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  Executive Summary 
In order to demonstrate that developing highly secure systems to the level of rigour required by the 
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity 
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer 
System) in accordance with Praxis’ own Correctness by Construction development process. This 
development work will then be used to show the security community that it is possible to develop secure 
systems rigorously in a cost effective manner. 

  Process 
The development process applied to the TIS high-integrity development can be summarised in terms of 
the following key phases: 

1 Requirements analysis (the REVEAL® process) 
2 Formal specification (using the formal language Z) 
3 Design (formal refinement of the Specification and the INFORMED process) 
4 Implementation in SPARK Ada 
5 Verification (using the SPARK Examiner toolset) 
6 Top-down system testing. 

At each stage in the process verification activities were undertaken to ensure that no errors had been 
introduced. These activities included review and semi-formal verification techniques applicable to the 
entities being developed. 

  Project Findings 
The TIS development project has demonstrated that the Praxis Correctness by Construction 
development process is capable to producing a high quality, low defect system in a cost effective 
manner following a process that conforms to the Common Criteria EAL5 requirements. 

The TIS system’s key statistics are: 

• lines of code: 9939 
• total effort (days): 260 
• productivity (lines of code per day, overall): 38 
• productivity (lines of code per day, coding phase): 203 
• defects (defects found post delivery per 1000 lines of code): currently zero, however independent 

testing is ongoing. 

As well as achieving EAL5 levels of assurance, we believe that the Correctness by Construction process 
is close to achieving EAL7. The proof activity we use in our Correctness by Construction process is 
sufficient for EAL7, which involves tool supported code proof but manual proof of the Specification and 
Design. The process can be tightened appropriately to meet the additional quality control requirements 
of EAL7 by using tools that provide fully integrated electronic support. 

To achieve the long-term aim of improving the take up of Common Criteria as a certification mechanism, 
the lessons learnt in this experimental development will have to alter the development practices of the 
majority of the NSA’s contractors. This in turn will need the contractors to pass through four phases: 
understanding, belief, learning, experience. A continuing change management process will be needed. 
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1 Introduction 

1.1 Background 

In order to demonstrate that developing highly secure systems to the level of rigour required by the 
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity 
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer 
System) in accordance with Praxis’ own Correctness by Construction development process, a high-
integrity process developed by Praxis and applied by them on a number of commercial projects. This 
development work will then be used to show the security community that it is possible to develop secure 
systems rigorously in a cost effective manner. 

Although the Common Criteria and its forerunners (the ITSEC scheme, the TCSEC — Orange Book, and 
others) have been in existence for a considerable time, there has been less use of them by industry than 
desired by their developers. Part of the reason for this may be that industry do not believe that it is 
possible to develop systems to the higher levels of certification in a cost-effective manner. Our 
experience at Praxis High Integrity Systems is that systems can be developed rigorously, and that this 
yields both a high-quality system, and lower cost. 

1.1.1 Project Objectives 

The key objective of this project was to obtain evidence of the applicability of the Praxis development 
process to EAL5-level system development. This includes two parts: feasibility (does it achieve reliable 
software?) and cost-effectiveness (is it cheaper than the traditional development process?). 

Although this project has delivered a working system, the objective was not to have a new system per 
se, but to better understand the development process. The reason an actual system was developed was 
to give confidence that the development process does work in reality. It is also expected that this will 
help the NSA’s desire to disseminate the results of this project widely through conferences, journals, 
and their own internal government communications media. 

1.1.2 Statement of Work 

The project objectives are laid down in the Statement of Work [10]. These can be summarised as 
follows (text repeated verbatim from the statement of work appears in italics): 

The aims of this project were to undertake an experiment for the introduction of formal methods 
(mathematically based) into the biometrics prototype called Tokeneer[9]. In addition this experiment 
hopes to demonstrate the practicality/cost effectiveness of employing the rigorous security standards 
for assurance as expressed in the Common Criteria. 

To attempt these goals Praxis High Integrity Systems in Bath, UK will redevelop part of the Tokeneer 
system- the Identification Station- with the SPARK Ada high integrity development processes. The 
subsystem includes functions of biometric authentication and smartcards in a networked system 



    

 

Tokeneer ID Station 
EAL5 Demonstrator: Summary Report 

S.P1229.81.1 
Issue: 1.1 

  

 
 

 

    Page 5 of 73 
 

requiring identification and authentication mechanisms. Requirements will be provided to Praxis in the 
document form known as a Protection Profile. In addition process and skills metrics will be collected 
from the Praxis process throughout the re-development in order to provide a point of comparison with 
previous (non-formal) development of this system. 

The objectives of this project are to: 

Analyze the operation modes and documentation of the Tokeneer prototype version 2 while 
concentrating on the Identification Station subsystem and its recently developed Protection Profile 

Employ at minimum a Common Criteria compliant “semi-formal” approach to the modelling (design) and 
software development of a SPARK Ada based equivalent of the Identification Station. In addition this 
project should demonstrate not only the feasibility of building real projects following the Common 
Criteria Guidelines (at EAL 5) but also demonstrate the effectiveness of high assurance techniques like 
formal methods needed by Government systems to process classified information. The advantages of 
formal development will be assessed to include specifically a formal functional specification in Z of the 
core functions. Key security properties and formal statements about them should be realised. Another 
objective is to demonstrate how the formal functional specification possesses formal security properties 
and can act as a formal security policy model. 

Thus, the design will correspond to the specification providing the formal statement of abstraction 
between the formal functional specification and the formal design specification. Z specifications of the 
functions will be constructed along with the definition of key security properties. The implementation 
will be demonstrated with SPARK Ada for the security functions, Interfaces with other components may 
be demonstrated through the use of stubs or simulators to pass and/or process I/O data.  

1.2 Purpose 

The purpose of this report is to report to the NSA comprehensive results from the development carried 
out in terms of the quality of the process used and the metrics collected, and to provide analysis of 
these results. There is the potential for using this report as a basis for further dissemination (e.g. 
conference papers). 

1.3 Scope 

This report gives a summary of the processes carried out and documents produced during the project. 
Full details of the project are in the project file. 

As this project concentrated on demonstrating the Correctness by Construction development process, 
this report focuses on the development activities used for the TIS Core Functions. See section 2.2 for 
details of the split between Core Functions and Support Functions.  

This application was produced to demonstrate the Correctness by Construction development process. 
However the development process does not address the issues of attaining the necessary operating 
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system security that would be required to ensure the application is protected from malicious attack. This 
was considered outside the scope of this project. If this application were to be used in a secure 
environment, operating system constraints would need to be applied to prevent user access to the files 
used by the TIS application. The installation does not address any of these issues and as such the 
application is known to be vulnerable to attack through modification of configuration data, keystore data 
and the audit log.  

1.4 Structure 

Section 2 explains the parts of TIS, and puts the Core Functions in perspective. 

Section 3 describes the Praxis High Integrity Systems Correctness by Construction development process 
as applied to TIS. 

Section 4 gives the metrics on effort, skills, errors, etc. recorded during the project. 

Section 5 reviews the method in light of the conclusion that can be drawn from the metrics and in 
comparison to the requirements of the Common Criteria. 

Section 6 looks at the next steps. 

1.5 Glossary of Acronyms 
  

AA Attribute Authority 

CA Certification Authority 

I&A Identification and Authentication 

LOC Lines of Code 

NIAP National Information Assurance Partnership 

NSA National Security Agency 

PP Protection Profile 

SPARK Spade Ada Kernel [13, 14] 

SPRE Inc Software Process and Reliability Engineering, Inc (independent reliability testers) 

SRS Software Requirements Specification 

ST Security Target 

TIS Tokeneer Identification Station 

VCs Verification Conditions 
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2 Description of TIS / Tokeneer System 

TIS is a single component of the larger Tokeneer System, and its context within this system is discussed 
below. All information in this section is summarised from the System Requirements Specification [1]. 

2.1 System Description 

The system to which this project was applied was the Tokeneer ID station (TIS). TIS is one component of 
the larger Tokeneer system. The system as a whole provides protection to secure information held on a 
network of workstations situated in a physically secure enclave.  

Secure Enclave

ID Station
(TIS)

Fingerprint
Reader Display Card

Reader

Door

Enrolment
Station

Certificate
Authority

(CA)

Attribute
Authority

(AA)

Card
Reader

Workstation

Workstation

Workstation

 
Figure 1: Overall Tokeneer System 

The complete Tokeneer system consists of a secure enclave and a set of system 
components, some housed inside the enclave and some outside. 

• An Enrolment Station is used to issue a token to an approved user. In order to generate the token 
the Enrolment Station relies on a Certificate Authority to generate a signed X.509 ID certificate 
and an Attribute Authority to generate signed X.509 Attribute certificates holding Privilege and 
Clearance information (Privilege Certificate) and Biometric information (I&A Certificate). 

• The Tokeneer ID Station (TIS) is a stand-alone “trusted” entity responsible for performing biometric 
verification of the user. To perform this task it makes use of the biometric information in the I&A 
Certificate on the user’s token and a fingerprint scan read from the user. If a successful 
identification is made then, assuming the user has sufficient clearance (held on the Privilege 
certificate), the TIS adds a signed Authorisation Certificate to the user’s token and releases the lock 
on the enclave door to allow the user access to the enclave. 
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• The Workstation checks the Authorisation Certificate to determine whether the user is currently 
authorised to use the facilities it provides.  

2.2 System Context 

For the high integrity variant of TIS there are two system boundaries of interest; the boundary between 
the ID Station machine and its environment (including its peripherals); and the boundary between the ID 
Station core functions and its support functions. These boundaries are expanded below: 

Core Functions

Biometric
Library Test

Stub

Display
Test Driver

Card
Readers

Test Driver

API to Card
Readers API to

Biometric
Library

API to
Display

API to Door

Certificate
processing lib

stub
Crypto lib stub

Time and Date

ID Station

Floppy
drive

Configuration
data

Initialisation
information from

Enrolment Station

Mimic GUI by
inputing

configuration data
by file

API to Latch

UI

API to
Alarm

Alarm Test
Driver

Door  and
Latch Test

Driver

 
Figure 2: ID Station structure 

The peripherals are mimicked by Test Drivers; the APIs provide message translation 
between the Test Drivers and the Core Functions; and the libraries are simple stubs. 
The GUI is mimicked by a file and simple command line interaction. 

For the purposes of this development project, the developed software was divided into Core Functions 
and Support Functions. The Support Functions mimicked the drivers to peripherals by providing 
communications to external peripheral simulators, and in a real system would be replaced by bought-in 
drivers and peripherals, and hence would need to be evaluated to a suitable level of security. The 
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Biometric Library and Crypto Processing Library would also normally be bought-in products, but in this 
development were simulations to avoid licensing issues and to ease testing. 

Praxis developed the Core Functions according to their Correctness by Construction development 
process. This is the part of the development that is being assessed for suitability against the high 
assurance Common Criteria requirements.  

Praxis developed the modules within the ID Station but outside the Core Functions (except for Time and 
Date, which is operating system supplied) in a sound and professional manner, but not necessarily 
according to a high-integrity process. The APIs perform simple parsing of incoming messages and 
formatting of outgoing messages. The Library stubs mimic the behaviour of a Crypto Library (which 
stores keys and performs standard signing and verification operations) and a Certificate Processing 
Library (which extracts fields from certificates and constructs unsigned certificate contents from 
supplied data). 

Peripheral Test Drivers (i.e. Card Reader Test Driver, Biometric Library Test Driver, Door and Latch Test 
Driver, Alarm Test Driver and Display Test Driver) were developed by SPRE Inc on a separate machine. 
Communication between the APIs and the Test drivers was via TCP/IP sockets. These test drivers were 
developed to model real peripherals as discussed below. 

2.2.1 TIS Interaction with Interfaces 

This section discusses the interactions made by TIS with the Test drivers and describes the interactions 
that these represent in the context of the Tokeneer System. 

2.2.1.1 Card Readers Test Driver 

This models two smart card readers, one located outside the Enclave (the User token reader), the other 
located inside the Enclave (the Admin token reader). 

TIS reads the User’s token from the User token reader and may write an additional Authorisation 
Certificate to the User’s token via this smart card reader. 

TIS reads an Administrator’s token from the Admin token reader. 

2.2.1.2 Alarm Test Driver 

This models an audible alarm located within the enclave. This alarm is designed to notify a guard of a 
risk of a security breach. 

TIS controls the state of the audible alarm (silent or alarming). 

2.2.1.3 Door and Latch Test Driver 

This models a sensor on the door into the Enclave indicating whether the door is open or closed, and the 
latch on the door, which can be set to either locked or unlocked. 
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TIS monitors the door sensor to determine whether the door is currently open or closed. 

TIS controls the door latch setting it to either locked or unlocked. 

2.2.1.4 Display Test Driver 

This models the interface to a display outside the enclave, which provides information to a user wishing 
to gain entry to the enclave. 

TIS controls the data presented to the user on this display. 

2.2.1.5 Biometric Library Test Stub 

This models both the Biometric Library and the interface to the Fingerprint reader, which would typically 
be performed via the Biometric Library. 

TIS interrogates the Biometric Library to determine whether there is a fingerprint scan available for 
analysis and requests validation of the current fingerprint scan against supplied template information. 

2.2.1.6 User Interface 

A simple console and a facility to import configuration data from a file model the User Interface to the 
TIS console available within the Enclave. 

TIS displays information on the console and reads simple keyboard input from the console. 

Complex configuration updates, which might typically be performed via a GUI, are achieved by providing 
a facility to import configuration data from a file. 
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3 Approach 

3.1 Method/Process applied to TIS development 

The basic process applied to the TIS development is summarised in Figure 3. The key principle of this 
development process is to apply a philosophy of “Correctness by Construction”. The crucial properties of 
this process are  

1 being able to validate each lifecycle phase as early as possible 

2 reducing the semantic gap between lifecycle phases so that the conformance of later lifecycle 
phases with earlier phases is provable. 

These properties encourage the early detection and elimination of faults introduced during the 
development process.  

System
Requirements
Specification

Security Target

Protection Profile

SPARK
Implementation

INFORMED
Design

Formal Design

Formal
Specification

System Test
Specification

Prior System
Documentation

Security
Properties

Development
Product

Key

External Input

 
Figure 3 Development Process 

Arrows show dependencies between activities to produce development products.  

Full details of the activities performed within the development process are presented in the following 
sections: 
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Development Products Section 

Security Target 3.1.2

Security Properties 3.1.4

System Requirements Specification 3.1.1

Formal Specification 3.1.3

Formal Design 3.1.5

INFORMED Design 3.1.6

SPARK Implementation 3.1.7

System Test Specification 3.1.9

In addition to various review activities, there are a number of assurance activities performed to cross 
validate the various products of the development process. These are shown in Figure 4. 

SPARK
Implementation
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Proof of Security
Properties
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(Z)

Refinement Proof
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Proof of Security
Properties

(SPARK Proof)
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Properties

(SPARK Proof)
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Assurance
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Key
System Test

System Test
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Figure 4 Assurance Process 

Arrows into an assurance process indicate the inputs to the assurance process. 
Arrows out of an assurance process indicate the lifecycle product being validated by 
the assurance activity. 

Full details of the assurance activities performed within the development process are presented in the 
following sections: 
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Assurance Activity Section 

Proof of Security Properties (Z) 3.1.4

Proof of Formal Specification 3.1.3

Refinement Proof of Formal Design 3.1.5

Static Analysis 3.1.7

Proof of Security Properties (SPARK Proof) 3.1.8

Proof of Functional Properties (SPARK Proof) 3.1.8

System Test 3.1.9

In addition to these formal assurance activities all outputs of the development process were reviewed 
as detailed in Section 3.1.10. 

Finally the whole development process was supported by a Fault management process, which is used to 
manage the correction of faults in products of the development process. This is detailed in Section 
3.1.11. 

3.1.1 Requirements Analysis and Management 

3.1.1.1 Approach 

The aim of requirements analysis is to identify the needs of the stakeholders, the desired behaviour of 
the system, and any non-behavioural characteristics that are needed. Specifically capturing the security 
requirements in the Security Target is covered in section 3.1.2.The earlier these requirements are 
understood, the more likely the system will perform as the client expects. 

Requirements management is a process that extends throughout the system development, but is most 
significant at the beginning, where it is used to identify 

• the stakeholders, who have an interest in the development and use of the system 

• the system boundary, to clarify the scope of the project and the interfaces to external systems 

• the expected use, in terms of interactions between users and the system 

• system properties, such as security properties, performance properties, etc. 

As this project was “re-developing” a system that had already been developed to an extent by the NSA, 
the requirements activity was deliberately shortened and focused on clarifying only the differences 
expected between the existing system behaviours and the behaviours desired for the new system. The 
Praxis requirements process, REVEAL®, was used, although a full application of the REVEAL® process 
was not applicable because this was a re-development 
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A critical step in the requirements process for TIS was the identification of the system boundary. This 
was carried out on the first day of the project in a workshop between developers and client, and enabled 
us to make a clear separation between work being done on the core functionality (and hence would be 
developed to EAL5 criteria), work being done on supporting software (such as the simulators), and work 
outside the scope of the project. This also clarified the dependencies we had on aspects of the 
environment, such as certificates (supplied by the Certificate Authority) and the behaviour of the 
door/latch. 

The behaviour of the system for the main interactions with people (user entry to the enclave, system 
administrator archiving the audit log, etc.) were documented using structured scenarios. These are easy 
to discuss with stakeholders, and rapidly help to bring everyone involved up to a common level of 
understanding of the system proposed. 

The graphical user interface was agreed out of scope of this project. Normally requirements analysis 
would include the development of a user interface prototype, but of course this was not necessary for 
this project. 

Requirements tracing was carried down throughout the project, with each level of system representation 
(requirements, specification, design, code, test) broken into uniquely identified trace units. Full tracing 
was carried out, in that every trace unit was traced back to the trace units in the higher level 
representation it implemented, but no tracing analysis was done, as the size of the project and the lack 
of significant requirements change did not warrant it. 

3.1.1.2 Outputs 

The output of this activity was: 

• TIS System Requirements Specification [1] 

3.1.1.3 Key Benefits 

The reasons for producing the System Requirements Specification are: 

• To clarify early in the project the system boundary (what is in scope and what is out of scope, and 
the interfaces necessary to external systems). 

• To agree the requirements for the system with all of the stakeholders. 

• To document the requirements in a sufficiently precise manner to allow subsequent development 
of the formal specification to proceed smoothly with little customer input. 

• The clarify and document the assumptions about the behaviour of external systems (such as the 
door/latch, and smartcard), a common source of error. 

• The identify and manage conflicting expectations between stakeholders. 
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3.1.2 Security Target 

3.1.2.1 Approach 

For security systems the Correctness by Construction development must be augmented with some steps 
directly concerned with understanding the security needs of the system and of achieving security 
certification. The Common Criteria requires a Security Target to define the security objective of the 
system and to justify the security design against these objectives. The Security Target may refer out to a 
Protection Profile: a reusable form of a security target. This was done on this project, referring out to an 
externally-supplied Protection Profile for a fully featured, fully implemented version of the TIS. The 
Security Target therefore concentrated on reducing the scope of the Protection Profile to the needs of 
this TIS development project. 

3.1.2.2 Outputs 

The outputs of this activity were: 

• TIS Security Target [3] 

3.1.2.3 Key Benefits 

The reasons for producing the Security Target (and the Protection Profile on which it depends) are: 

• It is a requirement of the Common Criteria. 

• It identifies the key properties that must be shown to be upheld by the system for security. This 
separates out the concerns of functionality and the concerns of security, allowing more effort if 
desired to be given to the security aspects. 

• It justifies the security measures to be implemented in terms of the threats the system is subject to 
or aiming to mitigate. 

• It is the starting point for the Specification of the Security Properties (see section 3.1.4). 

3.1.2.4 General Applicability 

For the Security Target to be effective, it should focus the mind on the key properties the system must 
exhibit to be secure. The Threats/Assumptions/Objectives section of the security target or Protection 
Profile provides a justification for security measures in terms of potential security breaches the system 
is protecting against. 

Due to the nature of this development project using simulated peripherals and reduced functionality the 
Security Target was very lightweight. In a normal EAL5 development considerable security analysis time 
would be given to the development of the Security Target. 
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3.1.3 Formal Specification 

3.1.3.1 Approach 

The aim of the Formal Specification is to describe unambiguously what the TIS system will do. It should 
enable the supplier and the client to gain a common understanding of what the system will do. 

The choice of abstraction level is important. The formal specification should not address how the system 
is implemented, and in particular internal details are deliberately left very abstract. Interactions with the 
external environment  are specified, but may be left abstract. For example, we provide an abstract 
model of the Audit Log (as this is exported as part of audit archiving), but no details of the structure, 
format or content of the log. 

The Formal Specification was written in Z, a mathematical notation accompanied by an English 
narrative. The Z notation uses data types and predicate logic to describe the way in which the system 
will behave; Z is particularly powerful because of its use of schemas to decompose the specification into 
small components that can be reasoned about individually and then combined to describe the system 
as a whole. The Z notation provides an unambiguous specification language while the English narrative 
assists readers, writers and reviewers in understanding the intention of the Z by providing a secondary 
description of the system and advice as to how to interpret the Z.  

The Z specification was checked using the fuzz type checker [11], a fast type checker that checks for 
consistency of types in all expressions. 

The formal specification was developed by identifying state and operations. 

All the state associated with the system was identified: this may be state held by the system (for 
example within TIS the configuration data is part of the system state) or state modelling the 
environment external to the system (for example TIS makes use of externally supplied time, and may 
modify the state of the door’s latch). These two parts of the model are capturing different sorts of things. 
The state held by the system is a description of the desired state, whereas the modelling of the external 
environment is a description of the actual state of the world. This reflects the division identified during 
requirements capture between the requirements upon the system being built and expectations upon the 
environment. An example is the explicit constraint on the externally supplied time source: this was 
stated as always increasing. This explicitly identifies a dependency on the environment to supply a 
trusted source of time that never decreases — if time does decrease, the system is not required to 
respond soundly. 

As the state was identified it was modularised, capturing tightly related state components within a 
schema, and adding invariants on the state as necessary. For example, in order to manage the 
relationship between the door, latch and alarm components, invariants were identified that described 
exactly the conditions under which the latch should be locked by the system and the alarm raised by the 
system.  

Operations were then developed based on the scenarios identified during the requirements analysis. In 
the majority of cases these operations were identified as involving several phases. For example, the 



    

 

Tokeneer ID Station 
EAL5 Demonstrator: Summary Report 

S.P1229.81.1 
Issue: 1.1 

  

 
 

 

    Page 17 of 73 
 

UserEntry scenario involves receiving a token, validating it, possibly reading and validating biometric 
data, writing to the token, and finally unlocking the door. At each stage things may go wrong. Operation 
schemas were used to describe the successful behaviour first. Once the conditions for successful 
behaviour are identified, then the failure conditions can be deduced and the outcome of failure formally 
described. For example, biometric data can only be validated if it matches the template on the token 
(specified by the schema ValidateFingerOK). We then considered the failure conditions: either the Token 
is no-longer available to perform the match or the match fails (specified by schemas ValidateFingerFail 
and UserTokenTorn respectively). The overall process of validating the fingerprint data can then be 
presented as the combination of these three schemas.  

In this way a full system description was generated. 

Finally a viable set of values for the system state at initial startup was defined. This set of values must 
satisfy all invariants, and must represent a secure system. 

In order to validate the Formal Specification a number of proof obligations were discharged: 

• the existence of the initial state was proved 

• explicit operation preconditions were identified, and proved to be the actual preconditions of the 
operations.   

Precondition analysis characterises the conditions under which each of the operations can be 
performed. Each of these proof obligations was checked using rigorous argument (as apposed to formal, 
tool-supported proof). This provides a rigorous mechanism for checking the completeness and 
consistency of the specification. Although tool supported proof is possible for Z specifications it was not 
considered necessary to apply this level of formalism to TIS (and is certainly not required for EAL5 
certification). 

3.1.3.2 Outputs 

The output of this activity was a single document: 

• TIS Formal Specification [2] 

3.1.3.3 Key Benefits 

The reasons for producing a Formal Specification are: 

• It provides an unambiguous description of what the system does. This is important for gaining client 
approval of the behaviour of the system to be developed. 

• It is demonstrably complete. 

• It is amenable to formal verification, i.e. it can be proved consistent.  
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The additional reasons for using the Z notation are: 

• The notation is checkable, eliminating a number of minor errors in the production of the 
specification. 

• The notation allows consideration of design detail to be postponed. 

• The notation allows a large system to be de-composed into manageable sub-components. 

• Tool support is available for type checking and proof. 

3.1.3.4 General Applicability 

The Formal Specification produced here was disproportionately large for the number of functions 
present in the system. The reasons for this were: 

• We were mindful that the demonstration system had deliberately omitted many functions that 
would typically be present and we felt it would be instructive if the Formal Specification were 
structured to allow this omitted functionality to be added easily.  

• Although the number of functions was small, the number of interfaces to the system was 
reasonably large and these were all modelled in the Formal Specification. 

From past experience we would not expect the Specification of a larger system (offering more 
functionality) to be proportionally larger than the Formal Specification produced here. 

3.1.4 Specification of Security Properties 

3.1.4.1 Approach 

The aim of this activity is to capture the system security properties unambiguously. These security 
properties are the key system properties that must hold of the system in order for it to satisfy its security 
obligations. 

The security properties were expressed using the Z notation; the same notation as was used for the 
Formal Specification. The security properties were captured as proof obligations on the Formal 
Specification, so the same level of abstraction and context was used for expression of the security 
properties as was used in producing the Formal Specification.  

By using the notation and context of the Formal Specification it was possible to prove that the Formal 
Specification exhibits the Security Properties. The proof took the form of an informal justification, with a 
discussion of the arguments required to perform each stage of the proof.  

EAL5 does not demand proof of these properties, but a sample of the properties were proved to be held 
by the specification, and then later by the code. At the higher levels of certification such proofs are 
necessary, and can be carried out either rigorously by hand or using tool support. 
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3.1.4.2 Outputs 

The outputs of this activity were: 

• TIS Security Properties [4] 

3.1.4.3 Key Benefits 

The benefits of specifying the security properties using a formal notation are: 

• It provides an unambiguous statement of the security properties. 

• It ensures that we really do understand the properties we desire, and are agreed as such by the 
stakeholders. 

The additional reasons for using the Z notation are: 

• Assuming that these properties are expressed using the same notation and level of abstraction as 
the Formal Specification, it is possible to prove that the security properties hold of the Formal 
Specification. 

3.1.4.4 General Applicability 

It is not always possible to use the same model of the system for specifying the security properties as is 
used for the formal specification. This depends upon the security properties being expressed. For 
example, properties that must hold over a number of operations, or over arbitrary sequences of 
operations, will need a different style from that adopted here. 

3.1.5 Formal Design 

3.1.5.1 Approach 

The aim of the formal design is to elaborate the abstract aspects of the Formal Specification to explain 
how the system will be implemented. The Formal Design describes the system in terms of concrete state 
and operations using types that are easily implemented. The Formal Design is the source of required 
functional behaviour used during implementation. 

The Formal Design was written using the Z notation accompanied by English narrative. There were a 
number of ways in which we developed the abstract specification to a concrete design. 

• The Formal Design elaborated those aspects of the Formal Specification where there was 
insufficient detail to move directly to implementation. For example, the Formal Design describes 
the contents of the audit log and describes how the log should be implemented in terms of local 
files.  
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• The Formal Design elaborated aspects of the real world which had been left slightly abstract. 
Abstractly it is sufficient to know that a certificate is validated using a key — this is refined in the 
design to describe a certificate as a portion of raw data and a signature with an algorithmic 
relationship between the signature and the data dependant on a key.  

• The Formal Design removed non-determinism from the system. Where more than one operation 
could proceed in the specification additional pre-conditions were added to prioritise the operations. 
For example, logging-out an administrator was given a higher priority than continuing with a long-
lived user entry operation.  

• The Formal Design restructured some operations to reduce the step to implementation, for 
example the action of logging-out an administrator was removed from all other operations and 
considered separately as it would take priority in the design. 

The Formal Design was written using the same notation as the Formal Specification as this provides 
benefits of reuse. Where the level of detail in the specification is sufficient for the design, data types 
and state schemas can be carried forward unchanged. By using the same notation it is clear where the 
design has introduced refinement. Moreover, it is possible to demonstrate that the refinement is valid 
by defining a retrieve relation that relates the concrete and abstract versions of the state and proving a 
number of relationships between the abstract and concrete versions of the operations. On TIS this 
activity was limited to those operations where the refinement relation was non-trivial, for example, 
adding elements to the log. 

Refinement proofs can be done for all operations, and this can be a powerful technique to uncover 
design errors before implementation starts. Proof can be carried out rigorously, but by hand, or can be 
carried out using proof tools. In practice, the discipline of writing the retrieve relation and carrying out 
some sample proofs can uncover the majority of errors. 

3.1.5.2 Outputs 

The output of this activity was a single document:   

• TIS Formal Design [5] 

3.1.5.3 Key Benefits 

The reasons for producing a Formal Design are: 

• It provides an unambiguous description of how the system does what the formal specification 
requires. 

• It is demonstrably complete. 

• It is amenable to formal verification, i.e. it can be proved consistent.  
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• By using the same notation as the Specification there is an opportunity for reuse where 
appropriate. 

• Complex design decisions can be checked for correctness against the abstract behavioural 
description. 

• By using the same notation as the Specification it is possible to prove that the design refines the 
specification. 

The additional reasons for using the Z notation are: 

• The notation is checkable, eliminating a number of minor errors in the production of the design. 

• The notation allows implementable types to be modelled. 

• The notation allows a large system to be de-composed into manageable sub-components. 

• Tool support is available for type checking and proof. 

3.1.5.4 General Applicability 

Ideally, the formal specification should be a fully detailed description of the black-box behaviour of the 
system, and the formal design should explain how this behaviour is implemented internally. Such a 
division of responsibilities works particularly well for larger systems in which there are difficult design 
decisions being made that are invisible beyond the system boundary. The desire is to have a clear 
separation between externally visible behaviour and internal design. 

This project did not demonstrate this separation very well. The division was blurred, because some 
externally visible behaviour was not elaborated until the design document, such as the details of the 
audit records and the priority of the operations. 

3.1.6 INFORMED Design 

3.1.6.1 Approach 

The Aim of the INFORMED Design is to provide architectural and other non-functional information 
required to progress from the Formal Design to the Implementation in SPARK. To understand the 
importance of INFORMED you must first understand the properties of SPARK [13, 14]. 

SPARK is a programming language based on a sub-set of the Ada language, SPARK exploits the 
strengths of Ada while eliminating all its potential ambiguities and insecurities. A SPARK program has a 
precise meaning, which is unaffected by the choice of Ada compiler and can never be erroneous. These 
desirable goals are achieved partly by omitting some of Ada’s more problematic features (such as 
unrestricted tasking) and partly by introducing annotations to capture the code designer’s intentions. 
The combination of these approaches allows SPARK to meet its design objectives, which are: rigorous 
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definition, simple semantics, security, expressive power, verifiability and bounded resource 
requirements. 

When used throughout the development process, SPARK can also have a beneficial effect on designs. 
Consideration of information flows at the design stage leads to programs with the desirable properties 
of abstraction, encapsulation, high cohesion and loose coupling. The complementary INFORMED design 
method exploits SPARK’s properties to meet these goals 

The target language, SPARK, is strictly hierarchical and highly modular, and a successful SPARK 
implementation is highly dependant on the localisation of state, primarily because the SPARK language 
makes the state interactions visible in special annotations. Good localisation of state results in 
meaningful annotations. The INFORMED Design stage provided a process for constructing a software 
architecture that focused on the location of the state within the system. This process helped the 
developers to understand the transformations necessary in passing from Z schemas to Ada Packages. It 
also determined which packages contain global state and allocated subprograms to packages. At this 
stage it was important to relate the state and subprograms that will appear in the implementation to the 
state and operation schemas that appear in the Formal Design. 

The INFORMED Design also addressed design issues for which a formal treatment is not appropriate. 
For instance, in the case of TIS we gave details of the file formats within the INFORMED design as there 
was no value to be gained in presenting these formally. We also expanded the treatment of System 
Faults, which result from failures of peripherals — in the TIS Formal Design we chose not to model the 
potential failure of each peripheral although we did allow for system faults to be audited. Finally, in the 
INFORMED Design we imposed upper bounds on values in the Formal Design that were not bounded; in 
the Formal Design many state components were represented by unbounded integers (such as the count 
of failed entries), which needed to be bounded in the implementation. 

Once the overall system architecture had been outlined in the INFORMED design we could produce 
SPARK specifications of all the packages in the system. 

The INFORMED design served two purposes; first it provided an architectural framework in which to 
perform the implementation, secondly it aids maintenance and upgrades of the software by providing a 
route-map from the Formal Design to the code. 

3.1.6.2 Outputs 

The output of this activity was a single document: 

• TIS INFORMED Design [6] 

3.1.6.3 Key Benefits 

The reasons for producing an INFORMED Design are. 

• It focuses on the system architecture and ensures that the architecture fits the SPARK model. 
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• It provides the mapping from the Formal Design to the Code prior to writing the code. 

• It complements the Formal Design without duplicating functional information. 

3.1.7 Implementation 

3.1.7.1 Approach 

Implementation in SPARK started with producing package specifications based on the architectural 
information in the INFORMED Design and the functional information in the Formal Design.  

A SPARK specification contains the Ada signature for all public operations and annotations, which 
specify the abstract global state held within the package, the global state used or modified by the 
operation and the relationship between the global state and the parameters, known as the derives 
information flow relationship. The derives annotations specify which imported (used) parameters and 
global state components may influence the final values of each exported (modified) parameter or global 
state component. These derives annotations are written based on the Formal Design. As the code is 
written they provide a basic check of conformance between the code and the expected flow relations. 

Static Analysis of the package specifications ensured that the designed architecture satisfies the SPARK 
language constraints. 

Once package specifications were written package bodies were developed. These contain the 
implementations of operations and the concrete declarations of package state. As each operation was 
written it was analysed using the SPARK Examiner: this checked the data and information flow 
properties of the code against the annotations provided in the specification and provided a way of 
checking the code early (before it can be compiled). This is a very effective way of eliminating a number 
of classes of errors such as the failure to set exported state on all paths through the code or using un-
initialised variables. 

Subprogram implementation was performed directly from the Formal Design. The Formal Design is 
sufficiently detailed to ensure that the mapping from the design to the code is simple; this is 
demonstrated in the Code Verification Summary [7]. 

Once the code for a package was complete the SPARK Examiner was run to check for run-time errors. 
This allowed the code to be demonstrated free from errors that might cause a run-time exception to be 
raised; such faults include accessing arrays outside their bounds or the overflow of numeric types.  

The code for the package was then compiled. Developer testing was carried out on the compiled code if 
necessary. 

The order of development of the system was a major consideration in our approach. Packages providing 
infrastructure were developed early and the development order was selected to introduce system level 
operations in an incremental manner. This means that a basic system can be built as soon as possible 
and functionality is added in subsequent builds. This has the advantage of addressing code integration 
risks as early as possible. For TIS this meant that the User Entry operation and all peripherals to support 
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this operation were implemented before the administrative operations and their supporting 
infrastructure. 

3.1.7.2 Outputs 

The outputs of this activity were: 

• Ada Source code files. 

• Proof Justification Files for proof of absence of run-time errors. 

• Executable for TIS, tis.exe. 

3.1.7.3 Key Benefits 

The reasons for using SPARK as the implementation language are: 

• SPARK is the only implementation language that truly meets the Common Criteria requirement to 
have an unambiguously, formally defined language (ALC_TAT.3). 

• Code can be statically analysed very early — well before it can be compiled. 

• SPARK is strongly typed giving added compile-time checks on the code. 

• SPARK is a modular language allowing abstraction of detail. 

• SPARK makes the flow properties of the code (at an abstract level) visible and checkable. 

• SPARK can be demonstrated free from a wide range of errors without even running the code. 

• There is tool support for comprehensive range of static analysis using the SPARK Examiner. 

3.1.8 Code Proof 

3.1.8.1 Approach 

Two types of code proof can be carried out: functional and security properties. Functional code proof 
demonstrates that the code accurately implements the functions defined in the Formal Design. Security 
Properties proof shows that the code possesses the abstract properties identified in the Security 
Properties document, and expressed as theorems about the formal specification. 

The code proof activity focussed on proving some of the key security properties of the code. Functional 
proof of the code was not performed for the following reasons: 

• The step from Formal Design to code turned out to be very small, so it was very easy to check 
behavioural correctness of the code by review of the code against the Formal Design. 
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• Budgetary limitations on the project only permitted a sample of the proof activity to be undertaken. 

It was therefore considered most worthwhile to prove security properties. Preservation of the security 
properties is less obvious from reading the code so failure to preserve security properties would be 
correspondingly difficult to demonstrate through code review. 

In order to prove that a security property was preserved by the code the formal statement of the security 
property as stated in the specification of the Security Properties [4] was reformulated using the SPARK 
predicate language in terms of pre and post conditions. These security properties were inserted into the 
code annotations expressing proof contexts that had to be satisfied by the TIS core program. As the 
security properties have to hold of the whole system, these proof contexts are placed in the TIS main 
program and proved of the system as a whole by applying a divide-and-conquer approach to determine 
the necessary proof obligations that must be held by the subprograms used to implement the whole. 

By using the SPARK Toolset it was proven that the code did implement the security properties. This 
activity involved using the SPARK Examiner to generate all the VCs (Verification Conditions) that need to 
be satisfied in order to prove that the code satisfies the properties stipulated within the proof contexts. 
These VCs were then passed through the SPADE Simplifier, which reduced the majority of the VCs to 
true. Outstanding VCs were then validated, either by review or by use of the Interactive Proof Checker 
Tool.  

A full summary of the code verification activity, including code proof, is presented in [7]. 

Praxis have used full functional correctness proofs on other projects, and this has been found to be 
effective in finding errors. Depending upon the system in question, proof can be more cost-effective 
than unit testing in identifying errors, although it does not remove the need to carry out system tests, 
see for example [15]. 

3.1.8.2 Outputs 

The outputs of this activity were: 

• SPARK proof contexts inserted into the source code (see 3.1.7.2). 

• Proof justification files for VCs that were not discharged using tool support. 

• Proof scripts and rules for the Interactive Proof Checker for VCs that could not be 
discharged automatically. 

• TIS Code Verification Summary [7] 

3.1.8.3 Key Benefits 

The reasons for performing formal verification are: 
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• Functional behaviour and system properties can be expressed formally independently of the code 
(e.g. in the formal design or in annotations), and then the code can be proved to conform to the 
specified behaviour. 

• Proof is not limited to specific test cases, but demonstrates correctness across all possible inputs. 

• Proof does not need to be a post-hoc activity, it can often be applied to partially developed systems 
to ensure functional correctness of aspects of an implementation that may be considered 
otherwise difficult to map to the design. 

The additional reasons for using the SPARK language and proof toolset are: 

• The proof language is easy to understand, being an enhanced dialect of Ada. 

• The properties specified in SPARK proof annotations can be tailored to the required level of detail. 

• SPARK tool support makes the majority of the proof effort automatic. 

• SPARK proof can be applied to individual operations and thus is applicable before a system is 
complete, or even compliable. 

3.1.8.4 General Applicability 

In general, a project will have to decide what level of code proof should be carried out. On this project 
we chose to prove some of the security properties all the way down to the code primarily as a 
demonstration exercise. 

If properties have been well captured at the same level of abstraction as the formal specification, if 
refinement from one level to the next is proved, and if the property described is preserved by 
refinement, then the benefit of proving the properties themselves at each level of abstraction is 
reduced. If, however, a property is not preserved in general by refinement (such as an information flow 
property) then direct proof at code level is powerful. 

3.1.9 System Test 

3.1.9.1 Approach 

The aims of System Test are to demonstrate that the system has the correct behaviour as specified in 
the Formal Specification. This differs slightly from the goals of acceptance testing which is designed to 
demonstrate that the System meets its requirements. System Testing aims to achieve 100% coverage 
of the formal specification, so all possible behaviours described in the formal specification should be 
exercised at least once. 

On this project we chose to perform system testing against the Formal Design rather than the Formal 
Specification. This was because there were aspects of the system that we wanted to test, such as the 
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values written to the audit log, which where not elaborated in the Formal Specification but were 
elaborated in the Formal Design. 

The System Tests took the form of scenarios that might occur in typical usage, such as “Enrolling TIS” or 
“Administrator enters enclave and gains an Authorisation Certificate”. Both successful and unsuccessful 
operations were considered in order to cover all success and failure cases presented within the Z 
schemas in the Formal Design.   

All System tests were documented in a System Test Specification prior to their execution. This included 
documentation of the expected outcome of the test in terms of visual indications, changes to stored 
data and new audit log entries. System test documentation also traced each test to the components of 
the Formal Design that the test attempts to exercise. 

During review of the System Test Specification analysis of the tracing was performed to ensure that full 
coverage of the Formal Design was achieved. 

System test execution was aided by the production of a simple program capable of executing test 
scripts. The test scripts prompted the tester when it was necessary to interact with the TIS interface and 
updated the test environment, for example by simulating the insertion of a token via the test drivers 
interfacing to TIS. By scripting the tests it made the tests repeatable and reduced the risk of human 
error during test execution. 

Where code coverage metrics need to be captured, this would be done during System test. This allows 
us to question the use of any code that cannot be covered by a system test. Such code could be covered 
by adding focused unit tests where required. We did not capture code coverage during this project. 

3.1.9.2 Outputs 

The outputs of this activity were: 

• System Test Specification [8] 

• Test scripts for execution of each of the system tests. 

• Test harness executable testtis.exe for running the test scripts. 

3.1.9.3 Key Benefits 

• System test focuses on testing the behaviour of the whole system against the expected (specified) 
behaviour. 

• System test is likely to pick up faults due to erroneous interaction between modules within the 
implementation as it tests the system as a whole. 

• System testing complements static analysis, in that it confirms the dynamic behaviour.  
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• A combination of static analysis and system test can make general unit test ineffective at finding 
faults, in that most faults that could be uncovered by unit test are also detected using static 
analysis or system test, resulting in general unit test not being cost effective. 

3.1.9.4 General Applicability 

The amount of time spent on system testing in this project was significantly less than would normally be 
expected. The reasons for the low testing effort are identified as follows: 

• We did not measure source code coverage during system testing; this activity usually results in 
additional system (or unit) tests being added to the test suite. 

• Running system tests usually requires the production of a test environment, often separate from 
the normal operating environment or as a harness enclosing the normal operating environment. 
Due to the nature of the Test Devices developed by SPRE there was no need for Praxis to perform 
this activity. The effort expended by SPRE developing the drivers would normally be included in the 
cost of testing. 

• The environment in which the Core TIS functions reside is unusually constrained. For example the 
certificate processing library (which is outside of the Core) does handle a wide variety of faulty 
certificates and to test this library it would be necessary to use a large number of faulty certificates 
in tests; but the core itself either receives a well structured certificate or a fault indication and this 
is independent of the certificate field that is faulty, reducing to two the number of test cases 
required to fully cover the core’s interpretation of a supplied certificate. 

Correctness by Construction would usually test against a fully detailed system specification, using test 
coverage tools to ensure 100% coverage, and fully-automated testing to ease regression testing. 

Although as discussed in section 3.1.7 static analysis and code proof is usually more effective at finding 
errors than unit testing, the full application of system testing is still necessary to uncover the faults 
associated with integration. 

We have used code coverage tools on other projects at Praxis, and we have used information from 
these tools to guide the choice of unit testing. In general, we reserve testing for identifying errors of 
integration, and use static analysis and proof for identifying errors of behaviour in individual modules. 
Only when our incremental integration approach fails to allow all behaviours to be tested adequately at 
a systems level do we use targeted unit testing. 

We used partially-automated testing. Normally, Praxis projects use fully-automated tests, which 
encourages frequent regression testing as the incremental integration proceeds. 

3.1.10 Review Process 

3.1.10.1 Approach 

The following technical reviews were undertaken during the project. 
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The reviews were always undertaken by an independent member of the project team, (ie not the person 
who authored the material under review). The purpose of each of these reviews is tabulated below. In 
addition review feedback was sought from the Client for all deliverable documents, ie System 
Requirements Specification, Security Target, Formal Specification, Formal Design and INFORMED 
Design. 

Review teams were always small. This reflects standard practice in Praxis, as it is important that the 
review is performed by people who have appropriate technical understanding and expertise. Where one 
person cannot bring all the necessary skills to the review then the review team is widened to ensure that 
all necessary skills are represented in the review team. 

  

Review of Against Purpose 

System Requirements 
Specification 

Stakeholders’ 
knowledge. 

To confirm the system requirements with 
stakeholders. 

Security Target Protection Profile To ensure that all security issues captured in 
the Protection Profile are covered. 

Formal Specification System Requirements 
Specification 

To ensure that specified system satisfies the 
system requirements and that all tracing to the 
System Requirements is appropriate. 

 Security Target To ensure that all security issues that require 
functional consideration are addressed. 

Proof of Formal 
Specification 

Formal Specification To check that proof obligations are appropriate 
and the proof argument is sound. 

Security Properties Security Target To ensure that the security properties capture 
all security issues that can be expressed as a 
system property. 

 Formal Specification To ensure that the security properties are 
captured in the same context frame and level of 
abstraction as the system is formally specified. 

Proof of Security 
Properties 

Formal Specification 
Security Properties 

To check that the proof argument is sound. 

Formal Design Formal Specification To ensure that the formal system design is a 
refinement of the system specification and that 
all tracing to the Formal Specification is 
appropriate. 

INFORMED Design Formal Design To ensure that all state and operations required 
by the Formal Design has been captured in the 
system architecture. 
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Review of Against Purpose 

Code including Static 
Analysis results. 

Formal Design To ensure that the code implements the 
functionality defined in the Formal Design and 
that all tracing to the Formal Design is 
appropriate. 

 INFORMED Design To ensure that the functionality is implemented 
within the context of the architecture presented 
in the INFORMED Design. 

 Coding Standard To ensure code conforms to standard layout 
and language constraints. 

  Also all static analysis warnings and errors are 
checked to ensure they are suitably justified 
and any un-discharged run-time error check VCs 
are justified. 

Code Proof Security Properties To ensure that translation of security property to 
code proof context is valid. 

 Formal Design To ensure that translation of invariants and 
functional properties to the code proof context 
from the Z Design are valid. 

  Also all proof rules introduced to discharge 
proofs using tool support are reviewed for 
correctness as are all justifications of VCs that 
are not discharged using tool support. 

System Test 
Specification 

Formal Design To check that coverage of all possible schemas 
in the design is achieved by the system tests, 
that the expected test results match the 
functionality defined in the Formal Design, and 
that tracing from tests to the Formal Design is 
appropriate. 

Table 1 Review Processes  

3.1.10.2 Outputs 

The outputs of this activity were: 

• Review records for each review undertaken, these typically comprised annotated copies 
of the entity under review. 

3.1.10.3 Key Benefits 

• Review of each lifecycle phase against the previous provides a cost-effective check that errors have 
not been introduced when performing the new lifecycle phase. 
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3.1.10.4 General Applicability 

On a larger project the review records would normally consist of a formal, itemised record of the review 
meeting. The reviews may also be attended by more people, provided always that each person at the 
review meeting has a well-defined role and brings a specific viewpoint to the meeting. 

3.1.11 Fault Management 

3.1.11.1 Approach 

From the point that an output from a lifecycle phase is reviewed all updates to that entity are performed 
through the fault control process. 

The fault control process at Praxis plays an important role in the development process. It captures all 
the failures found during and after the development activity and it provides a mechanism for ensuring 
that all faults are corrected and that all products of the development process (documents, source code, 
test scripts, etc.) are kept consistent.  

When a potential failure is found it is logged, with a description of the problem. This description may 
range from a description of the observed system behaviour to a description of an error in a document. 
Once a failure has been logged it cannot be closed until a full evaluation has taken place. 

Failure evaluation establishes the source cause of the problem, if any (ie the point in the lifecycle that 
the problem was introduced) and determines the entities that need modification to correct the fault and 
make all documents consistent.  

The implementation of all corrections is then tracked through to review. Only when the implementation 
of the fault correction has been completed and reviewed can the fault be closed. 

By analysing open faults we have a clear understanding of known outstanding problems. Typically we 
ensure that any delivered build has no known failures, or, if this is impractical, document the known 
failures at the time of release. 

The fault management process was controlled by a simple spreadsheet that maintained the status of all 
failures and incident reports used to detail each failure. Incident reports were paper based. The whole 
fault reporting system was implemented with very simple technology and was not incorporated 
electronically into the configuration management tools used on the project. This was simply because of 
the tools chosen to support the project. 

3.1.11.2 Outputs 

The outputs of this activity were: 

• Incident reports detailing all failures. 

• A summary of all incident reports. 
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3.1.11.3 Key Benefits 

The reasons for using a fault control process are: 

• Fault management creates an audit trail for all changes required to any lifecycle entity once that 
entity has been initially approved. 

• Fault management tracks useful statistics, such as when faults are found and when they are 
introduced, which can be used to monitor and improve process. If many faults are being introduced 
in a particular lifecycle phase then efforts can be made to improve the lifecycle phase in future 
projects. 

• Fault management ensures that all issues are tracked and failures do not enter the delivered 
system without investigation. 

3.2 Comparison with EAL5 and higher 

The Common Criteria EAL5 Security Assurance Requirements are specified in part 3 of [12], as a list of 
codes and levels for each of the applicable assurance aspects. The following table summarises how the 
approach followed in this project meets (or in places exceeds) these requirements. Where the process 
exceeds the requirements for EAL5, the name of the requirement is italicised, the part of the 
implementation that exceeds the requirement is italicised, and the approximate level of requirement 
achieved is stated. 

 

ACM_AUT.1 
Partial CM 

automation 

Standard Praxis configuration management was carried out, using 
an automated tool to manage all the code. 

ACM_CAP.4 
Generation support 

and acceptance 

procedures 

Unique version numbering of the TOE and the design documents 
leading to the TOE. All configuration items (design documents, 
code, test scripts, etc.) have unique references. 

Configuration 
Management 

ACM_SCP.3 
Development tools 

CM coverage 

All documents developed as part of the TOE development are 
under configuration management with documented processes for 
creating, numbering, modifying, reviewing and issuing. 

Delivery and 
Operation 

ADO_DEL.2 
Detection of 

modification 

Not implemented: formal delivery to operational environment out of 
scope of project. 
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 ADO_IGS.1 
Installation, 

generation, and 

start-up procedures 

Installation and User manual documents all these procedures. 

ADV_FSP.3 
Semiformal 

functional 

specification 

A formal functional specification was provided. (ADV_FSP.4) 

ADV_HLD.3 
Semiformal high-

level design 

A formal functional design specification was provided. In addition, a 
description of the interface to hardware specific aspects, and a 
breakdown into subsystems was provided in the INFORMED design. 
(ADV_HLD.5) 

ADV_IMP.2 
Implementation of 

the TSF 

The implementation is in SPARK Ada, which is highly structured, 
and this structuring is enforced through static analysis tools. 
(ADV_IMP.3) 

ADV_INT.1 
Modularity 

The implementation is in SPARK Ada, which is highly structured, 
and this structuring is enforced through static analysis tools 
(ADV_INT.3) 

ADV_LLD.1 
Descriptive low-

level design 

Not implemented: the size and complexity of the TIS did not require 
this number of refinement levels. Indeed, our experience is that 
mandating a fixed number of refinement levels is 
counterproductive. 

ADV_RCR.2 
Semiformal 

correspondence 

demonstration 

Tracing carried out between all representation levels. Formal 
proofs (partial) of correspondence between functional specification 
and design specification. Full correspondence between design and 
code (code annotations) and partial proof. (partial ADV_RCR.3) 

Development 

ADV_SPM.3 
Formal TOE security 

policy model 

Formal policy model expressed as theorems on the formal 
functional specification. 

AGD_ADM.1 
Administrator 

guidance 

User guide covers administrator. True instructions to users and 
administrators for true secure operation are out of scope of this 
project. 

Guidance 
documents 

AGD_USR.1 
User guidance 

User guide covers administrator. True instructions to users and 
administrators for true secure operation are out of scope of this 
project. 
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ALC_DVS.1 
Identification of 

secure measures 

References made to standard Praxis working practices. For this 
development, additional security measures were not deemed 
necessary. 

ALC_FLR.0 
Flaw remediation 

No requirements. 

ALC_LCD.2 
Standardised 

lifecycle model 

Praxis Correctness by Construction development process adopted. 
Industry standard in that it uses accepted technology (formality, 
refinement, SPARK Ada), but many of these approaches are 
regarded as novel by most developers. 

Life cycle 
support 

ALC_TAT.2 
Compliance with 

implementation 

standards 

Standards used for all aspects of the development: REVEAL® 
(internal standard) for requirements, Spivey Issue 2 for Z notation, 
SPARK Ada (standard enforced by tools, unambiguous definition). 
(ALC_TAT.3) 

ATE_COV.2 
Analysis of 

coverage 

System test scripts derived from, and traced back to, the functional 
specification. 

ATE_DPT.2 
Testing: low-level 

design 
 

The standard Praxis approach of achieving 100% source code 
coverage through a combination of system testing, with additional 
unit tests introduced to cover areas difficult to test through system 
test, ensures that all internal interfaces are tested.  

ATE_FUN.1 
Functional testing 

System testing carried out, with full documentation. 

Tests 

ATE_IND.2 
Independent 

testing – sample 

Independent reliability testing being carried out by SPRE Inc. This 
may extend beyond the system testing carried out by Praxis. 
(ATE_IND.3) 

AVA_CCA.1 
Covert channel 

analysis 

Not applicable to this application. 

AVA_MSU.2 
Validation of 

analysis (misuse) 

Not implemented: True instructions to users and administrators for 
true secure operation are out of scope of this project. 

Vulnerability 
assessment 

AVA_SOF.1 
Strength of TOE 

security function 

evaluation 

In general, the security mechanisms requiring analysis in this way 
are cryptographic features and aspects of securing access to data 
(such as securing access to the audit log). These were out of scope 
of this project. 
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 AVA_VLA.3 
Moderately 

resistant 

(Vulnerability 

analysis) 

In general, the security mechanisms requiring analysis in this way 
are cryptographic features and aspects of securing access to data 
(such as securing access to the audit log). These were out of scope 
of this project. 

Table 2 Comparison with EAL requirements 

3.3 Applicability 

Although this project was a demonstration of a development approach, and it was necessarily small and 
focussed, the conclusions that can be drawn are scalable, for the following reasons: 

• The structure of the documents, such as the functional specification, was designed to allow 
expansion. The full power of the formal notation’s structure was used, and as a result the formal 
specification and formal design documents were larger and more complex than strictly necessary 
for the job in hand. But by ensuring that good structuring was used, these documents could easily 
be expanded to cater for additional functionality. For example, adding new administrator functions 
requires only that new function names are added, and new Z operations to describe the behaviour 
of each new function. 

• The results (effort, fault-rates) found on this project are comparable with the results found on other, 
larger, non-demonstration projects that Praxis have carried out for other clients.  

• Some activities were reduced in scope (such as requirements investigation, a number of the proof 
stages, and some of the security analysis), but this was only for cost reasons, and given a larger 
budget these could have been completed within the same project structure. 

• Actual evaluation and certification would require external evaluators reviewing documentation and 
implementations. Although all review was carried out in-house, final reliability demonstration 
testing was carried out by an independent tester. 

• Some simplifications were made on this project to focus effort on the core functionality. These 
were: 

⎯ peripherals were simulated, rather than real 

⎯ some library functions were simulated, rather than real 

⎯ no graphical user interface was developed 

⎯ the underlying operating system was not securely locked-down 
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However, the effect that these had on the development were lessened because 

⎯ peripherals were developed by an external supplier (SPRE Inc), and hence clear 
specifications were needed, and our development had to respond to unexpected 
alterations in the interfaces. 

⎯ experience on previous projects has shown us that it is possible to develop non-security-
critical user interfaces in a conventional manner using prototyping and GUI builders, and 
then integrate them with the high-integrity development successfully. 

⎯ the issues of the underlying operating system and the application code can be 
successfully separated, and we have done this on other projects. 

Praxis High Integrity System’s development approach has been used on a number of projects for a 
range of clients. An example pertinent to this development is a project carried out for Mondex 
International (MXI), see [13].  
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4 Metrics 

4.1 Raw Metrics 

4.1.1 Effort Metrics 

In order to allow detailed analysis of the effort involved in the various tasks undertaken an assessment 
of the competency levels of the engineers undertaking the work on this project was made. 

Each engineer was assessed as a Novice, Practitioner or Expert (as defined in Table 3) in a number of 
skills key to the project. 

  

Competency level Definition 

Novice Has attended relevant training but has no experience in the given (or a closely 
related) activity. 

Practitioner Has attended relevant training and has sufficient experience in the given activity 
(or a closely related activity) to perform activity with minimal supervision. 

Expert Has several years experience and can supervise both Practitioner and Novice in 
the activity. 

Table 3 Competency Levels  

The key skills required during the lifecycle of the project were as follows:

• Requirements Elicitation 

• Writing Z 

• Z Proof 

• Security 

• INFORMED Design 

• SPARK Coding 

• Writing SPARK Proof Annotations 

• SPARK Proof 

• System Testing

The key technical skill required to undertake each of the technical WBS items was determined allowing 
full analysis of the skills required and the skill levels applied to the various activities in the development 
process. 

When activities were undertaken an assessment was made as to whether the task was hard or easy. 
Tasks were classed as easy if a novice could perform them; while hard tasks were those where expert 
knowledge or experience was utilised. Review activities were classified as hard since it is preferential to 
have an expert perform the review. In many cases there were aspects of an activity that were hard while 
other aspects were easy. For example developing the type model and state schemas for the Z 
specification were hard but specifying many of the operations was classified as easy since, once one 
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operation was in place it could be used as a template for a novice to produce the specification of further 
operations.  

The full raw effort metrics collected on the project are presented in full in Appendix B. They are 
summarised in the table below: 

    

  Difficulty of Activity 

  Hard Easy N/A 

Percentage 
of Effort 

Manage Project 0 0 216 11% 
Define Requirements 68 124 0 10% 
Specify System 165 69 0 12% 
Design Core Functions 170 130 0 15% 
Code and Prove 104 453 0 29% 
System Test 0 76 0 4% 
Interfaces and Integration 0 316 0 16% 

Li
fe

cy
cl

e 
P

ha
se

 

Acceptance 10 53 0 3% 

Table 4 Actual effort spent on lifecycle phases  

Figures are in hours. Technical activities were classified as hard or easy. Project 
management was not classified as either hard or easy. 

The main observations that can be drawn from this raw data are: 

• Early lifecycle phases tended to require a higher proportion of expert involvement. 

• Approximately 10% of the project activity was management. This percentage is commensurate with 
our experiences on other projects. 

• The proportion of time spent on system testing was extremely low. A more representative figure 
would include the contribution from SPRE, including the production of the test environment (see 
Section 3.1.9.4). A more normal proportion from other Praxis projects is 25%. 
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4.1.2 Defect rates 

During the development of the system all faults 1detected following review of a deliverable item were 
captured using the fault management procedure. The severity of each fault was determined, in terms of 
the impact of the fault remaining in the system. Severity levels are defined in Table 5. 

 

Severity Level Definition 

Critical Failure is due to a Fault in the TIS Core and could compromise the security of the 
system. 

Major Failure is due to a Fault in the TIS Core and could impact the functionality of the 
system. 

Minor Failure is due to a Fault in the TIS Core but would not prevent the system from 
functioning (e.g. incorrect spelling of displayed text). 

Interfaces Failure is due to a fault that is confined to the support software; there is no fault 
in the TIS Core software. 

Test Failure is due to a fault in the test or test environment not the system under test. 

No Fault The reported failure is actually the correct behaviour so there is no fault. 

Table 5 Failure Classifications  

Table 6 summarises the distribution of failures found during development. Several failures were found 
to affect more than one item, typically this was where a fault was introduced early in the development 
lifecycle but not detected until relatively late in the development lifecycle. 

                                                      

1  For the purposes of this document, a failure is an incorrect external behaviour of the system, and a fault is an 
error in any part of the system or its development products, which may or may not manifest itself as a failure of the 
system. 
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Requirements 0 0 0 0 0 0 0 

Z Specification 0 6 6 0 0 0 12 

Security Specification 0 0 0 0 0 0 0 

Z Design 0 5 12 0 0 0 17 

INFORMED Design 0 6 8 0 0 0 14 

Code 0 10 17 0 0 0 27 

Interfaces 0 0 1 2 0 0 3 

It
em

 A
ff

ec
te

d 

System Tests 0 0 0 0 0 0 0 

Total 0 16 36 2 0 0 54 

Table 6 Distribution of failures by severity  

The fault management process determines where faults are found and where they are introduced. This 
distribution is shown in Figure 5.  
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Figure 5: Faults found vs. point of introduction 

Reading diagonally upward from a lifecycle phase gives the number of faults found 
during that lifecycle phase categorised by the point of introduction of the fault. 
Reading diagonally down gives the number of faults per artefact/lifecycle phase. So 
8 faults were introduced during coding and found during system test, 6 faults were 
found and introduced during coding. 
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The correctness by construction approach aims to have as few defects on the right hand side of the 
triangle as possible. Ideally no defects would be introduced during the development process but 
realistically we attempt to eliminate defects as soon as possible resulting in faults being found soon 
after they are introduced. 

4.1.3 Code Metrics 

The code size is given in Table 7. The size of the source code was measured in terms of non-blank, non-
comment lines. These were further categorised into declarations and executable lines of code. The non-
blank comment lines were categorised into SPARK annotations (basic flow annotations and proof 
annotations) used during static analysis by the SPARK Examiner and simple textual comments. The total 
is a simple line count of all source code so includes blank lines. 

Notice that the Support Software was written in Ada, rather than SPARK, so there were no SPARK 
annotations. 

       

 Declarations Executable 
lines 

SPARK flow 
annotations 

SPARK proof 
annotations 

Comments Total 

TIS Core 4964  4975 6036 1999 8529 30278 

Support 
Software 

1800  1897 - - 2240 6925 

Table 7: Code sizes for Core and Support Software 
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4.1.4 Document Metrics 

The characteristics of the deliverable documents are presented in Table 8. 

 

Document Reference Form Number of Pages 

Project Plan S.P1229.2.1 English text 27 

Security Target S.P1229.40.1 English text 18 

Software Requirements 
Specification 

S.P1229.41.1 English text 42 

Formal Specification S.P1229.41.2 Z Notation and English text 118 

Security Properties S.P1229.40.4 Z Notation and English text 11 

Interface Specification S.P1229.41.3 English text 84 

Formal Design S.P1229.50.1 Z Notation and English text 171 

INFORMED Design S.P1229.50.2 English text 67 

Code Verification 
Summary 

S.P1229.52.1 English text 23 

System Test Specification S.P1229.63.1 English text 98 

Installation Guide and 
User Manual 

S.P1229.73.1 English text 29 

Table 8: Document Metrics 
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4.1.5 Code Proof Metrics 

Code proof was broadly divided between  

1 proving the absence of run-time errors, a general soundness property of the code, which ensures 
that there will be no run-time exceptions. 

2 proving security properties were held by the code. 

These two proof activities result in the SPARK Examiner generating  a number of VCs (Verification 
Conditions) for each subprogram which need to be shown true to conclude the proof of the subprogram. 
The statistics from the code proof activity are shown in Table 9 and Table 10. VCs associated with 
assertions and pre and post conditions result from proving the security properties. 

  

 Number 

Subprograms fully proved automatically by Examiner/Simplifier 223 

Subprograms fully proved by Checker 14 

Subprograms fully proved by review 55 

Subprograms for which VCs have been generated 292 

Table 9: Proof mechanism used to fully prove each subprogram 

 

 Proved by 

 

Total 

Examiner/ 
Simplifier 

Checker Review 

Assert or Post-condition 1021 927 38 56 

Precondition check 67 47 8 12 

Check statement 1 0 0 1 

Runtime check 1340 1293 2 45 

Refinement VCs 214 186 9 19 

Totals 2643 2453 57 133 

Total %  93% 2% 5% 

Table 10: Proof of VCs by Type 

It should be noted that VCs that are proved by the Examiner/Simplifier require no manual intervention. 
Only those proved by the Checker or justified by review require manual intervention.  
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4.2 Summarised Metrics 

4.2.1 Productivity rates 

The following productivity rates can be deduced from the raw metrics: 

4.2.1.1 Code productivity 

The productivity rate for coding, accounting only for compiled lines of code (declarations and executable 
lines) is shown in Table 11. In calculating the overall productivity for the TIS Core all effort was 
considered. Figures for the TIS support software only consider the effort required for specifying and 
developing the interfaces. 

Productivities are presented separately since the Correctness by Construction process was only applied 
to the TIS Core software. 

 

 Productivity (LOC/day) 

 During coding Overall 

TIS Core 203 38 

TIS Support  182 88 

Table 11: Code productivity 

Notice that the productivity during coding for the TIS core is higher than for the support software despite 
the core coding effort including static analysis. This is because there was very little rework of the TIS 
core software since the early lifecycle activities produced an unambiguous definition of the required 
software functionality. 

4.2.1.2 Documentation productivity 

The productivity rate for the production of each of the documents is shown in Table 12. 

The lowest productivity was for Z proof arguments, this is because the effort in performing the necessary 
proof analysis far outweighs the time taken to document the process. 

Productivity rates for documents written in the Z notation are typically lower than for documents written 
in English. The relatively high productivity rate for the Formal Design reflects the high level of reuse of 
structure that was possible from the Formal Specification. 

Overall, the document productivity rate for this project is exceptionally high — productivity for Z 
specifications is more normally 1 – 2 pages per day. This high productivity is due partly to the quality 
and experience of the staff working on these areas, and partly to the small team size. With only a single 
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person writing a specification and one person reviewing, communications and confusions are kept to a 
minimum. 

On the other hand, the specifications were unusually large given the complexity of the system. This was 
because they were deliberately constructed to be extendable, and more structuring was used that was 
warranted for the complexity actually captured. 

For productivity figures for a larger project, see [13]. 

 

Document Number of 
Pages 

Pages / day 

Security Target 18 2 

Software Requirements Specification 42 11 

Formal Specification 118 4.6 

Security Properties 11 3.3 

 (Specification) 7 7 

 (Proof) 4 1.7 

Interface Specification 84 3.9 

Formal Design 171 6.9 

 (Design) 153 8.3 

 (Abstraction Relation) 11 11 

 (Proof) 7 1.3 

INFORMED Design 67 5.7 

System Test Specification 98 22 

Installation Guide and User Manual 29 17 

Table 12: Document productivity 

4.2.1.3 Defect rates 

Defect rates are typically quoted for a system post acceptance. We await results of reliability 
demonstration testing to give defect rates for the system. 
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4.2.2 Effectiveness of techniques  
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Figure 6: Faults found vs. point of introduction (repeated) 

The heavy line down the triangle delimits where faults are considered to have been 
found in time as opposed to later than ideal. 

In an ideal development the errors introduced at one stage of the development process are then 
uncovered either as part of that stage itself or, more likely, in the immediately following stage. In the 
style of the diagram in Figure 6 this would have values only in the first and second vertical columns. 

As some of the “stages” in the TIS project are actually more-or-less concurrent, such as the Z 
Specification the Security Properties and the Z Specification Proof, we would expect errors to be 
identified in the area to the left of the heavy line shown in Figure 6. 

Therefore, it is worth investigating in more detail the errors that were picked up later than ideal — to the 
right of the heavy line. There are eight of these, detailed in the subsections below. But in summary: 

• 3 were errors with the User Interface, which would normally be picked up by UI prototyping (out of 
scope for this project) 

• 1 error due to lack of reachability analysis for Z specifications 

• 2 errors due to reduced requirements analysis and reduced requirements change tracking, adopted 
due to budget constraints and an expectation (mistaken) that the project was redeveloping 
functionality already fully defined. 
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• 2 errors due to moving between formal and informal representations that even the full high-integrity 
process would have missed. 

4.2.2.1 Errors in Formal Specification found during System Test (three errors) 

Incident Report no. 33: the initialisation state in the formal specification, although possible and secure, 
did not allow any useful subsequent use of the system. The timeouts and allowed access periods were 
unrealistic. 

This was not found during analysis of the Z specification because the normal analysis carried 
out on Z initialisation (proof of the existence of an initial state) misses these sorts of errors. 
Carrying out reachability analysis (not done here) would catch these sort of problems. 

Incident Report no. 36: the console did not display a suitable “busy” message when it was busy. 

As the graphical user interface was out of scope of this project, only a simple console 
interface was built. Normally, during requirements analysis a user interface prototype would 
have been built, and this would almost certainly have found this error early on. 

Incident Report no. 38: the console did not display a suitable message when an operation failed. 

As the graphical user interface was out of scope of this project, only a simple console 
interface was built. Normally, during requirements analysis a user interface prototype would 
have been built, and this would almost certainly have found this error early on. 

4.2.2.2 Errors in Formal Design found during System Test (two errors) 

Incident Report no. 34: an invariant on the configuration data was missing allowing useless 
Authorisation Certificates to be produced, and then denying access to the enclave. 

A more complete requirements analysis would probably have found this issue, or at least 
investigated the implications of the non-deterministic specification earlier, possibly identifying 
this as an allowed behaviour. Tighter management of change would also have identified this 
earlier, as the error was introduced when fast-track entry was developed. 

Incident Report no. 35: the timeout of the Admin Token was not audited. 

Tighter management of change would probably have identified this at design time (when 
auditing was developed) — development ran ahead of client review, and the token timeout 
was added late. 
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4.2.2.3 Errors in Formal Specification found during Coding (two errors) 

Incident Report no. 6: system statistics missed the removal of the User Token before processing 
finished. 

The step from the informal requirements specification (that all failures of entry should be 
recorded in the statistics) to the formal specification of the actual processing is always a weak 
link, and any process may have missed this. 

Incident Report no. 32: poor choice of wording for message in the console. 

As the graphical user interface was out of scope of this project, only a simple console 
interface was built. Normally, during requirements analysis a user interface prototype would 
have been built, and this would almost certainly have found this error early on. 

4.2.2.4 Errors in INFORMED Design found during System Test (one error) 

Incident Report no. 37: constraints on Configuration data not presented in the definition of valid input. 

The constraints on configuration data in the formal design should have been carried through 
to the (informal) INFORMED design definition of valid input data. This was missed during 
review. 

4.2.2.5 Other observations on defect detection 

Returning to Figure 6 again we note the following: 

• No faults were found in the requirements. This is most likely due to the requirements omitting 
much detail (for example a detailed analysis of behaviour following failure). The majority of the 
faults relate to detailed system behaviour. Consequently the first point at which faults appear to be 
introduced in during the Z Specification, the point at which the detail was first introduced. 

• Code proof found no faults. The code proof activity only accounts for the proof of security 
properties. Proof of absence of run-time errors and static code analysis is done as part of the 
coding process so it is typically difficult to gauge the effectiveness of these static code verification 
activities. The performance of static analysis as part of the coding activity accounts for the relatively 
low number of faults found in the code during testing. 

• Faults are only recorded against entities in the lifecycle that have undergone formal review and 
have been base-lined. Due to the relatively late availability of test drivers the interface code was 
base-lined after all other coding was complete. This accounts for the low number of faults reported 
on the interface software.  
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4.3 Interpretation of Metrics 

The raw data presented corresponds to the actual development undertaken by Praxis. Due to available 
resources some of the activities in the Correctness by Construction process being demonstrated were 
not completed. 

There were also a number of occasions where relatively easy activities were performed by experts.  

In order to gauge the cost effectiveness and applicability of the processes presented on this project we 
have provided an interpretation of the raw metrics to estimate:  

• The effort required if team skills were reduced so that experts performed only hard activities. 

• The cost and effort required to complete the project if all the Correctness by Construction activities 
were completed. 

• The cost and effort required to perform the project to EAL5 certification standard. 

For the purpose of this analysis we exclude the Project Management aspect. Our experience is that 
project management typically accounts for about 10 - 15% of the effort and this is borne out in the raw 
effort metrics (see Section 4.1.1). 
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4.3.1 The Raw data 

Raw data is repeated here to allow easy comparison 

   

 Effort (hours) 

 Hard Easy Total 

Define Requirements 68 124 192 

Specify System 165 69 234 

Design Core Functions 170 130 299 

Code and Prove 104 453 557 

System Test 0 76 76 

Interfaces and Integration 0 316 316 

Acceptance 10 53 63 

Total 517 1219 1736 

Table 13 Actual effort spent on lifecycle phases  
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Figure 7: Effort distribution 
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4.3.2 Perfect team distribution 

In an ideal team distribution all hard activities would be performed by experts in the field while all easy 
activities would be performed by novices. Of course, the novices would graduate to practitioners over 
the course of the project but this is not accounted for in the estimates presented here. 

In order to analyse the likely time to complete if experts always perform hard activities and novices 
always perform easy activities we make the following assumptions about the effective productivity of the 
various skill levels. These assumed productivity ratios are equal to the cost ratios of staff at 
representative grading levels. 

  

Skill level Productivity  

Novice 100% 

Practitioner 165% 

Expert 230% 

Table 14 Productivity Rates 

Productivity rates are presented as a percentage of Novice productivity. 

This gives the following effort estimates for the work actually performed: 
   

 Effort (hours) 

 Hard Easy Total 

Define Requirements 54 239 293 

Specify System 165 158 323 

Design Core Functions 159 277 436 

Code and Prove 88 914 1002 

System Test 0 115 115 

Interfaces and Integration 0 426 426 

Acceptance 10 53 63 

Total 476 2181 2658 

Table 15 Effort spent on lifecycle phases assuming a perfect team 
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Total (effort)

11%

12%

16%

39%

4%

16%
2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

 
Figure 8: Effort distribution assuming a perfect team 
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Figure 9: Proportion of lifecycle activities classified as hard 

The key observation that can be drawn from this is that in general more expertise is required early in the 
lifecycle than during the later stages (hard activities require experts). 

We now look at the cost impact of this distribution of experts and novices over the life time of the 
project, using the same cost ratio as productivity ratio (Expert costs 2.3 times the cost of a Novice) and 
consider the cost distribution over the lifetime of the project. 
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Costs
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Figure 10: Cost distribution for work performed 

It should be noticed that almost half of the project costs were incurred prior to coding. This reflects the 
emphasis placed on correct construction of requirements, specification and design. 

4.3.3 Completing the Correctness by Construction Process 

A number of the activities performed as part of the Praxis Correctness by Construction process were not 
completed due to budget limitations. Here we estimate the extra effort required to complete these 
activities and conclude with the effort and cost distribution that would be expected had all activities 
been completed. Note that this evaluation concerns just the core functionality of the system and in 
addition we would expect a contribution from the production of a test environment. The effort required 
for generating a test environment should be deduced from the effort required by SPRE to perform this 
activity and is not included in the figures below. 

The activities that were not completed were as follows: 

• Requirements Elicitation – restrictions on time available with the stakeholders interested in the 
system resulted in the requirements elicitation activity being far smaller than usual. We estimate 
that only 25% of the effort to complete was spent on this activity. 

• Write Software Requirements Specification – due to reduced requirements elicitation, many 
aspects of the system behaviour that would have been elaborated in the requirements specification 
were only described at a very high level, detail being postponed to the Formal Specification. We 
estimate that only 50% of the effort to complete was spent on this activity. 

• Write Security Target – We only produced an outline Security Target. We estimate that this activity 
took 40% of the effort to complete a Security Target. 
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• Review SRS and ST – The review activities will take proportionally longer due to the SRS and ST 
being larger documents if they had been completed. We estimate that we spent 50% of the effort 
that would have been required to review these documents. 

• Prove Security Properties – We only proved a sample of the security properties. We estimate that 
this amounted to 30% of the effort required to complete the proof. 

• Prove Design – We only performed part of the design proof, although more proof was actually 
performed than was documented. We estimate that this amounted to 40% of the effort required to 
complete the proof. 

• Review Design Proof – We only reviewed the proof that was documented. We estimate that only 
20% of the proof was documented. 

• Proof Annotations – We produced approximately 30% of the proof annotations for the security 
properties. Due to the simple correspondence between the formal design and code full functional 
proof would probably not be performed in practice. 

• Proof of Code – The effort required to prove the code is directly proportional to the number of proof 
annotations inserted. We proved all VCs associated with the annotations we supplied. This 
corresponds to 30% of the effort required to complete proof of all security properties. 

• Code Proof Review – Again the effort expended corresponds to about 30% of the effort to 
complete.  

• Execute Functional Testing  - We would normally instrument functional tests to capture coverage 
metrics. We estimate that the testing we performed corresponds to about 50% of the effort that 
would have been required if the testing was instrumented and we added tests to achieve 100% 
code coverage as necessary. 

• Test Plan and Specs – We wrote tests to cover all aspects of the Formal Design (and hence Formal 
Specification). We anticipate that additional tests would be required to achieve 100% code 
coverage (which was not monitored for). We estimate that we expended 60% of the effort required 
to complete this activity. 

• Test Report and Results – Ordinarily we would have analysed the coverage metrics we captured. 
This would have added a substantial overhead to the collection and interpretation of test results. 
We estimate that we performed about 30% of the effort required to complete this activity. 

Taking into account the above we estimate that the effort to complete the project (again assuming a 
perfect team) is as follows: 
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 Effort (hours) 

 Hard Easy Total 

Define Requirements 151 585 736 
Specify System 206 158 364 
Design Core Functions 229 277 506 
Code and Prove 185 1369 1554 
System Test 0 233 233 
Interfaces and Integration 0 426 426 
Acceptance 10 53 63 

Total 782 3100 3882 

Table 16 Effort required to complete assuming a perfect team 

Total (effort)

19%

9%

13%
40%

6%

11% 2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

 
Figure 11: Effort distribution if Correctness by Construction process completed 
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Figure 12: Cost distribution if Correctness by Construction process completed 
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4.3.4 Achieving EAL 5 

A number of the activities performed in the Correctness by Construction process presented here are not 
actually required for EAL5. So assuming that we were able to justify with the certification authorities that 
the static analysis performed on the code removes the need to perform implementation testing we can 
deduce the effort and cost of developing this system to EAL5 by removing the effort for the following 
activities (not required for EAL5). 

• Prove Security Properties 

• Prove Design 

• Review Design Proof 

• Proof Annotations 

• Proof of Code 

• Code Proof Review 

There would be additional effort required to write the installation guide, which needs to cover aspects of 
security not covered by the current installation guide. We assume that the effort required to produce this 
summary report is equivalent to the additional effort required to produce an installation guide suitable 
for EAL5. 

These assumptions give an estimate of the effort required to develop this system to EAL5 (assuming a 
perfect team) as follows: 

   

 Effort (hours) 

 Hard Easy Total 

Define Requirements 151 585 736 
Specify System 148 158 306 
Design Core Functions 94 277 370 
Code and Prove 47 719 766 
System Test 0 233 233 
Interfaces and Integration 0 426 426 
Acceptance 10 53 63 

Total 449 2450 2900 

Table 17 Effort required to complete to EAL5 assuming a perfect team 
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Figure 13: Effort distribution for completing to EAL5 

 Cost

27%

14%

14%

24%

7%

12%
2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

 
Figure 14: Cost distribution for completing to EAL5 
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4.3.5 Relative costs 

The relative costs of the work performed, completing the Correctness by Construction process and 
completing to EAL5 are presented graphically 

Relative Cost
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0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Actual

Full High Integrity Process

EAL 5

 
Figure 15: Relative costs of producing TIS core 

Achieving EAL5 should cost little more than the actual costs measured during this evaluation. This is 
because, although we did not complete all activities within the Correctness by Construction process that 
we propose, many of the proof activities are not required to achieve EAL5 certification. 

We believe that the Full Correctness by Construction process is close to achieving EAL7. There are a 
number of quality activities such as fault management and configuration management that would need 
to be performed using tools that provide fully integrated electronic support. The proof activity we use in 
our high integrity process is sufficient for EAL7: this involves tool supported code proof but manual proof 
of the Specification and Design. 
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5 Analysis 

5.1 Analysis of Method 

The metrics of effort expended in the phases of the project, the size of the system developed, and the 
number of residual faults found during reliability demonstration testing (final metric awaited) show that 
the Praxis Correctness by Construction development process as carried out in this project is effective in 
producing a high quality system cost effectively. 

What are the elements of the method that achieves these benefits? 

As indicated by the metrics relating number of errors found to phase in the development process where 
the errors were found shows that errors were introduced and found in all phases, and that no one phase 
can be pinpointed as the “key” place where errors were found. Indeed, part of the reason why, for 
example, coding introduced few errors is that the specification is formal, and hence clear and easy to 
implement from. The method brings together a number of techniques that work in unison to improve the 
quality of the product. 

Having said that, the method does not rely entirely on specific techniques, such as Z or SPARK Ada. It 
will be possible to gain some of the benefit of the Praxis development approach even if only some of the 
elements are used, or if different techniques are used to achieve the steps. Our experience is that the 
approach adopted by us in this development achieves the greatest benefits, but if other factors force a 
departure from the ideal, then some benefit can still be gained. Looking at each part of the development 
in turn: 

• Requirements management: Praxis’ own REVEAL® requirements process stresses a number of 
elements of requirements management, and provides a number of techniques to address them. 
The key outcomes are: clear system boundary; clear stakeholder involvement; full investigation and 
documentation of system requirements; analysis and documentation of domain knowledge; and 
justification of system specification in terms of system requirements. 

• Specification: formality is used to achieve clarity of expression, to force early expression of precise 
behaviour, and to allow more powerful verification and validation techniques to be applied. We 
have found that Z is a powerful, general-purpose formal notation, but other notations can be used. 
We have, for example, used CSP in particular circumstances. If a non-formal notation, such as UML, 
is used, then there is significant scope for ambiguity and lack of precision, and the opportunities for 
analysis are reduced (although even here, rigour in the use of UML can improve results [16]). 

• Design: this is probably the area with the greatest amount of flexibility. The design step(s) are there 
to identify, document, and justify the implementation decisions made in passing from the abstract 
system specification to the concrete implementation. Different notations have different strengths 
for this, and the correct notation should be chosen to give the greatest power in expressing the 
design decisions being made, and the greatest scope for verification and validation techniques. 
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• Coding: choosing to implement the core of TIS in SPARK Ada gave the project the opportunity to 
apply powerful static analysis tools (the SPARK Ada tool-set) that eliminate many errors prior to 
compilation, and encourage (and measure) good design structuring. Other implementation 
languages can be chosen, but verification and validation power is lost, and poor design becomes 
more likely. Alternatives, such as using SPARK Ada as a design language with automatic translation 
into an implementation language, such as C, can be considered. 

• Analysis: choosing appropriate formal specification and design notations, and SPARK Ada for 
implementation, allowed effective analysis: 

⎯ review becomes very powerful, as the notations used are unambiguous, and truly abstract 
specifications allow useful correspondence checking down through progressive refinements 

⎯ proofs of consistency of individual stages (e.g. pre-conditions checks) ensure that 
specifications are not only syntactically correct but have good meaning 

⎯ proofs can be used to show correspondence between representation levels, right down to the 
code level 

⎯ static analysis of the code can identify code-level errors (such as the use of un-initialised 
variables) and, with the use of formal notations in more abstract representations, can identify 
mismatches between specification and code. 

• Testing: if static analysis, proof, etc. is carried out, this will remove most of the unit-level errors 
before code is run. Therefore, most of the errors remaining at runtime will be integration errors, to 
be identified through system testing. Once again, good specifications higher up the abstraction 
hierarchy lead to clearer test specifications and easier coverage analysis. 

5.2 Analysis of Results 

5.2.1 What the results means for EAL5.  

As tabulated in section 3.2, this development project has largely met the requirements of EAL5, and in 
many cases, EAL6 and EAL7. As discussed in section 4.3.4, even the effort estimates for a fully-
conformant EAL5 development are very close to the effort expended on this project. It is therefore 
reasonable to say that this project represents a close match to the process that should be followed for 
an actual EAL5 development. 
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However, issues of certification such as working with external evaluators and gaining agreement with 
the certification bodies have not been investigated in this project. Very little time was given to the 
development of the Security Target, and the development of the Protection Profile was out of scope. Our 
general experience, however, indicates that there are elements that could be done differently to make 
certification easier. In general: 

• Engage with the accreditors and evaluators early, and ensure that they agree with all procedures 
and documents as you go. 

• Ruthlessly trim the security target down to the fundamental security requirements. 

• Develop specific security mechanisms to address specific threats, rather than incorporating a range 
of common mechanisms that have been proved to be useful in the past, but for which no clear 
justification can be identified for this specific product or system. 

• Make trade-offs at the security target stage between technical security mechanisms, environmental 
security assumptions, and the effort of implementation. That is, analyse the threats created by the 
chosen environment, decide whether the implementation cost of protecting against these threats 
using technical means is acceptable, and if not, modify the environment to reduce the threats. 

The consequences of adopting such an approach for TIS in particular would be: 

• No protection profile (just develop a security target directly). 

• A smaller security target (at least, the security target would be smaller than the current combination 
of the security target and the protection profile). 

• Clearly recognised, high-level security aims, such as “protection of the enclave”. 

• Clear reliance on the environment, making it easier to assess the impact of deploying in a different 
environment. 

5.2.2 What the results means for EAL6/7 

We believe that the Full Correctness by Construction process is close to achieving EAL7. The discussion 
above for achieving EAL5 remains valid at the higher EALs as well. It can be seen from section 3.2 that 
in many areas the project actually met the requirements of EAL6 or EAL7. If all of the proofs were 
carried out to completion, rather than only a sample completed, then the comparison of the project to 
EAL7 requirements falls into three areas: 

• most requirements are met: the development requirements (on design documents, demonstration 
of correspondence between them) are met because formality was used throughout the 
development, and static analysis and proof was used where possible. Some testing and some 
lifecycle requirements are met. 
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• a few requirements are not met: these are generally process requirements (such as automated CM) 
that do not fundamentally alter the design process, but just require slightly tighter control on the 
activities that are already being done, or they are testing requirements, which in general are either 
superseded by static analysis or would normally be complied with on a project with a larger team. 

• those requirements deemed out of scope: would need to be carried out, and would require 
additional effort. 

5.2.3 What the results mean for achieving lower EAL levels  

Even if a lower level of assurance is aimed for, the Correctness by Construction development process 
followed on this project can be used, and will yield a high quality system cost effectively. Indeed, 
provided there is a desire to reduce the number of residual errors sufficiently far, most of the processes 
adopted in this development represent the most effective way of developing the system. 

There is a cut-off point in terms of quality at which this development processes ceases to be cost 
effective. If a high number of errors can be tolerated (e.g. in a system in use for limited time or by a 
limited number of people) then a less formal and rigorous process may be cheaper. The level of this cut 
off is not known, however. 
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6 Further Work 

NSA’s original purpose for this work was as a first step in improving the development of systems by NSA 
contractors toward high security certification levels. Having demonstrated that Praxis’ Correctness by 
Construction development process can produce reliable systems that should be certifiable at the high 
EAL levels, it is worth considering the possible next steps toward NSA’s final goal of wider contractor 
abilities to achieve these levels. 

6.1 Disseminating the results of the project 

There are a number of routes open to disseminate the results of this project to a wider audience, falling 
into three main areas: conferences, journals, and NSA-sponsored communications. 

There are two conferences that naturally lend themselves to presentations about this project: NSA’s own 
annual conference in April, and the Common Criteria international conference (probably September 
2004). 

There may be scope for introducing some of the techniques used on this project into NSA’s own 
National Cryptologic School. Initial aspects to discuss are probably REVEAL® (requirements 
management), SPARK (design, implementation, and code), Z (formal specification and formal design), 
and a more general process view, covering the whole lifecycle. 

As the NIAP labs will have experience of independent assurance, a more interactive discussion with their 
representatives may be fruitful, sponsored by NSA. 

We would like to aim toward journal publication, also, and would be happy to discuss joint authorship. 

6.2 Raising the development capabilities of contractors 

To achieve the long-term aim of improving the take up of Common Criteria as a certification mechanism, 
the lessons learnt in this experimental development will have to alter the development practices of the 
majority of the NSA’s contractors. This in turn will need the contractors to pass through four phases: 
understanding, belief, learning, experience. 

• understanding 
The contractors need to be exposed to the principles of the Common Criteria, the lessons learnt 
during this project, and the concepts of the Praxis Correctness by Construction development 
process. This will require a continuing, wide-ranging dissemination activity. 

• belief 
Having understood the demands of the Common Criteria and the promise of a development activity 
that can achieve certification, the contractors need to be convinced that the development process 
will work. They need to come to the belief that there is a business benefit in them adopting a new 
approach. This is a hearts-and-minds activity. 
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• learning 
For contractors to change their processes, they will have to learn new skills, define new processes, 
and work in a new way. This will require training courses, seminars and consultancy to transfer 
knowledge to the contractors. 

• experience 
Training is never enough to sustain a change in a company. A continuing programme of change 
management is needed, with mentoring, coaching, advanced technique seminars, and support. 
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7 Conclusions 

The TIS development project has demonstrated that the Praxis Correctness by Construction 
development process is capable to producing a high quality, low defect system in a cost effective 
manner following a process that conforms to the Common Criteria EAL5 requirements. 

The TIS system’s key statistics are: 

• lines of code: 9939 

• total effort (days): 260 

• productivity (lines of code per day, overall): 38 

• productivity (lines of code per day, coding phase): 203 

• defects (defects found post delivery per 1000 lines of code): not currently known 

The development approach applied on this project, and described in this report, is Praxis High Integrity 
System’s standard high-integrity development process, and has been applied successfully to a number 
of commercial and government projects by Praxis. It is not new or under development — it is a proven 
technology. It has been shown to work on information processing systems, interactive systems, and real-
time systems. Our experience in working with other system developers is that our development 
approach can be applied successfully by other companies, but the learning curve for many 
organisations is steep. Good training, a continuing mentor and coaching programme, and commitment 
to improvement are necessary to ensure that take-up of the approach is successful. 
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A Summary of the Behavioural Requirements 

The required behaviour of TIS was described in the System Requirements Specification [1] in terms of a 
number of scenarios and some more general information. 

A.1 Scenarios 

The scenarios are summarised below (for brevity only the key assumptions and end conditions are listed 
here, failure conditions are not elaborated here, and nor is the list of audited events). 

1 User gains allowed initial access to Enclave 
Description: A user who is allowed access to the enclave is given access, making use of biometric 
authentication.  
Stimulus: The user supplies their token to TIS via the token reader. 
Assumptions:  
⎯ TIS is quiescent (no other access attempts, configuration changes or start-up activities are in 

progress). 
⎯ The user’s token is valid and the I&A data on the token includes a valid fingerprint template 

that matches the fingerprint of the User’s finger.  
⎯ The User is outside the Enclave; the door is closed and locked. 
⎯ The User’s token does not have a valid, current Authorisation Certificate. 
Success End-Conditions: 
⎯ The User is in the Enclave; the door is closed and locked. 
⎯ The User token contains a current, valid Authorisation Certificate. 

2 User is denied prohibited initial access to Enclave 
Description: A user who should not be allowed access to the enclave is prohibited access, possibly 
making use of biometric authentication. 
Stimulus: The user supplies their token to TIS via the token reader. 
Assumptions: 
⎯ TIS is quiescent. 
⎯ The User is outside the Enclave; the door is closed and locked. 
⎯ At least one of the certificates on the User’s token is invalid, or the I&A data on the token does 

not include a valid fingerprint template that matches the fingerprint of the User’s finger. 
⎯ The User’s token does not have a valid, current Authorisation Certificate. 
Success End-Conditions: 
⎯ The User is outside the Enclave; the door is closed and locked. 
⎯ The User token is unmodified. 
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3 User gains allowed repeat access to Enclave 
Description: A user who should be allowed access to the enclave, is given access, but does not use 
biometric authentication because an Authorisation Certificate is found that is still within its validity 
period. 
Stimulus: The user supplies their token to TIS via the token reader. 
Assumptions:  
⎯ TIS is quiescent. 
⎯ The User is outside the Enclave; the door is closed and locked. 
⎯ The User’s token has a valid, current Authorisation Certificate. 
Success End-Conditions: 
⎯ The User is in the Enclave; the door is closed and locked. 
⎯ The User token is unmodified. 

4 ID Station is started and enrolled with input from the Enrolment Station 
Description: A person powers up the ID Station system, and loads the initialisation data from the 
Enrolment Station via a floppy disk. 
Stimulus: Launching the ID Station application from the Windows Interface. 
Assumptions:  
⎯ Enrolment data for the ID station is unavailable internally to the system. 
⎯ A floppy disk has been inserted into the drive, and the data on the floppy disk from the 

Enrolment Station is correct. 
Success End-Conditions: 
⎯ The ID Station is running and ready for use, with the data as supplied from the floppy. 

5 ID Station is started already enrolled 
Description: A person powers up the ID Station system, and the ID station becomes available for 
use, as it has previously been enrolled. 
Stimulus: Launching the ID Station application from the Windows Interface. 
Assumptions:  
⎯ Enrolment data for the ID station is available internally to the system. 
Success End-Conditions: 
⎯ The ID Station is running and ready for use. 

6 ID Station is shutdown 
Description: A Security Officer powers down the ID Station system. 
Stimulus: Command to shutdown is typed into the console. 
Assumptions:  
⎯ A Security Officer is currently logged onto the ID Station. 
Success End-Conditions: 
⎯ The ID Station is no longer running and responds to no inputs. 
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7 Security Officer updates the configuration of the ID Station 
Description: A Security Officer updates the ID Station configuration data with a completely new set 
of data, from a floppy. 
Stimulus: Command to re-configure is typed into the console. 
Assumptions:  
⎯ A Security Officer is currently logged onto the ID Station. 
Success End-Conditions: 
⎯ The ID Station is available for use with its configuration identical to that specified on the 

floppy. 

8 Audit log is archived 
Description: An Auditor archives the audit log off the system onto a floppy disk, clearing the audit 
log on the ID Station. 
Stimulus: Command to archive the log is typed into the console. 
Assumptions:  
⎯ An authorised Auditor is logged on. 
Success End-Conditions: 
⎯ The audit log on the ID Station no longer contains those audit elements that are now on the 

floppy disk. 
⎯ The oldest part of the audit log on the ID Station at the beginning of this scenario is on the 

floppy disk. 

9 Guard manually unlocks the door 
Description: A Guard overrides the latching and requests the door to be unlocked manually to allow 
the entry of a Person. 
Stimulus: Command to unlock the door is typed into the console. 
Assumptions:  
⎯ The ID Station is quiescent. 
⎯ The Guard is logged on. 
⎯ The User is outside the enclave; the door is closed and locked. 
Success End-Conditions: 
⎯ The User is in the Enclave, the door is closed and locked. 

10 Administrator logs on 
Description: An Administrator logs onto the ID Station by inserting their Token in the Admin Token 
Reader. 
Stimulus: A Token is inserted in the Admin Token Reader. 
Assumptions:  
⎯ The ID Station is quiescent. 
⎯ The card inserted by the Administrator has a valid Authorisation Certificate. 
Success End-Conditions: 
⎯ The ID Station is available for use by the Administrator, in that it will respond to the commands 

allowed to that Administrator as defined by the privileges in the Authorisation Certificate read 
from the Token and the Configuration data held on the ID Station.  
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11 Administrator logs off 
Description: An Administrator logs off the ID Station. 
Stimulus: The Token is removed from the Admin Token Reader. 
Assumptions:  
⎯ An Administrator is logged on (which implies an Admin Token is in the Reader). 
Success End-Conditions: 
⎯ The ID Station is unavailable for use by anyone at the console; it will respond to no commands 

typed in at the console.  

A.2 General conditions 

A.2.1 Audit Failure 

The audit file should be a record of all auditable events that have occurred within the ID Station System. 
There are two distinct failures associated with the audit:  

⎯ Failure to write an auditable event to the audit file. Result: the Door is locked and the system 
shutdown. 

⎯ Space for audit files has been exhausted. Result: the oldest records are overwritten with the new 
audit records, and an alarm is raised to the Guard. 

A.2.2 Doors and Alarms 

The door can be open or closed; and can also be locked or unlocked. These two bi-state conditions are 
independent. In addition there is an alarming state: if the door is secure, then the alarm is silent. If the 
door is potentially insecure (it is open but locked, waiting for a user to pass through before closing the 
door and becoming secure) then the alarm is silent, but waiting a timeout period before alarming. If the 
timeout period passes, the alarm goes off.  

As unlocked states are potentially insecure, there is always a time-out period, after which the door will 
be commanded to lock. 
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Figure 16: Open/Closed, Locked/Unlocked, and Alarm relationships 
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B Raw Effort Metrics 

All entries are hours unless 
stated otherwise NA Total

Hard Easy Hard Easy Hard Easy Hard Easy

WBS # WBS Descriptions Key Technical Skill

0 Complete Project 62.50 69.50 18.00 393.00 426.25 540.80 10.00 216.00 215.50 1951.55
1000 Manage Project 215.50 215.50

1100 Plan Project 115.00 115.00
1200 Reporting Project 80.50 80.50
1300 Supporting infrastructure 20.00 20.00
1400 Close Project

2000 Define Requirements 22.00 36.50 5.50 40.50 87.80 192.30
2100 Study documents Requ Elicitation 22.00 14.00 36.00
2200 Elicit requirements Requ Elicitation 22.50 26.50 49.00
2300 Write SRS Requ Elicitation 7.50 22.00 29.50
2500 Write security target Security 65.80 65.80
2600 Review SRS and ST Security 5.50 6.50 12.00

3000 Specify System 165.00 68.50 233.50
3100 Specify core functions Writing Z 133.00 61.00 194.00
3200 Specify security properties Writing Z 7.50 7.50
3300 Prove security properties Z Proof 17.50 17.50
3400 Review spec and properties Writing Z 14.50 14.50

4000 Design Core Functions 19.00 17.00 150.75 112.50 299.25
4100 Formal design Writing Z 70.00 68.00 138.00
4200 INFORMED design INFORMED Design 19.00 17.00 12.00 40.50 88.50
4300 Abstraction relation Writing Z 3.50 4.00 7.50
4400 Review design Writing Z 21.75 21.75
4500 Prove design Z Proof 41.50 41.50
4600 Review proof Z Proof 2.00 2.00

5000 Code and Prove 21.50 12.50 197.50 70.00 255.00 556.50
5100 Code SPARK Coding 197.50 170.50 368.00
5200 Proof Annotations Proof Annotations 15.00 15.00 30.00
5300 Proof of code SPARK Proof 19.00 69.50 88.50
5400 Code review SPARK Coding 21.50 12.50 28.50 62.50
5500 Proof review SPARK Proof 7.50 7.50

6000 System Test 16.00 60.00 76.00
6100 Test plan and specs System Testing 33.50 33.50
6200 Execute Functional testing System Testing 26.50 26.50
6300 Test report and results System Testing 16.00 16.00

7000 Interfaces and Integration 135.50 17.00 163.00 315.50
7100 Interface specification 161.50 161.50
7200 Interface implementation SPARK Coding 135.50 17.00 152.50
7400 Integration testing 1.50 1.50

8000 Acceptance 10.00 53.00 63.00
8100 Write summary report 10.00 29.50 39.50
8200 Review summary report
8300 Write installation guide 12.50 12.50
8400 Support reliability testing 11.00 11.00

Totals (hours) 62.50 69.50 18.00 393.00 426.25 540.80 10.00  216.00 215.50 1,951.55 
Totals (days) 8.33    9.27   2.40   52.40  56.83  72.11  1.33     28.80    28.73    260.21    

By skill level and complexity

Novice Practitioner Expert NA

 

Table 18 Raw effort metrics gathered during development 

Each engineer was assigned a competency level for each of the skills required. If no specific specialist 
skill was required then the competency is not applicable although tasks may still be recorded as hard 
or easy. The difficulty of project management activities was not classified. 
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