

Tokeneer ID Station
Code Verification Summary

 S.P1229.52.1
Issue: 1.2
Status: Definitive
25th August 2008

 Originator

 Janet Barnes (Project Manager)

 Approver

 David Cooper (Technical Authority)

 Copies to:

 NSA Praxis High Integrity Systems
 Project File

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 2 of 23

Contents

1 Introduction 3
1.1 Background 3
1.2 Purpose 3
1.3 Structure 3

2 Code verification using the SPARK Examiner toolset 4
2.1 Syntactic and Semantic Analysis 4
2.2 Data Flow Analysis 5
2.3 Information Flow Analysis 5
2.4 Run-time Error Checking 5
2.5 Functional Verification 5
2.6 Proof Summary 6

3 Verification of TIS Core software 7
3.1 Functional Verification 7

A Appendix: Design to Code transformation 17

Document Control and References 23
Changes history 23
Changes forecast 23
Document references 23

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 3 of 23

1 Introduction

1.1 Background

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop a high integrity variant of an existing secure system
(the Tokeneer System) in accordance with their own high-integrity development process. The component
of the Tokeneer System that is to be redeveloped is the core functionality of the Token ID Station (TIS).
This development work will then be used to show the security community that it is possible to develop
secure systems rigorously in a cost-effective manner.

1.2 Purpose

This document describes the verification process applied to the software and summarises the results of
the static analysis and formal code verification that was performed.

1.3 Structure

The next section describes in general the process of performing Formal verification using SPARK.

Section 3 describes the verification process applied to the TIS code and the properties of the TIS code
that were formally verified.

Section 4 summarises the results of the verification process.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 4 of 23

2 Code verification using the SPARK Examiner toolset

The SPARK Examiner provides a number of facilities for performing static analysis of the code. This
static analysis is achieved by inserting specification information into the source code in the form of
annotations. Some of the annotations are mandatory and the code is not analysable without these,
other annotations are optional and allow more detailed levels of analysis. The SPARK Examiner then
analyses the code against the annotations. There are a number of levels of analysis that can be
performed by the SPARK Examiner, these are covered in the following sections and summarised in
Figure 1.

Data Flow

Examiner

Simplifier

Proof Checker

SPARK source file

Code and
Mandetory

Annotations

Proof
Context

Information
Flow

Annotations

Flow
Analysis
Reports

Simplified
VCs

Proof LogProof Rules

 VCs

Proof
Obligation

Summariser

Proof
Summary

Informal
Justifications

Information
Flow

RTE
Checks

Functional
Verificaton

Figure 1 The SPARK Analysis options

Round cornered boxes represent inputs or outputs while square cornered boxes
represent tools in the SPARK Examiner Toolset.

2.1 Syntactic and Semantic Analysis

The SPARK Examiner performs this by default. The SPARK language is a subset of Ada conforming to a
number of checkable constraints along with mandatory annotations that make explicit all the global

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 5 of 23

state that must be in the scope of each package or subprogram. These constraints ensure that the code
is statically analysable; they also eliminate potentially erroneous uses of the Ada language.

2.2 Data Flow Analysis

The minimal level of analysis also includes data-flow analysis, for this to be performed global
annotations need to be present. Global annotations specify all the global state that may be used or
modified by a subprogram. The SPARK Examiner checks the consistency of these annotations with the
code and checks for key data flow properties such as initialisation before use of state, at both the local
and global level.

2.3 Information Flow Analysis

With the addition of derives annotations the SPARK Examiner can additionally perform information flow
analysis. Derives annotations specify the expected interdependencies between the global state
components in the system. The SPARK Examiner checks the consistency of these annotations (the
specified dependencies) with the code. Information flow analysis is optional.

2.4 Run-time Error Checking

Run-time error checking is an optional, but very powerful, check that may be performed by the SPARK
Examiner with just the minimal global annotations present and the addition of assertions relating to type
information of variables used in loops. Run-time error checking analyses the conditions that must be
satisfied to ensure that no exceptions are raised at each point in the code where an Ada run-time
exception may be raised. The SPARK Examiner generates its results in the form of a number of VCs
(Verification Conditions), all of which must be satisfied to guarantee freedom from run time exceptions.
With the use of the SPADE Simplifier these VCs can be reduced to a small number which need to be
proved True, the final proof effort can either be performed manually using rigorous argument or by using
the Proof Checker, an interactive proof tool.

Software that is proven run-time error free can be guaranteed never to overrun array bounds or set
variables to values outside their type. These can be very important properties since they are
mechanisms by which malicious attacks can be made on code.

2.5 Functional Verification

By annotating subprograms with proof contexts, that take the form of pre and post conditions it is
possible to prove functional properties of the code. The level of functional proof achieved depends on
the detail provided within the proof contexts, these can describe the full functional behaviour of a
subprogram or just key properties. As for proof of absence of run-time errors, the SPARK Examiner
generates VCs that must be proved true to demonstrate that the code does indeed meet its specified
post conditions, within the context of its preconditions.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 6 of 23

Functional Proof can also be assisted by the definition of proof functions and provision of rewrite rules
for these proof functions. The rewrite rules can be applied in order to discharge VCs using the Proof
Checker.

2.6 Proof Summary

The Proof Obligation Summariser summarises the results of all proof activities. This indicates the source
of all VCs generated (RTE checks, precondition checks etc) It also summarises the point in the Proof
process in which the VC was discharged (shown true). This is a very useful mechanism for ensuring that
all obligations have been discharged.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 7 of 23

3 Verification of TIS Core software

All of the TIS Core software has undergone the following checks:

• Data-Flow Analysis

• Information-Flow Analysis

• Run-time Error Checking

The software implementation followed the structure of the Formal Design [1]. This allowed global and
derives annotations to be deduced from the scope of the Z schemas being implemented and the formal
relationship between state components as defined by the schema predicates. See Appendix A for
examples that demonstrate the correspondence between the Z Design and the flow annotations.

SPARK annotations were included at an early stage in the coding, prior to the implementation of
subprogram bodies. The SPARK Examiner was run early and often during code development to ensure
that each subprogram that was developed conformed to the specified flow properties.

Once all the code in a package was complete run-time error checking was performed on the code, this
was done before code review and the SPARK output was part of the material reviewed.

As a consequence of the early and regular application of static analysis and run-time error checking
many errors were detected and corrected by the developer as part of the implementation phase before
the code even reached review. This is a phenomenon that has been exhibited on a number of projects
where SPARK Analysis has been applied early, in contrast to projects where static analysis has been
applied retrospectively, after the code has been completed.

3.1 Functional Verification

As the code resembled the Z Design very closely (see Appendix A for evidence) it was decided that it
would not be cost effective to perform full functional proof. The reason being that the similarity between
the code and the Z was sufficiently transparent that it was effectively and easily checked by code
review.

Functional verification was used to prove certain key invariants (corresponding to state invariants in the
Z design) were maintained by the code.

We also demonstrated that a sample of the security properties were preserved by the code.
Preservation of the security properties is less obvious from reading the code, but by inserting pre and
post conditions we were able to re-express the security properties within the SPARK annotations and
then prove that the code did exhibit these properties.

The security properties demonstrated were:

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 8 of 23

• A partial demonstration of Security Property 1 which denotes the conditions under which the door
may be unlocked by TIS. In particular we focused on the Guard having performed an Override Lock
operation.

• A full demonstration of Security Property 3, which requires that the alarm be raised whenever the
door is in an insecure state.

Time rather than technical limitations prevented us from proving that all the security properties were
preserved by the code.

3.1.1 Verification of invariant on audit log

We proved a key invariant that defined the number of audit entries in terms of the total number of used
audit files and the size of the current audit file. Within the Formal Design there is an invariant defining
numberLogEntries in the state schema AuditLogC.

Formally the invariant is stated as follows in the SPARK proof context – note that within the code the
number of used log files is never zero.
--# pre NumberLogEntries = LogEntryCountT(UsedLogFiles.Length -1)*MaxLogFileEntries +

--# LogFileEntries(CurrentLogFile);

--# post NumberLogEntries = LogEntryCountT(UsedLogFiles.Length -1)*MaxLogFileEntries +

--# LogFileEntries(CurrentLogFile);

This invariant was shown to hold for all public subprograms that modify the values of UsedLogFiles,
NumberLogEntries or CurrentLogFile within the audit log package. From this we can be sure
that the invariant is always maintained by operations accessed by the public interface.

We also show that the initialisation procedure Init establishes this invariant.

Proving this invariant holds of the code helped establish the correctness of one of the most
algorithmically complex aspects of the code.

3.1.2 Verification of Security Property 3

Security Property 3, taken from [3], is as follows:

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 9 of 23

This is clearly a property of the whole system so we would expect it to hold of the TIS main program. We
reformulate this property in the SPARK proof context as follows:
--# ((Latch.IsLocked(Latch.State) and

--# Door.TheCurrentDoor(Door.State) = Door.Open and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# Door.prf_alarmTimeout(Door.State)))

--# ->

--# Alarm.prf_isAlarming(Alarm.Output))

However, in proving this property we determined that the code does not implement this exactly. This is
because there is a possibility that a peripheral has failed, so we cannot determine its state. In this case
the code raises a critical SystemFault (not formally modelled in the Formal Design). So what we can
prove of the code is
--# ((Latch.IsLocked(Latch.State) and

--# Door.TheCurrentDoor(Door.State) = Door.Open and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# Door.prf_alarmTimeout(Door.State)))

--# ->

--# Alarm.prf_isAlarming(Alarm.Output) or SystemFault)

Considering the security property in more detail we see that this has been is written in terms of SPARK
functions, which are present in the code, such as Door.IsLocked and SPARK proof functions, these
are functions declared within annotations which are only present within the Proof context, by convention
the names of proof functions are always prefixed with prf_. In the above post condition we observe two
proof functions. Alarm.prf_isAlarming and Door.prf_alarmTimeout, these retrieve
information from the packages Alarm and Door that is not made visible within the code.
Alarm.prf_isAlarming(Alarm.Output) returns true exactly when the current alarm output is
alarming (not silent).

By use of the SPARK Toolset we have proved that the code satisfies this property.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 10 of 23

To do this the above property was introduced as a post condition to the MainLoopBody procedure that
implements the main loop activities of TIS.

 --# post

 --# ((Latch.IsLocked(Latch.State) and

 --# Door.TheCurrentDoor(Door.State) = Door.Open and

 --# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

 --# Door.prf_alarmTimeout(Door.State))) ->

 --# (Alarm.prf_isAlarming(Alarm.Output) or SystemFault)) ;

is

begin

 Poll.Activity(SystemFault => SystemFault);

 if not SystemFault then

 Updates.EarlyActivity(SystemFault => SystemFault);

 if not SystemFault then

 Processing;

 Updates.Activity(SystemFault => SystemFault,

 TheStats => TheStats,

 TheAdmin => TheAdmin);

 end if;

 end if;

end MainLoopBody;

Then pre and post conditions were applied to each of the subprograms used by the MainLoopBody
that modify any of the state components referenced in the security property. Any procedure that
modifies some or all of this state can potentially break the property. By appropriate choice of pre and
post conditions we decompose the problem of proving the security property into smaller proof
obligations on smaller code fragments. This divide and conquer approach is very powerful in
decomposing the proof obligation into smaller obligations on smaller code fragments which can be
proved using the available tool support.

The proof contexts for the procedures called within the MainLoopBody procedure are as follows:

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 11 of 23

--# post

--# ((Latch.IsLocked(Latch.State) and

--# Door.TheCurrentDoor(Door.State) = Door.Open and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# Door.prf_alarmTimeout(Door.State))) <->

--# Door.TheDoorAlarm(Door.State) = AlarmTypes.Alarming)

--#

Figure 2 Proof context for Poll.Activity relevant to Security Property 3

Polling does not impact the Alarm.Output, rather the Door alarm state records the
requirement for the alarm to be raised (during the Update phase).

--# post

--# (Door.TheDoorAlarm(Door.State) = AlarmTypes.Alarming ->

--# Alarm.prf_isAlarming(Alarm.Output))

--#

Figure 3 Proof context for Update.EarlyActivity and Update.Activity relevant to Security Property 3

Following a poll it is sufficient for the alarm to be raised whenever the Door alarm
state records the requirement for the alarm to be raised.

--# pre ((Latch.IsLocked(Latch.State) and

--# Door.TheCurrentDoor(Door.State) = Door.Open and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# Door.prf_alarmTimeout(Door.State))) <->

--# Door.TheDoorAlarm(Door.State) = AlarmTypes.Alarming) ;

--# post ((Latch.IsLocked(Latch.State) and

--# Door.TheCurrentDoor(Door.State) = Door.Open and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# Door.prf_alarmTimeout(Door.State))) <->

--# Door.TheDoorAlarm(Door.State) = AlarmTypes.Alarming) ;

Figure 4 Proof context for Processing relevant to Security Property 3

This states that any changes made by the processing activity preserve the property
attained by the Poll.Activity.

These proof contexts are sufficient to prove that the MainLoopBody does indeed satisfy Security
Property 3. So the problem is reduced to showing that each of the procedures called within the
MainLoopBody satisfies its proof contexts.

The whole decomposition of the proof reduces to demonstrating that the operations Poll, LockDoor
and UnlockDoor in the Door package satisfy the proof context given above for Poll.Activity.
Analysis of these subprograms shows that they all invoke the local procedure UpdateDoorAlarm,
which sets the Door alarm state according to the conditions stated in the proof context in Figure 5

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 12 of 23

--# post

--# (CurrentDoor = Open and

--# Latch.IsLocked(Latch.State) and

--# Clock.GreaterThanOrEqual(Clock.TheCurrentTime(Clock.CurrentTime),

--# AlarmTimeout)) <->

--# DoorAlarm = AlarmTypes.Alarming;

--#

Figure 5 Proof context UpdateDoorAlarm relevant to Security Property 3

The proof context here replaces all state from the Door package that was previously
retrieved by functions and proof functions, by the state used in the implementation.

The SPARK Toolset (Examiner and Simplifier) is able to discharge all proof obligations relating to
UpdateDoorAlarm – demonstrating that the implementation satisfies its proof context. The
equivalence between this proof context and that used elsewhere in the software is proved by
demonstrating that the proof functions and retrieval functions do indeed retrieve the stated state
components. So for example it is necessary to demonstrate that TheCurrentDoor function returns
the value of CurrentDoor.

The SPARK Toolset does analysis of the whole calling tree, ensuring the security property is maintained
for every path through the code.

3.1.3 Verification of Security Property 1

Security Property 1, taken from [3], is as follows:

Again this is a property that holds of the system as a whole so it results in a proof obligation on the TIS
main program. We translate this proof obligation to the SPARK proof language to give the following proof
context.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 13 of 23

--# (((Latch.prf_isLocked(Latch.Output~) and

--# (((Latch.prf_isLocked(prf_preLatchOutput) and

--# not Latch.prf_isLocked(Latch.Output) and

--# Latch.IsLocked(prf_preLatchState) = Latch.prf_isLocked(prf_preLatchOutput)

--#)

--# ->

--# (UserEntry.prf_UserEntryUnlockDoor or

--# (AdminToken.prf_isGood(AdminToken.State) and

--# AdminToken.prf_authCertValid(AdminToken.State) and

--# AdminToken.TheAuthCertRole(AdminToken.State) = PrivTypes.Guard)

--#)

--#)

--# or SystemFault)

Figure 6 Proof Context for Security Property 1 in TIS main program

Here prf_preLatchOutput and prf_preLatchState refer to the initial state of the
external latch(Latch.Output) and internal view of the latch state (Latch.State)
respectively. prf_isGood and prf_authCertValid characterise properties of the
certificates on the Admin Token.

Again taking into account the possibility of a system fault occurring, either a System Fault occurs or the
internal latch state matches the real latch and the security property holds, in that if the latch becomes
unlocked then either user entry has resulted in the door being unlocked (characterised by
prf_UserEntryUnlockDoor) corresponding to the first two disjuncts in the Z statement of the
security property. Alternatively a guard is present with a valid authorisation certificate.

We only demonstrated the security property was maintained with regard to the Guard being present
(and having overridden the lock). The remainder of the proof relating to user entry was not progressed
further – this could have been done, had time permitted, by elaborating the proof function
prf_UserEntryUnlockDoor.

The proof technique for discharging this security property was similar to that for security property 3,
however there were a number of system invariants required to achieve the proof. This is because
validation and logging on an administrator is a multi-phase process controlled by the enclave status, as
the validation progresses we can assume properties of the admin token and these properties need to
be interpreted as system invariants to allow the security property to be successfully discharged.

The required system invariants are as follows:

1 If a guard is present then the Admin Token is Good, with a valid authorisation certificate and the
role indicated by that certificate is “guard”.

--# (Admin.prf_rolePresent(TheAdmin) = PrivTypes.Guard ->

--# (AdminToken.prf_isGood(AdminToken.State) and

--# AdminToken.prf_authCertValid(AdminToken.State) and

--# AdminToken.TheAuthCertRole(AdminToken.State) = PrivTypes.Guard))

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 14 of 23

2 If an administrator is performing the Override Lock operation then the administrator must be a
guard.

--# ((Admin.IsDoingOp(TheAdmin) and

--# Admin.TheCurrentOp(TheAdmin) = Admin.OverrideLock) ->

--# Admin.prf_rolePresent(TheAdmin) = PrivTypes.Guard)

3 If a guard is present then either they are performing the Override lock operation or they are not
performing an operation.

 --# (Admin.prf_rolePresent(TheAdmin) = PrivTypes.Guard ->

--# ((Admin.IsDoingOp(TheAdmin) and

--# Admin.TheCurrentOp(TheAdmin) = Admin.OverrideLock) or

--# not Admin.IsDoingOp(TheAdmin)))

4 If there is no administrator present then no administrative operation is in progress.

--# (not Admin.IsPresent(TheAdmin) -> not Admin.IsDoingOp(TheAdmin))

5 If the enclave status is either gotAdminToken or waitingRemoveAdminTokenFail then there is no
administrator present.

--# ((Enclave.prf_statusIsGotAdminToken(Enclave.State) or

--# Enclave.prf_statusIsWaitingRemoveAdminTokenFail(Enclave.State)) ->

--# not Admin.IsPresent(TheAdmin))

6 If the enclave status is either waitingStartAdminOp or waitingFinishAdminOp then an administrator
is present and doing an operation.

--# ((Enclave.prf_statusIsWaitingStartAdminOp(Enclave.State) or

--# Enclave.prf_statusIsWaitingFinishAdminOp(Enclave.State)) ->

--# (Admin.IsDoingOp(TheAdmin) and

--# Admin.IsPresent(TheAdmin)))

7 If the enclave status is enclaveQuiescent then there is no administrative operation in progress.

--# (Enclave.prf_statusIsEnclaveQuiescent(Enclave.State) ->

--# (not Admin.IsDoingOp(TheAdmin)))

8 If the enclave status is shutdown then there is no administrator present and no administrative
operation in progress.

--# (Enclave.prf_statusIsShutdown(Enclave.State) ->

--# (not Admin.IsDoingOp(TheAdmin) and

--# not Admin.IsPresent(TheAdmin)))

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 15 of 23

9 If enrolment is in progress then there is no administrator present and no administrative operation is
in progress.

--# (Enclave.EnrolmentIsInProgress(Enclave.State) ->

--# (not Admin.IsPresent(TheAdmin) and

--# not Admin.IsDoingOp(TheAdmin)))

These invariants are sufficient to allow proof of the security property with regard to the administrator
overriding the lock. It should be noted, and can be proved, that the only administrator operation that can
cause the latch to become unlocked is the Override Lock operation.

The code was proven to satisfy the portion of security property 1 relating to the guard overriding the
lock. This was achieved using the SPARK Toolset.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 16 of 23

4 Results of the verification process

The Proof Obligation Summariser provides a facility to summarise the results of all proof activities, this
includes proof of absence of run-time errors and functional verification.

In general we only used the SPARK Examiner and Simplifier in our proof activity. We did however use the
Proof Checker to prove the outstanding VCs within the TisMain package and the Enclave package.
In other packages where there were un-discharged VCs we used (manual) informal justification to
discharge the outstanding VCs.

The summarised results are presented in Figure 7. This summary categorises the source of each VC as
well as indicating where the VC was discharged.

The results for TIS are typical of a system developed using SPARK from a formal specification. Either the
Examiner or the Simplifier automatically discharged 95.8% of the VCs, leaving just 4.2% to be verified
manually. We used a combination of review and use of the Proof Checker to discharge the remaining
VCs.

Overall subprogram summary:

Total subprograms fully proved: 285

Total subprograms with at least one undischarged VC: 1 <<<

Total subprograms with at least one false VC: 0

Total subprograms for which VCs have been generated: 286

VC summary:

Note: U/R denotes where the Simplifier has proved VCs using one or more user-

defined proof rules.

Total VCs by type:

 -----------Proved By Or Using------------

 Total Examiner Simp(U/R) Checker Review False Undiscgd

Assert or Post: 1006 561 376 29 40 0 0

Precondition check: 67 0 60 3 4 0 0

Check statement: 1 0 1 0 0 0 0

Runtime check: 1337 0 1331 2 4 0 0

Refinement VCs: 212 182 2 9 19 0 0

Inheritance VCs: 0 0 0 0 0 0 0

===

Totals: 2623 743 1770 43 67 0 0

% Totals: 28% 67% 2% 3% 0% 0%

Figure 7 POGS Summary for TIS core software

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 17 of 23

A Appendix: Design to Code transformation

This appendix demonstrates, by example, the way in which the code is developed from the Formal
Design. The only functionality that was not modelled formally within the design was the possibility of
failures of components outside of the TIS Core. This includes the receipt of error codes back from
entities such as the Crypto Library as well as failures of the more physical devices connected to the TIS
Core. Within the INFORMED Design [2] the action on receipt of such failures was defined as reporting a
SystemFault within the audit log. The severity of this audit entry depended on whether the peripheral
that had failed had a direct impact on the ability to preserve the security properties or not.

Within the SPARK annotations the possibility of system faults being raised is characterised by
procedures updating the audit log when the Formal Design does not show an explicit update.

Taking this into account we see through the following code fragments from the TIS Core software how
the annotations are derived from the Formal Design and how a close correspondence has been
maintained between the code and the Formal Design. This aids validation of the code and ensures the
maintainability of the code.

The following examples consider fragments of code from relatively low-level packages, Door and Cert
and a fragment of code from the UserEntry package that implements the top-level user entry operation.

From the Door package we have selected the UnlockDoor operation, which implements the partial
operation schema UnlockDoorC.

From the Cert package we have selected the IsOK operation, which implements the schema predicate
CertOKC

From the UserEntry package we have selected the ReadFinger operation, which implements the partial
operation schema TISReadFingerC.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 18 of 23

Formal Design Implementation

procedure UnlockDoor

is

 LatchTimeout : Clock.TimeT;

begin

 LatchTimeout := Clock.AddDuration(

 TheTime => Clock.TheCurrentTime,

 TheDuration => ConfigData.TheLatchUnlockDuration

);

 Latch.SetTimeout(Time => LatchTimeout);

 AlarmTimeout := Clock.AddDuration(

 TheTime => LatchTimeout,

 TheDuration => ConfigData.TheAlarmSilentDuration

);

 Latch.UpdateInternalLatch;

 UpdateDoorAlarm;

end UnlockDoor;

Figure 8 UnlockDoor operation from Door package

A demonstration of the close correlation between the formal design and the code. Note that the unchanged state components in the Z design do not
get set in the code.

Code Verification Summary
S.P1229.52.1Tokeneer ID Station

Issue: 1.2

 Page 19 of 23

Formal Design Implementation (package specification)

-- Traceunit : C.Cert.IsOK

-- Traceto : FD.Certificate.SignedOK

procedure IsOK (RawCert : in CertTypes.RawCertificateT;

 Contents : in ContentsT;

 IsVerified : out Boolean);

--# global in KeyStore.Store;

--# in Clock.Now;

--# in ConfigData.State;

--# in out AuditLog.FileState;

--# in out AuditLog.State;

--# derives AuditLog.FileState,

--# AuditLog.State from Contents,

--# KeyStore.Store, AuditLog.FileState

--# AuditLog.State,

--# Clock.Now,

--# ConfigData.State,

--# RawCert &

--# IsVerified from Contents,

--# KeyStore.Store,

--# RawCert;

Figure 9 IsOK operation from Cert package specification

A demonstration of the relationship between the Z state and the variables appearing within the derives and global annotations. Other than changes
to the audit log, the only variable that may be updated is the isVerified Boolean that corresponds to whether or not the CertOKC schema is satisfied.
Notice that IsVerified depends on exactly those state components that appear in the predicate schema CertOKC.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 20 of 23

Formal Design Implementation

procedure IsOK (RawCert : in
CertTypes.RawCertificateT;

 Contents : in ContentsT;

 IsVerified : out Boolean)

is

 IsKnown : Boolean;

begin

 IssuerKnown(Contents => Contents,

 IsKnown => IsKnown);

 if IsKnown then

 KeyStore.IsVerifiedBy

 (Mechanism => Contents.Mechanism,

 RawCertData => GetData(RawCert),

 Signature => GetSignature(RawCert),

 TheIssuer => Contents.ID.Issuer,

 Verified => IsVerified);

 else

 IsVerified := False;

 end if;

end IsOK;

Figure 10 IsOK operation from Cert package body

A demonstration of the close correlation between the formal design and the implementation. Here the Boolean IsVerified is set True exactly when
CertOKC holds.

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 21 of 23

Formal Design Implementation (procedure body)

 is

 FingerPresence : BasicTypes.PresenceT;

 begin

 if not UserToken.IsPresent then

 UserTokenTorn(TheStats => TheStats);

 else

 if Clock.GreaterThan(Clock.TheCurrentTime, FingerTimeout) then

 -- FingerTimeoutC actions

 Display.SetValue (Msg => Display.RemoveToken);

 Status := WaitingRemoveTokenFail;

 AuditLog.AddElementToLog

 (ElementID => AuditTypes.FingerTimeout,

 Severity => AuditTypes.Warning,

 User => UserToken.ExtractUser,

 Description => AuditTypes.NoDescription);

 else

 Bio.Poll(FingerPresent => FingerPresence);

 if FingerPresence = BasicTypes.Present then

 -- ReadFingerOKC actions

 Display.SetValue (Msg => Display.Wait);

 Status := GotFinger;

 AuditLog.AddElementToLog

 (ElementID => AuditTypes.FingerDetected,

 Severity => AuditTypes.Information,

 User => UserToken.ExtractUser,

 Description => AuditTypes.NoDescription);

 else

 -- NoFingerC actions

 null;

 end if;

 end if;

 end if;

 end ReadFinger;

Figure 11 The implementation of the ReadFinger operation explained

Even within the high level UserEntry package there is a clear relationship between the Formal Design and the code which makes verification of the code a trivial exercise. The only line of code that cannot be mapped trivially to the Z
schemas above is the Poll of the biometric device. The INFORMED Design tells us that polling of the finger is removed from the upfront Poll activity and postponed to the point where the data is required.

ation S.P1229.52.1
Issue: 1.2

 Page 22 of 23

Tokeneer ID St
Code Verification Summary

Implementation (procedure specification) Commentary

 procedure ReadFinger(TheStats : in out Stats.T)

 --# global in ConfigData.State;

 --# in Clock.Now;

 --# in Clock.CurrentTime;

 --# in FingerTimeout;

 --# in Bio.Input;

 --# in out Status;

 --# in out UserToken.State;

 --# in out Display.State;

 --# in out AuditLog.State;

 --# in out AuditLog.FileState;

 --# derives Status,

 --# Display.State from *,

 --# UserToken.State,

 --# Clock.CurrentTime,

 --# FingerTimeout,

 --# Bio.Input &

 --# UserToken.State,

 --# TheStats from *,

 --# UserToken.State &

 --# AuditLog.State,

 --# AuditLog.FileState from UserToken.State,

 --# Display.State,

 --# AuditLog.State,

 --# AuditLog.FileState,

 --# ConfigData.State,

 --# Clock.Now,

 --# Clock.CurrentTime,

 --# FingerTimeout,

 --# Bio.Input;

 --# pre Status = WaitingFinger;

This is the implementation of the following fragment from the Formal Design

Considering the global annotations we observe that:

UserToken.State will be modified if the UserTokenTornC disjunct holds (where the token is Cleared).

Status and Display.State, corresponding to StatusC and currentDisplayC in the Design, will be changed in all disjuncts other
than NoFingerC.
AuditLog.State and AuditLog.FileState encapsulate the AuditLogC state and will be modified whenever an audit entry is made,
again this applies in all disjuncts other than NoFingerC.
Clock.CurrentTime, FingerTimeout and Bio.Input correspond to currentTimeC, fingerTimeout and fingerPresenceC in the Formal
Design, are unaffected but are used to determine which of the disjuncts is valid.

The remaining global inputs Clock.Now and Config.State are used during AddElementsToLog to time-stamp log entries
and determine whether the auditAlarm should be raised respectively

The currentDisplayC and statusC depend on whether the Token has been torn, whether the Fingertimeout has elapsed and
whether the finger is present.

The UserTokenC and the StatsC are only modified if the Token has been torn.

The values of the audit elements added to the log will depend on which of the disjuncts is chosen hence the dependencies on
UserToken.State, FingerTimeout, Clock.CurrentTime, and Bio.Input. Any changes to the display are audited so there is a
dependency on Display.State. Clock,Now is used to time-stamp entries and Config.State determines whether the audit alarm is
raised (the occurrence of which is itself logged).

The precondition on this procedure reflects the precondition on the TISReadFingerC schema.

Figure 12 The specification of the ReadFinger operation explained

For details of the schemas used to construct TISReadFingerC refer to [1].

Tokeneer ID Station
Code Verification Summary

S.P1229.52.1
Issue: 1.2

 Page 23 of 23

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright © (2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved.

This material was originally developed by Praxis High Integrity Systems Ltd. under contract to the
National Security Agency.

Changes history

Issue 0.1 (11 September 2003): Initial Version.

Issue 1.0 (23 September 2003): Issued at Provisional following internal review.

Issue 1.1 (19 August 2008): Updated for public release.

Issue 1.2 (25 August 2008): Updated Figure 7 to show verification results using release 7.6 of the
SPARK toolset.

Changes forecast

None.

Document references

1 TIS Formal Design, S.P1229.50.1.

2 TIS INFORMED Design, S.P1229.50.2.

3 TIS Security Properties, S.P1229.40.4

