
screenC’.screenDoor Alarm = displayAlarmdoor AlarmC

screenC’.screenLogAlarm = displayAlarmauditAlarmC

> See: IDSationC (p. 38), AdminC (p. 35), RealWorldChangesC (p. 40), securityOfficer (p. 12),
displayConfigDataC (p. 23), ConfigC (p. 27), clearC (p. 23), displayStatsC (p. 23), SatsC (p. 34)

All these can be combined, aong with no change in the remaining real world variables, to represent
the regular updating of the world.

When updates to the real world occur it is possible that interfacing with external devices will result
in a system fault that is audited. Not other aspects of TIS will change during updates of the real
world.

FD.Interface.TI SEarlyUpdates
FS.Interface. TI SEarlyUpdates

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 46

The alarm and the door latch will need to be updated as soon as possible after polling the real world,
this ensures that the system is kept secure.

TISEarlyUpdateC = UpdateLatchC A UpdateAlarmC
A [RealWorldChangesC | screenC’ = screenC A displayC’ = displayC|
A EUserTokenC A ZAdminTokenC A ZFingerC A ZFloppyC A
=ScreenC A EKeyboardC A EConfigC A EStatsC
A ZEKeyStoreC A ZAdminC A ZinternalC
A [AddElementsToLogC | auditTypes newElements? C {systemFaultElement}] \ (newElements?)

> See: UpdatelatchC (p. 44), UpdateAlarmC (p. 44), Real\WbrldChangesC (p. 40), User TokenC (p. 36),
AdminTokenC (p. 36), FingerC (p. 36), FloppyC (p. 36), ScreenC (p. 36), KeyboardC (p. 36), ConfigC (p. 27),
SatsC (p. 34), KeyStoreC (p. 33), AdminC (p. 35), InternalC (p. 37), systemFaultElement (p. 28)

FD.Interface.TI SUpdates
FS.Interface. TISUpdates

The alarm, door latch, display and T1S screen will be updated after performing any calculations.

TISUpdateC = UpdateLatchC A UpdateAlarmC A UpdateDisplayC A UpdateScreenC
A EUserTokenC A ZAdminTokenC A ZFingerC A ZFloppyC A
=KeyboardC A ZConfigC A =StatsC
N ZEKeyStoreC A ZAdminC A ZinternalC
A [AddElementsToLogC | auditTypes newElements? C {systemFaultElement}] \ (newElements?)

> See: UpdatelatchC (p. 44), UpdateAlarmC (p. 44), UpdateDisplayC (p. 45), UpdateScreenC (p. 45),
UserTokenC (p. 36), AdminTokenC (p. 36), FingerC (p. 36), FloppyC (p. 36), KeyboardC (p. 36),
ConfigC (p. 27), StatsC (p. 34), KeyStoreC (p. 33), AdminC (p. 35), InternalC (p. 37), systemFaultElement (p. 28)

4.3.2 Updating the user Token

FD.Interface.UpdateToken
FS.Interface.UpdateToken

We have a further operation, which writes to the User Token only. We treat this separately because
we expect to update the other devices regularly and frequently, but we will only be updating the
User Token when we have something to write.

—UpdateUser TokenC
AlDSationC
RealWorldChangesC

=TISControlledRealWorldC

userTokenC’ = currentUser TokenC

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), TISControlledRealWor1dC (p. 24)

433 Updating the Floppy

FD.Interface.UpdateFloppy
FS.Interface.UpdateFloppy

4.4

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 47

We have an operation which writes to the Floppy only. We will only be updating the Floppy disk
when we have something to write.

—UpdateFloppyC
AlDSationC
RealWorldChangesC

=User TokenC
ZAdminTokenC
EFingerC
=DoorLatchAlarmC
=KeyboardC
=ConfigC
=3atsC
=KeyStoreC
=AdminC
=AuditLogC
ZinternalC

=TISControlledRealWorldC

floppyC’ = writtenFloppyC
currentFloppyC’ = badFloppyC

floppyPresenceC’ = floppyPresenceC
currentDisplayC’ = currentDisplayC
currentScreenC’ = currentScreenC

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), UserTokenC (p. 36), AdminTokenC (p. 36),
FingerC (p. 36), DoorLatchAlarmC (p. 35), KeyboardC (p. 36), ConfigC (p. 27), StatsC (p. 34),
KeySoreC (p. 33), AdminC (p. 35), AuditLogC (p. 32), InternalC (p. 37), TISControlledReal\Wor|dC (p. 24),
badFloppyC (p. 22)

> Having written the floppy we can assume nothing about the currentFloppy until we next poll. We do not know
what datais on the floppy as it may have been corrupted during the write. This ensures that the readback we do is
forced to be effective.

Clearing Biometric Data

FD.Interface.FlushFinger Data
FDP_RIP2.1

The biometric device must be cleared of stale data after a fingerprint has been verified and before
an attempt is made to capture fingerprint data. This will force the biometric device to capture fresh
data.

__FlushFingerDataC
fingerC, fingerC' : FINGERPRINTTRY

fingerC’' = noFP

> See: FINGERPRINTTRY (p. 22), noFP (p. 22)

51

511

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 48

INTERNAL OPERATIONS

In this section we present anumber of operations performed internally by the TIS. These operations
are combined to create the operations available to the user.

The majority of these operations only update elements in a single schema, although they may read
values from other schemas to influence new values, these may be viewed as imports to the opera-
tions.

Updating the Audit Log

Adding elements to the Log

FD.AuditL og.AddElementsToL og
FS.AuditL og.AddElementsToL og

When we add a set of entries to the log, either there is sufficient room in the log for the new entries,
in which case the log will not need to be truncated, or there is insufficient room in the log, in which
case the log will be truncated losing the oldest data.

The implementation uses several files to hold the log. If the current file has sufficient room to take
the log then the new entries will be added to the current file, otherwise a new file will need to be
found to contain the remaining data.

If the log is truncated or close to its maximum size an alarm raised to notify the administrator that
thelogisfull.

Assuming that the set of elements being added to the file contains fewer elements than the maximum
file capacity we can define operations for adding sets of elements to the current log file. The new
elements being added refer to the new elements that are generated during asingle interation through
the main loop. We have already assumed that afile must be able to contain at least 100 elements, so
it is areasonable assumption that the number of new elements added at any onetimeisless than the
capacity of afile.

__ValidNewElements
RealWorldTimeChanges

AuditLogC
newElements? : F AuditC

#newElements? < maxLogFileEntries
newElements? # &

oldestLogTimeC newElements? > nowC
newestLogTimeC newElements? < nowC’
Vi : LOGFILEINDEX | i ¢ freeLogFiles ¢ nowC > newestLogTimeC (logFilesi)

> See: RealWorldTimeChanges (p. 40), AuditLogC (p. 32), AuditC (p. 30), oldestLogTimeC (p. 32),
LOGFILEINDEX (p. 31)

If the set of newElements is empty then no change occurs to the log.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 49
__ AddNoElementsToLog
ZAuditLogC

newElements? : F AuditC

newElements? = &

> See! AuditLogC (p. 32), AuditC (p. 30)

If there is space for the newElements in the current file then these elements are added to the current
file, and a check is made to determine whether the auditAlarm should be raised.

__AddElementsToCurrentFile
AAuditLogC

ConfigC
ValidNewElements

#newElements? + #(logFilescurrentLogFile) < maxLogFileEntries

number LogEntries’ = numberLogEntries + #newElements?

logFiles’ = logFiles & {currentLogFile — logFilescurrentLogFile U newElements?}
currentLogFile’ = currentLogFile

usedLogFiles' = usedLogFiles

freeLogFiles’ = freeLogFiles

logFilesStatus’ = logFilestatus

(numberLogEntries’ > alarmThresholdEntries A auditAlarmC’ = alarming
V numberLogEntries’ < alarmThresholdEntries A auditAlarmC’ = auditAlarmC)

> See: AuditLogC (p. 32), ConfigC (p. 27), ValidNewElements (p. 48), alarming (p. 21)

> The value of alarmThresholdEntries isimported from ConfigC.

If there is insufficient space for the newElements in the current log file and there is a free file still
available then the current log file is filled using the oldest elements from the set of newElements,
the remaining newElements are added to one of the previously empty files, which becomes the new
current file.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 50
__AddElementsToNextFileNoTruncate
AAuditLogC
ConfigC

ValidNewElements

freeLogFiles # &
#newElements? + #(logFilescurrentLogFile) > maxLogFileEntries

number LogEntries’ = numberLogEntries + #newElements?
J elementsinCurrentFile, elementsinNextFile : F AuditC e elementsinCurrentFile C newElements?
N #elementsinCurrentFile + # (logFilescurrentLogFile) = maxLogFileEntries
A elementsInNextFile = newElements? \ elementsinCurrentFile
A oldestLogTimeC elementsinNextFile > newestLogTimeC elementsInCurrentFile
A logFiles' = logFiles & {currentLogFile — logFilescurrentLogFile U elementsinCurrentFile,
currentLogFil¢ — elementsinNextFile}

currentLogFile’ = minfreeLogFiles

usedLogFiles' = usedLogFiles ™ (currentLogFile’)
freeLogFiles’ = freeLogFiles\ {currentLogFile }
logFiles3atus’ = logFiles3atus @ {currentLogFile/ — used}

(numberLogEntries’ > alarmThresholdEntries A auditAlarmC’ = alarming
V numberLogEntries’ < alarmThresholdEntries A auditAlarmC’ = auditAlarmC)

> See: AuditLogC (p. 32), ConfigC (p. 27), ValidNewElements (p. 48), AuditC (p. 30), oldestLogTimeC (p. 32),
used (p. 32), alarming (p. 21)

> elementslnCurrentFile is the subset of newElements that will fill the current file.
> elementsinNextFile is the subset of newElements that will be written to anew file.
> The value of alarmThresholdEntries isimported from ConfigC.

If there is insufficient space for the newElements in the current log file and there is not a free file
available then the log will require truncation before all the data can be added. The current log file is
filled using the oldest elements from the set of newElements. The oldest fileis emptied and an audit
entry recording the truncation is added to this file followed by the remaining newElements. Thefile
that was the oldest now becomes the new current file.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 51
__ AddElementsToNextFileWithTruncate
AAuditLogC
ConfigC

ValidNewElements

freeLogFiles = &
#newElements? + #(logFilescurrentLogFile) > maxLogFileEntries

number LogEntries’ = numberLogEntries 4 #newElements? — maxLogFileEntries + 1
JtruncElement : AuditC; elementsinCurrentFile, el ementsinNextFile : F AuditC e
truncElement.logTime € nowC . . nowC’
A truncElement.elementld = truncatel ogElement
A truncElement.severity = critical
A truncElement.user = noUser

A elementsinCurrentFile C newElements?

A #(logFilescurrentLogFile) + #elementsinCurrentFile = maxLogFileEntries
A elementsinNextFile = newElements? \ elementsinCurrentFile

A oldestLogTimeC elementsinNextFile > truncElement.logTime

A truncElement.logTime > newestLogTimeC elementsinCurrentFile

A logFiles' = logFiles & {currentLogFile — logFilescurrentLogFile U elementsinCurrentFile,
currentLogFile’ +— elementsinNextFileU {truncElement} }

currentLogFile’ = head usedLogFiles

usedLogFiles' = tail usedLogFiles ~ {(currentLogFile')
freeLogFiles’ = freeLogFiles

logFilesatus’ = logFilesStatus ¢ {currentLogFile’ — used}

auditAlarmC’ = alarming

> See: AuditLogC (p. 32), ConfigC (p. 27), ValidNewElements (p. 48), AuditC (p. 30), truncateLogElement (p. 28),
critical (p. 28), noUser (p. 30), oldestLogTimeC (p. 32), used (p. 32), alarming (p. 21)

The status of the currentLogFile’ may change from archived to used during this operation.
elementsinCurrentFile is the subset of newElements that will fill the current file.
elementsinNextFile is the subset of newElements that will be written to anew file.
truncElement isthe audit element recording the truncation of the log file.

v Vv Vv Vv V

The truncElement.description should contain the time range of data truncated from the log. Thisis not formally
stated.

> The value of alarmThresholdEntries isimported from ConfigC.

Combining these gives us the operation of adding a number of elements to the log file.

AddElementsToLogC = AddNoElementsToLog
Vv AddElementsToCurrentFile v AddElementsToNextFileNoTruncate
Vv AddElementsToNextFileWithTruncate

> See: AddNoElementsToLog (p. 48), AddElementsToCurrentFile (p. 49),
AddElementsToNextFileNoTruncate (p. 49), AddElementsToNextFileWthTruncate (p. 50)

5.1.2 Implementation Notes

It should be noted that for implementation purposes only a single element will be added to the log
a atime, the following operations are those that are required to be implemented. These deal with

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3

Systems Page 52

truncation and addition separately and then these two problems are brought together to define the
full operation.

FD.AuditL og.AddElementToL ogFile

FD.AuditLog.AddElementsToLog

An element is only valid for addition into the log if it occured between the last and the next time
indicated by the real world. This can be guaranteed by using the current time (from atrusted source)
for each element added to the log.

ValidNewElement
RealWorldTimeChanges

AuditLogC
newElement? : AuditC

newElement?.logTime € nowC . . nowC'’

Vi : LOGFILEINDEX | i ¢ freeLogFiles ¢ nowC > newestLogTimeC (logFilesi)

> See: RealWorldTimeChanges (p. 40), AuditLogC (p. 32), AuditC (p. 30), LOGFILEINDEX (p. 31)

If there

isroom in the current file the new element is added to this.
AddElementToCurrentLogFile
AAuditLogC

ConfigC
ValidNewElement

#(logFilescurrentLogFile) < maxLogFileEntries

number LogEntries’ = numberLogEntries + 1

logFiles' = logFiles @ {currentLogFile — logFilescurrentLogFile U {newElement?} }
currentLogFil€ = currentLogFile

usedLogFiles' = usedLogFiles

freeLogFiles’ = freeLogFiles

logFilesSatus’ = logFiles3atus

(numberLogEntries’ > alarmThresholdEntries A auditAlarmC’ = alarming
V numberLogEntries’ < alarmThresholdEntries A auditAlarmC’ = auditAlarmC)

> See: AuditLogC (p. 32), ConfigC (p. 27), ValidNewElement (p. 52), alarming (p. 21)

> The value of alarmThresholdEntries isimported from ConfigC.

If there

is no room in the current file then there must be afree file and this becomes the current file.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 53
__AddElementToNextLogFile
AAuditLogC
ConfigC

ValidNewElement

freeLogFiles # &
#(logFilescurrentLogFile) = maxLogFileEntries

number LogEntries’ = numberLogEntries + 1

logFiles’ = logFiles & {currentLogFil¢ — {newElement?} }
currentLogFile = minfreeLogFiles

usedLogFiles' = usedLogFiles ™ (currentLogFile')
freeLogFiles’ = freeLogFiles\ {currentLogFile }
logFilesatus’ = logFilesSatus & {currentLogFile’ — used}

(numberLogEntries’ > alarmThresholdEntries A auditAlarmC’ = alarming
V numberLogEntries’ < alarmThresholdEntries A auditAlarmC’ = auditAlarmC)

> See! AuditLogC (p. 32), ConfigC (p. 27), ValidNewElement (p. 52), used (p. 32), alarming (p. 21)

> The value of alarmThresholdEntries isimported from ConfigC.

AddElementToLogFile = AddElementToCurrentLogFile vV AddElementToNextLogFile

> See: AddElementToCurrentLogFile (p. 52), AddElementToNextLogFile (p. 52)

FD.AuditLog.Truncatel og
FD.AuditLog.AddElementsToLog

Thelog files are truncated by deleting the oldest log file, as there are at least two files, thisis not the
current file.

—TruncatelLog
AAuditLogC
RealWorldTimeChanges

truncElement! : AuditC

freeLogFiles = &
#(logFilescurrentLogFile) = maxLogFileEntries

number LogEntries’ = numberLogEntries — maxLogFileEntries
logFiles’ = logFiles @ {head usedLogFiles — @}

currentLogFile’ = currentLogFile

usedLogFiles' = tail usedLogFiles

freeLogFiles’ = freel ogFiles U {head usedLogFiles}
logFiles3atus’ = logFiles3tatus ¢ {head usedLogFiles — free}
auditAlarmC’ = alarming

truncElement!.logTime € nowC . . nowC’
truncElement!.elementld = truncatel ogElement
truncElement!.severity = critical
truncElement!.user = noUser

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 54

> See: AuditLogC (p. 32), RealWorldTimeChanges (p. 40), AuditC (p. 30), free (p. 32), alarming (p. 21),
truncatelLogElement (p. 28), critical (p. 28), noUser (p. 30)

> The truncElement!.description should contain the time range of data truncated from the log. Thisis not formally
stated.

> truncElement! isthe audit element recording this truncation.

—Truncatel.ogNotRequired
ZAuditLogC

freeLogFiles # &
V #(logFilescurrentLogFile) < maxLogFileEntries

> See: AuditLogC (p. 32)

FD.AuditL og.AddElementToL og
FD.AuditLog.AddElementsToLog

AddElementToLogC = ((TruncateLog[theElement’ /truncElement!] 5 AddElementToLogFile[theElement/newElement?])
V Truncatel.ogNotRequired)
s AddElementToLogFile

> See: TruncatelLog (p. 53), AddElementToLogFile (p. 53), TruncateLogNotRequired (p. 54)

We claim that adding new entries for the log one by one has the same effect as adding them as a set.
All that is required is that the elements are added in chronological order. Thisis stated formally as
follows:

[AddElementsToLogC | newElements? # &) =
[ValidNewElements; AAuditLogC; ConfigC |
3 newElement? : AuditC; remainingElements? : F AuditC e
newElement? € newElements? A newElement?.logTime = oldestLogTimeC newElements?
A remainingElements? = newElements? \ {newElement?}
A AddElementToLogC § AddElementsToLogC[remainingElements? /newElements?] |

> newElement? is the oldest element in newElements?, while remainingElements? are the elements that are left in
newElements? once newElement? is removed.

> Theabove statesthat adding newElement? using the operation AddElementToLogC followed by adding remainingElements?
using the operation AddElementsToLogC is equivalent to adding the set newElements? using the operation AddElementsToLogC.

5.1.3 Archiving the Log

FD.AuditL og.Archivel og
FSAuditLog.ArchiveLog

When we archive the log an audit element is added to the log and an archive is generated which can
be written to floppy.

5.14

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 55

We only archive complete log files, upto the maximum capacity of the archive media.

This activity does not clear the log since a check will be made to ensure the archive was successful
before clearing the log. It marks all filesthat are archived so that they can be recognised for clearing
if the export of the archive log succeeds.

__DetermineArchiveLog
AAuditLogC

RealWorldTimeChanges
AdminTokenC
ConfigC

archive! : F AuditC
archiveElement! : AuditC

JarchivedFiles : F LOGFILEINDEX e
archivedFiles = {i : LOGFILEINDEX | i € ran((1 .. maxNumberArchivableFiles) <1 usedLogFiles)
A #(logFilesi) = maxLogFileEntries}
A archive! = | J{i : archivedFiles e logFilesi}

A logFilestatus’ = logFilesStatus & {i : archivedFiles e i — archived}

usedLogFiles' = usedLogFiles

freeLogFiles’ = freeLogFiles

logFiles’ = logFiles

number LogEntries’ = numberLogEntries
archiveElement!.logTime € nowC . . nowC'’
archiveElement!.elementld = archiveLogElement

archiveElement!.severity = information
archiveElement!.user = extractUser currentAdminTokenC

auditAlarmC’ = auditAlarmC

> See: AuditLogC (p. 32), RealWorldTimeChanges (p. 40), AdminTokenC (p. 36), ConfigC (p. 27), AuditC (p. 30),
LOGFILEINDEX (p. 31), archived (p. 32), archiveLogElement (p. 28), information (p. 28), extractUser (p. 30)

> archivedFilesisthe set of filesthat will be archived, these areall full filesfrom the front of the list of usedLogFiles.
> The archiveElement! is the audit entry recording the construction of an archive.

> The archiveElement!.description should contain the time range of data selected for archive from the log. Thisis
not formally stated.

> Theld of the current administrator isimported from AdminTokenC.
> The alarmThresholdEntries isimported from ConfigC.

Other elements may be added to the log once the archive has been determined.

ArchiveLogC = (DetermineArchivelLog §
[AddElementsToLogC; archiveElement! : AuditC | archiveElement! € newElements?])
\ (archiveElement!)

> See: DetermineArchivelog (p. 55), AddElementsToLogC (p. 51), AuditC (p. 30)

Clearing the Log

FD.AuditLog.ClearLog
FSAuditLog.ClearLog

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 56

The log should only be cleared if it can be verified that an archive has been created of the data that
is about to be cleared.

The action of clearing the log will replace all files marked as archived by empty files.
__ClearLogEntries

RealWorldTimeChanges

ConfigC
AdminTokenC
AAuditLogC

archiveCompleteElement! : AuditC

JarchivedFiles : F LOGFILEINDEX e
archivedFiles = dom(logFilesStatus > {archived})
A logFilestatus’ = logFilestatus & (archivedFiles x {free})

A usedLogFiles’ = usedLogFiles | (LOGFILEINDEX \ archivedFiles)

A freeLogFiles’ = freeLogFiles U archivedFiles

A logFiles’ = logFiles & (archivedFiles x {&})

A numberLogEntries’ = numberLogEntries — maxLogFileEntries « #archivedFiles

archiveCompleteElement!.logTime € nowC . . nowC’
archiveCompleteElement!.elementld = archiveCompleteElement
archiveCompleteElement!.severity = information
archiveCompleteElement!.description = noDescription
archiveCompleteElement!.user = extractUser currentAdminTokenC

(numberLogEntries’ < alarmThresholdEntries A auditAlarmC’ = silent
V numberLogEntries > alarmThresholdEntries A auditAlarmC’ = alarming)

> See: RealWorldTimeChanges (p. 40), ConfigC (p. 27), AdminTokenC (p. 36), AuditLogC (p. 32),
archiveCompleteElement (p. 28), AuditC (p. 30), LOGFILEINDEX (p. 31), archived (p. 32), free (p. 32),
information (p. 28), noDescription (p. 30), extractUser (p. 30), silent (p. 21), alarming (p. 21)

Other entries may be added to the log following clearing of the archived entries.

ClearLogC = (ClearLogEntries §
[AddElementsToLogC; archiveCompleteElement! : AuditC |
archiveCompleteElement! € newElements?])
\ (archiveCompleteElement!)

> See: ClearLogEntries (p. 56), AddElementsToLogC (p. 51), archiveCompleteElement (p. 28), AuditC (p. 30)

FD.AuditL og.CancelAr chive

If the archive fails then all record of the archive should be removed from the status of the log files.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 57

__CancelArchivelndication
RealWorldTimeChanges

ConfigC
AdminTokenC
RealWorldChangesC
AAuditLogC

JarchivedFiles : F LOGFILEINDEX e
archivedFiles = dom(logFilesStatus > {archived})
A logFiles3tatus’ = logFilestatus ¢ (archivedFiles x {used})

usedLogFiles' = usedLogFiles
freeLogFiles’ = freeLogFiles

logFiles' = logFiles

number LogEntries’ = numberLogEntries

> See: RealWorldTimeChanges (p. 40), ConfigC (p. 27), AdminTokenC (p. 36), RealWbrldChangesC (p. 40),
AuditLogC (p. 32), LOGFILEINDEX (p. 31), archived (p. 32), used (p. 32)

> Thelog entry associated with thisis created at the system level as it may incorporate the reason for failure

Other elements may be added to the log following cancellation of the archive indication.

Cancel Archive = (Cancel Archivel ndication § AddElementsToLogC)

> See: Cancel Archivelndication (p. 56), AddElementsToLogC (p. 51)

5.15 Auditing Changes

FD.AuditL og.L ogChange
FS.AuditLog.LogChange

TIS adds audit entries whenever any of the following changes occurs:

The door is opened or closed.
The door is latched or unlatched.
The alarm starts alarming or becomes silenced.

The audit alarm starts alarming or becomes silenced.

Thetext displayed on the display changes.

The message text displayed on the screen changes.
Thelog istruncated (this has already been covered in Section 5.1).

DOORCHANGE_ELEMENTS == {doorOpenedElement, door ClosedElement }

> See: door OpenedElement (p. 28), door ClosedElement (p. 28)

> The doorOpenedElement and door ClosedElement are the audit entries recording that the door has been opened
and closed respectively.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 58

Audit entries associated with changes to the door do not specify a user, nor do they include additional
details.

__AuditDoorC
ADoorLatchAlarmC

RealWorldTimeChanges
newElements? : F AuditC

v newElement : AuditC |
newElement € newElements? A newElement.elementld € DOORCHANGE_ELEMENTS o
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.severity = information
A newElement.description = noDescription

(currentDoorC # currentDoorC’ A currentDoorC’' = open
& (3, element : AuditC e element € newElements? A element.elementld = door OpenedEl ement
A auditTypes newElements? N DOORCHANGE_ELEMENTS = {doorOpenedElement}))
(currentDoorC’ # currentDoorC A currentDoorC’ = closed
& (3, element : AuditC e element € newElements? A element.elementld = door ClosedElement
A auditTypes newElements? N DOORCHANGE_ELEMENTS = {doorClosedElement}))

> See: DoorLatchAlarmC (p. 35), Real\WorldTimeChanges (p. 40), AuditC (p. 30),
DOORCHANGE_ELEMENTS (p. 57), noUser (p. 30), information (p. 28), noDescription (p. 30), open (p. 21),
door OpenedElement (p. 28), closed (p. 21), doorClosedElement (p. 28)

LATCHCHANGE_ELEMENTS == {latchLockedElement, latchUnlockedElement }

> See: latchLockedElement (p. 28), latchUnlockedElement (p. 28)

> The latchLockedElement and latchUnlockedElement are the audit entries recording that the latch has been locked
and unlocked respectively.

Audit entries associated with changes to the latch do not specify a user, nor do they include addi-
tional details.

__AuditLatchC
ADoorLatchAlarmC

RealWorldTimeChanges
newElements? : F AuditC

v newElement : AuditC |
newElement € newElements? A newElement.elementld € LATCHCHANGE_ELEMENTS o
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.severity = information
A newElement.description = noDescription

(currentLatchC’ # currentLatchC A currentLatchC’ = locked
< (3, lement : AuditC e element € newElements? A element.elementld = latchLockedElement
A auditTypes newElements? N LATCHCHANGE_ELEMENTS = {latchLockedElement}))
(currentLatchC’ # currentLatchC A currentLatchC’ = unlocked
& (3, lement : AuditC e element € newElements? A element.elementld = latchUnlockedElement
A auditTypes newElements? N LATCHCHANGE_ELEMENTS = {latchUnlockedElement}))

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 59

> See: DoorLatchAlarmC (p. 35), Real\WorldTimeChanges (p. 40), AuditC (p. 30),
LATCHCHANGE_ELEMENTS (p. 58), noUser (p. 30), information (p. 28), noDescription (p. 30), locked (p. 21),
latchLockedElement (p. 28), unlocked (p. 21), latchUnlockedElement (p. 28)

ALARMCHANGE_ELEMENTS == {alarmSlencedElement, alarmRaisedElement }

> See: alarmSlencedElement (p. 28), alarmRaisedElement (p. 28)

> The alarmSlencedElement and alarmRaisedElement are the audit entries recording that the alarm has been si-
lenced and raised respectively.

Audit entries associated with changes to the alarm do not specify a user, nor do they include addi-
tional details.

__AuditAlarmC
ADoorLatchAlarmC

RealWorldTimeChanges
newElements? : F AuditC

V newElement : AuditC |
newElement € newElements? A newElement.elementld € ALARMCHANGE_ELEMENTS o
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.description = noDescription

(doorAlarmC # doorAlarmC’ A doorAlarmC’ = alarming
& (3, element : AuditC e element € newElements? A element.elementld = alarmRaisedElement
A element.severity = critical
A auditTypes newElements? N ALARMCHANGE_ELEMENTS = {alarmRaisedElement}))
(doorAlarmC ## doorAlarmC’ A doorAlarmC’ = silent
& (3, element : AuditC e element € newElements? A element.elementld = alarmSilencedElement
A element.severity = information
A auditTypes newElements? N ALARMCHANGE_ELEMENTS = {alarmSilencedElement}))

> See: DoorLatchAlarmC (p. 35), Real\WorldTimeChanges (p. 40), AuditC (p. 30),
ALARMCHANGE_ELEMENTS (p. 59), noUser (p. 30), noDescription (p. 30), alarming (p. 21),
alarmRaisedElement (p. 28), critical (p. 28), silent (p. 21), alarmSlencedElement (p. 28), information (p. 28)

AUDITALARMCHANGE_ELEMENTS == {auditAlarmSlencedElement, auditAlarmRai sedElement }

> See: auditAlarmSilencedElement (p. 28), auditAlarmRai sedElement (p. 28)

> The auditAlarmSlencedElement and auditAlarmRaisedElement are the audit entries recording that the audit log
overflow warning alarm has been silenced and raised respectively.

Audit entries associated with changes to the alarm do not specify a user, nor do they include addi-
tional details.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 60
__AuditLogAlarmC
AAuditLogC

RealWorldTimeChanges
newElements? : F AuditC

V newElement : AuditC |
newElement € newElements? A newElement.elementld € AUDITALARMCHANGE_ELEMENTS e
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.description = noDescription

(auditAlarmC # auditAlarmC’ A auditAlarmC’ = alarming
& (3, lement : AuditC e element € newElements? A element.elementld = auditAlarmRaisedElement
A element.severity = warning
A auditTypes newElements? N AUDITALARMCHANGE_ELEMENTS = {auditAlarmRaisedElement}))
(auditAlarmC # auditAlarmC’ A auditAlarmC’ = silent
& (3, element : AuditC e element € newElements? A element.elementld = auditAlarmSilencedElement
A element.severity = information
A auditTypes newElements? N AUDITALARMCHANGE_ELEMENTS = {auditAlarmSlencedElement}))

> See: AuditLogC (p. 32), RealWorldTimeChanges (p. 40), AuditC (p. 30),
AUDITALARMCHANGE_ELEMENTS (p. 59), noUser (p. 30), noDescription (p. 30), alarming (p. 21),
auditAlarmRaisedElement (p. 28), warning (p. 28), silent (p. 21), auditAlarmSlencedElement (p. 28),
information (p. 28)

Audit entries recording that the display has changed are of type displayChangedElement. Audit
entries associated with changes to the display do not specify a user, the additional details will give
the new displayed text, thisis not stated formally.

__AuditDisplayC
currentDisplayC, currentDisplayC’ : DISPLAYMESSAGE

RealWorldTimeChanges
newElements? : F AuditC

v newElement : AuditC |
newElement € newElements? A newElement.elementld = displayChangedElement
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.severity = information

(currentDisplayC’ # currentDisplayC
< (3, element : AuditC e element € newElements? A element.elementld = displayChangedElement))

> See: DISPLAYMESSAGE (p. 22), RealWorldTimeChanges (p. 40), AuditC (p. 30),
displayChangedElement (p. 28), noUser (p. 30), information (p. 28)

Audit entries recording that the screen message has changed are of type screenChangedElement.
Audit entries associated with changes to the screen message do not specify a user, the additional
details will give the new displayed text, thisis not stated formally.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 61
__ AuditScreenC
AScreenC

RealWorldTimeChanges
newElements? : F AuditC

V newElement : AuditC |
newElement € newElements? A newElement.elementld = screenChangedElement e
newElement.logTime € nowC . . nowC’
A newElement.user = noUser
A newElement.severity = information

(screenMsgC’ # screenMsgC
& (3, element : AuditC e element € newElements? A element.elementld = screenChangedElement))

> See: ScreenC (p. 36), RealWbrldTimeChanges (p. 40), AuditC (p. 30), screenChangedElement (p. 28),
noUser (p. 30), information (p. 28)

> The screenChangedElement isthe audit entry recording that the screen has changed.

LogChangeC = AuditAlarmC A AuditLatchC A AuditDoorC A AuditLogAlarmC A AuditScreenC A AuditDisplayC

> See: AuditAlarmC (p. 59), AuditLatchC (p. 58), AuditDoorC (p. 58), AuditLogAlarmC (p. 59),
AuditScreenC (p. 60), AuditDisplayC (p. 60)

52 Updating System Statistics

FD.Stats.Update
FSSats.Update

System statistics are updated as actions that are being monitored for the statistics occur.

We provide operations to increment the count of each of the events being monitored.

— AddSuccessful EntryToStatsC
ASatsC

failEntryC’ = failEntryC
successEntryC’ = successeEntryC + 1
failBioC’ = failBioC

successBioC’ = successBioC

> See: SatsC (p. 34)

__AddFailedEntryToStatsC
ASatsC

failEntryC’ = failEntryC + 1
successEntryC’ = successEntryC
failBioC’ = failBioC
successBioC’ = successBioC

> See: SatsC (p. 34)

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 62
__ AddSuccessful BioCheckToStatsC
ASatsC

failEntryC’ = failEntryC
successEntryC’ = successEntryC
failBioC’ = failBioC
successBioC’ = successBioC + 1

> See: SatsC (p. 34)

__AddFailedBioCheckToStatsC
ASatsC

failEntryC’ = failEntryC
successEntryC’ = successEntryC
failBioC’ = failBioC + 1
successBioC’ = successBioC

> See: SatsC (p. 34)

53 Updating Certificate Store

FD.CertificateStore.Update

The certificate store needs to be updated to increment the next available serial number whenever an
authorisation certificate is issued.

__UpdateCertificateStore
ACertificateStore

nextSerialNumber’ = nextSerial Number + 1

> See: CertificateStore (p. 34)

54 Operating the Door, Latch and Alarm

FD.Latch.Updatel nternalL atch

FD.Door.UnlockDoor FD.Interface. TISPoll
FD.Door.LockDoor

The state of the latch depends on whether the latch timout has expired or not.

Thelatch islocked if the timout has expired.

__LatchTimeoutExpired
ADoorLatchAlarmC

currentTimeC > latchTimeoutC

currentLatchC’ = locked
currentTimeC’ = currentTimeC
latchTimeoutC’ = latchTimeoutC
alarmTimeoutC’ = alarmTimeoutC
currentDoorC’ = currentDoorC
doorAlarmC’ = doorAlarmC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 63

> See: DoorLatchAlarmC (p. 35), locked (p. 21)

The latch is unlocked if the timeout has not expired.

__LatchTimeoutNotExpired
ADoorLatchAlarmC

latchTimeoutC > currentTimeC

currentLatchC’ = unlocked
currentTimeC’ = currentTimeC
latchTimeoutC’ = latchTimeoutC
alarmTimeoutC’ = alarmTimeoutC
currentDoorC’ = currentDoorC
doorAlarmC’ = doorAlarmC

> See: DoorLatchAlarmC (p. 35), unlocked (p. 21)

Updatelnternal Latch = LatchTimeoutExpired \/ LatchTimeoutNotExpired

> See: LatchTimeoutExpired (p. 62), LatchTimeoutNotExpired (p. 63)

FD.Latch.Updatel nternalAlarm

FD.Door.UnlockDoor FD.Interface. TISPoll
FD.Door.LockDoor

The state of the alarm depends on the state of the door, the state of the latch and whether the alarm
timout has expired or not.

If the door is open, latch islocked and the alarm timout has expired then the alarm is raised.

__RaiseAlarm
ADoorLatchAlarmC

currentDoorC = open
currentLatchC = locked
currentTimeC > alarmTimeoutC

doorAlarmC’ = alarming
currentLatchC’ = currentLatchC
latchTimeoutC’ = latchTimeoutC
alarmTimeoutC’ = alarmTimeoutC
currentTimeC’ = currentTimeC
currentDoorC’ = currentDoorC

> See: DoorLatchAlarmC (p. 35), open (p. 21), locked (p. 21), alarming (p. 21)

If the door closed, or the latch is unlocked or the alarm timout has not expired then the alarm is
silenced.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 64
__SlenceAlarm
ADoorLatchAlarmC

currentDoorC = closed
V currentLatchC = unlocked
V currentTimeC < alarmTimeoutC

doorAlarmC’ = alarming
currentLatchC’ = currentLatchC
latchTimeoutC’ = latchTimeoutC
alarmTimeoutC’ = alarmTimeoutC
currentTimeC’ = currentTimeC
currentDoorC’ = currentDoorC

> See: DoorLatchAlarmC (p. 35), closed (p. 21), unlocked (p. 21), alarming (p. 21)

Updatelnternal Alarm = RaiseAlarm vV SlenceAlarm

> See: RaiseAlarm (p. 63), SlenceAlarm (p. 63)

FD.Door.Unlock Door
FS.Door.UnlockDoor

When the door is unlatched the timeouts on the door latch and alarm are set to cause the door to be
latched again in the future.

__ SetUnlockDoor Timeouts
ADoorLatchAlarmC
ConfigC

currentLatchC’ = currentLatchC

currentTimeC’ = currentTimeC

latchTimeoutC’ = currentTimeC + latchUnlockDurationC

alarmTimeoutC’ = currentTimeC + latchUnlockDurationC + alarmSlentDurationC
currentDoorC' = currentDoorC

doorAlarmC’ = doorAlarmC

> See: DoorLatchAlarmC (p. 35), ConfigC (p. 27)

> latchUnlockDurationC and alarmSilentDurationC are imported from ConfigC.

Once the timeouts have been reset the latch and alarm must be updated.

UnlockDoorC = SetUnlockDoor Timeouts § Updatel nternalLatch § Updatel nternal Alarm

> See: SetUnlockDoor Timeouts (p. 64), Updatel nternalLatch (p. 63), Updatel nternal Alarm (p. 64)

FD.Door.L ockDoor
FS.Door.LockDoor

5.5

551

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 65

Sometimes the door needs to be explicitly latched by TIS, when this occurs the timeouts on the door
latch and alarm are reset. Resetting the timeouts to the current time will ensure that the alarm will
sound if there is a breach of security, thiswill occur through checks on the alarm timeout.

__ Setl ockDoor Timeouts
ADoorLatchAlarmC

currentLatchC’ = currentLatchC
currentTimeC’ = currentTimeC
latchTimeoutC’ = currentTimeC
alarmTimeoutC’ = currentTimeC
currentDoorC’ = currentDoorC
doorAlarmC’ = doorAlarmC

> See: DoorLatchAlarmC (p. 35)

Once the timeouts have been reset the latch and alarm must be updated.

LockDoorC = SetLockDoor Timeouts § Updatel nternal Latch § Updatel nternal Alarm

> See: SetLockDoor Timeouts (p. 65), Updatel nternal Latch (p. 63), Updatel nternal Alarm (p. 64)

Certificate Operations

Validating Certificates

FD.Certificate.SignedOK
FS.Certificate.Validate

When acertificate is checked in the context of akey storeitisonly acceptable if the certificate i ssuer
is known to the key store and the signature can be verified by the key store.

A certificate must have been issued by a known issuer.

__CertlssuerKnownC
KeyStoreC
CertificateContents

keyMatchinglssuer idC.issuerC.id # nil

> See: KeyStoreC (p. 33), CertificateContents (p. 16)

A certificate must have been signed by the issuer.

__CertOKC
CertlssuerKnownC
RawCertificate

(mechanism, digest mechanismdata, signature)
isVerifiedBy (the (keyMatchinglssuer idC.issuerC.id))

> See: CertlssuerKnownC (p. 65), RawCertificate (p. 15), digest (p. 15)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 66

FD.Certificate AuthCertSignedOK
FS.Certificate.Validate

In addition the Authorisation certificate must have been issued by this ID station; we make the
assumption that asingle ID station protects an enclave.

__CertlssuerlsThisTISC
KeyStoreC
CertificateContents

privateKey # nil
idC.issuerC = (theprivateKey).keyOwner

> See: KeyStoreC (p. 33), CertificateContents (p. 16)
AuthCertOKC = CertlssuerIsThisTISC A CertOKC

> See: CertlssuerlsThisTISC (p. 66), CertOKC (p. 65)

55.2 Currency of Certificates

FD.Certificate.lsCurrent

A certificate is considered current, within the context of the current time if the current time lies
between the not before time and the not after time.

__CertlsCurrent
CertificateContents

currentTimeC : TIME

currentTimeC € notBefore . . notAfter

> See: CertificateContents (p. 16), TIME (p. 11)

553 Generating Authorisation Certificates

FD.Certificate NewAuthCert
FS.Certificate.NewAuthCert

An authorisation certificate contents can be constructed using information from a valid token and
the current configuration of TIS. TIS can only generate the authorisation certificate if it hasits own
key to perform the signing with.

All Authorisation certificates will be signed using RSA the encryption of a SHA-1 digest.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 67

__NewAuthCertContents
ValidTokenC
KeyStoreC
CertificateStore
ConfigC
newAuthCertContents! : AuthCertContents
currentTimeC : TIME

privateKey # nil

newAuthCertContents!.idC.issuerC = (the privateKey).keyOwner
newAuthCertContents!.idC.serialNumber = nextSerial Number

(currentTimeC € authPeriodl sEmpty
A newAuthCertContents!.notBefore = currentTimeC
A newAuthCertContents!.notAfter = zeroTime
V currentTimeC ¢ authPeriodl sEmpty
A newAuthCertContents!.notBefore = first (getAuthPeriod currentTimeC)
A newAuthCertContents!.notAfter = second (getAuthPeriod currentTimeC))
newAuthCertContents!.mechanism = rsaWithShal
newAuthCertContents!.baseCertldC = (extractI DCertidCertC).idC
newAuthCertContents!.roleC = (extractPrivCert privCertC).roleC
newAuthCertContents!.clearanceC.class = minClass{enclaveClearanceC, (extractPrivCert privCertC).clearanceC.class}

> See: ValidTokenC (p. 19), KeySoreC (p. 33), CertificateStore (p. 34), ConfigC (p. 27), AuthCertContents (p. 17),
TIME (p. 11), zeroTime (p. 11), rsaWthShal (p. 15), extractIDCert (p. 17), minClass (p. 12)

The data for new authorisation certificate is constructed from the contents of the certificate. The
signature is obtained by signing the digest of this data.

__NewAuthCertC
ValidTokenC
KeyStoreC
CertificateStore
ConfigC
newAuthCert! : AuthCertC
currentTimeC : TIME

privateKey # nil

3 newAuthCertContents! : AuthCertContents e

NewAuthCertContents

A newAuthCert!.data = constructAuthCert newAuthCertContents!
newAuthCert!.signature =

signrsaWthShal (the (keyMatchinglssuer (theprivateKey).keyOwner.id)) (digest rsaWithShal newAuthCert!.data)

> See: ValidTokenC (p. 19), KeyStoreC (p. 33), CertificateStore (p. 34), ConfigC (p. 27), AuthCertC (p. 18),
TIME (p. 11), AuthCertContents (p. 17), NewAuthCertContents (p. 66), rsaWithShal (p. 15), digest (p. 15)

554 Adding Authorisation Certificates to User Token

FD.User Token.AddAuthCertToUser Token
FS.User Token.AddAuthCertToUser Token

If avalid user token is present in the system then an authorisation certificate can be added to it.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 68

__AddAuthCertToUser TokenC
AUserTokenC
KeyStoreC
CertificateStore
ConfigC
currentTimeC : TIME

user TokenPresenceC = present
currentUser TokenC € ran goodTC

3 ValidTokenC; ValidTokenC’ e §ValidTokenC = (goodTC"™ currentUser TokenC)
A 6ValidTokenC' = (goodTC™ currentUserTokenC')
A (InewAuthCert! : AuthCertC e theauthCertC' = newAuthCert! A NewAuthCertC)
A tokenIDC’ = tokenIDC
A idCertC’ = idCertC
A privCertC’ = privCertC
A iandACertC’ = iandACertC

user TokenPresenceC’ = user TokenPresenceC

> See: UserTokenC (p. 36), KeyStoreC (p. 33), CertificateStore (p. 34), ConfigC (p. 27), TIME (p. 11),
present (p. 11), goodTC (p. 22), ValidTokenC (p. 19), AuthCertC (p. 18), NewAuthCertC (p. 67)

5.6 Updating the Key Store

FD.KeyStore.UpdateKeyStore
FSKeySore UpdateKeyStore

The key store is updated using the supplied enrolment data to add issuers and their public keys.

__UpdateKeyStoreC
AKeyStoreC
ValidEnrolC

keys' = (keys\ {key : keys | key.keyType = private})
U{c : ranissuerCertsC; key : KeyPart |
key.keyOwner = (extractIDCert c).subjectC
A key.keyType = public
A key.keyData = (extract|DCert c).subjectPubKC e key}
U{key : KeyPart |
key.keyOwner = (extractlDCert idStationCertC).subjectC
A key.keyType = private
A key.keyData = theTI SKey o key}

theTISKey' = theTlSKey

> See: KeyStoreC (p. 33), ValidEnrolC (p. 21), private (p. 14), KeyPart (p. 14), extractIDCert (p. 17), public (p. 14)

> Thisoperation uses union and override so that it can be used to add issuers as well asinitial enrolment.

> The enrolment data must include the ID certificate for this TIS. This contains the official name for the TIS and
will result in the private TIS key being inserted into the keystore with the name of the TIS. If the private key was
aready in the keystore it will be replaced.

The enrolment data will always be supplied on afloppy disk.

57

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 69
_UpdateKeyStoreFromFloppyC
AKeySoreC
FloppyC

currentFloppyC € ran enrolmentFileC
(3 ValidEnrolC e §ValidEnrolC = enrolmentFileC™ currentFloppyC
A UpdateKeyStoreC)

> See: KeyStoreC (p. 33), FloppyC (p. 36), enrolmentFileC (p. 22), ValidEnrolC (p. 21), UpdateKeyStoreC (p. 68)

Token Validation

FD.Token.Validate

There are anumber of validation checks that need to be performed on tokens. Some of these checks
are consistency checks, others require the presence of akey store.

The token must contain an 1D certificate, which has a serial number matching the tokenID.

__Tokenl DCertPresent
TokenC

idCertC € dom extractlDCert
(extractIDCert idCertC).idC.serial Number = tokenIDC

> See: TokenC (p. 19), extractIDCert (p. 17)

The ID certificate must be correctly signed by a known issuer.

__TokenlDCertOK
Tokenl DCertPresent

KeyStoreC

3 IDCertContents; RawCertificate o
#1DCertContents = extractIDCert idCertC A #RawCertificate = idCertC A CertOKC

> See: TokenlDCertPresent (p. 69), KeyStoreC (p. 33), IDCertContents (p. 16), RawCertificate (p. 15),
extractIDCert (p. 17), CertOKC (p. 65)

The ID certificate must be current.

__TokenIDCertCurrent
Tokenl DCertPresent

currentTimeC : TIME
3 1DCertContents e 01DCertContents = extractlDCertidCertC A CertlsCurrent

> See: TokenlDCertPresent (p. 69), TIME (p. 11), IDCertContents (p. 16), extractiDCert (p. 17),
CertlsCurrent (p. 66)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 70

The privilege certificate must be present and the base certificate must match the ID Certificate.

___TokenPrivCertPresent
Tokenl DCertPresent

privCertC € dom extractPrivCert
(extractIDCert idCertC).idC = (extractPrivCert privCertC).baseCertldC

> See: TokenlDCertPresent (p. 69), extractIDCert (p. 17)

The privilege certificate must be correctly signed by a known issuer.

__TokenPrivCertOK
TokenPrivCertPresent
KeyStoreC

3 PrivCertContents; RawCertificate o
OPrivCertContents = extractPrivCert privCertC A #RawCertificate = privCertC A CertOKC

> See: TokenPrivCertPresent (p. 70), KeySoreC (p. 33), PrivCertContents (p. 17), RawCertificate (p. 15),
CertOKC (p. 65)

The Priv certificate must be current.

__TokenPrivCertCurrent
TokenPrivCertPresent

currentTimeC : TIME
3 PrivCertContents e §PrivCertContents = extractPrivCert privCertC A CertlsCurrent

> See: TokenPrivCertPresent (p. 70), TIME (p. 11), PrivCertContents (p. 17), CertlsCurrent (p. 66)

The l&A certificate must be present and the base certificate must match the ID Certificate.

__TokenlandACertPresent
Tokenl DCertPresent

iandACertC € dom extractlandACert
(extractIDCert idCertC).idC = (extractlandACert iandACertC).baseCertldC

> See: TokenlDCertPresent (p. 69), extractl DCert (p. 17)

Thel&A certificate must be correctly signed by a known issuer.

__TokenlandACertOK
TokenlandACertPresent

KeyStoreC

JlandACertContents; RawCertificate o
#landACertContents = extractlandACertiandACertC A #RawCertificate = iandACertC A CertOKC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 71

> See: TokenlandACertPresent (p. 70), KeyStoreC (p. 33), landACertContents (p. 17), RawCertificate (p. 15),
CertOKC (p. 65)

The I&A certificate must be current.

__TokenlandACertCurrent
TokenlandACertPresent

currentTimeC : TIME

3 landACertContents e #landACertContents = extractlandACertiandACertC A CertlsCurrent

> See: TokenlandACertPresent (p. 70), TIME (p. 11), landACertContents (p. 17), CertlsCurrent (p. 66)

TokenOKC = TokenlDCertCurrent A TokenPrivCertCurrent A TokenlandACertCurrent

> See: TokenlDCertCurrent (p. 69), TokenPrivCertCurrent (p. 70), TokenlandACertCurrent (p. 71)

The Auth certificate must be present and the serial number of the base certificate must match the ID
Certificate.

__TokenAuthCertPresent
Tokenl DCertPresent

authCertC # nil
theauthCertC € dom extractAuthCert
(extractIDCert idCertC).idC = (extractAuthCert (the authCertC)).baseCertldC

> See: TokenlDCertPresent (p. 69), extractl DCert (p. 17)

The Auth certificate must be correctly signed by this TIS.

__TokenAuthCertOK
TokenAuthCertPresent

KeyStoreC
3 AuthCertContents; RawCertificate o

> See: TokenAuthCertPresent (p. 71), KeyStoreC (p. 33), AuthCertContents (p. 17), RawCertificate (p. 15),
AuthCertOKC (p. 66)

The Auth certificate must be current.

__TokenAuthCertCurrent
TokenAuthCertPresent

currentTimeC : TIME

3 AuthCertContents e §AuthCertContents = extractAuthCert (theauthCertC) A CertlsCurrent

> See: TokenAuthCertPresent (p. 71), TIME (p. 11), AuthCertContents (p. 17), CertlsCurrent (p. 66)

TokenWithOKAuthCertC = TokenAuthCertOK A TokenAuthCertCurrent

> See: TokenAuthCertOK (p. 71), TokenAuthCertCurrent (p. 71)

OAuthCertContents = extractAuthCert (theauthCertC) A ORawCertificate = (theauthCertC) A AuthCertOKC

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 72
5.8 User Token Operations and Checks

5.8.1 User Token Clear

FD.UserToken.Clear

The user token held internally must be cleared whenever the token is removed. This ensures that no
information relating to the user token is retained following token removal.

__ClearUserToken
AUserTokenC

user TokenPresenceC’ = absent
currentUser TokenC' = noTC

> See: UserTokenC (p. 36), absent (p. 11), noTC (p. 22)

58.2 User Token Validation

FD.User Token.User TokenOK

The user token must be good, in that it must not result in errors being raised when it is read.

__UserTokenGood
UserTokenC

currentUserTokenC € ran goodTC

> See: UserTokenC (p. 36), goodTC (p. 22)

__UserTokenOKC
User TokenGood
KeyStoreC
currentTimeC : TIME

3 TokenC e goodTC #TokenC = currentUser TokenC
A TokenlDCertOK A Tokenl DCertCurrent
A TokenPrivCertOK A TokenPrivCertCurrent
A TokenlandACertOK A TokenlandACertCurrent

> See: UserTokenGood (p. 72), KeySoreC (p. 33), TIME (p. 11), TokenC (p. 19), goodTC (p. 22),
TokenlDCertOK (p. 69), Tokenl DCertCurrent (p. 69), TokenPrivCertOK (p. 70), TokenPrivCertCurrent (p. 70),
TokenlandACertOK (p. 70), TokenlandACertCurrent (p. 71)

FD.User Token.User TokenNotOK

If auser token is not OK then the cause of the fault will be captured in the description of the audit
entry.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 73

tokenBad, idCertBad, idCertNot\erifiable, idCertNotCurrent,
iandACertBad, iandACertNot\erifiable, iandACertNotCurrent,
privCertBad, privCertNot\erifiable, privCertNotCurrent : TEXT

The formal statement below makes clear there is only one description generated. In the case where
the token exhibits many faults the first applicable fault, taking the possible descriptions in the order
presented, will be described in the description. Thisis not captured formally.

__ UserTokenNotOK
UserTokenC
KeyStoreC
currentTimeC : TIME

description! : TEXT

— UserTokenGood A description! = tokenBad Vv (3 TokenC e goodTC #TokenC = currentUser TokenC
A (— TokenIDCertPresent A description! = idCertBad
Vv — TokenIDCertOK A description! = idCertNot\erifiable
Vv — TokenlDCertCurrent A description! = idCertNotCurrent
V — TokenPrivCertPresent A description! = privCertBad
V — TokenPrivCertOK A description! = privCertNot\erifiable
Vv — TokenPrivCertCurrent A description! = privCertNotCurrent
Vv — TokenlandACertPresent A description! = iandACertBad
Vv — TokenlandACertOK A description! = iandACertNotVerifiable
V — TokenlandACertCurrent A description! = iandACertNotCurrent))

> See: UserTokenC (p. 36), KeyStoreC (p. 33), TIME (p. 11), User TokenGood (p. 72), TokenC (p. 19),
goodTC (p. 22), TokenlDCertPresent (p. 69), TokenIDCertOK (p. 69), TokenlDCertCurrent (p. 69),
TokenPrivCertPresent (p. 70), TokenPrivCertOK (p. 70), privCertNot\erifiable (p. 72),
TokenPrivCertCurrent (p. 70), privCertNotCurrent (p. 72), TokenlandACertPresent (p. 70),
TokenlandACertOK (p. 70), TokenlandACertCurrent (p. 71)

FD.User Token.User TokenWithOK AuthCert

We also need to check whether a User token has an acceptable Authorisation Certificate. This
requires the Authorisation certificate to be present, correctly reference the TokenlD, be verifiable
within the context of the Key Store and be current.

__ User TokenWithOK AuthCertC
User TokenGood
KeyStoreC
currentTimeC : TIME

3 TokenC e goodTC(6TokenC) = currentUserTokenC
A Tokenl DCertOK
A TokenAuthCertOK A TokenAuthCertCurrent

> See: UserTokenGood (p. 72), KeySoreC (p. 33), TIME (p. 11), TokenC (p. 19), goodTC (p. 22),
TokenlDCertOK (p. 69), TokenAuthCertOK (p. 71), TokenAuthCertCurrent (p. 71)

59

591

592

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 74

Admin Token Operations and Checks

Admin Token Clear

FD.AdminToken.Clear

The admin token held internally must be cleared whenever the token is removed. This ensures that
no information relating to the Admin token is retained following token removal.

__ClearAdminToken
AAdminTokenC

adminTokenPresenceC’ = absent
currentAdminTokenC’ = noTC

> See: AdminTokenC (p. 36), absent (p. 11), noTC (p. 22)

Admin Token Validation

The admin token must be good, in that it must not result in errors being raised when it is read.

__ AdminTokenGood
AdminTokenC

currentAdminTokenC € ran goodTC

> See: AdminTokenC (p. 36), goodTC (p. 22)

FD.AdminToken.Current

The Authorisation certificate on the admin token must be present, and current:

__ AdminTokenCurrent
AdminTokenGood
currentTimeC : TIME

3 TokenC e goodTC #TokenC = currentAdminTokenC
A TokenAuthCertCurrent

> See: AdminTokenGood (p. 74), TIME (p. 11), TokenC (p. 19), goodTC (p. 22), TokenAuthCertCurrent (p. 71)

FD.AdminToken.AdminTokenOK

Additionally it must be validated within the context of the key store and the role must correspond to
an administrator.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 75
__ AdminTokenOKC
AdminTokenCurrent
KeyStoreC

3 TokenC e goodTC #TokenC = currentAdminTokenC
A TokenIDCertOK
A TokenAuthCertOK A TokenAuthCertCurrent
A (extractAuthCert (theauthCertC)).roleC € ADMINPRIVILEGE

> See: AdminTokenCurrent (p. 74), KeyStoreC (p. 33), TokenC (p. 19), goodTC (p. 22), TokenIDCertOK (p. 69),
TokenAuthCertOK (p. 71), TokenAuthCertCurrent (p. 71), ADMINPRIVILEGE (p. 34)

FD.AdminToken.AdminTokenNotOK

If an admin token is not OK then the cause of the fault will be captured in the description of the
audit entry.

| authCertBad, authCertNotVerifiable, authCertNotCurrent, authCertNotAdmin : TEXT

The formal statement below makes clear there is only one description generated. In the case where
the token exhibits many faults the first applicable fault, taking the possible descriptions in the order
presented, will be described in the description. Thisis not captured formally.

__ AdminTokenNotOK
AdminTokenC
KeyStoreC
currentTimeC : TIME

description! : TEXT

— AdminTokenGood A description! = tokenBad \ (3 TokenC e goodTC §TokenC = currentAdminTokenC
A (— TokenIDCertPresent A description! = idCertBad
Vv — TokenIDCertOK A description! = idCertNot\erifiable
V — TokenAuthCertPresent A description! = authCertBad
Vv — TokenAuthCertOK A description! = authCertNot\erifiable
Vv — TokenAuthCertCurrent A description! = authCertNotCurrent
V (extractAuthCert (theauthCertC)).roleC ¢ ADMINPRIVILEGE

A description! = authCertNotAdmin))

> See: AdminTokenC (p. 36), KeyStoreC (p. 33), TIME (p. 11), AdminTokenGood (p. 74), TokenC (p. 19),
goodTC (p. 22), TokenlDCertPresent (p. 69), TokenIDCertOK (p. 69), TokenAuthCertPresent (p. 71),
TokenAuthCertOK (p. 71), TokenAuthCertCurrent (p. 71), ADMINPRIVILEGE (p. 34), authCertNotAdmin (p. 75)

5.10 Administrator Operations and Checks

An administrator may log on to the TIS console, logoff, or start an operation. There are also a
number of checks that are performed on the Admin state.

5.10.1 Logon Administrator

FD.Admin.AdminLogon
FSAdmin.AdminLogon

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 76
An administrator can only log on if there is no-one currently logged on.
—AdminLogonC
AAdmInC

reguiredRole? : ADMINPRIVILEGE
rolePresentC = nil

therolePresentC’ = requiredRole?

currentAdminOpC’ = nil

> See: AdminC (p. 35), ADMINPRIVILEGE (p. 34)

5.10.2 Logout Administrator

FD.Admin.AdminL ogout
FS.Admin.AdminLogout

An administrator can always log off. Thiswill terminate the current operation.

_ AdminLogoutC
AAdmMInC

rolePresentC’ = nil
currentAdminOpC’ = nil

> See: AdminC (p. 35)

5.10.3 Administrator Starts Operation

FD.Admin.AdminStartOp
FSAdmin.AdminStartOp

An administrator, who is currently logged on, can start any of the operations that he is allowed to
perform. An operation can only be started if there is no operation currently in progress.

—_ AdminSartOpC
AAdmMInC
reguestedOp? : ADMINOP

rolePresentC # nil
currentAdminOpC = nil
requestedOp? € availableOpsC

rolePresentC’ = rolePresentC
thecurrentAdminOpC’ = requestedOp?

> See: AdminC (p. 35), ADMINOP (p. 34)

5.10.4 Administrator Finishes Operation

FD.Admin.AdminFinishOp
FD.Admin.AdminFinishOp

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 77

An administrator, who is currently logged on, can finish an operation.

— AdminFinishOpC
AAdmMInC

rolePresentC # nil
currentAdminOpC = nil

rolePresentC’ = rolePresentC
currentAdminOpC’ = nil

> See: AdminC (p. 35)

5.10.5 Administrator Checks

FD.Admin.AdminOpl sAvailable

A check can be made to ensure that the requested operation is one that is available.

—_ AdminOpl sAvailable
AdminC

reguest? : KEYBOARD

request? € keyedOps(availableOpsC)

> See: AdminC (p. 35), KEYBOARD (p. 23), keyedOps (p. 23)

FD.Admin.Adminl sPresent

A check can be made to ensure that an administrator is logged on.

—_ AdminlsPresent
AdminC

rolePresentC # nil

> See: AdminC (p. 35)

FD.Admin.AdminlsDoingOp

A check can be made to ensure that an administrator is performing an operation.

— AdminlsDoingOp
AdminC

currentAdminOpC # nil

> See: AdminC (p. 35)

511

5111

511.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 78

Prioritisation Checks

There are a number of checks relating to the internal state that determine what action needs to be
performed.

Enrolement In Progress

FD.Enclave.Enrolmentl nProgress

No other activity can take place until enrolment has compl eted.

—_EnrolmentlsinProgress
enclaveStatusC : ENCLAVESTATUS

enclaveStatusC € {notEnrolled, waitingEnrol, waitingEndEnrol }

> See: ENCLAVESTATUS (p. 37), notEnrolled (p. 37), waitingEnrol (p. 37), waitingEndEnrol (p. 37)

Administrator Must Logout

FD.Enclave. AdminM ustL ogout

An administrator must be logged out if there is a role present but the administrator token has been
torn. The only exception to thisiswhen TISisin the process of shutting down, this does not force
aloggout if the token is removed.

_PresentAdminHasDeparted
AdminTokenC
AdminC
enclaveStatusC : ENCLAVESTATUS

AdminlsPresent
currentAdminOpC = nil Vv thecurrentAdminOpC # shutdownOp
adminTokenPresenceC = absent

> See: AdminTokenC (p. 36), AdminC (p. 35), ENCLAVESTATUS (p. 37), AdminlsPresent (p. 77),
shutdownOp (p. 34), absent (p. 11)

A logged on administrator expires their logon if the authorisation certificate is no longer valid. This
takes priority over any user entry activity, although expiry checks only take place when there is no
administrator activity.

— AdminTokenHasExpired
AdminTokenC
AdminC

enclaveStatusC : ENCLAVESTATUS
currentTimeC : TIME

AdminlsPresent
enclaveSatusC = enclaveQuiescent
adminTokenPresenceC = present
— AdminTokenCurrent

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 79

> See: AdminTokenC (p. 36), AdminC (p. 35), ENCLAVESTATUS (p. 37), TIME (p. 11), AdminlsPresent (p. 77),
present (p. 11), AdminTokenCurrent (p. 74)
AdminMustLogout = AdminTokenHasExpired \V PresentAdminHasDeparted

> See: AdminTokenHasExpired (p. 78), PresentAdminHasDeparted (p. 78)

5.11.3 User Departed

FD.User Entry.User HasDeparted

A user is considered to have just departed from the system if the status is not quiescent but the user
token has been torn.

__UserHasDeparted
UserTokenC
statusC : STATUS

statusC # quiescent
user TokenPresenceC = absent

> See: UserTokenC (p. 36), STATUS (p. 37), quiescent (p. 37), absent (p. 11)

5114 User Entry In Progress

FD.User Entry.User EntrylnProgress

User entry processing is considered to be in progess while the status is neither quiescent nor
waitingRemoveTokenFail.

_UserEntrylnProgress
statusC : STATUS

statusC ¢ {quiescent, waitingRemoveTokenFail }

> See: STATUS (p. 37), quiescent (p. 37), waitingRemoveTokenFail (p. 37)

5.11.5 Current User Entry Activity Possible

FD.User Entry.CurrentUser EntryActivityPossible

A user entry activity is possible if auser has just departed or there is a user entry in progress.

CurrentUser EntryActivityPossible = UserHasDeparted v UserEntrylnProgress

> See: UserHasDeparted (p. 79), UserEntrylnProgress (p. 79)

511.6

511.7

511.8

511.9

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 80
Admin Departed

FD.Enclave AdminHasDeparted

A administrator is considered to have just departed from the system if the enclave status is not
quiescent but the admin token has been torn.

__ AdminHasDeparted
AdminTokenC
enclaveStatusC : ENCLAVESTATUS

= EnrolmentlsinProgress

enclaveStatusC # enclaveQuiescent
adminTokenPresenceC = absent

> See: AdminTokenC (p. 36), ENCLAVESTATUS (p. 37), EnrolmentlsinProgress (p. 78), absent (p. 11)

Enclave Activities In Progress

FD.Enclave.EnclaveActivityl nProgress

There is an administrator activity in progress within the enclave when the enclaveStatus is neither
enclaveQuiescent nor waitingRemoval AdminTokenFail and an enrolment is not in progress.

—_ AdminActivitylnProgress
enclaveStatusC : ENCLAVESTATUS

— EnrolmentlsinProgress
enclaveStatusC ¢ {enclaveQuiescent, waitingRemoveAdminTokenFail }

> See: ENCLAVESTATUS (p. 37), EnrolmentlsinProgress (p. 78), waitingRemoveAdminTokenFail (p. 37)

Current Enclave Activity Possible

FD.Enclave.CurrentAdminAdctivityPossible

An enclave activity is possible if the administrator has just departed or there is an enclave activity
in progress.

CurrentAdminActivityPossible = AdminHasDeparted v AdminActivitylnProgress

> See: AdminHasDeparted (p. 80), AdminActivitylnProgress (p. 80)

User Entry Can Start

FD.User Entry.User EntryCanStart

User entry processing can start if a user token is present and the status is quiescent.

Praxis Tokeneer 1D Station
High Integrity Formal Design
Systems

__UserEntryCanStart

Reference S.P1229.50.1
Issue 1.3

Page 81

UserTokenC
statusC : STATUS

statusC = quiescent
user TokenPresenceC = present

> See: UserTokenC (p. 36), STATUS (p. 37), quiescent (p. 37), present (p. 11)

5.11.10 Admin Op Can Start

FD.Enclave AdminOpCanStart

An administrator operation can start if there is an administrator present and enclave is quiescent.

__ AdminOpCanStart

AdminC
AdminTokenC
enclaveStatusC : ENCLAVESTATUS

AdminlsPresent
enclaveStatusC = enclaveQuiescent
adminTokenPresenceC = present

> See: AdminC (p. 35), AdminTokenC (p. 36), ENCLAVESTATUS (p. 37), AdminlsPresent (p. 77), present (p. 11)

5.11.11 Admin Logon Can Start

FD.Enclave AdminL oginCanStart

An administrator operation can start the logon procedure if there is no administrator present and

enclave is quiescent.

__ AdminLogonCanStart

AdminTokenC
AdminC
enclaveStatusC : ENCLAVESTATUS

— AdminlsPresent
enclaveStatusC = enclaveQuiescent
adminTokenPresenceC = present

> See: AdminTokenC (p. 36), AdminC (p. 35), ENCLAVESTATUS (p. 37), AdminlsPresent (p. 77), present (p. 11)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 82

THE USER ENTRY OPERATION

FD.External.TISUserEntryOp
FSExternal. TISUserEntryOp

This operation is a multi-stage operation and will be presented as a number of operations with
preconditions on the internal state. The state transition diagram for user authentication and entry
isgivenin Figure 6.1. Before user authentication and entry the system isin the quiescent state, on
completion of the user authentication and entry the system will return the to quiescent state.

ReadUserTeken

UserTokenTear

gotUserToken

BioCheckRequired
BioCheckNotRequired

UserTokenTear

UserTokenTear

waitingFinger
UnlockDoo UserTokenTear e

UserTokenTear ReadFingerOK

ValidateFingerOK

ValidateFingerFail
waitingUpdateToken

WriteUserTokenOK
WriteUserTokenFailed

FingerTimeout

waitingRemove
TokenSuccess

EntryOK

ValidateUserTokenFail

TokenRemovalTimeout

EntryNotAllowed

FailedAccessTokenRemoved

‘ TokenFail
Figure 6.1: User Authentication and Entry state transitions

The process of user authentication and entry follows the following stages:

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 83

Before any user attempts access, the system is quiescent.

Oncethetoken has been inserted and the information read off, the status movesto gotUser Token,
waiting for the system to validate the token.

Once the token has been successfully validated the status moves to waitingFinger, waiting for
the user to give afingerprint.

Once the fingerprint has been read, the status moves to gotFinger, waiting for the system to
validate the fingerprint.

Once afingerprint has been successfully validated, the status moves to waitingUpdateToken,
waiting to write the Auth Cert to the token.

Once the Auth Cert has been written, the status moves to waitingEntry, where it determines
whether the role has current entry privileges.

If the role has current entry privileges the status moves to waitingTokenRemoveSuccess, where
the system system waits for the token to be removed.

Once the token has been removed the latch will be unlocked if the role has current access
privileges to the enclave and the ID Station will return to quiescent.

In the case of afailure in the user validation process the status moves to waitingRemoveTokenFail,
waiting until the token has been removed before returning to a quiescent state.

This specification separates opening the door from having avalid Auth Certificate. It is possible for
arole to be entitled to enter the enclave but not use the workstations (for example such clearence
might be given to a buildings maintenance engineer). TIS configurations will ensure that having a
valid Auth Certificate will guarantee that entry to the enclave is permitted.

FD.Enclave.ResetScreenM essage
FS.Enclave.ResetScreenM essage

The message displayed on the screen will indicate that the system is busy while a user entry isin
progress that blocks administrator activity. Once the user entry activity becomes non-blocking then
an appropriate message is displayed on the screen.

— ResetScreenMessageC
AlnternalC
AAdmMinC
currentScreenC, currentScreenC’ : ScreenC

UserEntrylnProgress’ A currentScreenC’.screenMsgC = busyC
\Y
— UserEntrylnProgress’
A (enclaveStatusC’ = enclaveQuiescent A rolePresentC’ = nil
A currentScreenC’.screenMsgC = welcomeAdminC
V enclaveStatusC’ = enclaveQuiescent A rolePresentC’ # nil
A currentScreenC’ .screenMsgC = requestAdminOpC
V enclaveStatusC’ = waitingRemoveAdminTokenFail
A currentScreenC’ .screenMsgC = removeAdminTokenC
Vv enclaveSatusC’ ¢ {enclaveQuiescent, waitingRemoveAdminTokenFail }
A currentScreenC’.screenMsgC = currentScreenC.screenMsgC)

> See: InternalC (p. 37), AdminC (p. 35), ScreenC (p. 36), UserEntrylnProgress (p. 79), busyC (p. 23),

welcomeAdminC (p. 23), waitingRemoveAdminTokenFail (p. 37), removeAdminTokenC (p. 23)

6.1

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 84

Theuser entry operation leaves much of the IDSation state unchanged. The context of this operation
is summarised:

_UserEntryContextC
AlDSationC
RealWorldChangesC

=ConfigC
ZAdminTokenC
=KeyStoreC
ZAdminC
=KeyboardC
ZFloppyC
AddElementsToLogC
LogChangeC
ResetScreenMessageC

=TISControlledRealWorldC

enclaveStatusC’ = enclaveStatusC
statusC # waitingEntry = tokenRemoval TimeoutC' = tokenRemoval TimeoutC
statusC’ # waitingFinger = fingerTimeout’ = finger Timeout

auditTypesnewElements? C USER_ENTRY_ELEMENTSU USER_INDEPENDENT _ELEMENTS

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), ConfigC (p. 27), AdminTokenC (p. 36), KeyStoreC (p. 33),
AdminC (p. 35), KeyboardC (p. 36), FloppyC (p. 36), AddElementsToLogC (p. 51), LogChangeC (p. 61),
ResetScreenMessageC (p. 83), TISControlledRealWorldC (p. 24), waitingEntry (p. 37), waitingFinger (p. 37),
USER_ENTRY_ELEMENTS (p. 29), USER_INDEPENDENT _ELEMENTS (p. 29)

> The following state components may change User TokenC, Internal C DoorLatchAlarmC, CertificateStore, StatsC
and AuditLogC.

The components of the real world controlled by TIS remain unchanged.
The tokenRemoval TimeoutC is only updated if the current status is waitingEntry.
The finger Timeout may only be updated if the current status becomes waitingFinger.

All elementslogged during user entry operations either relate to the user entry or areindependent of any operation.

v VvV Vv Vv V

Changes are logged and newElements? will be added to the Audit Log.

Each of the following sub-operations is performed within the above context.

User Token Tears

FD.UserEntry.User TokenTorn
FS.UserEntry.UserTokenTorn

During the operation the user may tear his token from the reader prematurely. There are a number
of internal states during which token removal is deamed erroneous.

If the user tears the Token out before the operation is complete then the operation is terminated
unsuccessfully.

6.2

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 85
__ UserTokenTornC
UserEntryContextC

ClearUserToken
=DoorLatchAlarmC
AddFailedEntryToStatsC
=CertificateSore

UserHasDeparted
statusC € {gotUser Token, waitingUpdateToken, waitingFinger, gotFinger, waitingEntry}

currentDisplayC’ = welcome
statusC’ = quiescent

auditTypes newElements? N USER_ENTRY_ELEMENTS = {user TokenRemovedElement }

3, element : AuditC e element € newElements?
A element.elementld = user TokenRemovedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = noDescription

> See: UserEntryContextC (p. 84), ClearUser Token (p. 72), DoorLatchAlarmC (p. 35),
AddFailedEntryToStatsC (p. 61), CertificateStore (p. 34), UserHasDeparted (p. 79), waitingUpdateToken (p. 37),
waitingFinger (p. 37), gotFinger (p. 37), waitingEntry (p. 37), welcome (p. 22), quiescent (p. 37),
USER_ENTRY_ELEMENTS (p. 29), user TokenRemovedElement (p. 28), AuditC (p. 30), extractUser (p. 30),
warning (p. 28), noDescription (p. 30)

> The user TokenRemovedElement is the audit entry recording that the token has been removed from the reader
outside the enclave.

Reading the User Token

FD.User Entry.T1SReadUser Token
FSUserEntry.TISReadUser Token

The User Entry operation isinitiated when TISisin a quiescent state and detects the presence of a
token in the user token reader (which resides outside the enclave).

A user entry operation may start while the enclaveStatus is quiescent (enclaveQuiescent) or the
enclave iswaiting for afailed admin token to be removed.

When the user token is first detected as present, its presence is audited and the interna status
changes. It is not until the token has been validated that we can be sure of the user’s identity,
however the token ATR should provide atoken ID which can be used as the user identity.

No other aspects of the system are modified.

6.3

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 86

__GetPresentUser TokenC
UserEntryContextC

ReadUser TokenC
=DoorLatchAlarmC
=SatsC
=CertificateSore

UserEntryCanStart

user TokenPresenceC’ = user TokenPresenceC
currentUser TokenC' = user TokenC

currentDisplayC’ = wait
statusC’ = gotUser Token

auditTypes newElements? N USER_ENTRY_ELEMENTS = {user TokenPresentElement }

3, element : AuditC e element € newElements?
A element.elementld = user TokenPresentElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC’
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), ReadUser TokenC (p. 43), DoorLatchAlarmC (p. 35), SatsC (p. 34),
CertificateStore (p. 34), UserEntryCanSart (p. 80), wait (p. 22), USER_ENTRY_ELEMENTS (p. 29),
user TokenPresentElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

The operation to read the user token is as follows:

TISReadUser TokenC = GetPresentUser TokenC \ (newElements?)

> See: GetPresentUser TokenC (p. 85)

Validating the User Token
Once TIS has read auser token it must validate the contents of that token.

A user token is valid for entry without biometric checks if the token contains a consistent authori-
sation certificate which is current.

A user tokenisvalid for entry into the enclave if thetoken isconsistent, current and the I D certificate,
Privilege certificate and |& A certificate can be validated.

FD.User Entry.BioCheckNotRequired
FS.UserEntry.BioCheckNotRequired

In the case where there isavalid Authorisation certificate the biometric checks are bypassed.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 87

__BioCheckNotRequiredC
UserEntryContextC

=User TokenC
=DoorLatchAlarmC
=SatsC
=CertificateSore

— UserHasDeparted
statusC = gotUser Token

User TokenWithOK AuthCertC

statusC’ = waitingEntry
currentDisplayC’ = wait

auditTypes newElements? N USER_ENTRY_ELEMENTS = {authCertValidElement }

3, element : AuditC e element € newElements?
A element.elementld = authCertValidElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), UserTokenC (p. 36), DoorLatchAlarmC (p. 35), SatsC (p. 34),
CertificateStore (p. 34), UserHasDeparted (p. 79), User TokenWMthOKAuthCertC (p. 73), waitingEntry (p. 37),
wait (p. 22), USER_ENTRY_ELEMENTS (p. 29), authCertvalidElement (p. 28), AuditC (p. 30),
extractUser (p. 30), information (p. 28), noDescription (p. 30)

FD.User Entry.BioCheckRequired
FSUserEntry.BioCheckRequired FDP_RIP2.1

The biometric checks are only required if the Authorisation Certificate is not present or not valid.
In this case the remaining certificates on the card must be checked.

An audit element islogged indicating that the authorisation certificateisnot valid. The audit element
will reference a user, the owner of the token, there is no additional information in the description.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 88

__BioCheckRequiredC
UserEntryContextC

FlushFingerDataC
=User TokenC
ZDoorLatchAlarmC
=3atsC
=CertificateSore

— UserHasDeparted
statusC = gotUser Token

- User TokenWithOKAuthCertC A User TokenOKC

currentDisplayC’ = insertFinger
statusC’ = waitingFinger
finger Timeout’ = currentTimeC + fingerWaitDuration

auditTypes newElements? N USER_ENTRY_ELEMENTS = {authCertInvalidElement }

3, element : AuditC e element € newElements?
A element.elementld = authCertInvalidElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), FlushFingerDataC (p. 47), UserTokenC (p. 36), DoorLatchAlarmC (p. 35),
SatsC (p. 34), CertificateStore (p. 34), UserHasDeparted (p. 79), User TokenWithOK AuthCertC (p. 73),
User TokenOKC (p. 72), insertFinger (p. 22), waitingFinger (p. 37), USER_ENTRY_ELEMENTS (p. 29),
authCertlnvalidElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

FD.User Entry.ValidateUser TokenFail
FS.UserEntry.ValidateUser TokenFail

If the token cannot be validated then thisislogged and the user isrequired to remove the token. The
audit element detailing this failure will contain the user if this can be extracted from the token. The
description will indicate the point of failure of the card.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 89

__ValidateUser TokenFailC
UserEntryContextC

=User TokenC
=DoorLatchAlarmC
=SatsC
=CertificateSore

— UserHasDeparted
statusC = gotUser Token

- UserTokenOKC A — User TokenWWithOK AuthCertC

currentDisplayC’ = removeToken
statusC’ = waitingRemoveTokenFail

auditTypes newElements? N USER_ENTRY_ELEMENTS = {user Tokenl nvalidElement}

3, element : AuditC; description! : TEXT e
element € newElements?
A element.elementld = user TokenlnvalidElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A (element.description = description! A UserTokenNotOK)

> See: UserEntryContextC (p. 84), UserTokenC (p. 36), DoorLatchAlarmC (p. 35), SatsC (p. 34),
CertificateStore (p. 34), UserHasDeparted (p. 79), User TokenOKC (p. 72), User TokenWWithOK AuthCertC (p. 73),
waitingRemoveTokenFail (p. 37), USER_ENTRY_ELEMENTS (p. 29), user TokenlnvalidElement (p. 28),

AuditC (p. 30), extractUser (p. 30), warning (p. 28), User TokenNotOK (p. 73)

> UserTokenNotOK defines the error description.

6.3.1 Determining whether biometric checks are required
DetermineBioCheckRequired = (BioCheckRequiredC Vv BioCheckNotRequiredC) \ (newElements?)

> See: BioCheckRequiredC (p. 87), BioCheckNotRequiredC (p. 86)

There arelots of things that may go wrong with validation of the user token. I1n each case the system
will terminate the operation unsuccessfully.

TISvalidateUser TokenC = (BioCheckRequiredC v BioCheckNotRequiredC v ValidateUser TokenFailC
V [UserTokenTornC | statusC = gotUserToken]) \ (newElements?)

> See: BioCheckRequiredC (p. 87), BioCheckNotRequiredC (p. 86), ValidateUser TokenFailC (p. 88),
User TokenTornC (p. 84)

6.4 Reading a fingerprint

FD.User Entry.ReadFinger OK
FSUserEntry.ReadFinger OK

A finger will be read if the system is currently waiting for it (has not waited too long) and the user
Token isin place.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 90

__ReadFingerOKC
UserEntryContextC

=DoorLatchAlarmC
=User TokenC
=SatsC

— UserHasDeparted
statusC = waitingFinger
finger PresenceC = present
currentTimeC < finger Timeout

currentDisplayC’ = wait
statusC’ = gotFinger

auditTypes newElements? N USER_ENTRY_ELEMENTS = {finger DetectedElement}

3, element : AuditC e element € newElements?
A element.elementld = finger DetectedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), DoorLatchAlarmC (p. 35), UserTokenC (p. 36), SatsC (p. 34),
UserHasDeparted (p. 79), waitingFinger (p. 37), present (p. 11), wait (p. 22), gotFinger (p. 37),
USER_ENTRY_ELEMENTS (p. 29), finger DetectedElement (p. 28), AuditC (p. 30), extractUser (p. 30),
information (p. 28), noDescription (p. 30)

FD.User Entry.NoFinger
FS.UserEntry.NoFinger

If there is no finger present then, if we have not alowed sufficient attempts to get and validate a
finger, nothing happens.

—_NoFingerC
ZIDSationC
RealWorldChangesC

UserEntryContextC
ZTISControlledRealWorldC

— UserHasDeparted

statusC = waitingFinger
currentTimeC < finger Timeout
finger PresenceC = absent

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), UserEntryContextC (p. 84),
TISControlledRealWorldC (p. 24), UserHasDeparted (p. 79), waitingFinger (p. 37), absent (p. 11)

FD.User Entry.Finger Timeout
FS.UserEntry.Finger Timeout

Alternatively, TIS may have tried to obtain a valid finger for too long, in which case the user is
requested to remove the token and the operation is terminated unsuccessfully.

6.5

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 91

__FingerTimeoutC
UserEntryContextC

=User TokenC
=DoorLatchAlarmC
=SatsC

— UserHasDeparted
statusC = waitingFinger
currentTimeC > finger Timeout

currentDisplayC’ = removeToken
statusC’ = waitingRemoveTokenFail

auditTypes newElements? N USER_ENTRY_ELEMENTS = {finger TimeoutElement }

3, element : AuditC e element € newElements?
A element.elementld = finger TimeoutElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = noDescription

> See: UserEntryContextC (p. 84), UserTokenC (p. 36), DoorLatchAlarmC (p. 35), SatsC (p. 34),
UserHasDeparted (p. 79), waitingFinger (p. 37), waitingRemoveTokenFail (p. 37),
USER_ENTRY_ELEMENTS (p. 29), finger TimeoutElement (p. 28), AuditC (p. 30), extractUser (p. 30),
warning (p. 28), noDescription (p. 30)

TISReadFingerC = (ReadFingerOKC Vv Finger TimeoutC Vv NoFingerC
V [UserTokenTornC | statusC = waitingFinger]) \ (newElements?)

> See: ReadFingerOKC (p. 89), Finger TimeoutC (p. 90), NoFingerC (p. 90), UserTokenTornC (p. 84),
waitingFinger (p. 37)

Validating a finger print

FD.User Entry.ValidateFinger OK
FSUserEntry.ValidateFinger OK FDP_RIP2.1

A finger must match the template information extracted from the userToken for it to be considered
acceptable.

The fingerprint being successfully validated is a prerequisite for generating an authorisation certifi-
cate and adding it to the user token. Validating the fingerprint is performed first.

When logging the success or otherwise of the attempt to read the fingerprint the audit element will
contain the achieved FAR if available.

| achievedFarDescription : INTEGER32 — TEXT

> Seer INTEGER32 (p. 11)

A fingerprint is considered OK if the verifyBio function returns a successful match indication.

Following a successful match the data is flushed from the biometric device.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 92

__ValidateFingerOKC
UserEntryContextC

FlushFingerDataC
=DoorLatchAlarmC
ZUserTokenC

=CertificateSore

AddSuccessful BioCheckToSatsC

— UserHasDeparted
statusC = gotFinger

JachievedFar!, maxFar : INTEGER32 e
maxFar = min{(extractlandACert ((goodTC" currentUser TokenC).iandACertC)).templateC.far, systemMaxFar }
A (match, achievedFar!) =

A (3, element : AuditC e element € newElements?
A element.elementld = finger MatchedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = achievedFar Description achievedFar!)

statusC’ = waitingUpdateToken
currentDisplayC’ = wait

auditTypes newElements? N USER_ENTRY_ELEMENTS = {fingerMatchedElement }

> See: UserEntryContextC (p. 84), FlushFingerDataC (p. 47), DoorLatchAlarmC (p. 35), User TokenC (p. 36),
CertificateStore (p. 34), AddSuccessful BioCheckToStatsC (p. 62), UserHasDeparted (p. 79), gotFinger (p. 37),
INTEGERS32 (p. 11), goodTC (p. 22), match (p. 14), verifyBio (p. 14), AuditC (p. 30),
finger MatchedElement (p. 28), extractUser (p. 30), information (p. 28), achievedFar Description (p. 91),
waitingUpdateToken (p. 37), wait (p. 22), USER_ENTRY_ELEMENTS (p. 29)

FD.User Entry.ValidateFinger Fail
FS.UserEntry.ValidateFinger Fail FDP_RIP2.1

If the fingerprint is not successfully validated the user is asked to remove their token and the entry
attempt is terminated. The biometric check failure is recorded.

Following an unsuccessful match the data is flushed from the biometric device.

verifyBio maxFar (extractlandACert ((goodTC™ currentUser TokenC).iandACertC)).templateC.templateC fingerC

6.6

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 93

__ValidateFingerFailC
UserEntryContextC

FlushFingerDataC

=User TokenC
ZDoorLatchAlarmC
=CertificateSore
AddFailedBioCheckToStatsC

— UserHasDeparted
statusC = gotFinger

JachievedFar!, maxFar : INTEGER32 e
maxFar = min{(extractlandACert ((goodTC" currentUser TokenC).iandACertC)).templateC.far, systemMaxFar }
A (noMatch, achievedFar!) =
verifyBio maxFar (extractlandACert ((goodTC™ currentUser TokenC).iandACertC)).templateC.templateC fingerC

A (3, element : AuditC e element € newElements?
A element.elementld = finger NotMatchedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = achievedFar Description achievedFar!)

currentDisplayC’ = removeToken
statusC’ = waitingRemoveTokenFail

auditTypes newElements? N USER_ENTRY_ELEMENTS = {finger NotMatchedElement }

> See: UserEntryContextC (p. 84), FlushFingerDataC (p. 47), UserTokenC (p. 36), DoorLatchAlarmC (p. 35),
CertificateStore (p. 34), AddFailedBioCheckToStatsC (p. 62), UserHasDeparted (p. 79), gotFinger (p. 37),
INTEGERS32 (p. 11), goodTC (p. 22), noMatch (p. 14), verifyBio (p. 14), AuditC (p. 30),
finger NotMatchedElement (p. 28), extractUser (p. 30), warning (p. 28), achievedFarDescription (p. 91),
waitingRemoveTokenFail (p. 37), USER_ENTRY_ELEMENTS (p. 29)

TISvalidateFingerC = (ValidateFingerOKC Vv ValidateFingerFailC
V [UserTokenTornC | statusC = gotFinger |) \ (newElements?)

> See: ValidateFingerOKC (p. 91), ValidateFingerFailC (p. 92), User TokenTornC (p. 84), gotFinger (p. 37)

Writing the User Token
The user Token will be updated with the new Auth certificate.

We implement a multi-phase design for the activity of writing the user token.

FD.User Entry.ConstructAuthCert
FSUserEntry.WriteUer TokenOK FSUserEntry.WriteUer TokenFail

First the authorisation certificate is constructed. This certificate is added to the local copy of the
user Token. Thiswill not result in any errors since it does not require the use of any peripherals.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 94

__ConstructAuthCert
UserEntryContextC

=DoorLatchAlarmC
AddAuthCertToUser TokenC
ZCertificateSore

=3atsC

— UserHasDeparted
statusC = waitingUpdateToken

statusC’ = statusC
currentDisplayC’ = wait

auditTypes newElements? N USER_ENTRY_ELEMENTS = &

> See: UserEntryContextC (p. 84), DoorLatchAlarmC (p. 35), AddAuthCertToUser TokenC (p. 67),
CertificateStore (p. 34), StatsC (p. 34), UserHasDeparted (p. 79), waitingUpdateToken (p. 37), wait (p. 22),
USER_ENTRY_ELEMENTS (p. 29)

Next the certificate will be updated.

Finally the CertificateStore is updated to show the issuing of the certificate. This will only happen
if the certificate iswritten successfully.

FD.User Entry.WriteUser TokenOK
FS.UserEntry.WriteUser TokenOK

An attempt is made to write this certificate to the token. The write of the authorisation certificate
may be successful...

— WriteUser TokenOKC
UserEntryContextC

UpdateUser TokenC
=DoorLatchAlarmC
ZUserTokenC
UpdateCertificateStore
=3atsC

— UserHasDeparted
statusC = waitingUpdateToken

statusC’ = waitingEntry
currentDisplayC’ = wait

auditTypes newElements? N USER_ENTRY_ELEMENTS = {authCertWrittenElement }

3, element : AuditC e element € newElements?
A element.elementld = authCertWrittenElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), UpdateUser TokenC (p. 46), DoorLatchAlarmC (p. 35), UserTokenC (p. 36),
UpdateCertificateStore (p. 62), SatsC (p. 34), UserHasDeparted (p. 79), waitingUpdateToken (p. 37),
waitingEntry (p. 37), wait (p. 22), USER_ENTRY_ELEMENTS (p. 29), authCertWrittenElement (p. 28),
AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 95

> Note that the decision as to whether to update the certificate store or not can only be made once the attempt to
write to the token has been completed. Only if this write succeeds should the CertificateStore be updated.

FD.User Entry.WriteUser TokenFail
FS.UserEntry.WriteUser TokenFail

... or may fail. The failure case models circumstances where the T1S can detect the failure, through
awrite failure for instance, or afailure to generate the certificate. As thereis no read back of the
authorisation certificate we cannot guarantee that the audit log indicating a successful write means
that the token contains the authorisation certificate. The user will still subsequently be admitted to
the enclave if the conditions are correct.

Whether the authorisation certificate is successfully written or not is non-deterministic in thisdesign
since failure conditions on signing data and writing the certificate are not modelled.

__ WriteUserTokenFailC
UserEntryContextC

UpdateUser TokenC
=DoorLatchAlarmC
ZUserTokenC
=3atsC
=CertificateSore

— UserHasDeparted
statusC = waitingUpdateToken

statusC’ = waitingEntry
currentDisplayC’ = tokenUpdateFailed

auditTypes newElements? N USER_ENTRY_ELEMENTS = {authCertWriteFailedElement}

3, element : AuditC e element € newElements?
A element.elementld = authCertWriteFailedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = noDescription

> See: UserEntryContextC (p. 84), UpdateUser TokenC (p. 46), DoorLatchAlarmC (p. 35), UserTokenC (p. 36),
SatsC (p. 34), CertificateSore (p. 34), UserHasDeparted (p. 79), waitingUpdateToken (p. 37),
waitingEntry (p. 37), tokenUpdateFailed (p. 22), USER_ENTRY_ELEMENTS (p. 29),
authCertWriteFailedElement (p. 28), AuditC (p. 30), extractUser (p. 30), warning (p. 28), noDescription (p. 30)

WriteUser TokenC = WriteUser TokenOKC Vv WriteUser TokenFailC

> See: WriteUser TokenOKC (p. 94), WriteUser TokenFail C (p. 95)

TISWriteUser TokenC = (((ConstructAuthCert \ (newElements?)) § WriteUser TokenC)
V [UserTokenTornC | statusC = waitingUpdateToken]) \ (newElements?)

> See: ConstructAuthCert (p. 93), WriteUser TokenC (p. 95), UserTokenTornC (p. 84), waitingUpdateToken (p. 37)

6.7

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 96

Validating Entry

The door will only be unlocked if the current TIS configuration allows the user to enter the enclave
a thistime. It islikely that TIS configurations will ensure that having a valid Auth Certificate will
guarantee that entry to the enclave is permitted, but such a constraint is not specified here.

TIS checks to ensure that the current configuration allows the user to enter the enclave:

_UserAllowedEntryC
UserTokenC
ConfigC
currentTimeC : TIME

3 ValidTokenC e
goodTC(6ValidTokenC) = currentUser TokenC
A authCertC # nil
A currentTimeC € entryPeriodC (extractAuthCert (theauthCertC)).clearanceC.class

> See: UserTokenC (p. 36), ConfigC (p. 27), TIME (p. 11), ValidTokenC (p. 19), goodTC (p. 22)

FD.UserEntry.EntryOK
FSUserEntry.EntryOK

Only if entry is permitted at the current time will the user be admitted to the enclave.

Notethat if this stage of the processing is reached theinternal representation of the token will always
contain avalid authorisation certificate.

__EntryOKC
UserEntryContextC

=DoorLatchAlarmC
ZUserTokenC
=3atsC
=CertificateSore

— UserHasDeparted
statusC = waitingEntry

UserAllowedEntryC

currentDisplayC’ = openDoor
statusC’ = waitingRemoveTokenSuccess
tokenRemoval TimeoutC' = currentTimeC + tokenRemoval DurationC

auditTypes newElements? N USER_ENTRY_ELEMENTS = {entryPermittedElement }

3, element : AuditC e element € newElements?
A element.elementld = entryPermittedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), DoorLatchAlarmC (p. 35), UserTokenC (p. 36), SatsC (p. 34),
CertificateStore (p. 34), UserHasDeparted (p. 79), waitingEntry (p. 37), User AllowedEntryC (p. 96),
openDoor (p. 22), USER_ENTRY_ELEMENTS (p. 29), entryPermittedElement (p. 28), AuditC (p. 30),
extractUser (p. 30), information (p. 28), noDescription (p. 30)

6.8

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 97

If the user isnot allowed entry at this time they will be requested to remove their token.
__EntryNotAllowedC
UserEntryContextC

=DoorLatchAlarmC
=User TokenC
=3atsC
ZCertificateSore

— UserHasDeparted
statusC = waitingEntry

— UserAllowedEntryC

currentDisplayC’ = removeToken
statusC’ = waitingRemoveTokenFail
tokenRemoval TimeoutC' = tokenRemoval TimeoutC

auditTypes newElements? N USER_ENTRY_ELEMENTS = {entryDeniedElement}

3, element : AuditC e element € newElements?
A element.elementld = entryDeniedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = noDescription

> See: UserEntryContextC (p. 84), DoorLatchAlarmC (p. 35), UserTokenC (p. 36), SatsC (p. 34),
CertificateStore (p. 34), UserHasDeparted (p. 79), waitingEntry (p. 37), User AllowedEntryC (p. 96),
waitingRemoveTokenFail (p. 37), USER_ENTRY_ELEMENTS (p. 29), entryDeniedElement (p. 28),
AuditC (p. 30), extractUser (p. 30), warning (p. 28), noDescription (p. 30)

TISvalidateEntryC = (EntryOKC
V EntryNotAllowedC
V [UserTokenTornC | statusC = waitingEntry]) \ (newElements?)

> See! EntryOKC (p. 96), EntryNotAllowedC (p. 97), User TokenTornC (p. 84), waitingEntry (p. 37)

Unlocking the Door

FD.User Entry.Unlock Door OK
FS.UserEntry.UnlockDoor OK

The door will only be unlocked if the current TIS configuration allows the user to enter the enclave
a thistime. It islikely that TIS configurations will ensure that having a valid Auth Certificate will
guarantee that entry to the enclave is permitted.

The door will only be unlocked once the user has removed their token, this helps remind the user to
take their token with them.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 98

__UnlockDoorOKC
UserEntryContextC

UnlockDoorC
ClearUserToken
AddSuccessful EntryToStatsC
=CertificateSore

UserHasDeparted
statusC = waitingRemoveTokenSuccess

currentDisplayC’ = doorUnlocked
statusC’ = quiescent

> See: UserEntryContextC (p. 84), UnlockDoorC (p. 64), ClearUserToken (p. 72),
AddSuccessful EntryToSatsC (p. 61), CertificateStore (p. 34), UserHasDeparted (p. 79), doorUnlocked (p. 22),
quiescent (p. 37)

FD.User Entry.WaitingTokenRemoval
FS.User Entry.WaitingTokenRemoval

The system will wait indefinitely for atoken to be removed, however the system will deny entry to
auser who takes too long to extract their token.

__\WaitingTokenRemoval C
ZIDSationC
RealWorldChangesC

=TISControlledRealWor|dC

— UserHasDeparted
statusC = waitingRemoveTokenSuccess
currentTimeC < tokenRemoval TimeoutC

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), TISControlledRealWorldC (p. 24),
UserHasDeparted (p. 79)

> The constraints on this schema have been tightened as idling while waiting for a failed token to be removed is
considered part of the T1S system idle rather than the user entry operation.

FD.User Entry.TokenRemoval Timeout
FS.User Entry. TokenRemoval Timeout

If the user waits too long to remove their token then thisislogged and the system continues to wait
for the token to be removed but will no longer allow access to the enclave.

6.9

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 99

__TokenRemoval TimeoutC
UserEntryContextC

=DoorLatchAlarmC
=User TokenC
=SatsC
=CertificateSore

— UserHasDeparted
statusC = waitingRemoveTokenSuccess
currentTimeC > tokenRemoval TimeoutC

statusC’ = waitingRemoveTokenFail
currentDisplayC’ = removeToken

auditTypes newElements? N USER_ENTRY_ELEMENTS = {entryTimeoutElement}

3, element : AuditC e element € newElements?
A element.elementld = entryTimeoutElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = warning
A element.description = noDescription

> See: UserEntryContextC (p. 84), DoorLatchAlarmC (p. 35), UserTokenC (p. 36), SatsC (p. 34),
CertificateStore (p. 34), UserHasDeparted (p. 79), waitingRemoveTokenFail (p. 37),
USER_ENTRY_ELEMENTS (p. 29), entryTimeoutElement (p. 28), AuditC (p. 30), extractUser (p. 30),
warning (p. 28), noDescription (p. 30)

TISUnlockDoorC = (UnlockDoorOKC Vv WaitingTokenRemovalC
V TokenRemoval TimeoutC) \ (newElements?)

> See: UnlockDoorOKC (p. 97), WaitingTokenRemoval C (p. 98), TokenRemoval TimeoutC (p. 98)

Terminating a failed access

FD.User Entry.FailedAccessTokenRemoved
FS.UserEntry.FailedAccessTokenRemoved

If an access attempt has failed the system waits for the token to be removed before a new user entry
operation can commence. Once the token has been removed a new user entry may start.

The operations in the enclave are not blocked on the presence of a failed user token in the token
reader.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 100

__FailedAccessTokenRemovedC
UserEntryContextC

ClearUserToken
=DoorLatchAlarmC
AddFailedEntryToStatsC
=CertificateSore

UserHasDeparted
statusC = waitingRemoveTokenFail

currentDisplayC’ = welcome
statusC’ = quiescent

auditTypes newElements? N USER_ENTRY_ELEMENTS = {user TokenRemovedElement }

3, element : AuditC e element € newElements?
A element.elementld = user TokenRemovedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentUser TokenC
A element.severity = information
A element.description = noDescription

> See: UserEntryContextC (p. 84), ClearUser Token (p. 72), DoorLatchAlarmC (p. 35),
AddFailedEntryToStatsC (p. 61), CertificateStore (p. 34), UserHasDeparted (p. 79),
waitingRemoveTokenFail (p. 37), welcome (p. 22), quiescent (p. 37), USER_ENTRY_ELEMENTS (p. 29),
user TokenRemovedElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

TISCompleteFailedAccessC = FailedAccessTokenRemovedC \ (newElements?)

> See: FailedAccessTokenRemovedC (p. 99)

6.10 The Complete User Entry

The complete authentication process, triggered by TIS reading a User Token, involves validating
the user Token, reading and validating the fingerprint, writing an authorisation certificate to the user
token, waiting for the user to remove the token, opening the door to the enclave and in the case of a
failure waiting for the system to be in a state where it can admit another user.

TISUserEntryOpC = TISReadUser TokenC Vv TISvalidateUser TokenC Vv TISReadFingerC Vv TISvalidateFingerC
Vv TISWriteUserTokenC Vv TISvalidateEntryC v TISUnlockDoorC Vv TISCompleteFailedAccessC

> See: TISReadUser TokenC (p. 86), TISValidateUser TokenC (p. 89), TISReadFingerC (p. 91),
TISValidateFingerC (p. 93), TISWriteUser TokenC (p. 95), TISvalidateEntryC (p. 97), TISUnlockDoorC (p. 99),
TISCompleteFailedAccessC (p. 100)

This can be divided into starting a user entry:

TISSartUserEntry = TISReadUser TokenC

> See: TISReadUser TokenC (p. 86)

FD.User Entry.ProgressUser Entry
FSUserEntry. TISUserEntryOp

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 101

and progressing a started user entry:
TISProgressUserEntry = TISvalidateUser TokenC Vv TISReadFingerC v TISvalidateFingerC
V TISWFriteUser TokenC Vv TISvalidateEntryC v TISUnlockDoorC Vv TISCompl eteFailedAccessC

> See: TISvalidateUser TokenC (p. 89), TISReadFingerC (p. 91), TISvalidateFingerC (p. 93),
TISWriteUser TokenC (p. 95), TISvalidateEntryC (p. 97), TISUnlockDoorC (p. 99),
TISCompleteFailedAccessC (p. 100)

7.1

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 102

OPERATIONSWITHIN THE ENCLAVE

A number of interactions with TIS may occur within the Enclave. These interactions |eave some of
the IDSation state unchanged.

__EnclaveContextC
AlDSationC
RealWorldChangesC

=TISControlledRealWor|dC

=User TokenC
EFingerC
=3atsC
=CertificateSore
=Keyboard

finger Timeout’ = finger Timeout
tokenRemoval TimeoutC' = tokenRemoval TimeoutC

> See: IDSationC (p. 38), RealWorldChangesC (p. 40), TISControlledRealWorldC (p. 24), User TokenC (p. 36),
FingerC (p. 36), SatsC (p. 34), CertificateStore (p. 34)

> The following state components may change KeyStoreC, FloppyC, ConfigC, AdminC, InternalC, AdminTokenC
DoorLatchAlarmC and AuditLogC.

> The components of the real world controlled by TIS remain unchanged.

The operations that may occur within the enclave include administrator operations and the ID station
enrolment. These are described in this section.

Enrolment of an ID Station

FD.Enclave.TISEnrolOp
FS.Enclave. TISEnrolOp

Before TIS can be used it must be enrolled.
We assume that the initial enrolment isthe only possible enrolment activity.

Enrolment is a multi-phase activity, the state transistions for an enrolment are given in Figure 7.1.
Before enrolment the system is in state notEnrolled and, on successful completion, it enters the
quiescent state.

The context for al enrolment operations is given below.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 103

RequestEnrolment

enclaveQuiescent

/f notEnrolled

FailedEnrolFloppyRemoved

ReadEnrolmentFloppy
ValidateEnrolmentDataOK
@dEnrol

waitingEnrol

ValidateEnrolmentDataFail

Figure 7.1: Enrolment state transitions

__EnrolContextC
EnclaveContextC

ZAdminC
ZAdminTokenC
=DoorLatchAlarmC
=ConfigC
=FloppyC
AddElementsToLogC
LogChangeC

auditTypes newElements? C ENROL_ELEMENTSU USER_INDEPENDENT _ELEMENTS

> See: EnclaveContextC (p. 102), AdminC (p. 35), AdminTokenC (p. 36), DoorLatchAlarmC (p. 35),
ConfigC (p. 27), FloppyC (p. 36), AddElementsToLogC (p. 51), LogChangeC (p. 61),
ENROL_ELEMENTS (p. 29), USER_INDEPENDENT _ELEMENTS (p. 29)

> The following state components may change KeyStore, Internal and AuditLog.

711 Requesting Enrolment

FD.Enclave.RequestEnrolment
FS.Enclave.RequestEnrol ment

The ID station will request enrolment while there is no Floppy present. This will occur until a
successful enrolment is achieved.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 104
_ReguestEnrolmentC
Enrol ContextC
=KeyStoreC
=FloppyC

enclaveStatusC = notEnrolled
floppyPresenceC = absent

currentScreenC’ .screenMsgC = insertEnrolmentDataC

enclaveStatusC’ = enclaveStatusC
statusC’ = statusC
currentDisplayC’ = blank

auditTypes newElements? N ENROL_ELEMENTS = &

> See: EnrolContextC (p. 102), KeyStoreC (p. 33), FloppyC (p. 36), notEnrolled (p. 37), absent (p. 11),
blank (p. 22), ENROL_ELEMENTS (p. 29)

FD.Enclave.ReadEnrolmentFloppy
FS.Enclave.ReadEnrol mentFloppy

If afloppy is present then TIS goes on to validate the contents. Nothing is written to the log at this
stage as log entries will be made on successful or failed enrolment.

_ReadEnrolmentFloppyC
Enrol ContextC

ReadFloppyC
=KeyStoreC

enclaveStatusC = notEnrolled
floppyPresenceC = present

currentScreenC’ .screenMsgC = validatingEnrolmentDataC

enclaveStatusC’ = waitingEnrol
statusC’ = statusC
currentDisplayC’ = blank

auditTypes newElements? N ENROL_ELEMENTS = &

> See: EnrolContextC (p. 102), ReadFloppyC (p. 44), KeyStoreC (p. 33), notEnrolled (p. 37), present (p. 11),
validatingEnrolmentDataC (p. 23), waitingEnrol (p. 37), blank (p. 22), ENROL_ELEMENTS (p. 29)

ReadEnrolmentDataC = (ReadEnrolmentFloppyC v RequestEnrolmentC) \ (newElements?)

> See: ReadEnrolmentFloppyC (p. 104), RequestEnrolmentC (p. 103)

7.1.2 Vdidating Enrolment data from Floppy

For the enrolment data to be acceptable the data on the floppy must be valid enrolment data with the
ID Station certificate containing this ID station’s public key.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 105
___EnrolmentDataOKC
FloppyC
KeyStoreC

currentFloppyC € ran enrolmentFileC
(3 ValidEnrolC e 6ValidEnrolC = enrolmentFileC™ currentFloppyC)

> See: FloppyC (p. 36), KeyStoreC (p. 33), enrolmentFileC (p. 22), ValidEnrolC (p. 21)

FD.Enclave.ValidateEnrolmentDataOK
FS.Enclave.ValidateEnrolmentDataOK

If the data on the floppy is acceptable to be used for enrolment then the Key store is updated. From
this point the system is available for use both by users entering the enclave and by administrators.

A successful enrolment is recorded in the audit log, no user can be associated with the enrolment

activity.
__ValidateEnrolmentDataOKC

EnrolContextC

ZFloppyC
UpdateKeySoreFromFloppyC

enclaveStatusC = waitingEnrol
EnrolmentDataOKC
currentScreenC’ .screenMsgC = welcomeAdminC

enclaveStatusC’ = enclaveQuiescent
statusC’ = quiescent
currentDisplayC’ = welcome

auditTypes newElements? N ENROL_ELEMENTS = {enrolmentCompleteElement }

3, element : AuditC e element € newElements?
A element.elementld = enrolmentCompl eteElement
A element.logTime € nowC . . nowC’
A element.user = noUser
A element.severity = information
A element.description = noDescription

> See: EnrolContextC (p. 102), FloppyC (p. 36), UpdateKeyStoreFromFloppyC (p. 68), waitingEnrol (p. 37),
EnrolmentDataOKC (p. 104), welcomeAdminC (p. 23), quiescent (p. 37), welcome (p. 22),
ENROL_ELEMENTS (p. 29), enrolmentCompl eteElement (p. 28), AuditC (p. 30), noUser (p. 30),
information (p. 28), noDescription (p. 30)

FD.Enclave.ValidateEnrolmentDataFail
FS.Enclave.ValidateEnrolmentDataFail

If the enrolment fails then TIS waits for the floppy to be removed before prompting for new enrol-
ment data.

7.13

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 106
—_ValidateEnrolmentDataFailC
Enrol ContextC
=KeyStoreC
=FloppyC

enclaveStatusC = waitingEnrol
— EnrolmentDataOKC
currentScreenC’ .screenMsgC = enrolmentFailedC

enclaveStatusC’ = waitingEndEnrol
statusC’ = statusC
currentDisplayC’ = blank

auditTypes newElements? N ENROL_ELEMENTS = {enrolmentFailedElement}

3, element : AuditC e element € newElements?
A element.elementld = enrolmentFail edElement
A element.logTime € nowC . . nowC’
A element.user = noUser
A element.severity = warning

> See: EnrolContextC (p. 102), KeyStoreC (p. 33), FloppyC (p. 36), waitingEnrol (p. 37),
EnrolmentDataOKC (p. 104), enrolmentFailedC (p. 23), waitingEndEnrol (p. 37), blank (p. 22),
ENROL_ELEMENTS (p. 29), enrolmentFailedElement (p. 28), AuditC (p. 30), noUser (p. 30), warning (p. 28)

> The value of the description is left free here as the description component of the audit element may contain
information relating to the reason that the enrolment data failed. Thisis not formally stated.

ValidateEnrolmentDataC = ValidateEnrolmentDataOKC Vv ValidateEnrolmentDataFailC

> See: ValidateEnrolmentDataOKC (p. 105), ValidateEnrolmentDataFailC (p. 105)

Completing afailed Enrolment

A failed enrolment will only terminate once the floppy has been removed, otherwise the system
would repeatedly try to validate the same floppy.

FD.Enclave.FailedEnrolFloppyRemoved
FS.Enclave.FailedEnrol FloppyRemoved

Once the floppy has been removed the administrator is prompted for enrolment data again. We do
not log the removal of the floppy in the audit log.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 107

__FailedEnrol FloppyRemovedC
Enrol ContextC

=FloppyC
=KeyStoreC

enclaveStatusC = waitingEndEnrol
floppyPresenceC = absent

currentScreenC’ .screenMsgC = insertEnrolmentDataC

enclaveStatusC’ = notEnrolled
statusC’ = statusC
currentDisplayC’ = blank

auditTypes newElements? N ENROL_ELEMENTS = &

> See: EnrolContextC (p. 102), FloppyC (p. 36), KeySoreC (p. 33), waitingEndEnroal (p. 37), absent (p. 11),
notEnrolled (p. 37), blank (p. 22), ENROL_ELEMENTS (p. 29)

FD.Enclave. WaitingFloppyRemoval
FS.Enclave.WaitingFloppyRemoval

—WaitingFloppyRemoval C
EnclaveContextC

=IDSationC

enclaveStatusC = waitingEndEnrol
floppyPresenceC = present

> See: EnclaveContextC (p. 102), IDStationC (p. 38), waitingEndEnrol (p. 37), present (p. 11)
CompleteFailedEnrolmentC = FailedEnrol FloppyRemovedC Vv WaitingFloppyRemoval C

> See: FailedEnrol FloppyRemovedC (p. 106), WaitingFloppyRemoval C (p. 107)

7.14 The Complete Enrolment

The complete enrolment process involves reading the enrolment data, validating it and, in the case
of afailure waiting for the system to be in a state where it can try another enrolment.

TISEnrolOpC = (ReadEnrolmentDataC Vv ValidateEnrolmentDataC
v CompleteFailedEnrolmentC) \ (newElements?)

> See: ReadEnrolmentDataC (p. 104), ValidateEnrolmentDataC (p. 106), Compl eteFailedEnrolmentC (p. 107)

7.2 Administrator Token Tear

The action of removing the administrator Token will result in the administrator being logged out of
the system.

This may happen at any point once a token has been inserted into the reader. As soon as the
adminitrator’s token istorn this action will be logged.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 108

__ AdminTokenTearC
EnclaveContextC
AddElementsToLogC
LogChangeC

Clear AdminToken
=ConfigC

=FloppyC
ResetScreenMessageC

adminTokenPresenceC = absent

currentScreenC’ .screenMsgC = welcomeAdminC
statusC’ = statusC
currentDisplayC’ = currentDisplayC

enclaveStatusC’ = enclaveQuiescent

> See: EnclaveContextC (p. 102), AddElementsToLogC (p. 51), LogChangeC (p. 61), Clear AdminToken (p. 74),
ConfigC (p. 27), FloppyC (p. 36), ResetScreenMessageC (p. 83), absent (p. 11), welcomeAdminC (p. 23)

If the admin token is torn while the system is processing an activity within the enclave then the
activity will be stopped.

__BadAdminTokenTearC
AdminTokenTearC

AdminHasDeparted
enclaveStatusC € {gotAdminToken, waitingStartAdminOp, waitingFinishAdminOp}

auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenRemovedElement }

3, element : AuditC e element € newElements?
A element.elementld = adminTokenRemovedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = noDescription

> See: AdminTokenTearC (p. 107), AdminHasDeparted (p. 80), waitingStartAdminOp (p. 37),
waitingFinishAdminOp (p. 37), ADMIN_ELEMENTS (p. 29), adminTokenRemovedElement (p. 28),
AuditC (p. 30), extractUser (p. 30), warning (p. 28), noDescription (p. 30)

FD.Enclave.LoginAborted
FSEnclave.LoginAborted

If the token is torn during the log on validation process then there is no need to log off the adminis-
trator.

__LoginAbortedC
BadAdminTokenTearC
=AdminC

enclaveStatusC = gotAdminToken

> See: BadAdminTokenTearC (p. 108), AdminC (p. 35)

7.3

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 109

Administrator Login

An Administrator logsinto TIS by inserting avalid token into the adminToken reader. The authori-
sation certificate is verified and the user is logged in with the privileges indicated on the card.

Oncethe administrator is successfully logged into TIS, the system records that there isarole present.
The process of logging on is given by the state transition diagram in Figure 7.2

enclaveQuiescent
rolePresent = nil

i

FailedAdminTokenRemoved

ReadAdminToken

LoginAborted

TokenRemovedAdminLogout — -

waitingRemoveAdminTokenFail
rolePresent = nil

gotAdminToken
rolePresent = nil

alidateAdminTokenFai

AdminTokenTimeout

ValidateAdminTokenO

enclaveQuiescent
rolePresent /= nil

Figure 7.2: Administrator logon state transitions

The context for administrator login is given below.

__LoginContextC
EnclaveContextC

=KeyStoreC
=DoorLatchAlarmC
=ConfigC
AddElementsToLogC
LogChangeC

statusC’ = statusC
currentDisplayC’ = currentDisplayC

> See: EnclaveContextC (p. 102), KeyStoreC (p. 33), DoorLatchAlarmC (p. 35), ConfigC (p. 27),
AddElementsToLogC (p. 51), LogChangeC (p. 61)

> The following state components may change AdminC, InternalC and AuditLogC.

731

7.3.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 110

Read Administrator Token

FD.Enclave.GetPresentAdminToken
FS.Enclave.ReadAdminToken

When the admin token is read the action is audited and the internal status changes. No other aspects
of the system are modified.

An administrator can only log on when there is no user entry activity in progress or TISis waiting
for afailed user token to be removed from the token reader outside of the enclave.

__ GetPresentAdminTokenC
LoginContextC

=AdminC
ReadAdminTokenC

AdminLogonCanStart
enclaveStatusC’ = gotAdminToken
currentScreenC’ = currentScreenC
auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenPresentElement }

3, element : AuditC e element € newElements?
A element.elementld = adminTokenPresentElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC’
A element.severity = information
A element.description = noDescription

> See: LoginContextC (p. 109), AdminC (p. 35), ReadAdminTokenC (p. 44), AdminLogonCanStart (p. 81),
ADMIN_ELEMENTS (p. 29), adminTokenPresentElement (p. 28), AuditC (p. 30), extractUser (p. 30),
information (p. 28), noDescription (p. 30)

The operation to read the token is as follows:

TISReadAdminTokenC = GetPresentAdminTokenC \ (newElements?)

> See: GetPresentAdminTokenC (p. 110)

Validate Administrator Token

An administrator’s token is considered valid if it contains a valid and current authorisation cer-
tificate. Additionally the privileges assigned to the user within the authorisation certificate must
indicate that the user is actually an administrator.

FD.Enclave.ValidateAdminTokenOK
FS.Enclave.ValidateAdminTokenOK

If the token can be validated then the administrator islogged onto TIS.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 111

__ValidateAdminTokenOKC
LoginContextC

=AdminTokenC

= AdminHasDeparted
enclaveStatusC = gotAdminToken

AdminTokenOKC
currentScreenC’ .screenMsgC = requestAdminOpC
enclaveStatusC’ = enclaveQuiescent

JrequiredRole? : ADMINPRIVILEGE e AdminLogonC
A requiredRole? = (extractAuthCert (the (goodTC™ currentAdminTokenC).authCertC)).roleC

auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenValidElement}

3, element : AuditC e element € newElements?
A element.elementld = adminTokenValidElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC’
A element.severity = information
A element.description = noDescription

> See! LoginContextC (p. 109), AdminTokenC (p. 36), AdminHasDeparted (p. 80), AdminTokenOKC (p. 74),
ADMINPRIVILEGE (p. 34), AdminLogonC (p. 76), goodTC (p. 22), ADMIN_ELEMENTS (p. 29),
adminTokenValidElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

FD.Enclave.ValidateAdminTokenFail
FS.Enclave.ValidateAdminTokenFail

If the token can not be validated then TIS waits for it to be removed.

__ValidateAdminTokenFailC
LoginContextC

=AdminTokenC
=AdminC

= AdminHasDeparted

enclaveStatusC = gotAdminToken

= AdminTokenOKC

currentScreenC’ .screenMsgC = removeAdminTokenC

enclaveXtatusC’ = waitingRemoveAdminTokenFail

auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenl nvalidElement}

3, element : AuditC; description! : TEXT e
element € newElements?
A element.elementld = adminTokenlnvalidElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC’
A element.severity = warning
A element.description = description! A AdminTokenNotOK

> See: LoginContextC (p. 109), AdminTokenC (p. 36), AdminC (p. 35), AdminHasDeparted (p. 80),
AdminTokenOKC (p. 74), removeAdminTokenC (p. 23), waitingRemoveAdminTokenFail (p. 37),

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 112

ADMIN_ELEMENTS (p. 29), adminTokenlnvalidElement (p. 28), AuditC (p. 30), extractUser (p. 30),
warning (p. 28), AdminTokenNotOK (p. 75)

> AdminTokenNotOK defines the value of the descriptive text applicable based on the reason for the unacceptability
of the token.

TISvalidateAdminTokenC = (ValidateAdminTokenOKC Vv ValidateAdminTokenFailC
V LoginAbortedC) \ (newElements?)

> See: ValidateAdminTokenOKC (p. 110), ValidateAdminTokenFailC (p. 111), LoginAbortedC (p. 108)

7.3.3 Complete Failed Administrator Logon

If an administrator token has failed to be accepted by TIS then no further actions can take place in
the enclave until it has been removed.

FD.Enclave.FailedAdminTokenRemoved
FS.Enclave.FailedAdminTokenRemoved

The administrator token may be removed at any point during a user entry, hence the context for this
activity does not place restrictions on the value of status.

When the admin token isremoved TISreturnsto a state ready to accept another administrator logon.

__FailedAdminTokenRemovedC
LoginContextC

=AdminC
Clear AdminToken

AdminHasDeparted
enclaveStatusC = waitingRemoveAdminTokenFail

currentScreenC’.screenMsgC = welcomeAdminC
enclaveStatusC’ = enclaveQuiescent

statusC’ = statusC
currentDisplayC’ = currentDisplayC

auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenRemovedElement }

3, element : AuditC e element € newElements?
A element.elementld = adminTokenRemovedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information
A element.description = noDescription

> See: LoginContextC (p. 109), AdminC (p. 35), Clear AdminToken (p. 74), AdminHasDeparted (p. 80),
waitingRemoveAdminTokenFail (p. 37), welcomeAdminC (p. 23), ADMIN_ELEMENTS (p. 29),
adminTokenRemovedElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28),
noDescription (p. 30)

The case where the token is not removed will be captured within the model of the system being idle.
TISCompl eteFailedAdminLogonC = FailedAdminTokenRemovedC

> See: FailedAdminTokenRemovedC (p. 112)

734

7.4

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 113

The Complete Administrator Logon

FD.Enclave.TISAdminLogin
FSEnclave. TISAdminLogin

The complete administrator logon process, from the point that the system has detected the presence
of atoken in the administrator reader, involves validating the administrator token and, in the case of
afailure waiting for the system to be in a state where it can try another logon.

TISAdminLogonC = TISReadAdminTokenC Vv TISvalidateAdminTokenC Vv TISCompleteFailedAdminLogonC

> See: TISReadAdminTokenC (p. 110), TISvalidateAdminTokenC (p. 112),
TISCompletefailedAdminLogonC (p. 112)

This can be divided into starting the administrator logon:

TISSartAdminLogonC = TISReadAdminTokenC

> See: TISReadAdminTokenC (p. 110)

and progressing the logon to compl etion.

TISProgressAdminLogon = TISvalidateAdminTokenC Vv TISCompleteFailedAdminLogonC

> See: TISvalidateAdminTokenC (p. 112), TISCompleteFailedAdminLogonC (p. 112)

Administrator L ogout

Administrator logout can be achieved in two ways, either the administrator removes their token
from TIS, or the Authorisation certificate on the token expires, causing the system to automatically
log off the administrator.

FD.Enclave. AdminL ogout
FS.Enclave.AdminLogout

If TISis not performing an administrator operation then the token may be removed to log out the
administrator.

__TokenRemovedAdminLogoutC
AdminTokenTearC
AdminLogoutC

Clear AdminToken

PresentAdminHasDeparted
enclaveStatusC = enclaveQuiescent

auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenRemovedElement }

3, element : AuditC e element € newElements?
A element.elementld = adminTokenRemovedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information
A element.description = noDescription

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 114

> See: AdminTokenTearC (p. 107), AdminLogoutC (p. 76), Clear AdminToken (p. 74),
PresentAdminHasDeparted (p. 78), ADMIN_ELEMENTS (p. 29), adminTokenRemovedElement (p. 28),
AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

FD.Enclave.BadAdminL ogout
FS.Enclave.BadAdminLogout

If the administrator is performing an operation (other than shutdown) when the token is torn then
the administrator will be logged off.

—BadAdminLogoutC
BadAdminTokenTearC
AdminLogoutC

PresentAdminHasDeparted
enclaveStatusC € {waitingStartAdminOp, waitingFinishAdminOp}

> See: BadAdminTokenTearC (p. 108), AdminLogoutC (p. 76), PresentAdminHasDeparted (p. 78),
waitingStartAdminOp (p. 37), waitingFinishAdminOp (p. 37)

FD.Enclave AdminTokenTimeout
FS.Enclave. AdminTokenTimeout

The TISwill automatically logout an administrator whose token expires. This occurs if the validity
period on the Authorisation certificate expires.

__ AdminTokenTimeoutC
LoginContextC

AdminLogoutC
AddElementsToLogC
ResetScreenMessageC

AdminTokenHasExpired
enclaveXtatusC’ = waitingRemoveAdminTokenFail
auditTypes newElements? N ADMIN_ELEMENTS = {adminTokenExpiredElement }

3, element : AuditC e element € newElements?
A element.elementld = adminTokenExpiredElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = noDescription

> See: LoginContextC (p. 109), AdminLogoutC (p. 76), AddElementsToLogC (p. 51),
ResetScreenMessageC (p. 83), AdminTokenHasExpired (p. 78), waitingRemoveAdminTokenFail (p. 37),
ADMIN_ELEMENTS (p. 29), adminTokenExpiredElement (p. 28), AuditC (p. 30), extractUser (p. 30),
warning (p. 28), noDescription (p. 30)

FD.Enclave.TI SCompleteTimeoutAdminL ogout
FS.Enclave.TI SCompl eteTimeoutAdminLogout

74.1

7.5

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 115

If the administrator’s token expires then it must be removed before further activities can take place
at the TIS console. The behaviour and conditions are identical to the behaviour when the system
waits for athe administrator to remove their token following afailed logon.

TISCompleteTimeoutAdminLogoutC = TISCompleteFailedAdminLogonC
> See: TISCompleteFailedAdminLogonC (p. 112)

Complete Administrator Logout

FD.Enclave.TI SAdminL ogout
FS.Enclave.TI SAdminLogout

The complete administrator logout process which must be performed as soon as an Administrator
needs to be logged out is given below.

TISAdminLogoutC = (TokenRemovedAdminLogoutC Vv AdminTokenTimeoutC
V BadAdminLogoutC) \ (newElements?)

> See: TokenRemovedAdminLogoutC (p. 113), AdminTokenTimeoutC (p. 114), BadAdminLogoutC (p. 114)

Administrator Operations

An administrator operation can take place as long as an administrator is present. The operation is
started by receiving avalid request to perform an operation from the keyboard. TISwill ensure that
the requested operation is one compatible with the current role present.

Once the operation is started the behaviour depends on the type of operation. Operations are either
short, and can be implemented in one phase or they are multi-phase operations.

shutdown and overrideLock are short operations, while archivelLog and updateCofigData are multi
phase operations.

The state transition diagram for administrator operations is given in Figure 7.3

All administrator operations have a common context, in which the AdminToken does not change.
An administrator can only perform an operation when there is no user entry activity in progress or
TISiswaiting for afailed user token to be removed from the token reader outside of the enclave.

AdminOpContextC
EnclaveContextC

=KeyStoreC
ZAdminTokenC
AddElementsToLogC
LogChangeC

> See: EnclaveContextC (p. 102), KeyStoreC (p. 33), AdminTokenC (p. 36), AddElementsToLogC (p. 51),
LogChangeC (p. 61)

> The following state components may change FloppyC, ConfigC, AdminC, DoorLatchAlarmC and AuditLogC.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 116

enclaveQuiescent
rolePresent = nil

TokenRemovedAdminLogout

enclaveQuiescent
rolePresent /= nil

FinishArchiveLogOK
FinishArchiveLogFail
FinishUpdateConfigDataOK
FinishUpdateConfigDataFail

waitingFinishAdminOp StartArchiveLogOK
rolePresent /= nil StartUpdateConfigOK

Figure 7.3: Administrator operation state transitions

BadAdminLogout

BadAdminLogout
ValidateOpRequestFail

ValidateOpRequestOK

ShutdownOK
OverrideDoorLockOK

waitingStartAdminOp
rolePresent /= nil

StartArchiveLogWaitingFloppy
StartUpdateConfigWaitingFloppy
ShutdownWaitingDoor

Once an operation has been started its context is given by:

__ AdminOpStartedContextC
AdminOpContextC

— AdminHasDeparted
enclaveStatusC = waitingStartAdminOp

statusC’ = statusC

> See: AdminOpContextC (p. 115), AdminHasDeparted (p. 80), waitingStartAdminOp (p. 37)

Some operations are multi-phase, the context for completing a multi-phase operation is given by:

— AdminOpFinishContextC
AdminOpContextC

AdminFinishOpC

— AdminHasDeparted
enclaveStatusC = waitingFinishAdminOp

statusC’ = statusC
currentDisplayC’ = currentDisplayC

enclaveStatusC’ = enclaveQuiescent

> See: AdminOpContextC (p. 115), AdminFinishOpC (p. 77), AdminHasDeparted (p. 80),
waitingFinishAdminOp (p. 37)

7.6

7.6.1

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 117

Starting Oper ations

All administrator operations are initiated in the same way. This involves validating the latest key-
board input and determining whether it is avalid operation reguest.

TIS only attempts to start an operation if there is an administrator present and there is no current
activity in the enclave. An administrator can only start an operation when there is no user entry
activity in progress or TIS is waiting for a failed user token to be removed from the token reader
outside of the enclave.

_ SartOpContextC
EnclaveContextC

=DoorLatchAlarmC
=ConfigC
=FloppyC
=KeyStoreC
ZAdminTokenC
AddElementsToLogC
LogChangeC

AdminOpCanStart

statusC’ = statusC
currentDisplayC’ = currentDisplayC

> See: EnclaveContextC (p. 102), DoorLatchAlarmC (p. 35), ConfigC (p. 27), FloppyC (p. 36), KeyStoreC (p. 33),
AdminTokenC (p. 36), AddElementsToLogC (p. 51), LogChangeC (p. 61), AdminOpCanStart (p. 81)

> The following state components may change InternalC, AdminC and AuditLogC.

> We strengthen the precondition of this context to give priority to starting a user entry over starting an administrator
operation.

Validating an Operation Request

FD.Enclave.ValidateOpRequestOK
FS.Enclave.ValidateOpReguestOK

Once the data from the keyboard has been read this must be validated to ensure it corresponds to a
valid operation.

| keyedDataText : KEYBOARD — TEXT

> Seet KEYBOARD (p. 23)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 118

__ValidateOpRequestOKC
SartOpContextC

keyedDataPresenceC = present
Jrequest? : KEYBOARD e request? = keyboardC A AdminOplsAvailable

currentScreenC’ .screenMsgC = doingOpC
enclaveStatusC’ = waitingStartAdminOp

3 requestedOp? : ADMINOP e requestedOp? = keyedOps™ keyboardC
A AdminStartOpC

auditTypes newElements? N ADMIN_ELEMENTS = {operationSartElement}

3, element : AuditC e element € newElements?
A element.elementld = operationStartElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information
A element.description = keyedDataText keyboardC

> See: SartOpContextC (p. 117), present (p. 11), KEYBOARD (p. 23), AdminOpl sAvailable (p. 77),
doingOpC (p. 23), waitingStartAdminOp (p. 37), ADMINOP (p. 34), keyedOps (p. 23), AdminSartOpC (p. 76),
ADMIN_ELEMENTS (p. 29), operationStartElement (p. 28), AuditC (p. 30), extractUser (p. 30),
information (p. 28), keyedDataText (p. 117)

FD.Enclave.ValidateOpRequestFail
FS.Enclave.ValidateOpRequestFail

If the data from the keyboard doesn’t correspond to an operation that can be performed at present
then the operation is not started and the attempt to start an illegal operation islogged.

__ValidateOpRequestFailC
SartOpContextC

=AdminC

keyedDataPresenceC = present
Jrequest? : KEYBOARD e request? = keyboardC A — AdminOplsAvailable

currentScreenC’ .screenMsgC = invalidRequestC
enclaveStatusC’ = enclaveStatusC
auditTypes newElements? N1 ADMIN_ELEMENTS = {invalidOpRequestElement }

3, element : AuditC e element € newElements?
A element.elementld = invalidOpReguestElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = keyedDataText keyboardC

> See: SartOpContextC (p. 117), AdminC (p. 35), present (p. 11), KEYBOARD (p. 23),
AdminOplsAvailable (p. 77), invalidRequestC (p. 23), ADMIN_ELEMENTS (p. 29),
invalidOpReguestElement (p. 28), AuditC (p. 30), extractUser (p. 30), warning (p. 28), keyedDataText (p. 117)

FD.Enclave.NoOpRequest
FS.Enclave.NoOpReguest

7.6.2

7.7

7.7.1

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 119

If there is no data at the keyboard then T1S waits for user interaction.

—NoOpRequestC
SartOpContextC

ZIDSationC
keyedDataPresenceC = absent

> See StartOpContextC (p. 117), IDSationC (p. 38), absent (p. 11)

ValidateOpRequestC = ValidateOpRequestOKC Vv ValidateOpReguestFailC v NoOpRequestC

> See: ValidateOpRequestOKC (p. 117), ValidateOpRequestFail C (p. 118), NoOpRequestC (p. 119)

Complete Operation Start

FD.Enclave.TISStartAdminOp
FSEnclave. TISStartAdminOp

The process of starting an administrator operation involves exactly the validation of an operation
request.

TISSartAdminOpC = ValidateOpRequestC

> See: ValidateOpRequestC (p. 119)

ArchivingtheLog
When the log is archived it is copied to floppy and the internally held log is truncated.
Theinternally held log can only be truncated if the write to floppy succeeds.

To check that the archive succeeded the floppy isread back and the data compared with that held by
the system.

This is atwo phase operation, during the first phase the log is written to floppy, during the second
phase the data on the floppy is validated.

Writing the archive Log

FD.Enclave.StartArchivel ogOK
FS.Enclave.StartArchiveLogOK

Thefirst phase of this operation isto write the archive log to floppy.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 120

__SartArchiveLogOKC
EnclaveContextC

ZAdminTokenC
=KeyboardC
=KeyStoreC
=Config
ZAdmin
ZAdminToken
LogChangeC

newElements? : F AuditC

— AdminHasDeparted
enclaveStatusC = waitingStartAdminOp

the currentAdminOpC = archivel.og
floppyPresenceC = present

floppyPresenceC’ = floppyPresenceC
currentFloppyC’ = currentFloppyC

currentScreenC’ .screenMsgC = doingOpC
statusC’ = statusC

enclaveStatusC’ = waitingFinishAdminOp
(Jarchive! : F AuditC e ArchiveLogC A writtenFloppyC’ = auditFileC archive!)

> See: EnclaveContextC (p. 102), AdminTokenC (p. 36), KeyboardC (p. 36), KeyStoreC (p. 33),
LogChangeC (p. 61), AuditC (p. 30), AdminHasDeparted (p. 80), waitingStartAdminOp (p. 37),
archivelLog (p. 34), present (p. 11), doingOpC (p. 23), waitingFinishAdminOp (p. 37), ArchiveLogC (p. 55)

> Note this operation makes other altertions to the audit log so cannot use the AdminOpStartedContext.

We wait indefinitely for afloppy to be present.

FD.Enclave.StartArchivel ogWaitingFloppy
FS.Enclave.SartArchivel og\WaitingFloppy

__ StartArchivelLogWaitingFloppyC
AdminOpSartedContextC

=ConfigC
ZAdminC
ZFloppyC

the currentAdminOpC = archivel.og
floppyPresenceC = absent

currentScreenC’ .screenMsgC = insertBlankFloppyC
currentDisplayC’ = currentDisplayC

enclaveStatusC’ = enclaveStatusC

> See: AdminOpStartedContextC (p. 116), ConfigC (p. 27), AdminC (p. 35), FloppyC (p. 36), archiveLog (p. 34),
absent (p. 11), insertBlankFloppyC (p. 23)

SartArchiveLogC = ((StartArchivelLogOKC § UpdateFloppyC)
V SartArchiveLogWaitingFloppyC) \ (newElements?)

7.7.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 121

> See: StartArchiveLogOKC (p. 119), UpdateFloppyC (p. 47), SartArchiveLogWaitingFloppyC (p. 120)

Clearing the archive Log

Note this operation makes altertions to the audit log other than the addition of elements so cannot
use the AdminOpFinishContext. We define a specific context for completing the archive log.

—_FinishArchivelLogContext
EnclaveContextC

ZAdminTokenC
=KeyboardC
=KeyStoreC
=ConfigC
AdminFinishOpC
=DoorLatchAlarmC
LogChangeC

statusC’ = statusC
currentDisplayC’ = currentDisplayC

enclaveStatusC’ = enclaveQuiescent

> See: EnclaveContextC (p. 102), AdminTokenC (p. 36), KeyboardC (p. 36), KeyStoreC (p. 33), ConfigC (p. 27),
AdminFinishOpC (p. 77), DoorLatchAlarmC (p. 35), LogChangeC (p. 61)

FD.Enclave.FinishArchivelL ogOK
FS.Enclave.FinishArchiveLogOK

The audit log is only truncated after a check has been made to ensure that the actual floppy data
matches what the system believes is on the floppy.

__FinishArchiveLogOKC
FinishArchivelogContext

ReadFloppyC
ClearLogC

— AdminHasDeparted
enclaveStatusC = waitingFinishAdminOp
the currentAdminOpC = archivel.og
floppyPresenceC = present

writtenFloppyC = currentFloppyC’

currentScreenC’ .screenMsgC = requestAdminOpC

> See: FinishArchiveLogContext (p. 121), ReadFloppyC (p. 44), ClearLogC (p. 56), AdminHasDeparted (p. 80),
waitingFinishAdminOp (p. 37), archivelog (p. 34), present (p. 11)

FD.Enclave.FinishArchivel ogNoFloppy
FS.Enclave.FinishArchivel. ogNoFloppy

If the administrator is impatient and removes the floppy early then the archive fails as the system
cannot check that the archive was taken.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 122

Theaudit log entry for thisfailure is distinguished from the failure caused by the written datafailing
to match by the descriptive text in the audit record.

| floppyRemoved, floppyHasBadData : TEXT

__FinishArchivelLogNoFloppyC
FinishArchivel.ogContext

CancelArchive
=FloppyC

the currentAdminOpC = archivel.og
floppyPresenceC = absent

currentScreenC’ .screenMsgC = archiveFailedC
auditTypes newElements? N ADMIN_ELEMENTS = {archiveCheckFailedElement }

3, element : AuditC e element € newElements?
A element.elementld = archiveCheckFFail edElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = floppyRemoved

> See: FinishArchiveLogContext (p. 121), Cancel Archive (p. 57), FloppyC (p. 36), archivelLog (p. 34),
absent (p. 11), ADMIN_ELEMENTS (p. 29), archiveCheckFailedElement (p. 28), AuditC (p. 30),
extractUser (p. 30), warning (p. 28), floppyRemoved (p. 122)

FD.Enclave.FinishArchivel ogBadM atch
FS.Enclave.FinishArchiveLogBadMatch

If the data read back from the floppy does not match what the ID station believes should be on the
floppy then the archive fails.

__FinishArchivelLogBadMatchC
FinishArchivelogContext

Cancel Archive
ReadFloppyC

the currentAdminOpC = archivel.og
floppyPresenceC = present

writtenFloppyC # currentFloppyC’
currentScreenC’ .screenMsgC = archiveFailedC
auditTypes newElements? N ADMIN_ELEMENTS = {archiveCheckFailedElement }

3, element : AuditC e element € newElements?
A element.elementld = archiveCheckFailedElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = floppyHasBadData

> See: FinishArchiveLogContext (p. 121), Cancel Archive (p. 57), ReadFloppyC (p. 44), archivelLog (p. 34),
present (p. 11), ADMIN_ELEMENTS (p. 29), archiveCheckFailedElement (p. 28), AuditC (p. 30),
extractUser (p. 30), warning (p. 28), floppyHasBadData (p. 122)

7.7.3

7.8

781

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 123

FinishArchiveLogFailC = FinishArchivelLogBadMatchC \/ FinishArchivelLogNoFloppyC
FinishArchiveLogC = (FinishArchiveLogOKC V FinishArchiveLogFailC) \ (newElements?)

> See: FinishArchiveLogBadMatchC (p. 122), FinishArchiveLogNoFloppyC (p. 122),
FinishArchiveLogOKC (p. 121)

The compl ete archive Log operation

FD.Enclave.TISArchivel ogOp

FS.Enclave. TI SArchivel ogOp

Combining the start and finish phase of this operation gives the complete operation.

TISArchiveLogOpC = SartArchiveLogC Vv FinishArchiveLogC

> See: SartArchiveLogC (p. 120), FinishArchivelLogC (p. 123)

Updating Configuration Data

The operation to update the configuration data is a two phase operation. During the first phase the
configuration datais read from floppy. During the second phase the configuration data provided on
the floppy is checked (currently the check is purely that the data is configuration data) and the TIS
configuration datais replaced by the new data.

Reading Configuration Data

FD.Enclave.StartUpdateConfigDataOK
FS.Enclave.StartUpdateConfigDataOK

In order to update configuration data the administrator must supply replacement configuration data
on afloppy disk.

__SartUpdateConfigOKC
AdminOpSartedContextC

ReadFloppyC
=ConfigC
ZAdminC
=DoorLatchAlarmC

the currentAdminOpC = updateConfigData
floppyPresenceC = present

currentScreenC’ .screenMsgC = doingOpC
currentDisplayC’ = currentDisplayC

enclaveStatusC’ = waitingFinishAdminOp

> See: AdminOpStartedContextC (p. 116), ReadFloppyC (p. 44), ConfigC (p. 27), AdminC (p. 35),
DoorLatchAlarmC (p. 35), updateConfigData (p. 34), present (p. 11), doingOpC (p. 23),
waitingFinishAdminOp (p. 37)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 124

FD.Enclave.StartUpdateConfigWaitingFloppy
FS.Enclave.SartUpdateConfig\aitingFloppy

We wait indefinitely for afloppy to be present.

__SartUpdateConfigWaitingFloppyC
AdminOpSartedContextC

=FloppyC
=ConfigC
ZAdminC
=DoorLatchAlarmC

the currentAdminOpC = updateConfigData
floppyPresenceC = absent

currentScreenC’ .screenMsgC = insertConfigDataC
currentDisplayC’ = currentDisplayC

enclaveStatusC’' = enclaveStatusC

> See: AdminOpStartedContextC (p. 116), FloppyC (p. 36), ConfigC (p. 27), AdminC (p. 35),
DoorLatchAlarmC (p. 35), updateConfigData (p. 34), absent (p. 11), insertConfigDataC (p. 23)

SartUpdateConfigDataC = (SartUpdateConfigOKC v SartUpdateConfigWaitingFloppyC) \ (newElements?)
> See StartUpdateConfigOKC (p. 123), SartUpdateConfigWaitingFloppyC (p. 124)

7.8.2 Storing Configuration Data

FD.Enclave.FinishUpdateConfigDataOK
FS.Enclave.FinishUpdateConfigDataOK

The supplied data will be used to replace the current configuration data if it is valid configuration
data.

__FinishUpdateConfigDataOKC
AdminOpFinishContextC

ZFloppyC
=DoorLatchAlarmC

the currentAdminOpC = updateConfigData

currentFloppyC € ran configFileC

0ConfigC’ = configFileC™ currentFloppyC

currentScreenC’ .screenMsgC = requestAdminOpC

auditTypes newElements? N ADMIN_ELEMENTS = {updatedConfigDataElement }

3, element : AuditC e element € newElements?
A element.elementld = updatedConfigDataElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 125

> See: AdminOpFinishContextC (p. 116), FloppyC (p. 36), DoorLatchAlarmC (p. 35), updateConfigData (p. 34),
configFileC (p. 22), ConfigC (p. 27), ADMIN_ELEMENTS (p. 29), updatedConfigDataElement (p. 28),
AuditC (p. 30), extractUser (p. 30), information (p. 28)

> The description within the audit element should summarise the new configuration data values. Thisisnot formally
stated here so the value of the description isleft free.

FD.Enclave.FinishUpdateConfigDataFail
FS.Enclave.FinishUpdateConfigDataFail

If the supplied data is not valid configuration data the operation terminates without changing the
TIS configuration data.

__FinishUpdateConfigDataFailC
AdminOpFinishContextC

=ConfigC

=FloppyC

=DoorLatchAlarmC

the currentAdminOpC = updateConfigData

currentFloppyC ¢ ran configFileC

currentScreenC’ .screenMsgC = invalidDataC

auditTypes newElements? N ADMIN_ELEMENTS = {invalidConfigDataElement}

3, element : AuditC e element € newElements?
A element.elementld = invalidConfigDataElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = warning
A element.description = noDescription

> See: AdminOpFinishContextC (p. 116), ConfigC (p. 27), FloppyC (p. 36), DoorLatchAlarmC (p. 35),
updateConfigData (p. 34), configFileC (p. 22), invalidDataC (p. 23), ADMIN_ELEMENTS (p. 29),
invalidConfigDataElement (p. 28), AuditC (p. 30), extractUser (p. 30), warning (p. 28), noDescription (p. 30)

FinishUpdateConfigDataC = (FinishUpdateConfigDataOKC V FinishUpdateConfigDataFailC) \ (newElements?)
> See: FinishUpdateConfigDataOKC (p. 124), FinishUpdateConfigDataFailC (p. 125)

The compl ete update configuration data operation

FD.Enclave.TI SUpdateConfigDataOp
FS.Enclave. TISUpdateConfigDataOp

Combining the start and finish phase of this operation gives the compl ete operation.

TISUpdateConfigDataOpC = SartUpdateConfigDataC \ FinishUpdateConfigDataC

> See StartUpdateConfigDataC (p. 124), FinishUpdateConfigDataC (p. 125)

79

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 126

Shutting Down the ID Station
Shutting down the ID Station is a single phase operation.

When the ID Station is shutdown the door is automatically locked so the system isin a secure state.
The ID Station cannot be shutdown if the door is currently open, this prevents the enclave being | eft
in an insecure state once TISis shutdown.

FD.Enclave.ShutdownOK
FS.Enclave.ShutdownOK

__ ShutdownOKC
AlDSationC
RealWorldChangesC

=TISControlledRealWorldC

ClearUser Token
Clear AdminToken
=ZFingerC
=SatsC
ZCertificateStore
=Keyboard
=KeyStore
=ConfigC
=FloppyC
LockDoorC
AdminLogoutC
AddElementsToLogC

enclaveStatusC = waitingStartAdminOp
thecurrentAdminOpC = shutdownOp
currentDoorC = closed

currentScreenC’ .screenMsgC = clearC

enclaveStatusC’ = shutdown
currentDisplayC’ = blank

auditTypes newElements? N ADMIN_ELEMENTS = {shutdownElement}

3, element : AuditC e element € newElements?
A element.elementld = shutdownElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information
A element.description = noDescription

> See: IDSationC (p. 38), RealWorldChangesC (p. 40), TISControlledRealWorldC (p. 24),
ClearUserToken (p. 72), Clear AdminToken (p. 74), FingerC (p. 36), SatsC (p. 34), CertificateSore (p. 34),
ConfigC (p. 27), FloppyC (p. 36), LockDoorC (p. 65), AdminLogoutC (p. 76), AddElementsToLogC (p. 51),
waitingStartAdminOp (p. 37), shutdownOp (p. 34), closed (p. 21), clearC (p. 23), blank (p. 22),
ADMIN_ELEMENTS (p. 29), shutdownElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28),
noDescription (p. 30)

> This operation cannot be aborted by the administrator tearing their token, hence the AdminOpStartedContextC
cannot be used here.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 127

FD.Enclave.ShutdownWaitingDoor
FS.Enclave.ShutdownWaitingDoor

TISwaits indefinitely for the door to be closed before completing the shutdown.

— ShutdownWaitingDoor C
AdminOpContextC

=ConfigC
ZFloppyC
ZDoorLatchAlarmC
ZAdminC

enclaveSatusC = waitingStartAdminOp
the currentAdminOpC = shutdownOp
currentDoorC = open

currentScreenC’ .screenMsgC = closeDoorC

statusC’ = statusC
enclaveStatusC’ = enclaveStatusC
currentDisplayC’ = currentDisplayC

> See: AdminOpContextC (p. 115), ConfigC (p. 27), FloppyC (p. 36), DoorLatchAlarmC (p. 35), AdminC (p. 35),
waitingStartAdminOp (p. 37), shutdownOp (p. 34), open (p. 21), closeDoorC (p. 23)

FD.Enclave.TISShutdownOp
FS.Enclave. TI SShutdownOp

There is nothing that can go wrong with the shutdown operation.

TISShutdownOpC = (ShutdownOKC v ShutdownWaitingDoorC) \ (newElements?)

> See: ShutdownOKC (p. 126), ShutdownWaitingDoorC (p. 127)

7.10 Unlocking the Enclave Door

Unlocking the enclave door is a single phase operation.

FD.Enclave.OverrideDoor L ockOK
FS.Enclave.OverrideDoorLockOK

A guard may need to open the enclave door to admit someone who cannot be admitted by the
system.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 128

__OverrideDoorLockOKC
AdminOpSartedContextC

=FloppyC
=ConfigC
AdminFinishOpC
UnlockDoorC

the currentAdminOpC = overridelLock

currentScreenC’ .screenMsgC = requestAdminOpC
currentDisplayC’ = doorUnlocked

enclaveStatusC’ = enclaveQuiescent
auditTypes newElements? N ADMIN_ELEMENTS = {overrideLockElement}

3, element : AuditC e element € newElements?
A element.elementld = overrideLockElement
A element.logTime € nowC . . nowC’
A element.user = extractUser currentAdminTokenC
A element.severity = information
A element.description = noDescription

> See: AdminOpStartedContextC (p. 116), FloppyC (p. 36), ConfigC (p. 27), AdminFinishOpC (p. 77),
UnlockDoorC (p. 64), overrideLock (p. 34), doorUnlocked (p. 22), ADMIN_ELEMENTS (p. 29),
overrideLockElement (p. 28), AuditC (p. 30), extractUser (p. 30), information (p. 28), noDescription (p. 30)

FD.Enclave.TISUnlockDoor Op
FS.Enclave. TISUnlockDoorOp

This operation has no failures, other than the administrator tearing their token before the operation
completes, the token tear is covered in Section 7.4.

TISOverrideDoorLockOpC = (OverrideDoorLockOKC) \ (newElements?)

> See: OverrideDoorLockOKC (p. 127)

8.1

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 129

THE INITIAL SYSTEM AND STARTUP

Thelnitial System

FD.TIS.InitlDStation

FSTISInitiIDSation

After initial installation the system has the following properties

an empty key store, which meansit is unable to authorise entry to anyone;

default configuration data, which does not permit entry to anyone;
the door latched;

an empty audit log;

theinternal times all set to zero (atime before the current time).

The door is assumed closed at initialisation, this ensures that the alarm will not sound before the
first time that datais polled.

__InitDoorLatchAlarmC
DoorLatchAlarmC

currentTimeC = zeroTime
currentDoorC = closed
latchTimeoutC = zeroTime
alarmTimeoutC = zeroTime
doorAlarmC = silent
currentLatchC = locked

> See: DoorLatchAlarmC (p. 35), zeroTime (p. 11), closed (p. 21), silent (p. 21), locked (p. 21)

There are no keys held by the system.

__InitkeyStoreC
KeyStoreC

keys = &

> See: KeySoreC (p. 33)

Theinitia certificate store has the 0 as the available seria number.

__InitCertificateStore
CertificateStore

nextSerialNumber = 0

> See: CertificateStore (p. 34)

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 130

This default configuration assumes the lowest classification possible for the enclave. This ensures
that it does not give inadvertently high clearance to the authorisation certificate. The parameters
that define the authPeriod and entryPeriod functions are set to enable entry into the enclave to re-
configure the TIS. This configuration will allow Auth Certificates to be generated with avalidity of
2 hours from the point of issue.

__InitConfigC
ConfigC

alarmSlentDurationC = 10
latchUnlockDurationC = 150
tokenRemovalDurationC = 100
fingerWaitDuration = 100
enclaveClearanceC = unmarked
minEntryClass = unmarked

maxAuthDuration = 72000
accessPolicy = allHours
systemMaxFar = 1000

> See: ConfigC (p. 27), unmarked (p. 12), allHours (p. 27)

> Theinitial values of workingHoursStart, workingHoursEnd will not impact the entry or authorisation periods so
are not defined here, they are free to be implemented with any value.

Initially no administrator islogged on and no administator operations are taking place.

__InitAdminC
AdminC

rolePresentC = nil
currentAdminOpC = nil

> See: AdminC (p. 35)

Initially the statistics are set to zero, indicating no use of the system to date.

__InitSatsC
SatsC

successEntryC = 0
failEntryC = 0
successBioC = 0
failBioC = 0

> See: SatsC (p. 34)

Theinitial audit Log isempty and there is no audit alarm.

—_InitAuditLogC
AuditLogC

logFiles = LOGFILEINDEX x {@&}
auditAlarmC = silent

8.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 131

> Seer AuditLogC (p. 32), LOGFILEINDEX (p. 31), silent (p. 21)

Initially the internal state is notEnrolled.

__InitInternalC
InternalC

enclaveStatusC = notEnrolled
statusC = quiescent

> See: InternalC (p. 37), notEnrolled (p. 37), quiescent (p. 37)

> In the above states the timeouts finger Timeout and tokenRemoval TimeoutC are not used so their values are not

important. The implementation isfree to set their initial value to any valid value.

Entities that model the real world and are polled and have no security implications are not set at

initialisation, these will be updated at the first poll of the real world entities.
Initially the screen and the display are clear.

__InitiIDSationC
IDSationC

InitDoor LatchAlarmC
InitConfigC
InitkeyStoreC
InitSatsC
InitAuditLogC
InitAdminC
InitinternalC
InitCertificateStore

currentScreenC.screenMsgC = clearC

currentDisplayC = blank

> See: IDStationC (p. 38), InitDoorLatchAlarmC (p. 129), InitConfigC (p. 130), InitkeyStoreC (p. 129),
InitStatsC (p. 130), InitAuditLogC (p. 130), InitAdminC (p. 130), InitinternalC (p. 131),
InitCertificateStore (p. 129), clearC (p. 23), blank (p. 22)

Starting the ID Station

FD.TISTISStartup
FSTISTISSartup

We assume that some of the state within TIS is persistent through shutdown and someis not. The
persistent items are ConfigC, KeyStoreC, CertificateStore and AuditLogC all other state components
are set at startup. Those values that are polled can take any valid value, we assume for simplicity

that they remain unchanged.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 132

__SartContextC
AlDSationC
RealWorldChangesC

=ConfigC
=KeyStoreC

InitDoor LatchAlarmC’
InitSatsC’
InitAdminC’
AddElementsToLogC
LogChangeC

=UserTokenC
ZAdminTokenC
EFingerC
=FloppyC
=KeyboardC

auditTypesnewElements? C STARTUP_ELEMENTSU USER_INDEPENDENT _ELEMENTS

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), ConfigC (p. 27), KeyStoreC (p. 33),
InitDoorLatchAlarmC (p. 129), InitSatsC (p. 130), InitAdminC (p. 130), AddElementsToLogC (p. 51),
LogChangeC (p. 61), User TokenC (p. 36), AdminTokenC (p. 36), FingerC (p. 36), FloppyC (p. 36),
KeyboardC (p. 36), STARTUP_ELEMENTS (p. 29), USER_INDEPENDENT _ELEMENTS (p. 29)

In the case that TIS does not have any private keys in the KeyStoreC the ID station is assumed to
require enrolment.

__SartNonEnrolledStationC
SartContextC

InitCertificateStore/
privateKey = nil
currentScreenC’ .screenMsgC = clearC

currentDisplayC’ = blank
enclaveXtatusC’ = notEnrolled
statusC’ = quiescent

auditTypes newElements? N STARTUP_ELEMENTS = {startUnenrolledTI SElement }

3, element : AuditC e element c newElements?
A element.elementld = startUnenrolledTI SElement
A element.logTime € nowC . . nowC’
A element.user = noUser
A element.severity = information
A element.description = noDescription

> See: SartContextC (p. 131), InitCertificateStore (p. 129), clearC (p. 23), blank (p. 22), notEnrolled (p. 37),
quiescent (p. 37), STARTUP_ELEMENTS (p. 29), AuditC (p. 30), noUser (p. 30), information (p. 28),
noDescription (p. 30)

In the case that TIS does have a private key the ID station is assumed to have been previously
enrolled.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 133

__SartEnrolledSationC
SartContextC

=CertificateStore
privateKey # nil
currentScreenC’ .screenMsgC = welcomeAdminC

currentDisplayC’ = welcome
enclaveStatusC’ = enclaveQuiescent
statusC’ = quiescent

auditTypes newElements? N STARTUP_ELEMENTS = {startEnrolledTI SElement }

3, element : AuditC e element € newElements?
A element.elementld = startEnrolledTI SElement
A element.logTime € nowC . . nowC’
A element.user = noUser
A element.severity = information
A element.description = noDescription

> See: StartContextC (p. 131), CertificateStore (p. 34), welcomeAdminC (p. 23), welcome (p. 22), quiescent (p. 37),
STARTUP_ELEMENTS (p. 29), startEnrolledTISElement (p. 28), AuditC (p. 30), noUser (p. 30),
information (p. 28), noDescription (p. 30)

The compl ete startup operation is given by:

TISSartupC = (SartEnrolledSationC v SartNonEnrolledStationC) \ (newElements?)

> See: SartEnrolledSationC (p. 132), StartNonEnrolledStationC (p. 132)

9.1

9.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 134

THE WHOLE ID STATION

Startup

When the TIS is powered up it needs to establish whether it is enrolled or not. This is formally
described by

TISSartUpC

The main loop

FD.TIS.TISMainL oop
FSTISTISMainLoop

The TIS achieves its function by repeatedly performing a number of activities within amain loop.

The main loop is broken down into several phases:

e Poll - Polling reads the simple real world entities (door, time) and the reads the presence or
absence of the complex entities (user token reader, admin token reader, fingerprint reader,

floppy).

e Early Updates - Critical updates of the door latch and alarm are performed as soon as new
polled datais available.

e TIS processing - TIS processing is the activity performed by TIS, this is influenced by the
current status of TIS and the recently read inputs.

e Updates - Critical updates of the door latch and alarm are repeated once the processing is com-
pleteto ensure any internal state changes result in the latch and alarm being set correctly. Less
critical updates of the screen and display are also performed once the processing is complete.

Thethe TIS processing depends on the current internal status.
Initially the only activity that can be performed is enrolment, formally captured as TISEnrol.

When itisin aquiescent state it can start anumber of activities. These are started by either reading
auser token, an adminstrator token or keyboard data. In addition an administrator may logoff.

If the conditions for performing activities are not satisfied then the system isidle.

FD.TIS.Idle
FS.Enclave.WaitingAdminTokenRemoval

__TiSdleC
=IDSationC

= EnrolmentlsinProgress

= AdminMustLogout

— CurrentUser EntryActivityPossible
- UserEntryCanStart

— CurrentAdminActivityPossible

= AdminLogonCanStart

= AdminOpCanStart

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 135

> See! IDSationC (p. 38), EnrolmentlsinProgress (p. 78), AdminMustLogout (p. 79),
CurrentUser EntryActivityPossible (p. 79), UserEntryCanSart (p. 80), CurrentAdminActivityPossible (p. 80),
AdminLogonCanStart (p. 81), AdminOpCanStart (p. 81)

If the administrator islogged on and conditions change such that the administrator should be logged
off, either token removal or token expiry, then the short lived administrator logoff activity is per-
formed, even during a user entry.

Once a user token has been presented to TIS the only activities that can be performed are stages in
the multi-phase user entry authentication operation, formally captured as Tl SProgressUserEntry.

Once an administrator token has been presented to TIS the administrator is logged onto the ID
Station, formally captured as TISProgressAdminLogon. Having logged the administrator on TIS
returns to aquiescent state waiting for the administrator to perform an operation, without preventing
user entry.

Once an operation request has been made by alogged on administrator TIS performsthe, potentially
multi-phase, administrator operation, formally captured as TISAdmMinOpC captured below:

TISAdMinOpC = TISOverrideDoor LockOpC Vv T1SShutdownOpC
Vv TISUpdateConfigDataOpC Vv TISArchiveLogOpC

> See: TISOverrideDoorLockOpC (p. 128), TISShutdownOpC (p. 127), TISUpdateConfigDataOpC (p. 125),
TISArchiveLogOpC (p. 123)

The various possible activities with conditions that ensure the desired priority of handling are given
below.

TISDoENrolOp = EnrolmentlsinProgress A TISEnrolOpC
TISDoAdminLogout = — EnrolmentlsinProgress A AdminMustLogout A TISAdminLogoutC

TISDoProgressUserEntry = — EnrolmentlsinProgress A = AdminMustLogout
A CurrentUser EntryActivityPossible A TISProgressUserEntry

TISDoProgressAdminActivity = — EnrolmentlsinProgress A —= AdminMustLogout
A — CurrentUserEntryActivityPossible A
CurrentAdminActivityPossible A (TISProgressAdminLogon V TISAdminOpC)

TISDoStartUserEntry = — EnrolmentlsinProgress A — AdminMustLogout
A = CurrentUser EntryActivityPossible A — CurrentAdminActivityPossible
A UserEntryCanStart A TISStartUser Entry

TISDoStartAdminActivity = — EnrolmentlsinProgress A — AdminMustLogout
A = CurrentUser EntryActivityPossible A — CurrentAdminActivityPossible
A — UserEntryCanStart
A (TISStartAdminLogonC Vv TISartAdminOpC)

> See: EnrolmentlsinProgress (p. 78), TISEnrolOpC (p. 107), AdminMustLogout (p. 79),
TISAdminLogoutC (p. 115), CurrentUser EntryActivityPossible (p. 79), TISProgressUserEntry (p. 101),
CurrentAdminActivityPossible (p. 80), TISProgressAdminLogon (p. 113), TISAdminOpC (p. 135),
UserEntryCanStart (p. 80), TISStartUserEntry (p. 100), TISStartAdminLogonC (p. 113),
TISSartAdminOpC (p. 119)

The TIS processing activity is described by the following:

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 136
TISProcessingC =
TISDoEnrolOp

Vv TISDoAdminLogout

V TISDoProgressUser Entry

V TISDoProgressAdminActivity
Vv TISDoSartUserEntry

Vv TISDoSartAdminActivity

Vv TISdleC

> See: TISDoEnrolOp (p. 135), TISDoAdminLogout (p. 135), TISDoProgressUserEntry (p. 135),
TISDoProgressAdminActivity (p. 135), TISDoSartUserEntry (p. 135), TISDoSartAdminActivity (p. 135),
TISdleC (p. 134)

Al

A2

A2l

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 137

APPENDIX: COMMENTARY ON THISDESIGN

This design isintended to give a representative formal refinement of the Formal Specification [4].
The structure of the Z

The formal design follows the structure of the Formal Specification. Thisis done to aid the refine-
ment process and provide a natural refinement step from specification to implementation.

Asin the specification every effort has been taken to ensure schemas are simple.

The section containing internal operations and checks has been expanded. A number of common
constraints have been factored out as checks that can be performed in the context of one or a small
number of subsystems. In order to simplify the step from design to implementation invariants which
define key values, such as the door alarm, have been replaced by subsystem operations. The design
then shows where these operations need to be invoked to ensure that the desired invariants are
maintai ned.

| ssues

A few issues arose while writing this design, some of which point to shortfalls which would need to
be resolved if EAL level 6 or 7 were required.

We present the more interesting observations here:
Peripheral Failures and System Faults

The design does not address fully the possibility of periphera failures. This would certainly need
to be addressed for EAL 6 or 7 where fully formal proof of the implementation conforming to the
design isrequired.

We do model the possibility of a system fault being raised and this is intended to cover peripheral
failures, however, we do not elaborate what should occur in the event of such afailure. It is likely
that peripheral failures would, in afull development be categorised in terms of their criticality and
the desired system behaviour as part of the requirements elicitation activity.

There are a number of points where the modelling of failures could be improved. The manner in
which these could be improved is discussed below.

The model makes the assumption that any attempt to read a token is successful in that the internal
representation exactly reflects the real world contents of the token. In order to model the possibility
of failure during the read the model should allow the non-deterministic possibility of the internal
value of the token becoming badT representing a corrupt or failed read. This non-determinism
would also need to be present in the specification to ensure that the design is a refinement of the
specification.

A small number of system faults are deemed security critical. These are likely to include
e failure to be able to write to the audit log;

e any detectable failure in operating the latch
e any detectable failure to be able to monitor the state of the door.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 138

These failures will occur non-deterministically and we should specify the desired behaviour if each
of these occur.

A failure to write to the audit log is severe since it means that activities could proceed un-audited.
In the event of a failure to write to the audit log the audit alarm should be raised and the system
should be shutdown preventing it from participating an any further activities.

In the event of afailure we can assume little about the state of the current log file, we assume that
nothing old was lost but some elements may have been added.

__AuditLogFailure
AAuditLogC

auditAlarmC’ = alarming
logFilesStatus’ = logFilestatus
currentLogFile = currentLogFile
usedLogFiles' = usedLogFiles
freeLogFiles’ = freeLogFiles
{currentLogFile} < logFiles' = {currentLogFile} < logFiles
logFilescurrentLogFile C logFiles currentLogFile

> See! AuditLogC (p. 32), alarming (p. 21)

In the event of such afailure the administrator should be logged off and the system shutdown. The
door should be locked to ensure the enclave isleft in a secure state.

__ ShutdownAuditFailure
AlDSationC
RealWorldChangesC

LockDoorC
=KeyStoreC
ECertificateStore
=ConfigC
=FloppyC
=KeyboardC
ZAdminTokenC
ZUserTokenC
AdminLogoutC
=ZFingerC
=SatsC
AuditLogFailure

enclaveSatusC’ = shutdown
statusC’ = quiescent

currentDisplayC’ = blank
currentScreenC’ .screenMsgC = clearC

> See! IDSationC (p. 38), RealWorldChangesC (p. 40), LockDoorC (p. 65), KeyStoreC (p. 33),
CertificateStore (p. 34), ConfigC (p. 27), FloppyC (p. 36), KeyboardC (p. 36), AdminTokenC (p. 36),
UserTokenC (p. 36), AdminLogoutC (p. 76), FingerC (p. 36), StatsC (p. 34), AuditLogFailure (p. 138),
quiescent (p. 37), blank (p. 22), clearC (p. 23)

Itislikely that the desired behaviour in the event of afailure of the door or latch isto assume that the
system isin an insecure state and raise an alarm. It may aso be desirable to shutdown the system,
preventing any further action.

A.2.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 139

__DoorLatchFailure
ADoorLatchAlarmC

doorAlarmC’ = alarming
currentTimeC’ = currentTimeC
currentDoorC’ = open
currentLatchC’ = locked
latchTimeoutC’' = zeroTime
alarmTimeoutC’ = zeroTime

> See: DoorLatchAlarmC (p. 35), alarming (p. 21), open (p. 21), locked (p. 21), zeroTime (p. 11)

In the event of such afailure, the fault can be logged and the system shutdown.

__ ShutdownDoor LatchFailure
AlDSationC
RealWorldChangesC

DoorLatchFailure
=KeyStoreC
ZCertificateStore
=ConfigC
ZFloppyC
=KeyboardC
ZAdminTokenC
=UserTokenC
AdminLogoutC
=ZFingerC
=SatsC
AddElementsToLogC
LogChangeC

enclaveStatusC’ = shutdown
statusC’ = quiescent

currentDisplayC’ = blank
currentScreenC’ .screenMsgC = clearC

3, element : AuditC e element c newElements?
A element.elementld = systemFaultElement
A element.logTime € nowC . . nowC’
A element.user = noUser
A element.severity = critical

> See: IDSationC (p. 38), Real\WorldChangesC (p. 40), DoorLatchFailure (p. 138), KeyStoreC (p. 33),
CertificateStore (p. 34), ConfigC (p. 27), FloppyC (p. 36), KeyboardC (p. 36), AdminTokenC (p. 36),
UserTokenC (p. 36), AdminLogoutC (p. 76), FingerC (p. 36), StatsC (p. 34), AddElementsToLogC (p. 51),
LogChangeC (p. 61), quiescent (p. 37), blank (p. 22), clearC (p. 23), AuditC (p. 30), systemFaultElement (p. 28),
noUser (p. 30), critical (p. 28)

As faults are not modelled in the specification refinement would not be achievable if system faults
were modelled in the design.

Unelaborated aspects of the Design

Normally all types within the design would be elaborated in terms of entities that closely model the
implementation type.

A.23

A.24

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 140

There are some aspects of certificates that have not been fully elaborated within this design. These
are FINGERPRINT, and FINGERPRINTTEMPLATE. All of these would normally be elaborated in

terms of amode of the implementation types. Thisis unnecessary for these three entities. The core
TIS has no reason to use the FINGERPRINT or FINGERPRINTTEMPLATE, it ssimply passes the

information to the Biometric library.

The components of an issuer USERID and USERNAME are free types within the design. The
only property that is utilised within the design is equality of USERID. For this demonstration
implementation the user Id is simplified to a numeric athough thisis not completely realistic so is
not elaborated within the design.

Enrolment Protocol

Enrolment is a simplified model of part of the enrolment protocol. The likely enrolment protocol
would involve the following stages.

1. TIS generates a pubic/private key pair at initialisation and uses the public key to create a
request for enrolment.

2. The enrolment request is presented to a CA. The CA would generate an Id certificate for the
TIS, thiswill contain the authorised name of the TIS asits subject and the TIS public key.

3. An AA constructs the enrolment data. Enrolment data comprises a number of |d certificates,
including the Id certificate of the TISitself and the Id certificate of the CA that issued the TIS
Id certificate.

4. TIS accepts the enrolment data and uses this to establish known issuers.

Within the design we only model the final phase of enrolment.

TISwould only actually participate in thefirst and last phase of this protocol, the other two activities
being performed by a CA and AA.

Due to budgetary limitations we have omitted the first phase of this protocol from the design model.
Thisis possible since this demonstration mimics the keys and the encryption process. There is no
need for our demonstration to be supplied with the public key that corresponds to an internally held
private key as the private key is not used in the mimicked encryption. Instead TIS will record the
presence of the private key once enrolment has supplied its ID Certificate.

Reading Tokens

The forma design shows all certificates on a token being read when anything from the token is
required. In actuality the authorisation certificate will only ever be read from the administrator
token, while the reading of certificates from the user token will follow the following ordering.

e An attempt is made to read the authorisation certificate and I1D certificate.
o |f these are present then they are validated.
e If they fail to validate or are not present then the remaining certificates are read.

Due to budgetary limitations this was not progressed within this design although it would be neces-
sary to achieve EAL 6 or above to enable formal proof of the implementation satisfying the design.

A.25

A.2.6

A.2.7

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 141

The design as it stands is not invalid, it just presents a dightly larger step between design and
implementation than might be desirable.

Token Representation

Within the formal design we represent tokens as containing a number of raw certificates. This is
an effective model for the real world view of the tokens but it is a less satisfactory model for the
internal representation of the token.

Given more resources we would have modelled the internal tokens as containing the contents of
the certificates that we are interested in. So for the administrators token only the contents of the
Authorisation Certificate would be preserved, while for the user token the contents of the all the
certificates may be maintained.

Thiswould have the advantage within the design of removing the need to extract the required fields
from the various tokens every time they are required.

If this design were to be progressed further it would be worth modelling the internal representation
of tokens as maintaining the contents of selected certificates rather than the raw certificates. This
would then result in a smaller step to implementation.

Relating enclave entry and Auth Cert generation

Within the specification independent configuration is used to determine the authorisation period
applied to authorisation certificates and the times at which entry to the enclave should be allowed.

It should be noted that if the user obtains an authorisation certificate and the system is reconfigured
before the authorisation certificate expires then it is still possible for the user to possess a current
authorisation certificate and be denied entry.

Comments on the refinement relation

There are a number of circumstances where not all the abstract entities in the specification can be
retrieved from the concrete entities in this design. In particular this applies to certificates on tokens
and the configuration data. In the case of certificates this is due to the validity period used in the
specification not necessarily being contiguous. In the case of the configuration data this is due to
the enormous freedom in the definition of the abstract authPeriod and entryPeriod functions.

¢ The concrete authPeriod and entryPeriod are independent of role.
e Thereisno relationship between the authPeriod and entryPeriod.
e The concrete authPeriod is always a contiguous range of times.

As the specification has a very abstract view of what the real world can do, thisis acceptable.

During TIS operations the real world undergoes change which is relatively unconstrained, in both
the concrete and abstract model time must not decrease but all other real world entities that are
not controlled by TIS may change arbitrarily. In the specification there are more possible states
in which the real world can change into, the abstract tokens can change to ones that cannot be
represented in the concrete model, floppy data can change to contain configuration data that is not
valid configuration data in the concrete model. In al these cases the concrete “bad” value is a
refinement of the abstract values that are not attainable in the concrete real world.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 142

This refinement is acceptable as long as our concrete real world still allows al values that the
requirements consider should be valid inputs.

In area development of a working product there would be a part of requirements elictation in
which the exact nature of all the inputs is discussed. This discussion may well be postponed until
the Formal Specification isin place providing auseful context for discussion, thiswould very much
depend on the nature of the inputs and whether the product development can control the allowable
range of values.

Our design has constrained the validity periods on certificates to reflect the contiguous ranges that
can be specified reflecting true requirements constraints on the nature of X509 certificates.

The new constraints on the configuration data have been introduced to limit allowed configurations
to those that can be specified with a small number of parameters. In a real development these
are design constraints and would need to be discussed with the customer to ensure that sufficient
flexibility remains in the allowed configuration values.

B.1

B.2

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 143

APPENDIX: THE ABSTRACTION RELATION

This chapter defines the retreival relation between the concrete state presented in this document and
the abstract state in the formal specification [4]. The reader is referred to the formal specification
for definitions of the schemas within that specification.

Fingerprint

FD.FingerprintTemplate.Retrieval
FSTypes.FingerprintTemplate FD.Types.FingerprintTemplate

__FingerprintTemplateR
FingerprintTemplate
FingerprintTemplateC

template = templateC

> See: FingerprintTemplateC (p. 14)

> The abstract model did not consider the far so thisisfree.

This relation can be used to define an abstraction function:

fingerprintTemplateR : FingerprintTemplateC — FingerprintTemplate

fingerprintTemplateR = {FingerprintTemplateC; FingerprintTemplate | FingerprintTemplateR o
OFingerprintTemplateC — OFingerprintTemplate}

> See: FingerprintTemplateC (p. 14), FingerprintTemplateR (p. 143)

Certificates

FD.Certificates.Retrieval
FSTypes.Certificates FD.Types.Certificates

We state that there is a bijection between the concrete User type and the abstract type USER. The
abstract type USER was a basic type with no constraints on its structure or contents, the concrete
Issuer isimplemented as two fields, aname and an Id.

userR : User > USER
userR(Issuer) = ISSUER
> See: User (p. 13), Issuer (p. 13)

Thereisasimple retrieval relation for certificate 1ds.

__CertificateldR
Certificateld
CertificateldC

issuer = userRissuerC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 144

> See: CertificateldC (p. 16), userR (p. 143)

> The abstract model did not consider the serial Number so thisisfree.

This relation can be used to define an abstraction function:

certificateldR : CertificateldC — Certificateld
certificateldR = {CertificateldC; Certificateld | CertificateldR e OCertificateldC — @Certificateld}

> See: CertificateldC (p. 16), CertificateldR (p. 143)

The abstract Certificates can be retrieved from the concrete (Raw) certificates, by making use of the
appropriate extraction functions.

__IDCertR
IDCert
IDCertC

3 1DCertContents e d1DCertContents = extractl DCert RawCertificate
A id = certificateldRidC
A validityPeriod = notBefore . . notAfter
A isvalidatedBy = {key : KEYPART |
(mechanism, digest mechanismdata, signature) isVerifiedBy key o key}

A subject = userRsubjectC
A subjectPubK = subjectPubKC

> See: IDCertC (p. 18), IDCertContents (p. 16), extractIDCert (p. 17), RawCertificate (p. 15),
certificateldR (p. 144), digest (p. 15), userR (p. 143)

> We make the assumption here that there is no more than one possible key that will validate the data.

The same retrieval relation works for ID certificates of CAS.

CAldCertR = CAldCert A CAldCertC A IDCertR

> See: CAldCertC (p. 18), IDCertR (p. 144)

__PrivCertR
PrivCert
PrivCertC

3 PrivCertContents e §PrivCertContents = extractPrivCert JRawCertificate
A id = certificateldRidC
A validityPeriod = notBefore . . notAfter
A isvalidatedBy = {key : KEYPART |
(mechanism, digest mechanismdata, signature) isVerifiedBy key o key}

A baseCertld = certificatel dR baseCertldC
A tokenlD = tokenl DR baseCertldC.serial Number

A role = roleC
A clearance = clearanceC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 145

> See: PrivCertC (p. 18), PrivCertContents (p. 17), RawCertificate (p. 15), certificateldR (p. 144), digest (p. 15)

> We make the assumption here that there is no more than one possible key that will validate the data.

__AuthCertR
AuthCert
AuthCertC

3 AuthCertContents e fAuthCertContents = extractAuthCert §RawCertificate
A id = certificateldRidC
A validityPeriod = notBefore . . notAfter
A isValidatedBy = {key : KEYPART |
(mechanism, digest mechanismdata, signature) isVerifiedBy key o key}

A baseCertld = certificateldR baseCertldC
A tokenlD = tokenl DR baseCertldC.serialNumber

A role = roleC
A clearance = clearanceC

> See: AuthCertC (p. 18), AuthCertContents (p. 17), RawCertificate (p. 15), certificateldR (p. 144), digest (p. 15)

> We make the assumption here that there is no more than one possible key that will validate the data.

__landACertR
landACert
landACertC

3 landACertContents o dlandACertContents = extractlandACert RawCertificate
A id = certificateldRidC
A validityPeriod = notBefore . . notAfter
A isValidatedBy = {key : KEYPART |
(mechanism, digest mechanismdata, signature) isVerifiedBy key o key}

A baseCertld = certificatel dR baseCertldC
A tokenlD = tokenl DR baseCertldC.serial Number

A template = fingerprintTemplateR templateC

> See: landACertC (p. 18), landACertContents (p. 17), RawCertificate (p. 15), certificateldR (p. 144),
digest (p. 15), fingerprintTemplateR (p. 143)

> We make the assumption here that there is no more than one possible key that will validate the data.

These relations can be used to define abstraction functions for obtaining abstract certificates from
concrete certificates. These functions are not surjections since the abstract validity periods may not
be contiguous but the concrete validity periods are aways contiguous.

idCertR : IDCertC — IDCert
privCertR : PrivCertC — PrivCert
authCertR : AuthCertC — AuthCert
iandACertR : landACertC — landACert

idCertR = {IDCertC; IDCert | IDCertR e 01DCertC — 01DCert}

privCertR = {PrivCertC; PrivCert | PrivCertR e OPrivCertC — OPrivCert}
authCertR = {AuthCertC; AuthCert | AuthCertR o fAuthCertC — 6AuthCert}
iandACertR = {landACertC; landACert | landACertR e flandACertC — 6landACert}

B.3

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 146

> See! IDCertC (p. 18), PrivCertC (p. 18), AuthCertC (p. 18), landACertC (p. 18), IDCertR (p. 144),
PrivCertR (p. 144), AuthCertR (p. 145), landACertR (p. 145)

Tokens

FD.Tokens.Retrieval
FS.Types.Tokens FD.Types.Tokens

We state that there is a bijection between the concrete TOKENIDC type and the abstract type
TOKENID. The abstract type TOKENID was a basic type with no constraints on its structure or
contents, the concrete TOKENIDC isimplemented as a natural number.

| tokenIDR : TOKENIDC »— TOKENID

> Seet TOKENIDC (p. 18)

The retrieval relation makes use of the retrieval relations for each of the certificate types.

We cannot define aretrieval relation for Tokens that is true for all concrete tokens. This is because
the abstract tokens do not themselves have the possibility of atoken containing the wrong type of
certificate data. However we can define aretrieval relation for tokens where certificate contents can
all be extracted from the concrete raw certificates.

__TokenR
Token
TokenC

idCertC € {IDCertC}

privCertC € {PrivCertC}

iandACertC € {landACertC}

authCertC = nil v theauthCertC € {AuthCertC}

tokenlD = tokenlDRtokenIDC

idCert = idCertRidCertC
privCert = privCertRprivCertC
iandACert = iandACertRiandACertC

authCert = nil A authCertC = nil
\Y%
authCert # nil A authCertC # nil A theauthCert = authCertR (the authCertC)

> See: TokenC (p. 19), IDCertC (p. 18), PrivCertC (p. 18), landACertC (p. 18), AuthCertC (p. 18),
tokenIDR (p. 146), idCertR (p. 145)

Thisrelation holds for al ValidTokens.
ValidTokenR = ValidToken A ValidTokenC A TokenR

> See: ValidTokenC (p. 19), TokenR (p. 146)

Thisrelation can be used to define a partial abstraction function.

tokenR : TokenC —+ Token
tokenR = {TokenC; Token | TokenR e §TokenC — 6Token}

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 147

> See: TokenC (p. 19), TokenR (p. 146)

The retrieva relation for current tokens uses the retrieval relation for valid tokens and preserves
NOW.

__CurrentTokenR
CurrentToken
CurrentTokenC

ValidTokenR

now = nowC

> See: CurrentTokenC (p. 19), ValidTokenR (p. 146)

B.4 Enrolment

FD.Enrolment.Retrieval
FS.Types.Enrolment FD.Types.Enrolment

__EnrolR
Enrol
EnrolC

idSationCert = idCertRidStationCertC

#tissuerCerts = #issuerCertsC
V certC : ran issuerCertsC e Jcert : issuerCerts e cert = idCertRcertC
V cert : issuerCerts e JcertC : ran issuerCertsC e cert = idCertRcertC

> See: EnrolC (p. 20), idCertR (p. 145)
This relation can be used to define an abstraction function.
enrolR : EnrolC — Enrol
enrolR = {EnrolC; Enrol | EnrolR e §EnrolC — #Enrol }
> See: EnrolC (p. 20), EnrolR (p. 147)

The same retrieval relation works for avalid enrolment.

ValidEnrolR = ValidEnrolC A ValidEnrol A EnrolR

> See: ValidEnrolC (p. 21), EnrolR (p. 147)

B.5 Configuration Data

FD.ConfigData.Retrieval
FSConfigData. State FD.ConfigData.State

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 148
__ConfigR
Config
ConfigC

alarmSlentDuration = alarmSlentDurationC
latchUnlockDuration = latchUnlockDurationC
tokenRemoval Duration = tokenRemoval DurationC
enclaveClearance.class = enclaveClearanceC
authPeriod = {p : PRIVILEGE e p — authPeriodC}
entryPeriod = {p : PRIVILEGE e p — entryPeriodC}
minPreservedLogSze = minPreservedLogSzeC
alarmThresholdSize = alarmThresholdSzeC

> See: ConfigC (p. 27), PRIVILEGE (p. 12)

Thisrelation is not surjective, it cannot retrieve an authPeriod that depends on the role for instance.

We can define a function that retreives the abstract configuration data from the concrete:

configR : ConfigC — Config
configR = {ConfigC; Config | ConfigR e AConfigC — #Config}

> See: ConfigC (p. 27), ConfigR (p. 147)

B.6 Real World

FD.RealWorld.Retrieval
FD.Types.Real\World FS.Types.Real\World

We define aretrieval relation mapping entities of type TOKENTRYC to their abstract representation.
Note that al abstract tokens that cannot be retrieved from concrete tokens are related to concrete
bad tokens.

tokenTryR : TOKENTRYC <— TOKENTRY

tokenTryR = {noTC + noT, badTC ~ badT}
U{TokenC | 6TokenC ¢ dom tokenR e goodTC §TokenC — badT }
U{TokenC | §TokenC € dom tokenR e goodTC #TokenC — goodT (tokenRdTokenC)}
U{Token | 6Token € ran tokenR e badTC — goodT fToken}

> See: TOKENTRYC (p. 22), noTC (p. 22), badTC (p. 22), TokenC (p. 19), tokenR (p. 146), goodTC (p. 22)

> Concrete tokens that contain raw certificates from which the correct contents cannot be extracted are modelled as
badT within the abstract model.

We define aretrieval relation mapping entities of type FLOPPYC to their abstract representation.
floppyR : FLOPPYC < FLOPPY

floppyR = {noFloppyC — noFloppy, emptyFloppyC — emptyFloppy, badFloppyC — badFloppy}
U{ValidEnrolC e enrolmentFileC §ValidEnrolC — enrolmentFile (enrolRéValidEnrolC) }
U{ValidEnrol | 6ValidEnrol ¢ ran enrolR e badFloppyC — enrolmentFilegValidEnrol }
U{auditData : F AuditC e auditFileC auditData — auditFile (auditR(auditData))) }
U{ConfigC e configFileC §ConfigC — configFile (configR#ConfigC)}
U{Config | #Config ¢ ran configR e badFloppyC — configFile /Config}

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 149

> See: FLOPPYC (p. 22), noFloppyC (p. 22), emptyFloppyC (p. 22), badFloppyC (p. 22), ValidEnrolC (p. 21),
enrolmentFileC (p. 22), enrolR (p. 147), AuditC (p. 30), ConfigC (p. 27), configFileC (p. 22), configR (p. 148)

We define a partia retrieval relation mapping entities of type SCREENTEXTC to their abstract
representation.

screenTextR : SCREENTEXTC «— SCREENTEXT

screenTextR = {clearC — clear, welcomeAdminC — welcomeAdmin, busyC — busy,

removeAdminTokenC +— removeAdminToken, closeDoorC +— closeDoor,
requestAdminOpC — requestAdminOp, doingOpC — doingOp,
invalidRequestC — invalidRequest, invalidDataC — invalidData,
insertEnrolmentDataC +— insertEnrolmentData, validatingEnrolmentDataC +— validatingEnrolmentData,
enrolmentFailedC — enrolmentFailed, insertBlankFloppyC — insertBlankFloppy,
insertConfigDataC — insertConfigData}

U{StatsC e displaySatsC 0SatsC — displayStats (statsRSatsC) }

U{ConfigC; Config | ConfigR e displayConfigDataC #ConfigC — displayConfigData #Config}

> See: SCREENTEXTC (p. 23), clearC (p. 23), welcomeAdminC (p. 23), busyC (p. 23),
removeAdminTokenC (p. 23), closeDoorC (p. 23), doingOpC (p. 23), invalidRequestC (p. 23),
invalidDataC (p. 23), validatingEnrolmentDataC (p. 23), enrolmentFailedC (p. 23), insertBlankFloppyC (p. 23),
insertConfigDataC (p. 23), SatsC (p. 34), displayStatsC (p. 23), ConfigC (p. 27), ConfigR (p. 147),
displayConfigDataC (p. 23)

> The elements of SCREENTEXTC not in the domain are only used in the definition of screen state components that
have no equivalent in the abstract model. Hence this function being partial will not affect our ability to define
retrieval relations for the T1S state.

B.6.1 The Real World State

Theretrieva relations for the controlled and monitored real world are simple.

__TISControlledRealWor|dR
TISControlledReal\World
TISControlledRealWor|dC

latch = latchC

alarm = alarmC

display = displayC
screen = screenR screenC

> See: TISControlledRealWorldC (p. 24)

__TISMonitoredRealWorldR
TISMonitoredRealWorld
TISMonitoredReal\WorldC

now = nowC

door = doorC
finger = fingerC

user TokenC +— user Token € tokenTryR
adminTokenC — adminToken € tokenTryR

floppyC +— floppy € floppyR
keyboard = keyboardC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 150

> See: TISMonitoredRealWorldC (p. 24), tokenTryR (p. 148), floppyR (p. 148)

Combining these relations we obtain the relation for the whole real world.
TISRealWorldR = TISControlledRealWorldR A TISMonitoredRealWorldR

> See: TISControlledRealWorldR (p. 149), TISMonitoredRealWorldR (p. 149)

B.7 Audit Log

FD.AuditL og.Retrieval
FD.AuditLog.State FSAuditLog.State

We state that there is a bijection between the concrete AuditC type and the abstract type Audit. The
abstract type Audit was a basic type with no constraints on its structure or contents.

| auditR : AuditC »— Audit

> See: AuditC (p. 30)

We observe that within the implementation all log elements have the same size so the implementa-
tions of the functions sizeElement and sizeLog are given by:

sizeElementC : AuditC — N
sizeLogC : F AuditC — N

sizeElementC = AuditC x {sizeAuditElement}
sizeLogC = {X : F AuditC e X — (sizeAuditElement « #X)}

> See: AuditC (p. 30), sizeAuditElement (p. 31)

__AuditLogR
AuditLog
AuditLogC

auditLog = auditR(| J(ran logFiles))
auditAlarmC = auditAlarm

> See: AuditLogC (p. 32), auditR (p. 150)

> TheauditLog isthe contents of all the logFiles.

B.8 Key Store

FD.KeyStore.Retrieval
FD.KeyStore.State FSKeyStore. Sate

__KeyStoreR
KeyStore
KeyStoreC

ownName = {key : keys | key.keyType = private e userRkey.keyOwner }
issuerKey = {key : keys | key.keyType = public e userRkey.keyOwner — key.keyData}

> See: KeyStoreC (p. 33), private (p. 14), userR (p. 143), public (p. 14)

B.9

B.10

B.11

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 151

System Statistics

FD.Stats.Retrieval
FSSats.Sate FD.Sats.Sate

__SatsR
Sats
SatsC

successEntry = successeEntryC
failEntry = failEntryC
successBio = successBioC
failBio = failBioC

> See: SatsC (p. 34)

from this we can define atotal retrieval bijection for system statistics.

statsR : StatsC »— Sats
statsR = {Sats; SatsC | SatsR e §XatsC — §ats}

> See: StatsC (p. 34), StatsR (p. 151)

Administration

FD.Admin.Retrieval
FD.Admin.Sate FSAdmin.Sate

__AdminR
Admin
AdminC

rolePresent = rolePresentC
availableOps = availableOpsC
currentAdminOp = currentAdminOpC

> See: AdminC (p. 35)

Real World Entities

FD.RealWorldState.Retrieval
FD.RealWbrld.Sate FSRealWorld.Sate

__DoorLatchAlarmR
DoorLatchAlarm
DoorLatchAlarmC

currentTime = currentTimeC
currentDoor = currentDoorC
currentLatch = currentLatchC
doorAlarm = doorAlarmC
latchTimeout = latchTimeoutC
alarmTimeout = alarmTimeoutC

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 152

> See: DoorLatchAlarmC (p. 35)

__UserTokenR
UserToken
UserTokenC

currentUser TokenC +— currentUser Token € tokenTryR
user TokenPresence = user TokenPresenceC

> See: UserTokenC (p. 36), tokenTryR (p. 148)

__AdminTokenR
AdminToken
AdminTokenC

currentAdminTokenC — currentAdminToken € tokenTryR
adminTokenPresence = adminTokenPresenceC

> See: AdminTokenC (p. 36), tokenTryR (p. 148)

__FingerR
Finger
FingerC

finger Presence = finger PresenceC

> See: FingerC (p. 36)

—_FloppyR

Floppy
FloppyC

currentFloppyC — currentFloppy € floppyR
writtenFloppyC — writtenFloppy € floppyR
floppyPresence = floppyPresenceC

> See: FloppyC (p. 36), floppyR (p. 148)

__ScreenR
Screen
ScreenC

screenSatsC — screen3ats € screenTextR
screenMsgC +— screenMsg € screenTextR
screenConfigC — screenConfig € screenTextR

> See: ScreenC (p. 36), screenTextR (p. 149)

> Asthe abstract Screen does not include components for displaying the current alarms, these are free.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 153

From this we can define aretrieval relation for screens.

screenk : ScreenC «— Screen

screenR = {Screen; ScreenC | ScreenR o 9ScreenC — fScreent
> See: ScreenC (p. 36), ScreenR (p. 152)

__KeyboardR
Keyboard
KeyboardC

keyedDataPresence = keyedDataPresenceC

> See: KeyboardC (p. 36)

B.12 Internal State

FD.Internal.Retrieval
FSlInternal.Sate FD.Internal.Sate

Theretrieva relation for the Internal stateistrivial.

__InternalR
Internal
InternalC

status = statusC
enclaveStatus = enclaveStatusC
tokenRemoval Timeout = tokenRemoval TimeoutC

> See: InternalC (p. 37)

B.13 Thewhole Token ID Station

FD.TISRetrieval
FD.TISSate FSTISSate

The retrieval relation for the whole Token ID Station is constructed from combining the retrieval
relations for the state components, with the addition of retrieval rules for the remaining state com-
ponents.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 154

__IDSationR
IDSation
IDSationC

UserTokenR
AdminTokenR
FingerR
DoorLatchAlarmR
FloppyR
KeyboardR
ConfigR
SatsR
KeyStoreR
AdminR
AuditLogR
InternalR

currentDisplay = currentDisplayC
currentScreenC +— currentScreen € screenR

> See: IDSationC (p. 38), UserTokenR (p. 152), AdminTokenR (p. 152), FingerR (p. 152),
DoorLatchAlarmR (p. 151), FloppyR (p. 152), KeyboardR (p. 153), ConfigR (p. 147), SatsR (p. 151),
KeyStoreR (p. 150), AdminR (p. 151), AuditLogR (p. 150), InternalR (p. 153), screenr (p. 153)

Cl

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 155

APPENDIX: EXAMPLE REFINEMENT

This chapter presents part of the refinement argument, showing that the Formal Design is a correct
refinement of the Formal Specification.

The refinement that we have carried out from formal specification to design is not particularly
complex. For this reason, and to constrain costs, we have focused on the parts we believe will give
the best cost-benefit. We have therefore carried out hand proofs of pre-conditions (that the pre-
conditions of the designed operations are at least as permissive as the pre-conditions of the specified
operations) and of the correctness of the most complex design step: auditing.

All of these proofs have hand-written documentation. The benefit to the correctness of the system
stems from the action of doing the proofs, not of documenting them. If we expected this system to
have along life and be subject to maintenence, we would document the proofs in electronic form.

For the purposes of this project, we have documented here the correctness proof for the audit actions.
Refinement proof obligations

The general proof rules for refinement in Z are given below. These are a simplification of the
common ‘forward’ proof rules, sufficient in most situations.

We use the following general schemas:

Abstract State A
Abstract Initialisation Alnit
Abstract Operation AOp
Concrete State C
Concrete Initialisation Clnit
Concrete Operation COp

Retrieve between Aand C R
Initialisation

Proof that whenever the concrete system can be initialised (Clnit), it is possible to find an abstract
state that both retrieves (R) and correctly initialises (Alnit). “If you can switch on the concrete, you
could have achieved the same by switching on the abstract.”

ClnitF- JA e Alnit AR

Applicability (pre-conditions) Proof that whenever there is a concrete state that retrieves to an
abstract state able to undergo the abstract operation (R contains both C and A), then the concrete
state is also able to undergo the equivalent concrete operation (COp). “Concrete operations are
applicable whenever the abstract operation is”

R| pre AOp I pre COp

Correctness Proof that whenever a concrete operation (COp) is carried out when the abstract op-
eration would also have been allowed (pre AOp), then the answer achieved (the C in COp) is an

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 156

allowed answer (3 A) from the abstract operation (AOp). “A concrete operation always yields an
answer that could have been seen in the abstract.”

R; COp | pre AOp - A ¢ AOp A R

Cc.2 Audit correctness proof

The most complex step in the design is the realisation of the abstract auditing process as writing to
aseries of individual audit files.

We can draw the auditing part out by noticing that it appears in the abstract and the concrete con-
joined withthe‘meat’ of each operation, but acting on entirely independent variables. AddElementsToLog
and AddElementsToLogC act on AuditLog and AuditLogC respectively, using only the variable
newElements?, which is defined by the meat of the operation. Therefore, it is valid to consider
refining AddElementsToLog by AddElementsToLogC in isolation.

The design tackles auditing in two stages: first strictly declaratively, and then recursively element-
by-element. We will consider the refinement of the declarative version first.

c21 Declarative version

The abstract has the variable newElements? embedded within it, existentially quantified. We can
draw it out explicitly to make the signatures of the abstract and concrete compatible without altering
the underlying meaning of the schemas. We can define a schema in the obvious way that has the
property

AddElementsToLogExplicit \ (newElements) = AddElementsToLog

Thedesign is expressed as adisjunction of four behaviours. The abstract operation istotal, provided
that the recorded times in newElements are al newer that all the times already in the logs. Thisis
equivalent to the concrete requirement that all newElements? have times newer than nowC, as all
elements in the logs must have been added in previous cycles, and time only increases.

(Note that we also require newElements to be non-empty, which it will bein use.)

The concrete is a little less total: #newElements? < maxLogFileEntries. We accept this as a
practical limitation, and ensure only that no cycle can ever produce more log entries than allowed
by this constraint.

We have now simplified the correctness proof obligation to:

ConfigR; AuditLogR; AddElementsToLogC | 0 < #newElements? < maxLogFileEntries
}_
3 AuditLog’; newElements : F Audit e

AddElementsToLogExplicit

A newElements = auditR(newElements?)

A AuditLogR

> See: ConfigR (p. 147), AuditLogR (p. 150), AddElementsToLogC (p. 51), auditR (p. 150)

The four disuncts cover the range of inputs. no elements; enough for current file; too many, but got
another file; and the rest. So having shown they cover the pre-condition sufficiently, we need only
show that each one independently refines the abstract.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 157

For simplicity, we will take the bijection

auditR : AuditC »— Audit

> See auditR (p. 150), AuditC (p. 30)

asread, and identify newElements? and newElements.

AddElementsToL og refined by AddNoElementsTol og
ConfigR; AuditLogR; AddNoElementsToLog | 0 < #newElements? < maxLogFileEntries

}_

JAuditLog’ e
AddElementsToLogExplicit
A AuditLogR

> See: ConfigR (p. 147), AuditLogR (p. 150), AddNoElementsToLog (p. 48)

Extends pre-condition to empty newElements?, so hypothesis is always false.

The result is proved.

AddElementsToL og refined by AddElementsToCurrentFile

ConfigR; AuditLogR; AddElementsToCurrentFile | 0 < #newElements? < maxLogFileEntries

}_

JAuditLog’ e
AddElementsToLogExplicit
A AuditLogR

> See: ConfigR (p. 147), AuditLogR (p. 150), AddElementsToCurrentFile (p. 49)

We choose to prove the first digunct of AddElementsToLog only (which we are free to do, and will
in fact be the case because we are not truncating the logs.)

From the retrieve relation we know

auditLog = | J(ran logFiles)

> See: AuditLogR (p. 150), auditR (p. 150)

then the predicate in AddElementsToLogExplicit

auditLog’ = auditLog U newElements?

clearly retrieves from the predicate in AddElementsToCurrentFile

logFiles’ = logFiles @ {currentFile — logFilescurrentLogFile U newElements?}

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 158

(Note that the logic also works if we choose random log files rather than the current one. We need
only ensure that the file whose size we check isthe file we use.)

To prove the predicates on alarming, we need to relate the concrete sizes and numbers of audit
elements to the abstract size functions. From the alarming predicate in AddElementsToCurrentFile
take

number LogEntries’ > alarmThresholdEntries

Multiply both sides by sizeAuditElement

number LogEntries’ x sizeAuditElement > alarmThresholdEntries * sizeAuditElements

But ConfigC tells us that

alarl ThresholdEntries * sizeAuditElement > alarmThresholdSzeC

and therefore we can deduce

number LogEntries’ x sizeAuditElement > alarmThresholdSizeC

From the retrieves, and the properties of sizeLog given with the retrieves, these values can be re-
placed with

sizeLogauditLog’ > alarmThresholdSize

as needed for the abstract predicate.

The second predicate is derived similarly:

number LogEntries’ < alarmThresholdEntries

Replace the strict less-than by reducing the RHS by 1 (they are integers)

numberLogEntries’ < alarmThresholdEntries — 1

Multiply both sides by sizeAuditElement

number LogEntries’ x sizeAuditElement < (alarmThresholdEntries — 1) x sizeAuditElements

But from ConfigC the RHS s strictly less than alarmThresholdSzeC, giving us

number LogEntries’ x sizeAuditElement < alarmThresholdSizeC
From the retrieves, and the properties of sizeLog given with the retrieves, these values can be re-
placed with

sizeLogauditLog’ < alarmThresholdSize

This gives us the predicates on alarming, and completes this branch.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 159

AddElementsTolL og refined by AddElementsToNextFileNoTruncate

ConfigR; AuditLogR; AddElementsToNextFileNoTruncate | 0 < #newElements? < maxLogFileEntries

}_

J AuditLog’ e
AddElementsToLogExplicit
A AuditLogR

> See: ConfigR (p. 147), AuditLogR (p. 150), AddElementsToNextFileNoTruncate (p. 49)

The argument runs exactly as above, but now newElements? is split between elementsinCurrentFile
and elementsinNextFile. But these get combined directly in{J(ran logFiles), so al the same argu-
ments hold.

AddElementsTolL og refined by AddElementsToNextFileWithTruncate

ConfigR; AuditLogR; AddElementsToNextFileWithTruncate | 0 < #newElements? < maxLogFileEntries

}_

JAuditLog’ e
AddElementsToLogExplicit
A AuditLogR

> See: ConfigR (p. 147), AuditLogR (p. 150), AddElementsToNextFileWithTruncate (p. 50)

Choose to refine the second branch of the abstract schema, which we can choose whenever

sizel og auditLog + sizeLog newElements? > minPreservedLogSze

We know this is true from the hypothesis because only one file is discarded, and as the implemen-
tation has the property that all-files-minus-one is bigger than maxSupportedLogSze (which isitself
bigger than minPreservedLogSze), we aways preserve at least this size of audit information, and
we only ever consider truncating when larger than minPreservedLogS ze.

The property on audit log holding the correct elements is again achieved by the assignment of
logFiles, together with correct time constraints. The choice of the file to discard as the head of the
list of used files ensures it is the oldest.

Alarmis explicitly set in both concrete and abstract operations.

Note the numberLogEntries is calculated to preserve its correct value as the number of entires
actually stored.

Refinement

We have therefore shown that the abstract audit operations, including the option of truncating the
audit log, is correctly refined by the declarative design.

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 160

C22 Recursive

We now show that the concrete element-by-element additions are an alternative representation of
the same behaviour.

First, we show that AddElementToLogC is just a specialisation of AddElementsToLogC for single
elements, i.e

[AddElementsToLogC | #newElements? = 1] = AddElementToLogC

We consider two cases:

Truncate not required
The precondition for the single element schema can be derived from TruncateLogNotRequired and
AddElementsToLogFile. Itis

freeLogFiles # @ A #(logFilescurrentLogFile) = maxLogFileEntries
V #(logFilescurrentLogFile) < maxLogFilesEntries

The precondition for the multiple element schemais

freeLogFiles # @ A #newElements? + #(logFilescurrentLogFile) > maxLogFilesEntries
V #newElements? + #(logFilescurrentLogFile) < maxLogFilesEntries

Assuming asingle element in newElements?, we can replace #newElements? with 1, and given that
the sizes are integers, these can be seen to be identical (given that we can show that the size of the
log files never actually exceeds maxLogFileEntries).

Both schemas break into two disjuncts:
current file: which can be seen to be identical in the two by inspection, and

next file: which can aso be seen to beidentical in the two by inspection, given that we can choose
elementsinCurrentFile to be empty and hence elementsinNextFile = newElements?.

Truncateisrequired

The precondition for the single element schema is derived from the sequential composition of three
schemas, but can be seen to be the negation of the precondition for no truncation:

freeLogFiles = &
A #(logFilescurrentLogFile) = maxLogFilesEntries

(We do need to confirm that the apparent precondition seen in TruncateLog is not restricted by the
later sequential compositions. But releasing alog file and reducing the number of log entries ensures
that the two applications of AddElementToLog will proceed.)

The precondition for the multiple element schemais

Praxis Tokeneer 1D Station Reference S.P1229.50.1
High Integrity Formal Design Issue 1.3
Systems Page 161

freeLogFiles = &
A #newElements? + #(logFilescurrentLogFile) > maxLogFilesEntries

As before, these are the same when #newElements? = 1 .

In the single element schema, the log is truncated, then the truncation element added, then the real
audit element is added.

We will now look at each predicate in the declarative version and see how its equivalent is con-
structed by these sequential operations in the single element version.

predicate 1.
number LogEntries’ = numberLogEntries + 1 — maxLogFileEntries + 1

The subtraction is defined in TruncateLog, and each of the additions comes from an application of
AddElementToLogFile.

predicate 2:
JtruncElement . ..

Each component property can be compared with the equivalent in the single element version and
seen to be the same.

predicate 3:

elementsinCurrentFile C newElements?
Choose this to be empty.
predicate 4.

#(logFilescurrentLogFile) + #elementsinCurrentFile = maxLogFileEntries
#elementsInCurrentFile is zero by choice. This predicate is then true by precondition.
predicate 5:

elementsinNextFile = newElements? \ elementsinCurrentFile
By choosing elementsinCurrentFile empty, this forces elementsinNextFile to equal newElements?.
predicate 6:

oldestLogTime elementsinNextFile > truncElement.logTime
See predicate 7.
predicate 7:

truncElement.logTime > newestLogTimeC elementsinCurrentFile

There are three time intervals in the sequential version: Truncate, AddElementToLogFile (which
adds the truncate audit element), and AddElementToLogFile (which adds newElement?). Timeis
forced to move on between each of these intervals, and this constrains these two predicates 6 & 7 to
be true.

Praxis Tokeneer ID Station Reference S.P1229.50.1

High Integrity Formal Design Issue 1.3
Systems Page 162
predicate 8:

logFiles’ = ...

Application of TruncateLog updates head usedLogFiles to empty, then AddElementToNextLogFile
(this one because of pre-conditions) adds the truncation element (due to renaming in composition)
to thisfile, updating currentLogFile to thisfile (which isthe only onein the list of freeLogFiles, put
there by TruncatelLog), and then AddElementToCurrentLogFile (because only single element in this
file now, so conditions choose this one) adds the newElement? to this.

predicate 9:
currentLogFile’ = head usedLogFiles
Explained above with predicate 9.
predicate 10:
usedLogFiles' = tail usedLogFiles ™ {currentLogFile')
Truncate tails, then next adds the new one, then next leaves it alone.
predicate 11.
freeLogFiles’ = freeLogFiles
Adds one, removes it, leaves alone.
predicate 12:
logFiles3atus’ = logFileXtatus ¢ {currentLogFil¢ — used}
Set to free, then used, then left.
predicate 13:
auditAlarmC’ = alarming
Truncate sets, rest leave it alone.

So AddElementToLogC is equivalent to AddElementsToLogC for an individual element, as we
wished to show.

(We don't actually need to check the recursive definition, because the implementation will actually
apply AddElementToLogC sequentially, chronologically.)

This is sufficient to show that the design step made from the abstract formal specification to the
more concrete design specification is correct.

Tokeneer ID Station
Formal Design

Praxis
High Integrity
Systems

APPENDIX: Z INDEX

Reference S.P1229.50.1
Issue 1.3

Page 163

This section contains an index of Z terms. This contains al the Z schemas, types and functions

defined in the specification.

11
ADSENE . 11
ACCESS POLICY ..t 27
achievedFarDesCriptioncoiiviiiiiiiiiiiiiannnn. 91
AddAuthCertToUserTokenCoviviniiiiinnnnnn 67
AddElementsToCurrentFile ... 49
AddElementsToLOgCovvvi e 51
AddElementsToNextFileNoTruncate 49
AddElementsToNextFileWthTruncate 50
AddElementToCurrentLogFile ...t 52
AddEIementToLogC ..ot 54
AddElementToLogFilecoviiiiiiiiiiin. 53
AddElementToNextLogFile ... 52
AddFailedBioCheckToStatsCc.vvviiiiinninnnnnns 62
AddFailedEntryToSatsCovvvviiiiiei e 61
AdANOEIemMentSTOLOg ... ovv e i 48
AddSuccessful BioCheckToStatsCovvvveiviiienn 62
AddSuccessfulEntryToSatsCvvvevviiiiiiii i 61
ADMIN_ELEMENTS ... oot 29
AdMINACLiVityINProgressooeiviiniiiiiiinann 80
AdMINC .. 35
ADMINFINIShOPC ... 77
AdminHasDeparted ... 80
AMINISDOINGOP ... v 77
AdminlsPresent 7
ADMINLOGONC 76
AdminLogonCanStartcoviiiiiiiiiiiiii 81
ADMINLOGOULC ... 76
ADMINMUSELOGOULo 79
ADMINOR ...ttt 34
ADMINOPCANSTANto.vier e 81
AdMINOPCONEXIC ... 115
AdminOpFinishContextCooiiiiiiiiiin. 116
AdminOplsAvailable ...t 7
AdminOpStartedContextCcocoviviiriiiiiennnn. 116
ADMINPRIVILEGEoiiiiiiiii i 34
ADMINR .. 151
AdMINSArtOPC ...ttt 76
ADMINTOKENC ... 36
AdminTokenCurrentcoviriiiiiiiiiii e 74
adminTokenExpiredElement ... 28
AdMINTOkeNGOOdc.iei i 74
AdminTokenHasExpired ... 78
adminTokenlnvalidElement ..ot 28
AdMINTOKeNNOLOK ... e 75
ADMINTOkeNOKC i 74
adminTokenPresentElementot 28
ADMINTOKENR ... 152
adminTokenRemovedElementc.coiiiinn.. 28
AdminTokenTearCooiiii i 107
AdminTokenTimeoutCc.ieieiii i 114
adminTokenValidElement ...t 28
ALARM Lo 21
ALARMCHANGE_ELEMENTSoiiiiiiiiieeeee 59
AArMING . e 21
alarmRaisedElement 28
alarmSilencedElement ... 28
ALGORITHM .. 15

allHOUIS .. o 27

archiveCheckFailedElementcoiiiiint.. 28
archiveCompleteElementciiiiiiiiiiininnn, 28
archived ... 32
AChIVELOG .o e 34
ArchiveLogC 55
archiveLogElementcooiiiiiiii 28
AttCertificateContentscccovvii i 16
AUDIT_ELEMENT ... et 28
AUDIT_SEVERITY ..ot 28
AuditAlarmMC .. 59
AUDITALARMCHANGE_ELEMENTSccoeue 59
auditAlarmRaisedElemento 28
auditAlarmSilencedElement, 28
AuditC ... 30
AuditDisplayC e 60
AuditDOOIC ... 58
AuditLatchC 58
AUditLOgAIarMC ... 59
AUdITLOgC ..o 32
AuditLogRailure 138
AUITLOGR ..o 150
AUAItMANAGEr ... 12
aUditR ... 150
AUdItSCreenCo 60
AUAITTYPE oot 30
AUhCErtC ... 18
AuthCertContentsco.viiiieeiiiiiiiiieinnnnn. 17
authCertlnvalidElementcooiiiiiiiiiian... 28
authCertNOtAdMINo e 75
AUhCErtOKC ...t 66
AUthCertR ... 145
authCertValidElement ... 28
authCertWriteFailedElementcoviiiina.. 28
authCertWrittenElement, 28
BadAdmMIiNLOgoULCoeiiieiii e 114
BadAdminTokenTearCcoiiiiiiiiinennnnnn. 108
badFIopPYC ... 22
badFP ... 22
badKB 23
badTC .. 22
BioCheckNotRequiredCcccoviiiiiiiiiiianann 86
BioCheckRequiredCccoviiiiiiiiiiiiiii i, 87
blank 22
BUSYC . 23
BYTE i 11
CAIdCEMC ..t 18
CAIdCER ..t 144
CancelArchive ... 57
CancelArchivelndicationc.cooviiiiiiiiinnnnnn 56
CertificateContentsooveviieii i 16
CertificateldC ...t 16
certificateldRo 144
CertificateldR e 143
CertificateIoreovoi it 34
certificateValidityccooiiiii 16
(= S O g 1 2| 66
CertlssuerIsThisTISC ... 66
CertlssuerKnNOWNC ..o 65
CartOKC o 65
CLASS . 12

Tokeneer ID Station
Formal Design

Praxis
High Integrity

Systems

ClearAdminTokenottt 74
ClearanCeuuuitii i 12
ClearC .o 23
ClearLogC 56
ClearLOgENtries 56
ClearUserTokenooouiiiii s 72
CloSEd ..o 21
ClosEDOOIC ... 23
CompleteFailedEnrolmentCcooiiiiiiiinnt, 107
confidential ...t 12
CoNfigC 27
ConfigData ... 27
configFileC 22
CONFIGR oo 148
ConfigR . 147
ConstructAUtNCErt ... 93
CrItiCaAl . e 28
CRITICAL_LELEMENTS s 29
CurrentAdminActivityPossible ... 80
CurrentTOKeNCo 19
CurrentToKenRot 147
CurrentUserEntryActivityPossiblecooote. 79
dayLength ... 11
DAYTIME .. 11
DetermineArchiveLogoovriiii i 55
DetermineBioCheckRequired ...t 89
JIgESt . e 15
DIGESTDATA . . oot 11
displayChangedElement ...t 28
displayConfigDataCcoviuiiiiiiiiiiiiiannnn. 23
DISPLAYMESSAGEot 22
DisplayPollUpdateccoiiiiiiiiiii e 42
displayStatsC ..o 23
doOiNGOPC ...t 23
DOOR . .ottt e 21
DOORCHANGE_ELEMENTSot 57
doorClosedElementoviiiiiii i 28
DoorLatchAlarmC 35
DoorLatchAlarmR 151
DoorLatchFailure ... 138
doorOpenedElementouiiiiiiii e 28
doorunlockedcooiiiiiii 22
emPtyFIopPYC ... 22
EnclaveContextCoovii i 102
ENCLAVESTATUS 37
ENROL_ELEMENTS s 29
EnrolC ... 20
EnrolContextCoiui e 102
enrolmentCompleteElement ... 28
EnrolmentDataOKCcciiiiiiii e 104
enrolmentFailedC 23
enrolmentFailedElement ... 28
enrolmentFileC 22
EnrolmentISInProgresscovoviiiii e 78
EnrolR ... 147
ENTOIR . 147
entryDeniedElemento 28
EntryNotAllowedCc.oiiiiiii i 97
EntryOKC ..o 96
entryPermittedElement ... 28
entryTimeoutElement 28
extractiDCert ... 17
EXIraCtUSEr ... e 30
FailedAccessTokenRemovedCooviiiiinennnnn. 99
FailedAdminTokenRemovedCcovvvivniinnen. 112
FailedEnrolFloppyRemovedCcoiiiiiinnn. 106
FiNgerC ..o 36
fingerDetectedElement ..ot 28

Reference S.P1229.50.1

Issue 1.3

Page 164
fingerMatchedElement ... 28
fingerNotMatchedElement ..., 28
FingerprintTemplateCoooiiiiiiiiiiiii e 14
FingerprintTemplateR ..., 143
fingerprintTemplateRt 143
FINGERPRINTTRY ..ttt 22
FiNGErR .o 152
FingerTimeoutCt 90
fingerTimeoutElement ... 28
FinishArchiveLogBadMatchCcoint 122
FinishArchiveLogCccooiiiiiiiiii i 123
FinishArchiveLogContextcoviviiiiiniennn... 121
FinishArchiveLogFailCo, 123
FinishArchiveLogNOFIoppyCccoviviiiiiininnn. 122
FinishArchiveLogOKCcccoiiiiiiiiiiiiienn 121
FinishUpdateConfigDataCccovviininnen... 125
FinishUpdateConfigDataFailCcccovvnent 125
FinishUpdateConfigDataOKCc..covvviinnennn 124
FLOPPYC ..ot 22
FIOpPYC ..o 36
floppyHasBadDatac.ooeuiiiiiiiiiiiiiai 122
fIOPPYR oo 148
FIOPPYR o 152
floppyRemovedot 122
FlushFingerDataCcouiriiiiiiiiieiiieienns 47
L= 32
GetPresentAdminTokenCovviiiiiiiiiiiiinnen. 110
GetPresentUserTokenC ...t 85
JOOOFP .. e 22
gOOOTC ot 22
OtFINGET .. 37
QUAID e 12
1aNdACEIC ..o 18
1andACErtCoNntentsovuviiiinie e 17
1aNAACENR ... e 145
IDCEIC et 18
IDCertContentscovieiiniiiiei e 16
IDCENR ..ot 144
IACErtR . 145
IDSAtiONC ... 38
IDSEtioONR ... 153
INFO_ELEMENTS ... 29
informationo 28
INILADMING ... 130
INILAUAILLOGC ... 130
InitCertificateorecoooiiiiiiiiiii 129
INItCONfIGC ..o 130
InitDoorLatchAlarmCt 129
INLIDSALIONC ...t 131
InitinternalC ... 131
INItKEYSIOreC 129
INESALSC .« o 130
insertBlankFIoppyCoeiii 23
insertConfigDataCc.oviininiiiii i 23
INSErtFINGEr ..o 22
INTEGERSB2 ...t 11
InternalC ... 37
InternalR ... 153
invalidConfigDataElement ..ot 28
invalidDataC ..o 23
invalidOpRequestElementcooviiiiiniiiienn... 28
INValidREQUESICt 23
LSSUEN e e 13
KEYBOARD ...ttt et 23
KeyboardCo 36
KeyboardR 153
keyedDataTextoouiiiiiiiiiiiiiiiiiiienas 117
KeyedOps ... 23

Tokeneer ID Station
Formal Design

Praxis
High Integrity

Systems

KeyParto 14
KeySIoreC ... o 33
KeySIOreR ... 150
KEYTYPE e 14
LATCH o 21
LATCHCHANGE_ELEMENTS ..ot 58
latchLockedElementccciiiiiiiiiiii e 28
LatchTimeoutExpiredcooiiiiiiiiiiiiiiiaann. 62
LatchTimeoutNotExpiredc.cooviiiiiiiiiniinen.. 63
latchUnlockedElementccoiiiiiiiiiinen... 28
LOCKDOOIrC ..t 65
10CKEA ..o 21
LogChangeC 61
LOGFILEINDEX ...t 31
LOGFILESTATUS 32
LoginAbortedCo 108
LoginContextC e 109
MatCh . 14
MATCHRESULT ..ttt 14
maxDigestLength ... 11
maxNumberLogFiles 31
mMaxSgLength ... 11
M2 e 15
MAD L e 15
MINCIASS ... 12
MINCIEArANCEttt e 12
NewAUthCertC ... 67
NewAuthCertContentsc.covviiiiiiiiiiiananns 66
NODESCHIPLION ..ttt 30
NOFINGErC ..o e 90
NOFIOPPYC ..ottt 22
NOF P 22
NOKB .. 23
NOMALCN ... e 14
NOOPREQUESIC ...t 119
NOTC e 22
NOtENrolledo 37
NMOUSEN .t e e 30
0ldestLogTImECt e 32
(0707 1 21
[6] 1= 21 oo 22
operationStartElement 28
OverrideDoorLockOKC 127
overrideLock 34
overrideLockElement 28
PollADMINTOKeNCo 41
POIIC 43
POIDOOIC ..t e 41
POIIFINGErC ... 42
POIFIOPPYC ..o 42
PollKeyboardCccoiiiii i 42
POl TIMEANADOOr ...t 41
POIITIMEC ... e 40
PollUserTokenCooiieiii e 41
PRESENCE 11
PrESENT o 11
PresentAdminHasDepartedcoviiiiiiiiiinn.. 78
PIIVALE .\ttt 14
PriveertC ... 18
PrivCertContentsc.iuveiiii i 17
PriveertNOtCUurrentovuvie i 72
privCertNotVerifiable 72
PrivCertR ... o 144
PRIVILEGE e 12
PUbliC . 14
QUIBSCENT .ttt et e e 37
RaISBAIAIM .. 63
RawCertificatec.viuiiiiiii i 15

Reference S.P1229.50.1

Issue 1.3

Page 165
RAWDATA et e 11
ReadAdminTokenCo 44
ReadEnrolmentDataCc..coviiiiiiiiiiiiin.n. 104
ReadEnrolmentFloppyCcccviiiiiii 104
ReadFingerOKC ... 89
ReadFloppyCt 44
ReadUserTokenCovieiii i 43
RealWorldC ... 25
RealWorldChangesooviiiiiiiiiiii i 40
RealWorldChangesCovuiiiiii i 40
RealWorldTimeChangesccovvviiiiiiiiiinninnnn. 40
removeAdmMIinTokenCiiiii i 23
RequestEnrolmentCoviviiiiiiiii e 103
ResetScreenMessageCo.oveiii i 83
FESIICtEd ..t 12
FPEMAL28 .. 15
FIPEMALO0 ... 15
522 15
rsSaWIthMA2 ..o 15
rsaWthRipemd128 15
rsaWMthRipemd160cooviiiiiiii i 15
rsaWthShal ... 15
SOIEENC ottt 36
screenChangedElement ... 28
SCrEENR ..o 153
SrEENR . 152
SCREENTEXTC ..ttt ettt 23
SCreenTeXtR ... 149
S < = 12
securityofficer ... 12
SetLockDOOI TIMEOULS ... vvvee e e 65
SetUnIockDOOI TIMEOULS ..o ve e e e e eeeeieeaeenes 64
LS 7= 15
ShutdownAuditFailure ... 138
ShutdownDoorLatchFailure ... 139
shutdownElement 28
ShutdownOKC ... 126
SNULAOWNOP .ot 34
ShutdownWaitingDoorCovuviii i 127
G DATA 11
SIeNCRAIArM ..o 63
SNt L 21
sizeAuditElement 31
SizeElementC 150
SartArchiveLogC ...t 120
SartArchiveLogOKC ..ot 119
SartArchiveLogWaitingFloppyCccciviiiient 120
SArtContextCt e 131
SartEnrolledStationC ... 132
startEnrolledTISElement ...t 28
SartNonEnrolledStationC ...t 132
SartOpContextCvvii i 117
STARTUP_ELEMENTSt 29
SartUpdateConfigDataCc.coviviiiiiniannnn.. 124
SartUpdateConfigOKCooiiiiiiii i 123
SartUpdateConfig\WaitingFloppyCcooovvnnt. 124
AT e 34
SatsR L 151
SEALSR L 151
STATUS e 37
systemFaultElement 28
thiSUSEr . 30
TIME e 11
TISADMINLOGONC ... 113
TISADMINLOGOULC 115
TISAAMINOPC ..o 135
TISArchiveLogOpC ... 123
TISCompleteFailedAccessCovviiiiiiiiiinannns 100

Praxis Tokeneer 1D Station

High Integrity Formal Design

Systems

TISCompleteFailedAdminLogonCc.covvuenn.. 112
TISCompleteTimeoutAdminLogoutCc..ceennn. 115
TISControlledRealWorldCcooviiiiiiiiinnt 24
TISControlledRealWorldRt 149
TISDOAAMINLOGOUEovee e 135
TISDOENIOIOP .. 135
TISDOProgressAdminACtiVityoevininieiininann. 135
TISDoProgressUserEntrycooviiiiiiiiiannn.. 135
TISDoSartAdminACtiVitycoooiiiiniiininnnn. 135
TISDoSartUserEntry ... 135
TISEarlyUpdateCoviviiiie e 46
TISENrOIOPC ..o 107
TISIEC .. 134
TISMonitoredRealWorldCcooviiiiiiiiinen 24
TISMonitoredRealWorldRcooiiiiiiiinen, 149
TISOverrideDoorLockOpCvvveieie e 128
TISPOIC o 43
TISProcessiNgCcvuiiti e 135
TISProgressAdmMinLogonovviiiiiiiiiaieennn. 113
TISProgressUserEntryooviiiiiiiiii e 101
TISReadAdMINTOKENC ... it 110
TISReadFIiNgerC ..ot 91
TISReadUserTokenCoooeii e 86
TISReaWOrIdR 150
TISShUtdOWNOPC ..o 127
TISSartAdmMIinLogonCvvieiiii i 113
TISSArtAdMINOPC ..o 119
TISATUPC e e 133
TISSartUSerEntryovoeee e 100
TISUNIOCKDOOIC ...t 99
TISUPAAtEC ..ot 46
TISUpdateConfigDataOpCc.vuviiiiiieieiienanns 125
TISUSerEntryOpC ... 100
TISvValidateAdminTokenCc.ooviiiiiiiin. 112
TISVAlidateENtryC 97
TISValidateFingerCoovuiiiiii e 93
TISValidateUserTokenCovviiiiiiiiiiiiiieanes 89
TISWriteUserTokenC ..o 95
TokenAuthCertCurrentc.oviiiiiiiiiiinninann.. 71
TokenAUthCertOKt 71
TokenAuthCertPresentcoeviiiiiiiiiiienennen... 71
TOKENC e 19
TokenlandACertCUrrentvvvviiinirninnennen. 71
TokenlandACertOK ... 70
TokenlandACertPresento.veiiiiiii i 70
TOKENIDC ... e 18
TokenIDCertCurrento.oeiiin i 69
TokenIDCertOK ... v 69
TokenIDCertPresentvvuiiiiiiiiiiii e 69
tOKENIDR .. e 146
TOKENOKC ..o 71
TokenPrivCertCurrentooeviiuniinenneriannannns 70
TokenPrivCertOK 70
TokenPrivCertPresentouveiiiiiiiiii i 70
TOKENR .. e 146
tOKENR .. 146
TokenRemoval TIMeoUtCcouiiiiii i 98
TokenRemovedAdminLogoutCc.cocvveviiininn... 113
TOKENTRYC ..ttt 22
tOKENTIYR .o 148
tokenUpdateFailed oo 22
TokenWIthOKAUhCertC 71
TokenWithValidAUthC 19
TOPSECIEL .. e 12
TrunCatelogviii e 53
truncateLogElement ... 28
TruncateLogNotRequiredccoviiiiiiiiiiann.. 54
unclassified 12

Reference S.P1229.50.1

Issue 1.3

Page 166
UNlockDOOIC ...t 64
UnlockDOOIOKC ..o 97
unfocked . ..o 21
UNMArKed 12
UpdateAlarmC 44
UpdateCertificateStorec.cooiiiiiiiiiiiinnannn. 62
updateConfigDataouiiiiii e 34
updatedConfigDataElement ..o, 28
UpdateDisplayCovuiii i 45
UpdateFloppyC 47
Updatelnternal Alarmoooiiiiiiiiiii i 64
UpdatelnternallLatchcoooviiiiiiii i 63
UpdateKeySXoreC ..o 68
UpdateKeyStoreFromFIoppyCo.vvviiniieieiiaennnn 68
UpdateLatchCt a4
UpdateSereenC . ..o e 45
UpdateUserTokenCoeiriiii i 46
USEO ottt et e e 32
[13
USER ENTRY_ELEMENTS ...ttt 29
USER_INDEPENDENT_ELEMENTScovvivnnn.. 29
UserAllowedENtryC ... 96
UserEntryCanStartc.oooviiiiiiii it 80
UserEntryContextCot 84
UserEntrylnProgressooovieiiniiii i, 79
UserHasDepartedc.c.iiiiiiiiiiiii s 79
USERNAME ..t 13
USENONIY e 12
USEN R 143
USERTEXT .ttt et et et e 30
UserTokenC ..o 36
UserTokenGoodc.vuiitiii i 72
userTokenlnvalidElementcoviiiiiiiiiininnn, 28
UserTokenNOtOK oei e 73
UserTOKeNOKC ...t 72
userTokenPresentElement ... 28
UserTokenR 152
user TokenRemovedElement ...t 28
UserTokenTornCoouiiie i 84
User TokenWthOKAUthCertCooovieiiiiiiinnn, 73
ValidateAdminTokenFailCcocoiiiiiiiinnn 111
ValidateAdminTokenOKCccoiiiiiiiiinnennnn.. 110
ValidateEnrolmentDataCcoovviiiiiiiiinaenn. 106
ValidateEnrolmentDataFailCccooiiiinn. 105
ValidateEnrolmentDataOKCcccovivninienn.. 105
ValidateFingerFailC 92
ValidateFingerOKC ... 91
ValidateOpRequestCovviiii et 119
ValidateOpRequestFailCcoviiiiiiiininninnn. 118
ValidateOpRequestOKCo 117
ValidateUserTokenFailCccoviiiiiiiinen... 88
validatingEnrolmentDataCcovvviiiiinninnen. 23
ValidENrolC ..o 21
ValidENroIR ..o 147
ValidNewElement ... 52
ValidNewElements ... 48
ValidTokenC ... 19
ValidToKeNR ..o 146
VENTYBIO .o 14
L T 22
waitingEndEnrol ... 37
WaitingENrolo 37
WaItINGENLIY ..o 37
WaItiNGFINGEr .. 37
waitingFinishAdmIiNOP ..o 37
WaitingFloppyRemovalCo 107
waitingRemoveAdminTokenFailcooi. 37
waitingRemoveTokenFailccocoiiiiiiiiiiiin. 37

Tokeneer ID Station
Formal Design

Praxis
High Integrity
Systems

waitingStartAdminOp
WaitingTokenRemoval C
waitingUpdateToken
warning
WARNING_ELEMENTS
welcome

Reference S.P1229.50.1

Issue 1.3

Page 167
WelcomeAdmMIiNC ... 23
WOrKiNgHOUIS 27
WHIteUSErTOKENC ...t 95
WriteUserTokenFailC ...t 95
WriteUserTokenOKC ... 94
2= (01 11227 11

Tokeneer ID Station
Formal Design

Praxis
High Integrity
Systems

APPENDIX: TRACEUNIT INDEX

Reference S.P1229.50.1
Issue 1.3

Page 168

An index of traceunits. This contains al the traceunits placed in the specification to enable the
elements of the specification to be traced to the design.

FD.AAMiN ADMINFINIShOP ..o 76
FD.AmMin AdmMIinIsDOINGOPcovviiiiiiiiiienennns 77
FD.AdminAdminisPresentccoveiiiiiinn... 77
FD.AAMINAADMINLOGON ...t 75
FD.Admin AdminLogoutc.covviiiiiiiiiiiinnns 76
FD.Admin.AdminOplsAvailable 77
FD.AAMiNAAMINStartOpcovvvi e 76
FD.Admin.Retrieval 151
FDADMINStEteo 34
FD.AdminToken. AdminTokenNotOK 75
FD.AdminToken. AdminTokenOKcc.covvnne. 74
FD.AdminToken.Clearcoiiiiiiiiiiiininnn 74
FD.AdminToken.Currentc.ooouviriiineniennannnn. 74
FD.AuditLog.AddElementsTOLOgovvvvvneenennnnn. 48
FD.AuditLog. AddElementToLOogcovuivneenenennnn 54
FD.AuditLog.AddElementToLogFile 52
FD.AuditLog.ArchiveLogccoviiiiiiiiiininnennn. 54
FD.AuditLog.CancelArchivecocoviiiiiinan... 56
FD.AuditLog.ClearLogcooiiuiiiininiinnnnnen. 55
FD.AuditLog.ExtractUserccoviiiiiiiiniiannns 30
FD.AuditLog.LogChangecouviiiiiiiiniinnns 57
FD.AuditLog.Retrieval ...t 150
FD.AUAItLOG.Statecvieie i 28
FD.AuditLog.TruncateLogovivniiieiiniannenenns 53
FD.Certificate AuthCertSignedOKccovvvnen. 66
FD.Certificate.IsCurrentcooviiiiiiiiiiiins, 66
FD.Certificate.NewAuthCertccoviiiiinn... 66
FD.Certificate.SignedOKciiiiiiiiiiiiiiiiinnn 65
FD.Certificates.Retrievalcooiii. 143
FD.CertificateStore.Statecooviiiiiiiniinnn... 33
FD.CertificateStore.Updateccovviiiiiiiiininnn 62
FD.ConfigData.Retrievalc.cooiiiiiiiininn. 147
FD.ConfigDataStatecvvviiii it 26
FD.ControlledRealWorld.Stateccoviviinn... 23
FD.Door.LockDoorovviiiiiiii 64
FD.Door.UnlockDoOorooviiiiiiiiiiiiieiiiiaennes 64
FD.Enclave AdminHasDepartedccocont 80
FD.Enclave AdminLoginCanStart 81
FD.Enclave AdminLogoutc.covuviiiniinnennen. 113
FD.Enclave AdminMustLogoutcovvvinnn... 78
FD.Enclave AdminOpCanStartc.covvvvvennen.. 81
FD.Enclave AdminTokenTimeoutc.coovune. 114
FD.Enclave.BadAdminLogoutccovovvvennn. 114
FD.Enclave.CurrentAdminActivityPossible 80
FD.Enclave.EnclaveActivityInProgress 80
FD.Enclave.EnrolmentinProgresscoovvinnn.. 78
FD.Enclave.FailedAdminTokenRemoved 112
FD.Enclave.FailedEnrolFloppyRemoved 106
FD.Enclave.FinishArchiveLogBadMatch 122
FD.Enclave.FinishArchiveLogNoFloppy 121
FD.Enclave.FinishArchiveLogOKccccoee. 121
FD.Enclave.FinishUpdateConfigDataFail 125
FD.Enclave.FinishUpdateConfigDataOK 124
FD.Enclave.GetPresentAdminToken 110
FD.Enclave.LoginAborted ..ot 108
FD.EnclaveNoOpRequestc.ovviiiiiiiiiienann 118
FD.Enclave.OverrideDoorLockOKccocvnenn. 127
FD.Enclave.ReadEnrolmentFloppyc.ccoivnn. 104
FD.Enclave.RequestEnrolmentc.oiiea. 103

FD.Enclave.ResetScreenMessagec.ovvvvevnennennn.. 83

FD.Enclave.ShutdownOKcocoiiiiients 126
FD.Enclave.ShutdownWaitingDoor 127
FD.Enclave.StartArchiveLogOKcoivnnnn. 119
FD.Enclave. StartArchiveL ogWaitingFloppy 120
FD.Enclave.StartUpdateConfigDataOK 123
FD.Enclave.StartUpdateConfigWaitingFloppy 124
FD.Enclave. TISAdmIinLogincovvviiiiiniininnn 113
FD.Enclave. TISAdMINLOgoUtc.ovvuiiniinnennn. 115
FD.Enclave. TISArchiveLogOpcovviiivniiiennnn. 123
FD.Enclave.TISCompleteTimeoutAdminLogout 114
FD.Enclave.TISENrolOpovvvin i 102
FD.Enclave. TISShutdownOpc.ccovviiininnnn.. 127
FD.Enclave.TISStartAdminOpcoovviiiiiinnn... 119
FD.Enclave.TISUNlockDoorOpovvviviviiinnennn 128
FD.Enclave.TISUpdateConfigDataOpccenvn.. 125
FD.Enclave.VaidateAdminTokenFail 111
FD.Enclave.VdidateAdminTokenOK 110
FD.Enclave.VdidateEnrolmentDataFail 105
FD.Enclave.VdidateEnrolmentDataOK 105
FD.Enclave.VaidateOpRequestFail 118
FD.Enclave.ValidateOpRequestOKccovene. 117
FD.Enclave.WaitingFloppyRemoval 107
FD.Enrolment.Retrievalccocoiiiiiiiiin 147
FD.Externa . TISUSerEntryOpc.ovvvieiiiieieeaeaene 82
FD.FingerprintTemplate.Retrieval 143
FD.Interface.DisplayPollUpdate 42
FD.Interface.FlushFingerData.ccovvivnn... 47
FD.Interface.PollAdminTokencoiiiiinn.. 41
FD.Interface.PollDoorccoiiiiiiiiiiii 41
FD.Interface.PollFinger ..., 42
FD.Interface.POlIFIOPPYooviii i 42
FD.Interface.PollKeyboardcooiiiiiiiin... 42
FD.Interface.PollTime ..., 40
FD.Interface.PollUserTokenccoiiiiiinninnn. 41
FD.Interface. TISEarlyUpdatescovivviinnt. 45
FD.InterfaceTISPOIlo 40
FD.Interface TISUpdatesc.ccvvviiiiiiiiiinnnn. 46
FD.Interface.UpdateAlarmcoiiiiiiiinien.. 44
FD.Interface.UpdateDisplayccovviiiiininnn.n. 45
FD.Interface.UpdateFloppycoovieviiiiiiiiiiinn.. 46
FD.Interface.UpdateLatchcoooiiiiiiieint, 44
FD.Interface.UpdateScreencovviviniiniinnena.. 45
FD.Interface.UpdateTokencoovviiiiininnnen. 46
FD.Internal.Retrieval 153
FD.Internal.Statecooviiniiii e 37
FD.KeyStoreRetrievalccccoviiiiiiiiiiii, 150
FD.KeyStoreStatecoviriiii e 33
FD.KeyStore.UpdateKeyStoreccocvvvviiinnnnn.. 68
FD.KeyTypesKeysoriii i 14
FD.Latch.Updatelnternal Alarmcooiiiiiiin 63
FD.Latch.UpdatelnternallLatch ...t 62
FD.MonitoredRealWorld.State 24
FD.RealWorld.Retrievalcoo 148
FD.RealWorld.Statecooiviiiiiiiiiiiiiainnns 35
FD.RealWorldState.Retrieval 151
FD.Stats.Retrieval ... 151
FD.StaS.Stateoooeiii e 34
FD.Stats.updateooveiei e 61
FD.TISIHAIE oo 134
FD.TISINItIDStEtionooviiiiiiiiiiiaeen 129

Tokeneer ID Station
Formal Design

Praxis
High Integrity

Systems

FD.TISRetrievalcccoiiiiiiiii, 153
FD.TISStAe . oot 38
FD.TISTISMaNLOoOpooviiiiiiiiiiieiieeae 134
FD.TISTISStartupoveiiii e 131
FD.Token.Validatecooiiiiiiiiiiiiii i 69
FD.Tokens.Retrievalcooiiiiiiiiiiiinn. 146
FD.Types.Certificatescovuviriiiiiiiiiiiiiainns 15
FD.Types.Clearanceovuiuiiiineiiieannnnnn. 12
FD.TypesEnrolmentcooiiiiiiiiiiiiiiiinnns 20
FD.Types.Fingerprinto 13
FD.Types.FingerprintTemplatecooivvienn... 13
FD.TYpes.ISSUEroiii e 13
FD.TYPESPresenCeove i 11
FD.TypesPrivilegecoiiiiiiiiiiiiiiiiiiiii 12
FD.TYPeSRaWTYPESot eieeens 10
FD.TypesRealWorldcooiiiiiiiiiiiii e 21
FD.TYPES.TIME ..o 11
FD.TYPESTOKENS . ..ottt 18
FD.TypesUSer ... 13
FD.UserEntry.BioCheckNotRequired 86
FD.UserEntry.BioCheckRequiredccocvnten. 87
FD.UserEntry.ConstructAuthCertcoovivinnn. 93
FD.UserEntry.CurrentUserEntryActivityPossible 79
FD.UserEntry.EntryOK 96

Reference S.P1229.50.1

Issue 1.3

Page 169
FD.UserEntry.FailedAccessTokenRemoved 99
FD.UserEntry.FingerTimeoutc.covvveiinenannnns 90
FD.UserEntry.NOFINGeroovuiiiiiiiiii i 90
FD.UserEntry.ProgressUserEntrycoovivnent 100
FD.UserEntry.ReadFingerOKccovivniinienann.. 89
FD.UserEntry. TISReadUserTokenccoovvvvnnnn... 85
FD.UserEntry. TokenRemoval Timeout 98
FD.UserEntry.UnlockDoorOKccccoviviinninnnn. 97
FD.UserEntry.UserEntryCanStarto.oeeee. 80
FD.UserEntry.UserEntrylnProgresscooovvivivnnnn 79
FD.UserEntry.UserHasDepartedcccovennt 79
FD.UserEntry.UserTokenTorncooveveeiinnenn.n. 84
FD.UserEntry.ValidateFingerFailco.coe 92
FD.UserEntry.ValidateFingerOKcccovvivvnnne. 91
FD.UserEntry.ValidateUserTokenFail 88
FD.UserEntry.WaitingTokenRemoval 98
FD.UserEntry.WriteUserTokenFail 95
FD.UserEntry.WriteUserTokenOKoenen. 94
FD.UserToken.AddAuthCertToUserToken 67
FD.UserToken.Clearccoiiiiiiiiiiiiiiiiian, 72
FD.UserToken.UserTokenNOtOKooovvviinnnn.. 72
FD.UserToken.UserTokenOKccovvviiiiinninnn. 72
FD.UserToken.UserTokenWithOKAuthCert 73

Tokeneer ID Station
Formal Design

Praxis
High Integrity
Systems

APPENDIX: REQUIREMENTSINDEX

Reference S.P1229.50.1
Issue 1.3

Page 170

Anindex of traceunits. This contains al the traceunits in the requirements documents . All require-
ments are listed with the pages from which they are referenced.

FAU_GEN.LL ... 28
FAU_GEN.L2 ... e 28
FD.AAMiN ADMINFINIShOPcviii e 76
FDAMINStaeo 151
FD.AuditLog.AddElementsToLOg 52, 53,54
FD.AUdItLOG.State 150
FD.ConfigDataStatevvirieiiiiiiiiiiiannns 147
FD.Door.LockDOOrcuvviiiiiii e 62, 63
FD.Door.UnlockDoorcccciiviiiiiiin.n. 62, 63
FD.Interface. TISEarlyUpdatesc..covntt. 44, 44
FD.Interface. TISPall 40,41, 41, 41, 42, 42, 42, 42, 62, 63
FD.Interface. TISUpdatescoent 44, 44, 45, 45
FD.Internal.State ... 37,153
FD.KeyStoreStatecoooviniiii i 150
FD.ReaWorld.Statec.oviiiiiiiiiiiiineinaens, 151
FD.StAS.StAe . ..ot 151
FD.TISStAe . vt 153
FD.Types.Certificatescccvriiiiiiiiiiiaennn. 143
FD.TypesEnrolment ..o, 147
FD.Types.FingerprintTemplatecoviiiin. 143
FD.TypesReaWorld ...t 148
FD.TYPeSTOKENSottt 146
FD.TypesUSer ... 13
FDP_RIP2.1 ... i 47,87,91, 92
FSAMIiNADMINLOGONovii i 75
FSAdMIiNAIMINLOGOULooveii e 76
FSAdminAdmMIinStartOpcoviviiiiiiiiiaennn 76
FSAdMInState ..ot 34,151
FS.AuditLog.ArchiveLogooviiiiiiiiiiinnn... 54
FSAuditLog.ClearLogcoviiiiiiiiiiiii et 55
FS.AuditLog.LogChangeccoviiiiiiiiiinninaen.. 57
FSAuditLog.Statecovviiiiiii 28,150
FS.Certificate. NewAuthCertt 66
FS.ConfigDataStatecvvvviiie i 26, 147
FS.DoOr.LOCKDOOr ...t 64
FS.Door.UnlockDOOruiieiiiii e 64
FS.Enclave AdminLogoutc.oooiiiiiiiiinennn... 113
FS.Enclave AdminTokenTimeout 114
FS.Enclave.BadAdminLogoutcooviiinnn 114
FS.Enclave.FailedAdminTokenRemoved 112
FS.Enclave.FailedEnrolFloppyRemoved 106
FS.Enclave.FinishArchiveLogBadMatch 122
FS.Enclave.FinishArchivelLogNoFloppy 121
FS.Enclave.FinishArchiveLogOK 121
FS.Enclave.FinishUpdateConfigDataFail 125
FS.Enclave.FinishUpdateConfigDataOK 124
FS.Enclave.LoginAborted ...t 108
FS.EnclaveNoOpReqUEStvvviiiiiii e 118
FS.Enclave.OverrideDoorLockOK 127
FS.Enclave. ReadAdminTokenccoeet. 110
FS.Enclave.ReadEnrolmentFloppycooovvvvninnn 104
FS.Enclave.RequestEnrolmentcoo.... 103
FS.Enclave.ShutdownOK ...t 126
FS.Enclave.ShutdownWaitingDoor 127
FS.Enclave.StartArchiveLogOKcccoivents. 119
FS.Enclave.StartArchiveLogWaitingFloppy 120
FS.Enclave. StartUpdateConfigDataOK 123
FS.Enclave.StartUpdateConfigWaitingFloppy 124
FS.Enclave. TISAdminLogincoooviviiiinenn.n. 113

FS.Enclave. TISAdminLogoutcoovviieiininnnnn. 115

FS.Enclave.TISArchiveLogOpccovviviiennnn.. 123
FS.Enclave. TISCompleteTimeoutAdminLogout 114
FSENnclave. TISENrolOp . ..o v 102
FS.Enclave.TISShutdownOpcovvviiiininenn.. 127
FS.Enclave TISStartAdmMinOpcovvviiiiinennnn.. 119
FS.Enclave.TISUNIockDoOrOpovvviviiie i 128
FS.Enclave. TISUpdateConfigDataOpcovvenn.. 125
FS.Enclave.ValidateAdminTokenFail 111
FS.Enclave.ValidateAdminTokenOK 110
FS.Enclave.ValidateEnrolmentDataFail 105
FS.Enclave.ValidateEnrolmentDataOK 105
FS.Enclave.ValidateOpRequestFail 118
FS.Enclave.ValidateOpRequestOKcoovvnen. 117
FS.Enclave.WaitingAdminTokenRemoval 134
FS.Enclave.WaitingFloppyRemoval 107
FS.External . TISUSerEntryOpcovvviiiiiiiaeee 82
FS.Interface. TISEarlyUpdatesccoovviinn.. 45
FS.iInterface.TISPollo 40
FS.Interface.TISUpdatesc.ocoiiviiiiiiiiininnnn. 46
FS.Interface.UpdateFloppyc.cocoiiiiiiiniiniinn... 46
FS.Interface.UpdateTokenccooviiiiiiiiiannnns 46
FSInternal.Stateooiiiiiiiiiii i 153
FSKeyStoreStateooviiii e 33, 150
FS.KeyStore.UpdateKeyStoreooviiiiiiiiiinnn 68
FSKeyTypesKeys . ..o 14
FS.ReaWorld.Statec.ovvvviiiiiiiiiiinn 35,151
FS.StaS.Stae ..o 34,151
FS.StatsUpdateoviriiiiiii i 61
FSTISINItIDStAtionveeieiii i 129
FSTISStEe ..ot 38,153

FSTISTISMANLOOP ... ovvieeeeieeee e 134
FSTISTISSArtUP . ..o 131

FS.Types.Certificatescoviiiiiiiiinnn... 15, 143
FSTypes.ClearanCeovuiiriiiiii i 12
FS.TypesEnrolment ... 20, 147
FS.TypesFingerprintoouiiiiiiiii it 13
FS.Types.FingerprintTemplate 13,143
FSTYPeS.ISSUEr ... 13

FSTypesPresence ..o 11

FSTypesPrivilege ..o 12

FSTypesReaWorld ...t 21,148
FSTYPESTIME oo 11

FSTypesTokensovveiiiii i 18, 146

FS.UserEntry.BioCheckNotRequired 86
FS.UserEntry.BioCheckRequiredcooviiviinnn 87
FS.UserEntry.EntryOK 96

FS.UserEntry.FailedAccessTokenRemoved 99
FS.UserEntry.FingerTimeoutcoovviiniennnn.. 90
FS.UserEntry.NOFINgerovvniiiii it 90
FS.UserEntry.ReadFingerOKcoiiiiiininn... 89
FS.UserEntry. TISReadUserTokenc.covvevniennnn. 85
FS.UserEntry. TISUSerENtryOpoovviiiiieiiiiiiaens 100
FS.UserEntry. TokenRemoval Timeout 98
FS.UserEntry.UnlockDoorOKcovviiiiiinnnnnnn. 97
FS.UserEntry.UserTokenTorncovovnieienenannen 84
FS.UserEntry.ValidateFingerFail 92
FS.UserEntry.ValidateFingerOKccooviiiiiinnt. 91
FS.UserEntry.ValidateUserTokenFail 88
FS.UserEntry.WaitingTokenRemoval 98
FS.UserEntry.WriteUerTokenFailc.c..e. 93

Praxis Tokeneer ID Station

High Integrity Formal
Systems

FS.UserEntry.WriteUerTokenOK
FS.UserEntry.WriteUserTokenFail

Design

Reference S.P1229.50.1

Issue 1.3

Page 171
93 FS.UserEntry.WriteUserTokenOKc.cccovvnnnnn. 94
95 FS.UserToken.AddAuthCertToUserToken 67

