
Praxis
High Integrity
Systems

Document Set Tokeneer ID Station Reference S.P1229.40.4

Title : Security Properties

Synopsis : This document presents a formal specification of the Security Prop-
erties of the TIS core and a demonstation of satisfaction of these
security properties by the specified TIS core.

Contents : See table of contents

Status : Definitive

Issue Number : 1.1

Date : 14th August 2008

Copied To : NSA
Randolph Johnson

SPRE Inc.

Praxis High Integrity
Systems
Project Team

Front Sheet : Quality

Originators : David Cooper Signed :

Approver : Janet Barnes Approved :

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 2

0 DOCUMENT CONTROL

Copyright c©(2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved. This material was originally developed by Praxis High Integrity Sys-
tems Ltd. under contract to the National Security Agency.

Changes History

All issues of this document have been type-checked with f UZZ and have given no errors.

Issue 0.1 (10th July 2003) First draft issued for comments within Praxis.

Issue 1.0 (23rd July 2003) Updated following internal review. First issue to client for comment.

Issue 1.1 (14th August 2008) Updated for public release.

Changes Forecast

Updates following client review, if any.

References

1 The Z Notation: A Reference Manual, J.M Spivey, Prentice Hall, Second Edition, 1992

2 TIS Software Requirements Specification, Version 2.0, S.P1229.41.1.

3 TIS Kernel Protection Profile, SPRE Inc, Version 1.0, 5 February 2003.

4 TIS Security Target, S.P1229.40.1.

5 TIS Formal Specification, S.P1229.50.1.

Abbreviations

TIS Token ID Station

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 3

1 TABLE OF CONTENTS

0 Document Control

1 Table Of Contents

2 Introduction
2.1 Structure of this Document . 4

3 Security Properties
3.1 Security Properties . 5
3.2 Arguments that Security Properties hold . 8
3.3 Note on arguments . 11

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 4

2 INTRODUCTION

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer
System) in accordance with their high-integrity development process. This development work will
then be used to show the security community that is is possible to develop secure systems rigorously
in a cost effective manner.

This document is the formal statement of the key security properties the Token ID Station (TIS)
shall possess, written using the Z notation.

2.1 Structure of this Document

This document should be read in conjunction with the formal specification, [5].

Section 3.1 states the key security properties as theorems on the formal specification.

Section 3.2 gives mathematical arguments that the formal specification given in [5] does in fact
possess each of the properties stated.

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 5

3 SECURITY PROPERTIES

We define a general operation, representing all the calculation and decisions, but excluding the
Polling of the peripherals and the Updating of the peripherals. Many of the security properties refer
to properties that hold during one execution of this general operation.

TISOp =̂ (TISEnrolOp
∨ TISUserEntryOp
∨ TISAdminLogon
∨ TISStartAdminOp
∨ TISAdminOp
∨ TISAdminLogout
∨ TISIdle)

∧ LogChange

3.1 Security Properties

3.1.1 Property 1: Unlock with Token

If the latch is unlocked by the TIS, then the TIS must be in possession of either a User Token or an
Admin Token. The User Token must either have a valid Authorisation Certificate, or must have valid
ID, Privilege, and I&A Certificates, together with a template that allowed the TIS to successfully
validate the user’s fingerprint. Or, if the User Token does not meet this, the Admin Token must have
a valid Authorisation Certificate, with role of “guard”.

As the property refers to the real world (latch), we must look at the combined effect of carrying out
a TIS calculation and then updating the world. Hence we define:

TISOpThenUpdate =̂ TISOp � TISUpdate

� See: TISOp (p. 5)

We also make statements about validity in the absence of currency checks. We therefore define
the following two schemas, which are direct copies of the schemas UserTokenWithOKAuthCert and
UserTokenOK, but with the currency checks removed.

UserTokenWithOKAuthCertNoCurrencyCheck
KeyStore
UserToken
currentTime : TIME

currentUserToken ∈ ran goodT
∃ TokenWithValidAuth •

(goodT(θTokenWithValidAuth) = currentUserToken
∧ (∃AuthCert • θAuthCert = the authCert ∧ AuthCertOK))

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 6

UserTokenOKNoCurrencyCheck
KeyStore
UserToken
currentTime : TIME

currentUserToken ∈ ran goodT
∃CurrentToken •

(goodT(θValidToken) = currentUserToken
∧ (∃ IDCert • θIDCert = idCert ∧ CertOK)
∧ (∃PrivCert • θPrivCert = privCert ∧ CertOK)
∧ (∃ IandACert • θIandACert = iandACert ∧ CertOK))

ΔIDStation; ΔRealWorld |
TISOpThenUpdate
∧ latch = locked ∧ latch′ = unlocked

�
(∃ValidToken • goodT(θValidToken) = currentUserToken

∧ UserTokenOKNoCurrencyCheck
∧ FingerOK)

∨
(∃TokenWithValidAuth • goodT(θTokenWithValidAuth) = currentUserToken

∧ UserTokenWithOKAuthCertNoCurrencyCheck)
∨
(∃ValidToken • goodT(θValidToken) = currentAdminToken

∧ authCert �= � ∧ (the authCert).role = guard)

� See: TISOpThenUpdate (p. 5), UserTokenOKNoCurrencyCheck (p. 5),
UserTokenWithOKAuthCertNoCurrencyCheck (p. 5)

3.1.2 Property 2: Unlock at allowed time

If the latch is unlocked automatically by the TIS, then the current time must be close to being within
the allowed entry period defined for the User requesting access.

“close” needs to be defined, but is intended to allow a period of grace between checking that access
is allowed and actually unlocking the latch. “Automatically” refers to the latch being unlocked by
the system in response to a user token insertion, rather than being manually unlocked by the guard.

ΔIDStation; ΔRealWorld |
TISOpThenUpdate
∧ latch = locked ∧ latch′ = unlocked
∧ adminTokenPresence = absent

�
(∃ValidToken • goodT(θValidToken) = currentUserToken

∧ (∃ recentTime : timesRecentTo currentTime •
recentTime ∈ entryPeriod privCert.role privCert.clearance.class))

� See: TISOpThenUpdate (p. 5)

where we define a function timesRecentTo that gives a set of times close to a given time. We define
it here loosely.

timesRecentTo : TIME�� TIME

∀ t : TIME • t ∈ timesRecentTo t

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 7

3.1.3 Property 3: Alarm when insecure

An alarm will be raised whenever the door/latch is insecure.

“insecure” is defined to mean the latch is locked, the door is open, and too much time has passed
since the last explicit request to lock the latch.

There are two places in which real world updates occur:

Update =̂
TISEarlyUpdate ∨ TISUpdate

Update |
latch′ = locked
∧ currentDoor′ = open
∧ currentTime′ ≥ alarmTimeout

�
alarm′ = alarming

� See: Update (p. 7)

3.1.4 Property 4: No loss of audit

No audit data is lost without an audit alarm being raised.

TISOp | auditAlarm = auditAlarm′ = silent
�

auditLog ∪ (if currentFloppy ∈ ran auditFile then auditFile∼currentFloppy else �) ⊆
auditLog′ ∪ (if currentFloppy′ ∈ ran auditFile then auditFile∼currentFloppy′ else �)

� See: TISOp (p. 5)

3.1.5 Property 5: Audit records are consistent

The presence of an audit record of one type (e.g. recording the unlocking of the latch) will always
be preceded by certain other audit records (e.g. recording the successful checking of certificates,
fingerprints, etc.)

Such a property would need to be defined in detail, explaining the data relationship rules exactly for
each case. This has not been done.

3.1.6 Property 6: Configuration/floppy changed by admin

The configuration data will be changed, or information written to the floppy, only if there is an
Admin person logged on to the TIS.

TISOp | adminTokenPresence = absent
�

ΞConfig ∧ ΞFloppy

� See: TISOp (p. 5)

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 8

3.2 Arguments that Security Properties hold

We present informal arguments that each of the security properties is indeed a property of the system
as specified.

Note that TISOp has signature

ΔIDStation
ΞTISControlledRealWorld
ΔTISMonitoredRealWorld

and TISUpdate has signature

ΞIDStation
ΔTISControlledRealWorld
ΔTISMonitoredRealWorld

3.2.1 Property 1: Unlock with Token

Restating the property:

ΔIDStation; ΔRealWorld |
TISOpThenUpdate
∧ latch = locked ∧ latch′ = unlocked
∧ (latch = currentLatch)

�
(∃ValidToken • goodT(θValidToken) = currentUserToken

∧ UserTokenOKNoCurrencyCheck
∧ FingerOK)

∨
(∃TokenWithValidAuth • goodT(θTokenWithValidAuth) = currentUserToken

∧ UserTokenWithOKAuthCertNoCurrencyCheck)
∨
(∃ValidToken • goodT(θValidToken) = currentAdminToken

∧ authCert �= � ∧ (the authCert).role = guard)

� See: TISOpThenUpdate (p. 5), UserTokenOKNoCurrencyCheck (p. 5),
UserTokenWithOKAuthCertNoCurrencyCheck (p. 5)

The hypothesis considers only the combination of the general operation and the standard update
step. This is justified because latch can only change in an Update, which is always either

TISOp � TISUpdate

or

Poll � TISEarlyUpdate

The second of these can only result in an increase in currentTime, which means that the only change
to latch possible is to become locked. This is not the change we are investigating here.

It is therefore reasonable to limit our hypothesis to the case TISOp � TISUpdate.

We have started by adding the predicate latch = currentLatch to the hypothosis. This is justified
because we are concerned only with the case when the latch is entirely under the control of the TIS,

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 9

and has been to date. We can therefore assume that at the beginning of this operation the TIS’s view
of the position of the latch (currentLatch) agrees with the actual state of the latch (latch).

We will refer to the intermediate state by double-dash, the before-state by no dashes, and the after-
state by a single dash.

Taking the hypothesis latch′ = unlocked, we deduce that currentLatch′′ = unlocked, from the
behaviour of TISUpdate. currentLatch = locked from the predicates in the hypothesis.

So we have a change of currentLatch. This state of currentLatch is entirely defined in the invariant
to DoorLatchAlarm by currentTime and latchTimeout. A change can only happen in TISOp, due to
ΞIDStation in TISUpdate.

There are three components of TISOp that do not have ΞDoorLatchAlarm: UnlockDoorOK, ShutdownOK,
and OverrideDoorLockOK.

We can ignore ShutdownOK because it involves a change to locked, not unlocked.

UnlockDoorOK

status = waitingRemoveTokenSuccess

The sequence of states that must have been passed through is therefore either:

quiescent to gotUserToken to waitingFinger to gotFinger to waitingUpdateToken to waitingEntry
to waitingRemoveTokenSuccess

or

quiescent to gotUserToken to waitingEntry to waitingRemoveTokenSuccess

In the first, ValidToken and UserTokenOK are assured in passing to the waitingFinger state, and
FingerOK is assured in passing to the waitingUpdateToken state. This proves the first branch.

In the second, TokenWithValidAuth and UserTokenWithOKAuthCert are both assured in passing to
the waitingEntry state. This proves the first branch of the theorem.

OverrideDoorLockOK

enclaveStatus = waitingStartAdminOp

and

the currentAdminOp = overrideLock.

This means that the system must have passed through the following states:

enclaveQuiescent, role = nil to gotAdminToken to enclaveQuiescent, roll �= nil to waitingStartAdminOp

In passing to the enclaveQuiescent, role �= nil state the rolePresent is set from the role in the
authCert, and the Admin Token is checked for validity (and in particular, checked for being present).

In passing to the waitingStartAdminOp state the check on the validity of the requested operation
ensures that currentAdminOp ∈ keyedOp∼�availableOps�, and in turn the value of availableOps
is tied to the value of the rolePresent by a state invariant. The state invariant ensures that the

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 10

operation to override the door lock (the operation we must be considering here) is only available to
the guard. Therefore, as we know that the hypothesis implies that the operation being carried out
is OverrideDoorLockOK, we know that the currentAdminOp = overrideLock, so we know that the
rolePresent is a guard, and hence the role in the authCert is a guard, as required.

3.2.2 Property 2: Unlock at allowed time

Restating the property:

ΔIDStation; ΔRealWorld |
TISOpThenUpdate
∧ latch = locked ∧ latch′ = unlocked
∧ adminTokenPresence = absent
∧ (latch = currentLatch)
∧ (∀ t : TIME •

((t − tokenRemovalDuration) . . (t + tokenRemovalDuration)) ∩ TIME ⊆ timesRecentTo t)
�

(∃ValidToken • goodT(θValidToken) = currentUserToken
∧ (∃ recentTime : timesRecentTo currentTime •

recentTime ∈ entryPeriod privCert.role privCert.clearance.class))

� See: TISOpThenUpdate (p. 5), timesRecentTo (p. 6)

As in the proof of Property 1, we consider the combination of one general operation and one update.

We add the assumption that all times within tokenRemovalDuration of a given time are considered
to be “recent” to that time.

We can follow the same proof as for Property 1, and with the additional hypothesis of adminTokenPresence =
absent we can exclude the OverrideDoorLockOK operation, as intended.

Following the sequence of state changes, we find that in passing to the waitingRemoveTokenSuccess
state we carry out the EntryOK operation, which checks that the currentTime is within the entry
period defined for the class and role given in the Privilege Cert:

currentTime ∈ entryPeriod privCert.role privCert.clearance.class.

However, this relates to the currentTime given in passing to this state, whereas the security property
we are proving relates to the currentTime leaving this state, to quiescent.

To deal with this, consider the state changes allowed subsequently. WaitingTokenRemoval allows
the system to stay in this state, but for no longer than tokenRemovalDuration. After this time,
the system is forced into waitingRemoveTokenFail, via TokenRemovalTimeout, and ceases to be of
concern. The only other exit from this state is via UnlockDoor, which actually carries out the change
to currentLatch we are investigating.

Therefore, we can show that the value of currentTime when the latch is unlocked cannot differ from
the value of currentTime when the validity period is checked by more than tokenRemovalDuration.

The additional assumption on the proof is that our definition of “recently” is sufficiently broad to
accommodate the time lag that our system actually works with.

3.2.3 Property 3: Alarm when insecure

Restating the property:

Praxis
High Integrity
Systems

Tokeneer ID Station
Security Properties

Reference S.P1229.40.4
Issue 1.1
Page 11

Update |
latch′ = locked
∧ currentDoor′ = open
∧ currentTime′ ≥ alarmTimeout

�
alarm′ = alarming

� See: Update (p. 7)

This follows quite directly from the state invariant in DoorLatchAlarm.

alarm′ is set to currentAlarm′′ (the only way it is ever set) in both of the Update operations in the
hypothesis, and the invariant in the included ΞDoorLatchAlarm specifically ties the conclusion to
the remaining predicates in the hypothesis.

3.2.4 Property 4: No loss of audit

Proof not done.

3.2.5 Property 5: Audit records are consistent

Proof not done.

3.2.6 Property 6: Configuration/floppy changed by admin

Proof not done.

3.3 Note on arguments

Many of these arguments depend upon a sequence of state transitions. The arguments presented
argue that because the system is in a state with a certain status, then a specific series of states
(different statuses) must have been passed through. But because Z specifies the system in terms of
atomic state transitions, this argument is not fully justified.

It can be made fully justified by augmenting the state invariants with the properties relied upon in
each state. It is possible to prove that these properties are established as the system passes through
its state transitions, and because they are carried in the state invariant, they are available to support
the proofs.

We have not done this, as we believe it will add little to the assurance of correctess, and is very time
consuming. At higher levels of the CC assurance we would be required to carry out more formal
proofs, in which case these modifications would be done.

