

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

 S.P1229.81.1
Issue: 1.1
Status: Definitive
19th August 2008

 Originator

 David Cooper (Technical Authority)

 Janet Barnes (Project Manager)

 Approver

 Martin Croxford (Line Manager)

 Copies to:

 NSA Praxis High Integrity Systems
 Project File
 Randolph Johnson

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 2 of 73

Contents

1 Introduction 4
1.1 Background 4
1.2 Purpose 5
1.3 Scope 5
1.4 Structure 6
1.5 Glossary of Acronyms 6

2 Description of TIS / Tokeneer System 7
2.1 System Description 7
2.2 System Context 8

3 Approach 11
3.1 Method/Process applied to TIS development 11
3.2 Comparison with EAL5 and higher 32
3.3 Applicability 35

4 Metrics 37
4.1 Raw Metrics 37
4.2 Summarised Metrics 44
4.3 Interpretation of Metrics 49

5 Analysis 59
5.1 Analysis of Method 59
5.2 Analysis of Results 60

6 Further Work 63
6.1 Disseminating the results of the project 63
6.2 Raising the development capabilities of contractors 63

7 Conclusions 65

A Summary of the Behavioural Requirements 66

B Raw Effort Metrics 71

Document Control and References 72
Changes history 72
Changes forecast 72
Document references 72

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 3 of 73

 Executive Summary
In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer
System) in accordance with Praxis’ own Correctness by Construction development process. This
development work will then be used to show the security community that it is possible to develop secure
systems rigorously in a cost effective manner.

 Process
The development process applied to the TIS high-integrity development can be summarised in terms of
the following key phases:

1 Requirements analysis (the REVEAL® process)
2 Formal specification (using the formal language Z)
3 Design (formal refinement of the Specification and the INFORMED process)
4 Implementation in SPARK Ada
5 Verification (using the SPARK Examiner toolset)
6 Top-down system testing.

At each stage in the process verification activities were undertaken to ensure that no errors had been
introduced. These activities included review and semi-formal verification techniques applicable to the
entities being developed.

 Project Findings
The TIS development project has demonstrated that the Praxis Correctness by Construction
development process is capable to producing a high quality, low defect system in a cost effective
manner following a process that conforms to the Common Criteria EAL5 requirements.

The TIS system’s key statistics are:

• lines of code: 9939
• total effort (days): 260
• productivity (lines of code per day, overall): 38
• productivity (lines of code per day, coding phase): 203
• defects (defects found post delivery per 1000 lines of code): currently zero, however independent

testing is ongoing.

As well as achieving EAL5 levels of assurance, we believe that the Correctness by Construction process
is close to achieving EAL7. The proof activity we use in our Correctness by Construction process is
sufficient for EAL7, which involves tool supported code proof but manual proof of the Specification and
Design. The process can be tightened appropriately to meet the additional quality control requirements
of EAL7 by using tools that provide fully integrated electronic support.

To achieve the long-term aim of improving the take up of Common Criteria as a certification mechanism,
the lessons learnt in this experimental development will have to alter the development practices of the
majority of the NSA’s contractors. This in turn will need the contractors to pass through four phases:
understanding, belief, learning, experience. A continuing change management process will be needed.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 4 of 73

1 Introduction

1.1 Background

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop part of an existing secure system (the Tokeneer
System) in accordance with Praxis’ own Correctness by Construction development process, a high-
integrity process developed by Praxis and applied by them on a number of commercial projects. This
development work will then be used to show the security community that it is possible to develop secure
systems rigorously in a cost effective manner.

Although the Common Criteria and its forerunners (the ITSEC scheme, the TCSEC — Orange Book, and
others) have been in existence for a considerable time, there has been less use of them by industry than
desired by their developers. Part of the reason for this may be that industry do not believe that it is
possible to develop systems to the higher levels of certification in a cost-effective manner. Our
experience at Praxis High Integrity Systems is that systems can be developed rigorously, and that this
yields both a high-quality system, and lower cost.

1.1.1 Project Objectives

The key objective of this project was to obtain evidence of the applicability of the Praxis development
process to EAL5-level system development. This includes two parts: feasibility (does it achieve reliable
software?) and cost-effectiveness (is it cheaper than the traditional development process?).

Although this project has delivered a working system, the objective was not to have a new system per
se, but to better understand the development process. The reason an actual system was developed was
to give confidence that the development process does work in reality. It is also expected that this will
help the NSA’s desire to disseminate the results of this project widely through conferences, journals,
and their own internal government communications media.

1.1.2 Statement of Work

The project objectives are laid down in the Statement of Work [10]. These can be summarised as
follows (text repeated verbatim from the statement of work appears in italics):

The aims of this project were to undertake an experiment for the introduction of formal methods
(mathematically based) into the biometrics prototype called Tokeneer[9]. In addition this experiment
hopes to demonstrate the practicality/cost effectiveness of employing the rigorous security standards
for assurance as expressed in the Common Criteria.

To attempt these goals Praxis High Integrity Systems in Bath, UK will redevelop part of the Tokeneer
system- the Identification Station- with the SPARK Ada high integrity development processes. The
subsystem includes functions of biometric authentication and smartcards in a networked system

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 5 of 73

requiring identification and authentication mechanisms. Requirements will be provided to Praxis in the
document form known as a Protection Profile. In addition process and skills metrics will be collected
from the Praxis process throughout the re-development in order to provide a point of comparison with
previous (non-formal) development of this system.

The objectives of this project are to:

Analyze the operation modes and documentation of the Tokeneer prototype version 2 while
concentrating on the Identification Station subsystem and its recently developed Protection Profile

Employ at minimum a Common Criteria compliant “semi-formal” approach to the modelling (design) and
software development of a SPARK Ada based equivalent of the Identification Station. In addition this
project should demonstrate not only the feasibility of building real projects following the Common
Criteria Guidelines (at EAL 5) but also demonstrate the effectiveness of high assurance techniques like
formal methods needed by Government systems to process classified information. The advantages of
formal development will be assessed to include specifically a formal functional specification in Z of the
core functions. Key security properties and formal statements about them should be realised. Another
objective is to demonstrate how the formal functional specification possesses formal security properties
and can act as a formal security policy model.

Thus, the design will correspond to the specification providing the formal statement of abstraction
between the formal functional specification and the formal design specification. Z specifications of the
functions will be constructed along with the definition of key security properties. The implementation
will be demonstrated with SPARK Ada for the security functions, Interfaces with other components may
be demonstrated through the use of stubs or simulators to pass and/or process I/O data.

1.2 Purpose

The purpose of this report is to report to the NSA comprehensive results from the development carried
out in terms of the quality of the process used and the metrics collected, and to provide analysis of
these results. There is the potential for using this report as a basis for further dissemination (e.g.
conference papers).

1.3 Scope

This report gives a summary of the processes carried out and documents produced during the project.
Full details of the project are in the project file.

As this project concentrated on demonstrating the Correctness by Construction development process,
this report focuses on the development activities used for the TIS Core Functions. See section 2.2 for
details of the split between Core Functions and Support Functions.

This application was produced to demonstrate the Correctness by Construction development process.
However the development process does not address the issues of attaining the necessary operating

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 6 of 73

system security that would be required to ensure the application is protected from malicious attack. This
was considered outside the scope of this project. If this application were to be used in a secure
environment, operating system constraints would need to be applied to prevent user access to the files
used by the TIS application. The installation does not address any of these issues and as such the
application is known to be vulnerable to attack through modification of configuration data, keystore data
and the audit log.

1.4 Structure

Section 2 explains the parts of TIS, and puts the Core Functions in perspective.

Section 3 describes the Praxis High Integrity Systems Correctness by Construction development process
as applied to TIS.

Section 4 gives the metrics on effort, skills, errors, etc. recorded during the project.

Section 5 reviews the method in light of the conclusion that can be drawn from the metrics and in
comparison to the requirements of the Common Criteria.

Section 6 looks at the next steps.

1.5 Glossary of Acronyms

AA Attribute Authority

CA Certification Authority

I&A Identification and Authentication

LOC Lines of Code

NIAP National Information Assurance Partnership

NSA National Security Agency

PP Protection Profile

SPARK Spade Ada Kernel [13, 14]

SPRE Inc Software Process and Reliability Engineering, Inc (independent reliability testers)

SRS Software Requirements Specification

ST Security Target

TIS Tokeneer Identification Station

VCs Verification Conditions

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 7 of 73

2 Description of TIS / Tokeneer System

TIS is a single component of the larger Tokeneer System, and its context within this system is discussed
below. All information in this section is summarised from the System Requirements Specification [1].

2.1 System Description

The system to which this project was applied was the Tokeneer ID station (TIS). TIS is one component of
the larger Tokeneer system. The system as a whole provides protection to secure information held on a
network of workstations situated in a physically secure enclave.

Secure Enclave

ID Station
(TIS)

Fingerprint
Reader Display Card

Reader

Door

Enrolment
Station

Certificate
Authority

(CA)

Attribute
Authority

(AA)

Card
Reader

Workstation

Workstation

Workstation

Figure 1: Overall Tokeneer System

The complete Tokeneer system consists of a secure enclave and a set of system
components, some housed inside the enclave and some outside.

• An Enrolment Station is used to issue a token to an approved user. In order to generate the token
the Enrolment Station relies on a Certificate Authority to generate a signed X.509 ID certificate
and an Attribute Authority to generate signed X.509 Attribute certificates holding Privilege and
Clearance information (Privilege Certificate) and Biometric information (I&A Certificate).

• The Tokeneer ID Station (TIS) is a stand-alone “trusted” entity responsible for performing biometric
verification of the user. To perform this task it makes use of the biometric information in the I&A
Certificate on the user’s token and a fingerprint scan read from the user. If a successful
identification is made then, assuming the user has sufficient clearance (held on the Privilege
certificate), the TIS adds a signed Authorisation Certificate to the user’s token and releases the lock
on the enclave door to allow the user access to the enclave.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 8 of 73

• The Workstation checks the Authorisation Certificate to determine whether the user is currently
authorised to use the facilities it provides.

2.2 System Context

For the high integrity variant of TIS there are two system boundaries of interest; the boundary between
the ID Station machine and its environment (including its peripherals); and the boundary between the ID
Station core functions and its support functions. These boundaries are expanded below:

Core Functions

Biometric
Library Test

Stub

Display
Test Driver

Card
Readers

Test Driver

API to Card
Readers API to

Biometric
Library

API to
Display

API to Door

Certificate
processing lib

stub
Crypto lib stub

Time and Date

ID Station

Floppy
drive

Configuration
data

Initialisation
information from

Enrolment Station

Mimic GUI by
inputing

configuration data
by file

API to Latch

UI

API to
Alarm

Alarm Test
Driver

Door and
Latch Test

Driver

Figure 2: ID Station structure

The peripherals are mimicked by Test Drivers; the APIs provide message translation
between the Test Drivers and the Core Functions; and the libraries are simple stubs.
The GUI is mimicked by a file and simple command line interaction.

For the purposes of this development project, the developed software was divided into Core Functions
and Support Functions. The Support Functions mimicked the drivers to peripherals by providing
communications to external peripheral simulators, and in a real system would be replaced by bought-in
drivers and peripherals, and hence would need to be evaluated to a suitable level of security. The

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 9 of 73

Biometric Library and Crypto Processing Library would also normally be bought-in products, but in this
development were simulations to avoid licensing issues and to ease testing.

Praxis developed the Core Functions according to their Correctness by Construction development
process. This is the part of the development that is being assessed for suitability against the high
assurance Common Criteria requirements.

Praxis developed the modules within the ID Station but outside the Core Functions (except for Time and
Date, which is operating system supplied) in a sound and professional manner, but not necessarily
according to a high-integrity process. The APIs perform simple parsing of incoming messages and
formatting of outgoing messages. The Library stubs mimic the behaviour of a Crypto Library (which
stores keys and performs standard signing and verification operations) and a Certificate Processing
Library (which extracts fields from certificates and constructs unsigned certificate contents from
supplied data).

Peripheral Test Drivers (i.e. Card Reader Test Driver, Biometric Library Test Driver, Door and Latch Test
Driver, Alarm Test Driver and Display Test Driver) were developed by SPRE Inc on a separate machine.
Communication between the APIs and the Test drivers was via TCP/IP sockets. These test drivers were
developed to model real peripherals as discussed below.

2.2.1 TIS Interaction with Interfaces

This section discusses the interactions made by TIS with the Test drivers and describes the interactions
that these represent in the context of the Tokeneer System.

2.2.1.1 Card Readers Test Driver

This models two smart card readers, one located outside the Enclave (the User token reader), the other
located inside the Enclave (the Admin token reader).

TIS reads the User’s token from the User token reader and may write an additional Authorisation
Certificate to the User’s token via this smart card reader.

TIS reads an Administrator’s token from the Admin token reader.

2.2.1.2 Alarm Test Driver

This models an audible alarm located within the enclave. This alarm is designed to notify a guard of a
risk of a security breach.

TIS controls the state of the audible alarm (silent or alarming).

2.2.1.3 Door and Latch Test Driver

This models a sensor on the door into the Enclave indicating whether the door is open or closed, and the
latch on the door, which can be set to either locked or unlocked.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 10 of 73

TIS monitors the door sensor to determine whether the door is currently open or closed.

TIS controls the door latch setting it to either locked or unlocked.

2.2.1.4 Display Test Driver

This models the interface to a display outside the enclave, which provides information to a user wishing
to gain entry to the enclave.

TIS controls the data presented to the user on this display.

2.2.1.5 Biometric Library Test Stub

This models both the Biometric Library and the interface to the Fingerprint reader, which would typically
be performed via the Biometric Library.

TIS interrogates the Biometric Library to determine whether there is a fingerprint scan available for
analysis and requests validation of the current fingerprint scan against supplied template information.

2.2.1.6 User Interface

A simple console and a facility to import configuration data from a file model the User Interface to the
TIS console available within the Enclave.

TIS displays information on the console and reads simple keyboard input from the console.

Complex configuration updates, which might typically be performed via a GUI, are achieved by providing
a facility to import configuration data from a file.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 11 of 73

3 Approach

3.1 Method/Process applied to TIS development

The basic process applied to the TIS development is summarised in Figure 3. The key principle of this
development process is to apply a philosophy of “Correctness by Construction”. The crucial properties of
this process are

1 being able to validate each lifecycle phase as early as possible

2 reducing the semantic gap between lifecycle phases so that the conformance of later lifecycle
phases with earlier phases is provable.

These properties encourage the early detection and elimination of faults introduced during the
development process.

System
Requirements
Specification

Security Target

Protection Profile

SPARK
Implementation

INFORMED
Design

Formal Design

Formal
Specification

System Test
Specification

Prior System
Documentation

Security
Properties

Development
Product

Key

External Input

Figure 3 Development Process

Arrows show dependencies between activities to produce development products.

Full details of the activities performed within the development process are presented in the following
sections:

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 12 of 73

Development Products Section

Security Target 3.1.2

Security Properties 3.1.4

System Requirements Specification 3.1.1

Formal Specification 3.1.3

Formal Design 3.1.5

INFORMED Design 3.1.6

SPARK Implementation 3.1.7

System Test Specification 3.1.9

In addition to various review activities, there are a number of assurance activities performed to cross
validate the various products of the development process. These are shown in Figure 4.

SPARK
Implementation

INFORMED
Design

Formal Design

Formal
Specification

Security
Properties

Proof of Security
Properties

(Z)

Proof of Formal
Specification

(Z)

Refinement Proof
of Formal Design

(Z)

Proof of Security
Properties

(SPARK Proof)

Proof of
Functional
Properties

(SPARK Proof)

Static Analysis

Assurance
Activity

Key
System Test

System Test
Specification

Figure 4 Assurance Process

Arrows into an assurance process indicate the inputs to the assurance process.
Arrows out of an assurance process indicate the lifecycle product being validated by
the assurance activity.

Full details of the assurance activities performed within the development process are presented in the
following sections:

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 13 of 73

Assurance Activity Section

Proof of Security Properties (Z) 3.1.4

Proof of Formal Specification 3.1.3

Refinement Proof of Formal Design 3.1.5

Static Analysis 3.1.7

Proof of Security Properties (SPARK Proof) 3.1.8

Proof of Functional Properties (SPARK Proof) 3.1.8

System Test 3.1.9

In addition to these formal assurance activities all outputs of the development process were reviewed
as detailed in Section 3.1.10.

Finally the whole development process was supported by a Fault management process, which is used to
manage the correction of faults in products of the development process. This is detailed in Section
3.1.11.

3.1.1 Requirements Analysis and Management

3.1.1.1 Approach

The aim of requirements analysis is to identify the needs of the stakeholders, the desired behaviour of
the system, and any non-behavioural characteristics that are needed. Specifically capturing the security
requirements in the Security Target is covered in section 3.1.2.The earlier these requirements are
understood, the more likely the system will perform as the client expects.

Requirements management is a process that extends throughout the system development, but is most
significant at the beginning, where it is used to identify

• the stakeholders, who have an interest in the development and use of the system

• the system boundary, to clarify the scope of the project and the interfaces to external systems

• the expected use, in terms of interactions between users and the system

• system properties, such as security properties, performance properties, etc.

As this project was “re-developing” a system that had already been developed to an extent by the NSA,
the requirements activity was deliberately shortened and focused on clarifying only the differences
expected between the existing system behaviours and the behaviours desired for the new system. The
Praxis requirements process, REVEAL®, was used, although a full application of the REVEAL® process
was not applicable because this was a re-development

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 14 of 73

A critical step in the requirements process for TIS was the identification of the system boundary. This
was carried out on the first day of the project in a workshop between developers and client, and enabled
us to make a clear separation between work being done on the core functionality (and hence would be
developed to EAL5 criteria), work being done on supporting software (such as the simulators), and work
outside the scope of the project. This also clarified the dependencies we had on aspects of the
environment, such as certificates (supplied by the Certificate Authority) and the behaviour of the
door/latch.

The behaviour of the system for the main interactions with people (user entry to the enclave, system
administrator archiving the audit log, etc.) were documented using structured scenarios. These are easy
to discuss with stakeholders, and rapidly help to bring everyone involved up to a common level of
understanding of the system proposed.

The graphical user interface was agreed out of scope of this project. Normally requirements analysis
would include the development of a user interface prototype, but of course this was not necessary for
this project.

Requirements tracing was carried down throughout the project, with each level of system representation
(requirements, specification, design, code, test) broken into uniquely identified trace units. Full tracing
was carried out, in that every trace unit was traced back to the trace units in the higher level
representation it implemented, but no tracing analysis was done, as the size of the project and the lack
of significant requirements change did not warrant it.

3.1.1.2 Outputs

The output of this activity was:

• TIS System Requirements Specification [1]

3.1.1.3 Key Benefits

The reasons for producing the System Requirements Specification are:

• To clarify early in the project the system boundary (what is in scope and what is out of scope, and
the interfaces necessary to external systems).

• To agree the requirements for the system with all of the stakeholders.

• To document the requirements in a sufficiently precise manner to allow subsequent development
of the formal specification to proceed smoothly with little customer input.

• The clarify and document the assumptions about the behaviour of external systems (such as the
door/latch, and smartcard), a common source of error.

• The identify and manage conflicting expectations between stakeholders.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 15 of 73

3.1.2 Security Target

3.1.2.1 Approach

For security systems the Correctness by Construction development must be augmented with some steps
directly concerned with understanding the security needs of the system and of achieving security
certification. The Common Criteria requires a Security Target to define the security objective of the
system and to justify the security design against these objectives. The Security Target may refer out to a
Protection Profile: a reusable form of a security target. This was done on this project, referring out to an
externally-supplied Protection Profile for a fully featured, fully implemented version of the TIS. The
Security Target therefore concentrated on reducing the scope of the Protection Profile to the needs of
this TIS development project.

3.1.2.2 Outputs

The outputs of this activity were:

• TIS Security Target [3]

3.1.2.3 Key Benefits

The reasons for producing the Security Target (and the Protection Profile on which it depends) are:

• It is a requirement of the Common Criteria.

• It identifies the key properties that must be shown to be upheld by the system for security. This
separates out the concerns of functionality and the concerns of security, allowing more effort if
desired to be given to the security aspects.

• It justifies the security measures to be implemented in terms of the threats the system is subject to
or aiming to mitigate.

• It is the starting point for the Specification of the Security Properties (see section 3.1.4).

3.1.2.4 General Applicability

For the Security Target to be effective, it should focus the mind on the key properties the system must
exhibit to be secure. The Threats/Assumptions/Objectives section of the security target or Protection
Profile provides a justification for security measures in terms of potential security breaches the system
is protecting against.

Due to the nature of this development project using simulated peripherals and reduced functionality the
Security Target was very lightweight. In a normal EAL5 development considerable security analysis time
would be given to the development of the Security Target.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 16 of 73

3.1.3 Formal Specification

3.1.3.1 Approach

The aim of the Formal Specification is to describe unambiguously what the TIS system will do. It should
enable the supplier and the client to gain a common understanding of what the system will do.

The choice of abstraction level is important. The formal specification should not address how the system
is implemented, and in particular internal details are deliberately left very abstract. Interactions with the
external environment are specified, but may be left abstract. For example, we provide an abstract
model of the Audit Log (as this is exported as part of audit archiving), but no details of the structure,
format or content of the log.

The Formal Specification was written in Z, a mathematical notation accompanied by an English
narrative. The Z notation uses data types and predicate logic to describe the way in which the system
will behave; Z is particularly powerful because of its use of schemas to decompose the specification into
small components that can be reasoned about individually and then combined to describe the system
as a whole. The Z notation provides an unambiguous specification language while the English narrative
assists readers, writers and reviewers in understanding the intention of the Z by providing a secondary
description of the system and advice as to how to interpret the Z.

The Z specification was checked using the fuzz type checker [11], a fast type checker that checks for
consistency of types in all expressions.

The formal specification was developed by identifying state and operations.

All the state associated with the system was identified: this may be state held by the system (for
example within TIS the configuration data is part of the system state) or state modelling the
environment external to the system (for example TIS makes use of externally supplied time, and may
modify the state of the door’s latch). These two parts of the model are capturing different sorts of things.
The state held by the system is a description of the desired state, whereas the modelling of the external
environment is a description of the actual state of the world. This reflects the division identified during
requirements capture between the requirements upon the system being built and expectations upon the
environment. An example is the explicit constraint on the externally supplied time source: this was
stated as always increasing. This explicitly identifies a dependency on the environment to supply a
trusted source of time that never decreases — if time does decrease, the system is not required to
respond soundly.

As the state was identified it was modularised, capturing tightly related state components within a
schema, and adding invariants on the state as necessary. For example, in order to manage the
relationship between the door, latch and alarm components, invariants were identified that described
exactly the conditions under which the latch should be locked by the system and the alarm raised by the
system.

Operations were then developed based on the scenarios identified during the requirements analysis. In
the majority of cases these operations were identified as involving several phases. For example, the

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 17 of 73

UserEntry scenario involves receiving a token, validating it, possibly reading and validating biometric
data, writing to the token, and finally unlocking the door. At each stage things may go wrong. Operation
schemas were used to describe the successful behaviour first. Once the conditions for successful
behaviour are identified, then the failure conditions can be deduced and the outcome of failure formally
described. For example, biometric data can only be validated if it matches the template on the token
(specified by the schema ValidateFingerOK). We then considered the failure conditions: either the Token
is no-longer available to perform the match or the match fails (specified by schemas ValidateFingerFail
and UserTokenTorn respectively). The overall process of validating the fingerprint data can then be
presented as the combination of these three schemas.

In this way a full system description was generated.

Finally a viable set of values for the system state at initial startup was defined. This set of values must
satisfy all invariants, and must represent a secure system.

In order to validate the Formal Specification a number of proof obligations were discharged:

• the existence of the initial state was proved

• explicit operation preconditions were identified, and proved to be the actual preconditions of the
operations.

Precondition analysis characterises the conditions under which each of the operations can be
performed. Each of these proof obligations was checked using rigorous argument (as apposed to formal,
tool-supported proof). This provides a rigorous mechanism for checking the completeness and
consistency of the specification. Although tool supported proof is possible for Z specifications it was not
considered necessary to apply this level of formalism to TIS (and is certainly not required for EAL5
certification).

3.1.3.2 Outputs

The output of this activity was a single document:

• TIS Formal Specification [2]

3.1.3.3 Key Benefits

The reasons for producing a Formal Specification are:

• It provides an unambiguous description of what the system does. This is important for gaining client
approval of the behaviour of the system to be developed.

• It is demonstrably complete.

• It is amenable to formal verification, i.e. it can be proved consistent.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 18 of 73

The additional reasons for using the Z notation are:

• The notation is checkable, eliminating a number of minor errors in the production of the
specification.

• The notation allows consideration of design detail to be postponed.

• The notation allows a large system to be de-composed into manageable sub-components.

• Tool support is available for type checking and proof.

3.1.3.4 General Applicability

The Formal Specification produced here was disproportionately large for the number of functions
present in the system. The reasons for this were:

• We were mindful that the demonstration system had deliberately omitted many functions that
would typically be present and we felt it would be instructive if the Formal Specification were
structured to allow this omitted functionality to be added easily.

• Although the number of functions was small, the number of interfaces to the system was
reasonably large and these were all modelled in the Formal Specification.

From past experience we would not expect the Specification of a larger system (offering more
functionality) to be proportionally larger than the Formal Specification produced here.

3.1.4 Specification of Security Properties

3.1.4.1 Approach

The aim of this activity is to capture the system security properties unambiguously. These security
properties are the key system properties that must hold of the system in order for it to satisfy its security
obligations.

The security properties were expressed using the Z notation; the same notation as was used for the
Formal Specification. The security properties were captured as proof obligations on the Formal
Specification, so the same level of abstraction and context was used for expression of the security
properties as was used in producing the Formal Specification.

By using the notation and context of the Formal Specification it was possible to prove that the Formal
Specification exhibits the Security Properties. The proof took the form of an informal justification, with a
discussion of the arguments required to perform each stage of the proof.

EAL5 does not demand proof of these properties, but a sample of the properties were proved to be held
by the specification, and then later by the code. At the higher levels of certification such proofs are
necessary, and can be carried out either rigorously by hand or using tool support.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 19 of 73

3.1.4.2 Outputs

The outputs of this activity were:

• TIS Security Properties [4]

3.1.4.3 Key Benefits

The benefits of specifying the security properties using a formal notation are:

• It provides an unambiguous statement of the security properties.

• It ensures that we really do understand the properties we desire, and are agreed as such by the
stakeholders.

The additional reasons for using the Z notation are:

• Assuming that these properties are expressed using the same notation and level of abstraction as
the Formal Specification, it is possible to prove that the security properties hold of the Formal
Specification.

3.1.4.4 General Applicability

It is not always possible to use the same model of the system for specifying the security properties as is
used for the formal specification. This depends upon the security properties being expressed. For
example, properties that must hold over a number of operations, or over arbitrary sequences of
operations, will need a different style from that adopted here.

3.1.5 Formal Design

3.1.5.1 Approach

The aim of the formal design is to elaborate the abstract aspects of the Formal Specification to explain
how the system will be implemented. The Formal Design describes the system in terms of concrete state
and operations using types that are easily implemented. The Formal Design is the source of required
functional behaviour used during implementation.

The Formal Design was written using the Z notation accompanied by English narrative. There were a
number of ways in which we developed the abstract specification to a concrete design.

• The Formal Design elaborated those aspects of the Formal Specification where there was
insufficient detail to move directly to implementation. For example, the Formal Design describes
the contents of the audit log and describes how the log should be implemented in terms of local
files.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 20 of 73

• The Formal Design elaborated aspects of the real world which had been left slightly abstract.
Abstractly it is sufficient to know that a certificate is validated using a key — this is refined in the
design to describe a certificate as a portion of raw data and a signature with an algorithmic
relationship between the signature and the data dependant on a key.

• The Formal Design removed non-determinism from the system. Where more than one operation
could proceed in the specification additional pre-conditions were added to prioritise the operations.
For example, logging-out an administrator was given a higher priority than continuing with a long-
lived user entry operation.

• The Formal Design restructured some operations to reduce the step to implementation, for
example the action of logging-out an administrator was removed from all other operations and
considered separately as it would take priority in the design.

The Formal Design was written using the same notation as the Formal Specification as this provides
benefits of reuse. Where the level of detail in the specification is sufficient for the design, data types
and state schemas can be carried forward unchanged. By using the same notation it is clear where the
design has introduced refinement. Moreover, it is possible to demonstrate that the refinement is valid
by defining a retrieve relation that relates the concrete and abstract versions of the state and proving a
number of relationships between the abstract and concrete versions of the operations. On TIS this
activity was limited to those operations where the refinement relation was non-trivial, for example,
adding elements to the log.

Refinement proofs can be done for all operations, and this can be a powerful technique to uncover
design errors before implementation starts. Proof can be carried out rigorously, but by hand, or can be
carried out using proof tools. In practice, the discipline of writing the retrieve relation and carrying out
some sample proofs can uncover the majority of errors.

3.1.5.2 Outputs

The output of this activity was a single document:

• TIS Formal Design [5]

3.1.5.3 Key Benefits

The reasons for producing a Formal Design are:

• It provides an unambiguous description of how the system does what the formal specification
requires.

• It is demonstrably complete.

• It is amenable to formal verification, i.e. it can be proved consistent.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 21 of 73

• By using the same notation as the Specification there is an opportunity for reuse where
appropriate.

• Complex design decisions can be checked for correctness against the abstract behavioural
description.

• By using the same notation as the Specification it is possible to prove that the design refines the
specification.

The additional reasons for using the Z notation are:

• The notation is checkable, eliminating a number of minor errors in the production of the design.

• The notation allows implementable types to be modelled.

• The notation allows a large system to be de-composed into manageable sub-components.

• Tool support is available for type checking and proof.

3.1.5.4 General Applicability

Ideally, the formal specification should be a fully detailed description of the black-box behaviour of the
system, and the formal design should explain how this behaviour is implemented internally. Such a
division of responsibilities works particularly well for larger systems in which there are difficult design
decisions being made that are invisible beyond the system boundary. The desire is to have a clear
separation between externally visible behaviour and internal design.

This project did not demonstrate this separation very well. The division was blurred, because some
externally visible behaviour was not elaborated until the design document, such as the details of the
audit records and the priority of the operations.

3.1.6 INFORMED Design

3.1.6.1 Approach

The Aim of the INFORMED Design is to provide architectural and other non-functional information
required to progress from the Formal Design to the Implementation in SPARK. To understand the
importance of INFORMED you must first understand the properties of SPARK [13, 14].

SPARK is a programming language based on a sub-set of the Ada language, SPARK exploits the
strengths of Ada while eliminating all its potential ambiguities and insecurities. A SPARK program has a
precise meaning, which is unaffected by the choice of Ada compiler and can never be erroneous. These
desirable goals are achieved partly by omitting some of Ada’s more problematic features (such as
unrestricted tasking) and partly by introducing annotations to capture the code designer’s intentions.
The combination of these approaches allows SPARK to meet its design objectives, which are: rigorous

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 22 of 73

definition, simple semantics, security, expressive power, verifiability and bounded resource
requirements.

When used throughout the development process, SPARK can also have a beneficial effect on designs.
Consideration of information flows at the design stage leads to programs with the desirable properties
of abstraction, encapsulation, high cohesion and loose coupling. The complementary INFORMED design
method exploits SPARK’s properties to meet these goals

The target language, SPARK, is strictly hierarchical and highly modular, and a successful SPARK
implementation is highly dependant on the localisation of state, primarily because the SPARK language
makes the state interactions visible in special annotations. Good localisation of state results in
meaningful annotations. The INFORMED Design stage provided a process for constructing a software
architecture that focused on the location of the state within the system. This process helped the
developers to understand the transformations necessary in passing from Z schemas to Ada Packages. It
also determined which packages contain global state and allocated subprograms to packages. At this
stage it was important to relate the state and subprograms that will appear in the implementation to the
state and operation schemas that appear in the Formal Design.

The INFORMED Design also addressed design issues for which a formal treatment is not appropriate.
For instance, in the case of TIS we gave details of the file formats within the INFORMED design as there
was no value to be gained in presenting these formally. We also expanded the treatment of System
Faults, which result from failures of peripherals — in the TIS Formal Design we chose not to model the
potential failure of each peripheral although we did allow for system faults to be audited. Finally, in the
INFORMED Design we imposed upper bounds on values in the Formal Design that were not bounded; in
the Formal Design many state components were represented by unbounded integers (such as the count
of failed entries), which needed to be bounded in the implementation.

Once the overall system architecture had been outlined in the INFORMED design we could produce
SPARK specifications of all the packages in the system.

The INFORMED design served two purposes; first it provided an architectural framework in which to
perform the implementation, secondly it aids maintenance and upgrades of the software by providing a
route-map from the Formal Design to the code.

3.1.6.2 Outputs

The output of this activity was a single document:

• TIS INFORMED Design [6]

3.1.6.3 Key Benefits

The reasons for producing an INFORMED Design are.

• It focuses on the system architecture and ensures that the architecture fits the SPARK model.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 23 of 73

• It provides the mapping from the Formal Design to the Code prior to writing the code.

• It complements the Formal Design without duplicating functional information.

3.1.7 Implementation

3.1.7.1 Approach

Implementation in SPARK started with producing package specifications based on the architectural
information in the INFORMED Design and the functional information in the Formal Design.

A SPARK specification contains the Ada signature for all public operations and annotations, which
specify the abstract global state held within the package, the global state used or modified by the
operation and the relationship between the global state and the parameters, known as the derives
information flow relationship. The derives annotations specify which imported (used) parameters and
global state components may influence the final values of each exported (modified) parameter or global
state component. These derives annotations are written based on the Formal Design. As the code is
written they provide a basic check of conformance between the code and the expected flow relations.

Static Analysis of the package specifications ensured that the designed architecture satisfies the SPARK
language constraints.

Once package specifications were written package bodies were developed. These contain the
implementations of operations and the concrete declarations of package state. As each operation was
written it was analysed using the SPARK Examiner: this checked the data and information flow
properties of the code against the annotations provided in the specification and provided a way of
checking the code early (before it can be compiled). This is a very effective way of eliminating a number
of classes of errors such as the failure to set exported state on all paths through the code or using un-
initialised variables.

Subprogram implementation was performed directly from the Formal Design. The Formal Design is
sufficiently detailed to ensure that the mapping from the design to the code is simple; this is
demonstrated in the Code Verification Summary [7].

Once the code for a package was complete the SPARK Examiner was run to check for run-time errors.
This allowed the code to be demonstrated free from errors that might cause a run-time exception to be
raised; such faults include accessing arrays outside their bounds or the overflow of numeric types.

The code for the package was then compiled. Developer testing was carried out on the compiled code if
necessary.

The order of development of the system was a major consideration in our approach. Packages providing
infrastructure were developed early and the development order was selected to introduce system level
operations in an incremental manner. This means that a basic system can be built as soon as possible
and functionality is added in subsequent builds. This has the advantage of addressing code integration
risks as early as possible. For TIS this meant that the User Entry operation and all peripherals to support

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 24 of 73

this operation were implemented before the administrative operations and their supporting
infrastructure.

3.1.7.2 Outputs

The outputs of this activity were:

• Ada Source code files.

• Proof Justification Files for proof of absence of run-time errors.

• Executable for TIS, tis.exe.

3.1.7.3 Key Benefits

The reasons for using SPARK as the implementation language are:

• SPARK is the only implementation language that truly meets the Common Criteria requirement to
have an unambiguously, formally defined language (ALC_TAT.3).

• Code can be statically analysed very early — well before it can be compiled.

• SPARK is strongly typed giving added compile-time checks on the code.

• SPARK is a modular language allowing abstraction of detail.

• SPARK makes the flow properties of the code (at an abstract level) visible and checkable.

• SPARK can be demonstrated free from a wide range of errors without even running the code.

• There is tool support for comprehensive range of static analysis using the SPARK Examiner.

3.1.8 Code Proof

3.1.8.1 Approach

Two types of code proof can be carried out: functional and security properties. Functional code proof
demonstrates that the code accurately implements the functions defined in the Formal Design. Security
Properties proof shows that the code possesses the abstract properties identified in the Security
Properties document, and expressed as theorems about the formal specification.

The code proof activity focussed on proving some of the key security properties of the code. Functional
proof of the code was not performed for the following reasons:

• The step from Formal Design to code turned out to be very small, so it was very easy to check
behavioural correctness of the code by review of the code against the Formal Design.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 25 of 73

• Budgetary limitations on the project only permitted a sample of the proof activity to be undertaken.

It was therefore considered most worthwhile to prove security properties. Preservation of the security
properties is less obvious from reading the code so failure to preserve security properties would be
correspondingly difficult to demonstrate through code review.

In order to prove that a security property was preserved by the code the formal statement of the security
property as stated in the specification of the Security Properties [4] was reformulated using the SPARK
predicate language in terms of pre and post conditions. These security properties were inserted into the
code annotations expressing proof contexts that had to be satisfied by the TIS core program. As the
security properties have to hold of the whole system, these proof contexts are placed in the TIS main
program and proved of the system as a whole by applying a divide-and-conquer approach to determine
the necessary proof obligations that must be held by the subprograms used to implement the whole.

By using the SPARK Toolset it was proven that the code did implement the security properties. This
activity involved using the SPARK Examiner to generate all the VCs (Verification Conditions) that need to
be satisfied in order to prove that the code satisfies the properties stipulated within the proof contexts.
These VCs were then passed through the SPADE Simplifier, which reduced the majority of the VCs to
true. Outstanding VCs were then validated, either by review or by use of the Interactive Proof Checker
Tool.

A full summary of the code verification activity, including code proof, is presented in [7].

Praxis have used full functional correctness proofs on other projects, and this has been found to be
effective in finding errors. Depending upon the system in question, proof can be more cost-effective
than unit testing in identifying errors, although it does not remove the need to carry out system tests,
see for example [15].

3.1.8.2 Outputs

The outputs of this activity were:

• SPARK proof contexts inserted into the source code (see 3.1.7.2).

• Proof justification files for VCs that were not discharged using tool support.

• Proof scripts and rules for the Interactive Proof Checker for VCs that could not be
discharged automatically.

• TIS Code Verification Summary [7]

3.1.8.3 Key Benefits

The reasons for performing formal verification are:

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 26 of 73

• Functional behaviour and system properties can be expressed formally independently of the code
(e.g. in the formal design or in annotations), and then the code can be proved to conform to the
specified behaviour.

• Proof is not limited to specific test cases, but demonstrates correctness across all possible inputs.

• Proof does not need to be a post-hoc activity, it can often be applied to partially developed systems
to ensure functional correctness of aspects of an implementation that may be considered
otherwise difficult to map to the design.

The additional reasons for using the SPARK language and proof toolset are:

• The proof language is easy to understand, being an enhanced dialect of Ada.

• The properties specified in SPARK proof annotations can be tailored to the required level of detail.

• SPARK tool support makes the majority of the proof effort automatic.

• SPARK proof can be applied to individual operations and thus is applicable before a system is
complete, or even compliable.

3.1.8.4 General Applicability

In general, a project will have to decide what level of code proof should be carried out. On this project
we chose to prove some of the security properties all the way down to the code primarily as a
demonstration exercise.

If properties have been well captured at the same level of abstraction as the formal specification, if
refinement from one level to the next is proved, and if the property described is preserved by
refinement, then the benefit of proving the properties themselves at each level of abstraction is
reduced. If, however, a property is not preserved in general by refinement (such as an information flow
property) then direct proof at code level is powerful.

3.1.9 System Test

3.1.9.1 Approach

The aims of System Test are to demonstrate that the system has the correct behaviour as specified in
the Formal Specification. This differs slightly from the goals of acceptance testing which is designed to
demonstrate that the System meets its requirements. System Testing aims to achieve 100% coverage
of the formal specification, so all possible behaviours described in the formal specification should be
exercised at least once.

On this project we chose to perform system testing against the Formal Design rather than the Formal
Specification. This was because there were aspects of the system that we wanted to test, such as the

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 27 of 73

values written to the audit log, which where not elaborated in the Formal Specification but were
elaborated in the Formal Design.

The System Tests took the form of scenarios that might occur in typical usage, such as “Enrolling TIS” or
“Administrator enters enclave and gains an Authorisation Certificate”. Both successful and unsuccessful
operations were considered in order to cover all success and failure cases presented within the Z
schemas in the Formal Design.

All System tests were documented in a System Test Specification prior to their execution. This included
documentation of the expected outcome of the test in terms of visual indications, changes to stored
data and new audit log entries. System test documentation also traced each test to the components of
the Formal Design that the test attempts to exercise.

During review of the System Test Specification analysis of the tracing was performed to ensure that full
coverage of the Formal Design was achieved.

System test execution was aided by the production of a simple program capable of executing test
scripts. The test scripts prompted the tester when it was necessary to interact with the TIS interface and
updated the test environment, for example by simulating the insertion of a token via the test drivers
interfacing to TIS. By scripting the tests it made the tests repeatable and reduced the risk of human
error during test execution.

Where code coverage metrics need to be captured, this would be done during System test. This allows
us to question the use of any code that cannot be covered by a system test. Such code could be covered
by adding focused unit tests where required. We did not capture code coverage during this project.

3.1.9.2 Outputs

The outputs of this activity were:

• System Test Specification [8]

• Test scripts for execution of each of the system tests.

• Test harness executable testtis.exe for running the test scripts.

3.1.9.3 Key Benefits

• System test focuses on testing the behaviour of the whole system against the expected (specified)
behaviour.

• System test is likely to pick up faults due to erroneous interaction between modules within the
implementation as it tests the system as a whole.

• System testing complements static analysis, in that it confirms the dynamic behaviour.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 28 of 73

• A combination of static analysis and system test can make general unit test ineffective at finding
faults, in that most faults that could be uncovered by unit test are also detected using static
analysis or system test, resulting in general unit test not being cost effective.

3.1.9.4 General Applicability

The amount of time spent on system testing in this project was significantly less than would normally be
expected. The reasons for the low testing effort are identified as follows:

• We did not measure source code coverage during system testing; this activity usually results in
additional system (or unit) tests being added to the test suite.

• Running system tests usually requires the production of a test environment, often separate from
the normal operating environment or as a harness enclosing the normal operating environment.
Due to the nature of the Test Devices developed by SPRE there was no need for Praxis to perform
this activity. The effort expended by SPRE developing the drivers would normally be included in the
cost of testing.

• The environment in which the Core TIS functions reside is unusually constrained. For example the
certificate processing library (which is outside of the Core) does handle a wide variety of faulty
certificates and to test this library it would be necessary to use a large number of faulty certificates
in tests; but the core itself either receives a well structured certificate or a fault indication and this
is independent of the certificate field that is faulty, reducing to two the number of test cases
required to fully cover the core’s interpretation of a supplied certificate.

Correctness by Construction would usually test against a fully detailed system specification, using test
coverage tools to ensure 100% coverage, and fully-automated testing to ease regression testing.

Although as discussed in section 3.1.7 static analysis and code proof is usually more effective at finding
errors than unit testing, the full application of system testing is still necessary to uncover the faults
associated with integration.

We have used code coverage tools on other projects at Praxis, and we have used information from
these tools to guide the choice of unit testing. In general, we reserve testing for identifying errors of
integration, and use static analysis and proof for identifying errors of behaviour in individual modules.
Only when our incremental integration approach fails to allow all behaviours to be tested adequately at
a systems level do we use targeted unit testing.

We used partially-automated testing. Normally, Praxis projects use fully-automated tests, which
encourages frequent regression testing as the incremental integration proceeds.

3.1.10 Review Process

3.1.10.1 Approach

The following technical reviews were undertaken during the project.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 29 of 73

The reviews were always undertaken by an independent member of the project team, (ie not the person
who authored the material under review). The purpose of each of these reviews is tabulated below. In
addition review feedback was sought from the Client for all deliverable documents, ie System
Requirements Specification, Security Target, Formal Specification, Formal Design and INFORMED
Design.

Review teams were always small. This reflects standard practice in Praxis, as it is important that the
review is performed by people who have appropriate technical understanding and expertise. Where one
person cannot bring all the necessary skills to the review then the review team is widened to ensure that
all necessary skills are represented in the review team.

Review of Against Purpose

System Requirements
Specification

Stakeholders’
knowledge.

To confirm the system requirements with
stakeholders.

Security Target Protection Profile To ensure that all security issues captured in
the Protection Profile are covered.

Formal Specification System Requirements
Specification

To ensure that specified system satisfies the
system requirements and that all tracing to the
System Requirements is appropriate.

 Security Target To ensure that all security issues that require
functional consideration are addressed.

Proof of Formal
Specification

Formal Specification To check that proof obligations are appropriate
and the proof argument is sound.

Security Properties Security Target To ensure that the security properties capture
all security issues that can be expressed as a
system property.

 Formal Specification To ensure that the security properties are
captured in the same context frame and level of
abstraction as the system is formally specified.

Proof of Security
Properties

Formal Specification
Security Properties

To check that the proof argument is sound.

Formal Design Formal Specification To ensure that the formal system design is a
refinement of the system specification and that
all tracing to the Formal Specification is
appropriate.

INFORMED Design Formal Design To ensure that all state and operations required
by the Formal Design has been captured in the
system architecture.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 30 of 73

Review of Against Purpose

Code including Static
Analysis results.

Formal Design To ensure that the code implements the
functionality defined in the Formal Design and
that all tracing to the Formal Design is
appropriate.

 INFORMED Design To ensure that the functionality is implemented
within the context of the architecture presented
in the INFORMED Design.

 Coding Standard To ensure code conforms to standard layout
and language constraints.

 Also all static analysis warnings and errors are
checked to ensure they are suitably justified
and any un-discharged run-time error check VCs
are justified.

Code Proof Security Properties To ensure that translation of security property to
code proof context is valid.

 Formal Design To ensure that translation of invariants and
functional properties to the code proof context
from the Z Design are valid.

 Also all proof rules introduced to discharge
proofs using tool support are reviewed for
correctness as are all justifications of VCs that
are not discharged using tool support.

System Test
Specification

Formal Design To check that coverage of all possible schemas
in the design is achieved by the system tests,
that the expected test results match the
functionality defined in the Formal Design, and
that tracing from tests to the Formal Design is
appropriate.

Table 1 Review Processes

3.1.10.2 Outputs

The outputs of this activity were:

• Review records for each review undertaken, these typically comprised annotated copies
of the entity under review.

3.1.10.3 Key Benefits

• Review of each lifecycle phase against the previous provides a cost-effective check that errors have
not been introduced when performing the new lifecycle phase.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 31 of 73

3.1.10.4 General Applicability

On a larger project the review records would normally consist of a formal, itemised record of the review
meeting. The reviews may also be attended by more people, provided always that each person at the
review meeting has a well-defined role and brings a specific viewpoint to the meeting.

3.1.11 Fault Management

3.1.11.1 Approach

From the point that an output from a lifecycle phase is reviewed all updates to that entity are performed
through the fault control process.

The fault control process at Praxis plays an important role in the development process. It captures all
the failures found during and after the development activity and it provides a mechanism for ensuring
that all faults are corrected and that all products of the development process (documents, source code,
test scripts, etc.) are kept consistent.

When a potential failure is found it is logged, with a description of the problem. This description may
range from a description of the observed system behaviour to a description of an error in a document.
Once a failure has been logged it cannot be closed until a full evaluation has taken place.

Failure evaluation establishes the source cause of the problem, if any (ie the point in the lifecycle that
the problem was introduced) and determines the entities that need modification to correct the fault and
make all documents consistent.

The implementation of all corrections is then tracked through to review. Only when the implementation
of the fault correction has been completed and reviewed can the fault be closed.

By analysing open faults we have a clear understanding of known outstanding problems. Typically we
ensure that any delivered build has no known failures, or, if this is impractical, document the known
failures at the time of release.

The fault management process was controlled by a simple spreadsheet that maintained the status of all
failures and incident reports used to detail each failure. Incident reports were paper based. The whole
fault reporting system was implemented with very simple technology and was not incorporated
electronically into the configuration management tools used on the project. This was simply because of
the tools chosen to support the project.

3.1.11.2 Outputs

The outputs of this activity were:

• Incident reports detailing all failures.

• A summary of all incident reports.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 32 of 73

3.1.11.3 Key Benefits

The reasons for using a fault control process are:

• Fault management creates an audit trail for all changes required to any lifecycle entity once that
entity has been initially approved.

• Fault management tracks useful statistics, such as when faults are found and when they are
introduced, which can be used to monitor and improve process. If many faults are being introduced
in a particular lifecycle phase then efforts can be made to improve the lifecycle phase in future
projects.

• Fault management ensures that all issues are tracked and failures do not enter the delivered
system without investigation.

3.2 Comparison with EAL5 and higher

The Common Criteria EAL5 Security Assurance Requirements are specified in part 3 of [12], as a list of
codes and levels for each of the applicable assurance aspects. The following table summarises how the
approach followed in this project meets (or in places exceeds) these requirements. Where the process
exceeds the requirements for EAL5, the name of the requirement is italicised, the part of the
implementation that exceeds the requirement is italicised, and the approximate level of requirement
achieved is stated.

ACM_AUT.1
Partial CM

automation

Standard Praxis configuration management was carried out, using
an automated tool to manage all the code.

ACM_CAP.4
Generation support

and acceptance

procedures

Unique version numbering of the TOE and the design documents
leading to the TOE. All configuration items (design documents,
code, test scripts, etc.) have unique references.

Configuration
Management

ACM_SCP.3
Development tools

CM coverage

All documents developed as part of the TOE development are
under configuration management with documented processes for
creating, numbering, modifying, reviewing and issuing.

Delivery and
Operation

ADO_DEL.2
Detection of

modification

Not implemented: formal delivery to operational environment out of
scope of project.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 33 of 73

 ADO_IGS.1
Installation,

generation, and

start-up procedures

Installation and User manual documents all these procedures.

ADV_FSP.3
Semiformal

functional

specification

A formal functional specification was provided. (ADV_FSP.4)

ADV_HLD.3
Semiformal high-

level design

A formal functional design specification was provided. In addition, a
description of the interface to hardware specific aspects, and a
breakdown into subsystems was provided in the INFORMED design.
(ADV_HLD.5)

ADV_IMP.2
Implementation of

the TSF

The implementation is in SPARK Ada, which is highly structured,
and this structuring is enforced through static analysis tools.
(ADV_IMP.3)

ADV_INT.1
Modularity

The implementation is in SPARK Ada, which is highly structured,
and this structuring is enforced through static analysis tools
(ADV_INT.3)

ADV_LLD.1
Descriptive low-

level design

Not implemented: the size and complexity of the TIS did not require
this number of refinement levels. Indeed, our experience is that
mandating a fixed number of refinement levels is
counterproductive.

ADV_RCR.2
Semiformal

correspondence

demonstration

Tracing carried out between all representation levels. Formal
proofs (partial) of correspondence between functional specification
and design specification. Full correspondence between design and
code (code annotations) and partial proof. (partial ADV_RCR.3)

Development

ADV_SPM.3
Formal TOE security

policy model

Formal policy model expressed as theorems on the formal
functional specification.

AGD_ADM.1
Administrator

guidance

User guide covers administrator. True instructions to users and
administrators for true secure operation are out of scope of this
project.

Guidance
documents

AGD_USR.1
User guidance

User guide covers administrator. True instructions to users and
administrators for true secure operation are out of scope of this
project.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 34 of 73

ALC_DVS.1
Identification of

secure measures

References made to standard Praxis working practices. For this
development, additional security measures were not deemed
necessary.

ALC_FLR.0
Flaw remediation

No requirements.

ALC_LCD.2
Standardised

lifecycle model

Praxis Correctness by Construction development process adopted.
Industry standard in that it uses accepted technology (formality,
refinement, SPARK Ada), but many of these approaches are
regarded as novel by most developers.

Life cycle
support

ALC_TAT.2
Compliance with

implementation

standards

Standards used for all aspects of the development: REVEAL®
(internal standard) for requirements, Spivey Issue 2 for Z notation,
SPARK Ada (standard enforced by tools, unambiguous definition).
(ALC_TAT.3)

ATE_COV.2
Analysis of

coverage

System test scripts derived from, and traced back to, the functional
specification.

ATE_DPT.2
Testing: low-level

design

The standard Praxis approach of achieving 100% source code
coverage through a combination of system testing, with additional
unit tests introduced to cover areas difficult to test through system
test, ensures that all internal interfaces are tested.

ATE_FUN.1
Functional testing

System testing carried out, with full documentation.

Tests

ATE_IND.2
Independent

testing – sample

Independent reliability testing being carried out by SPRE Inc. This
may extend beyond the system testing carried out by Praxis.
(ATE_IND.3)

AVA_CCA.1
Covert channel

analysis

Not applicable to this application.

AVA_MSU.2
Validation of

analysis (misuse)

Not implemented: True instructions to users and administrators for
true secure operation are out of scope of this project.

Vulnerability
assessment

AVA_SOF.1
Strength of TOE

security function

evaluation

In general, the security mechanisms requiring analysis in this way
are cryptographic features and aspects of securing access to data
(such as securing access to the audit log). These were out of scope
of this project.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 35 of 73

 AVA_VLA.3
Moderately

resistant

(Vulnerability

analysis)

In general, the security mechanisms requiring analysis in this way
are cryptographic features and aspects of securing access to data
(such as securing access to the audit log). These were out of scope
of this project.

Table 2 Comparison with EAL requirements

3.3 Applicability

Although this project was a demonstration of a development approach, and it was necessarily small and
focussed, the conclusions that can be drawn are scalable, for the following reasons:

• The structure of the documents, such as the functional specification, was designed to allow
expansion. The full power of the formal notation’s structure was used, and as a result the formal
specification and formal design documents were larger and more complex than strictly necessary
for the job in hand. But by ensuring that good structuring was used, these documents could easily
be expanded to cater for additional functionality. For example, adding new administrator functions
requires only that new function names are added, and new Z operations to describe the behaviour
of each new function.

• The results (effort, fault-rates) found on this project are comparable with the results found on other,
larger, non-demonstration projects that Praxis have carried out for other clients.

• Some activities were reduced in scope (such as requirements investigation, a number of the proof
stages, and some of the security analysis), but this was only for cost reasons, and given a larger
budget these could have been completed within the same project structure.

• Actual evaluation and certification would require external evaluators reviewing documentation and
implementations. Although all review was carried out in-house, final reliability demonstration
testing was carried out by an independent tester.

• Some simplifications were made on this project to focus effort on the core functionality. These
were:

⎯ peripherals were simulated, rather than real

⎯ some library functions were simulated, rather than real

⎯ no graphical user interface was developed

⎯ the underlying operating system was not securely locked-down

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 36 of 73

However, the effect that these had on the development were lessened because

⎯ peripherals were developed by an external supplier (SPRE Inc), and hence clear
specifications were needed, and our development had to respond to unexpected
alterations in the interfaces.

⎯ experience on previous projects has shown us that it is possible to develop non-security-
critical user interfaces in a conventional manner using prototyping and GUI builders, and
then integrate them with the high-integrity development successfully.

⎯ the issues of the underlying operating system and the application code can be
successfully separated, and we have done this on other projects.

Praxis High Integrity System’s development approach has been used on a number of projects for a
range of clients. An example pertinent to this development is a project carried out for Mondex
International (MXI), see [13].

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 37 of 73

4 Metrics

4.1 Raw Metrics

4.1.1 Effort Metrics

In order to allow detailed analysis of the effort involved in the various tasks undertaken an assessment
of the competency levels of the engineers undertaking the work on this project was made.

Each engineer was assessed as a Novice, Practitioner or Expert (as defined in Table 3) in a number of
skills key to the project.

Competency level Definition

Novice Has attended relevant training but has no experience in the given (or a closely
related) activity.

Practitioner Has attended relevant training and has sufficient experience in the given activity
(or a closely related activity) to perform activity with minimal supervision.

Expert Has several years experience and can supervise both Practitioner and Novice in
the activity.

Table 3 Competency Levels

The key skills required during the lifecycle of the project were as follows:

• Requirements Elicitation

• Writing Z

• Z Proof

• Security

• INFORMED Design

• SPARK Coding

• Writing SPARK Proof Annotations

• SPARK Proof

• System Testing

The key technical skill required to undertake each of the technical WBS items was determined allowing
full analysis of the skills required and the skill levels applied to the various activities in the development
process.

When activities were undertaken an assessment was made as to whether the task was hard or easy.
Tasks were classed as easy if a novice could perform them; while hard tasks were those where expert
knowledge or experience was utilised. Review activities were classified as hard since it is preferential to
have an expert perform the review. In many cases there were aspects of an activity that were hard while
other aspects were easy. For example developing the type model and state schemas for the Z
specification were hard but specifying many of the operations was classified as easy since, once one

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 38 of 73

operation was in place it could be used as a template for a novice to produce the specification of further
operations.

The full raw effort metrics collected on the project are presented in full in Appendix B. They are
summarised in the table below:

 Difficulty of Activity

 Hard Easy N/A

Percentage
of Effort

Manage Project 0 0 216 11%
Define Requirements 68 124 0 10%
Specify System 165 69 0 12%
Design Core Functions 170 130 0 15%
Code and Prove 104 453 0 29%
System Test 0 76 0 4%
Interfaces and Integration 0 316 0 16%

Li
fe

cy
cl

e
P

ha
se

Acceptance 10 53 0 3%

Table 4 Actual effort spent on lifecycle phases

Figures are in hours. Technical activities were classified as hard or easy. Project
management was not classified as either hard or easy.

The main observations that can be drawn from this raw data are:

• Early lifecycle phases tended to require a higher proportion of expert involvement.

• Approximately 10% of the project activity was management. This percentage is commensurate with
our experiences on other projects.

• The proportion of time spent on system testing was extremely low. A more representative figure
would include the contribution from SPRE, including the production of the test environment (see
Section 3.1.9.4). A more normal proportion from other Praxis projects is 25%.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 39 of 73

4.1.2 Defect rates

During the development of the system all faults 1detected following review of a deliverable item were
captured using the fault management procedure. The severity of each fault was determined, in terms of
the impact of the fault remaining in the system. Severity levels are defined in Table 5.

Severity Level Definition

Critical Failure is due to a Fault in the TIS Core and could compromise the security of the
system.

Major Failure is due to a Fault in the TIS Core and could impact the functionality of the
system.

Minor Failure is due to a Fault in the TIS Core but would not prevent the system from
functioning (e.g. incorrect spelling of displayed text).

Interfaces Failure is due to a fault that is confined to the support software; there is no fault
in the TIS Core software.

Test Failure is due to a fault in the test or test environment not the system under test.

No Fault The reported failure is actually the correct behaviour so there is no fault.

Table 5 Failure Classifications

Table 6 summarises the distribution of failures found during development. Several failures were found
to affect more than one item, typically this was where a fault was introduced early in the development
lifecycle but not detected until relatively late in the development lifecycle.

1 For the purposes of this document, a failure is an incorrect external behaviour of the system, and a fault is an
error in any part of the system or its development products, which may or may not manifest itself as a failure of the
system.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 40 of 73

C
ri

ti
ca

l

M
aj

or

M
in

or

In
te

rf
ac

es

Te
st

N
o

Fa
ul

t

To
ta

l

Requirements 0 0 0 0 0 0 0

Z Specification 0 6 6 0 0 0 12

Security Specification 0 0 0 0 0 0 0

Z Design 0 5 12 0 0 0 17

INFORMED Design 0 6 8 0 0 0 14

Code 0 10 17 0 0 0 27

Interfaces 0 0 1 2 0 0 3

It
em

 A
ff

ec
te

d

System Tests 0 0 0 0 0 0 0

Total 0 16 36 2 0 0 54

Table 6 Distribution of failures by severity

The fault management process determines where faults are found and where they are introduced. This
distribution is shown in Figure 5.

Requirements 0
0

0
0

0
0

0

Z Specification

Security Specification

Z Design

INFORMED Design

Code

Integration/Interfaces

0

2
0

1

0
2

0

0
0

0
0

00

0
10

0
11

0
6

1

0

System Test

0

2

8
1

2

3

0

0

Code Proof

0

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0

Z Design Proof
1

0
0

Z Specification Proof

0

0

0
0

0

0

2
2

0
0

0

Figure 5: Faults found vs. point of introduction

Reading diagonally upward from a lifecycle phase gives the number of faults found
during that lifecycle phase categorised by the point of introduction of the fault.
Reading diagonally down gives the number of faults per artefact/lifecycle phase. So
8 faults were introduced during coding and found during system test, 6 faults were
found and introduced during coding.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 41 of 73

The correctness by construction approach aims to have as few defects on the right hand side of the
triangle as possible. Ideally no defects would be introduced during the development process but
realistically we attempt to eliminate defects as soon as possible resulting in faults being found soon
after they are introduced.

4.1.3 Code Metrics

The code size is given in Table 7. The size of the source code was measured in terms of non-blank, non-
comment lines. These were further categorised into declarations and executable lines of code. The non-
blank comment lines were categorised into SPARK annotations (basic flow annotations and proof
annotations) used during static analysis by the SPARK Examiner and simple textual comments. The total
is a simple line count of all source code so includes blank lines.

Notice that the Support Software was written in Ada, rather than SPARK, so there were no SPARK
annotations.

 Declarations Executable
lines

SPARK flow
annotations

SPARK proof
annotations

Comments Total

TIS Core 4964 4975 6036 1999 8529 30278

Support
Software

1800 1897 - - 2240 6925

Table 7: Code sizes for Core and Support Software

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 42 of 73

4.1.4 Document Metrics

The characteristics of the deliverable documents are presented in Table 8.

Document Reference Form Number of Pages

Project Plan S.P1229.2.1 English text 27

Security Target S.P1229.40.1 English text 18

Software Requirements
Specification

S.P1229.41.1 English text 42

Formal Specification S.P1229.41.2 Z Notation and English text 118

Security Properties S.P1229.40.4 Z Notation and English text 11

Interface Specification S.P1229.41.3 English text 84

Formal Design S.P1229.50.1 Z Notation and English text 171

INFORMED Design S.P1229.50.2 English text 67

Code Verification
Summary

S.P1229.52.1 English text 23

System Test Specification S.P1229.63.1 English text 98

Installation Guide and
User Manual

S.P1229.73.1 English text 29

Table 8: Document Metrics

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 43 of 73

4.1.5 Code Proof Metrics

Code proof was broadly divided between

1 proving the absence of run-time errors, a general soundness property of the code, which ensures
that there will be no run-time exceptions.

2 proving security properties were held by the code.

These two proof activities result in the SPARK Examiner generating a number of VCs (Verification
Conditions) for each subprogram which need to be shown true to conclude the proof of the subprogram.
The statistics from the code proof activity are shown in Table 9 and Table 10. VCs associated with
assertions and pre and post conditions result from proving the security properties.

 Number

Subprograms fully proved automatically by Examiner/Simplifier 223

Subprograms fully proved by Checker 14

Subprograms fully proved by review 55

Subprograms for which VCs have been generated 292

Table 9: Proof mechanism used to fully prove each subprogram

 Proved by

Total

Examiner/
Simplifier

Checker Review

Assert or Post-condition 1021 927 38 56

Precondition check 67 47 8 12

Check statement 1 0 0 1

Runtime check 1340 1293 2 45

Refinement VCs 214 186 9 19

Totals 2643 2453 57 133

Total % 93% 2% 5%

Table 10: Proof of VCs by Type

It should be noted that VCs that are proved by the Examiner/Simplifier require no manual intervention.
Only those proved by the Checker or justified by review require manual intervention.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 44 of 73

4.2 Summarised Metrics

4.2.1 Productivity rates

The following productivity rates can be deduced from the raw metrics:

4.2.1.1 Code productivity

The productivity rate for coding, accounting only for compiled lines of code (declarations and executable
lines) is shown in Table 11. In calculating the overall productivity for the TIS Core all effort was
considered. Figures for the TIS support software only consider the effort required for specifying and
developing the interfaces.

Productivities are presented separately since the Correctness by Construction process was only applied
to the TIS Core software.

 Productivity (LOC/day)

 During coding Overall

TIS Core 203 38

TIS Support 182 88

Table 11: Code productivity

Notice that the productivity during coding for the TIS core is higher than for the support software despite
the core coding effort including static analysis. This is because there was very little rework of the TIS
core software since the early lifecycle activities produced an unambiguous definition of the required
software functionality.

4.2.1.2 Documentation productivity

The productivity rate for the production of each of the documents is shown in Table 12.

The lowest productivity was for Z proof arguments, this is because the effort in performing the necessary
proof analysis far outweighs the time taken to document the process.

Productivity rates for documents written in the Z notation are typically lower than for documents written
in English. The relatively high productivity rate for the Formal Design reflects the high level of reuse of
structure that was possible from the Formal Specification.

Overall, the document productivity rate for this project is exceptionally high — productivity for Z
specifications is more normally 1 – 2 pages per day. This high productivity is due partly to the quality
and experience of the staff working on these areas, and partly to the small team size. With only a single

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 45 of 73

person writing a specification and one person reviewing, communications and confusions are kept to a
minimum.

On the other hand, the specifications were unusually large given the complexity of the system. This was
because they were deliberately constructed to be extendable, and more structuring was used that was
warranted for the complexity actually captured.

For productivity figures for a larger project, see [13].

Document Number of
Pages

Pages / day

Security Target 18 2

Software Requirements Specification 42 11

Formal Specification 118 4.6

Security Properties 11 3.3

 (Specification) 7 7

 (Proof) 4 1.7

Interface Specification 84 3.9

Formal Design 171 6.9

 (Design) 153 8.3

 (Abstraction Relation) 11 11

 (Proof) 7 1.3

INFORMED Design 67 5.7

System Test Specification 98 22

Installation Guide and User Manual 29 17

Table 12: Document productivity

4.2.1.3 Defect rates

Defect rates are typically quoted for a system post acceptance. We await results of reliability
demonstration testing to give defect rates for the system.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 46 of 73

4.2.2 Effectiveness of techniques

Requirements 0
0

0
0

0
0

0

Z Specification

Security Specification

Z Design

INFORMED Design

Code

Integration/Interfaces

0

2
0

1

0
2

0

0
0

0
0

00

0
10

0
11

0
6

1

0

System Test

0

2

8
1

2

3

0

0

Code Proof

0

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0

Z Design Proof
1

0
0

Z Specification Proof

0

0

0
0

0

0

2
2

0
0

0

Figure 6: Faults found vs. point of introduction (repeated)

The heavy line down the triangle delimits where faults are considered to have been
found in time as opposed to later than ideal.

In an ideal development the errors introduced at one stage of the development process are then
uncovered either as part of that stage itself or, more likely, in the immediately following stage. In the
style of the diagram in Figure 6 this would have values only in the first and second vertical columns.

As some of the “stages” in the TIS project are actually more-or-less concurrent, such as the Z
Specification the Security Properties and the Z Specification Proof, we would expect errors to be
identified in the area to the left of the heavy line shown in Figure 6.

Therefore, it is worth investigating in more detail the errors that were picked up later than ideal — to the
right of the heavy line. There are eight of these, detailed in the subsections below. But in summary:

• 3 were errors with the User Interface, which would normally be picked up by UI prototyping (out of
scope for this project)

• 1 error due to lack of reachability analysis for Z specifications

• 2 errors due to reduced requirements analysis and reduced requirements change tracking, adopted
due to budget constraints and an expectation (mistaken) that the project was redeveloping
functionality already fully defined.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 47 of 73

• 2 errors due to moving between formal and informal representations that even the full high-integrity
process would have missed.

4.2.2.1 Errors in Formal Specification found during System Test (three errors)

Incident Report no. 33: the initialisation state in the formal specification, although possible and secure,
did not allow any useful subsequent use of the system. The timeouts and allowed access periods were
unrealistic.

This was not found during analysis of the Z specification because the normal analysis carried
out on Z initialisation (proof of the existence of an initial state) misses these sorts of errors.
Carrying out reachability analysis (not done here) would catch these sort of problems.

Incident Report no. 36: the console did not display a suitable “busy” message when it was busy.

As the graphical user interface was out of scope of this project, only a simple console
interface was built. Normally, during requirements analysis a user interface prototype would
have been built, and this would almost certainly have found this error early on.

Incident Report no. 38: the console did not display a suitable message when an operation failed.

As the graphical user interface was out of scope of this project, only a simple console
interface was built. Normally, during requirements analysis a user interface prototype would
have been built, and this would almost certainly have found this error early on.

4.2.2.2 Errors in Formal Design found during System Test (two errors)

Incident Report no. 34: an invariant on the configuration data was missing allowing useless
Authorisation Certificates to be produced, and then denying access to the enclave.

A more complete requirements analysis would probably have found this issue, or at least
investigated the implications of the non-deterministic specification earlier, possibly identifying
this as an allowed behaviour. Tighter management of change would also have identified this
earlier, as the error was introduced when fast-track entry was developed.

Incident Report no. 35: the timeout of the Admin Token was not audited.

Tighter management of change would probably have identified this at design time (when
auditing was developed) — development ran ahead of client review, and the token timeout
was added late.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 48 of 73

4.2.2.3 Errors in Formal Specification found during Coding (two errors)

Incident Report no. 6: system statistics missed the removal of the User Token before processing
finished.

The step from the informal requirements specification (that all failures of entry should be
recorded in the statistics) to the formal specification of the actual processing is always a weak
link, and any process may have missed this.

Incident Report no. 32: poor choice of wording for message in the console.

As the graphical user interface was out of scope of this project, only a simple console
interface was built. Normally, during requirements analysis a user interface prototype would
have been built, and this would almost certainly have found this error early on.

4.2.2.4 Errors in INFORMED Design found during System Test (one error)

Incident Report no. 37: constraints on Configuration data not presented in the definition of valid input.

The constraints on configuration data in the formal design should have been carried through
to the (informal) INFORMED design definition of valid input data. This was missed during
review.

4.2.2.5 Other observations on defect detection

Returning to Figure 6 again we note the following:

• No faults were found in the requirements. This is most likely due to the requirements omitting
much detail (for example a detailed analysis of behaviour following failure). The majority of the
faults relate to detailed system behaviour. Consequently the first point at which faults appear to be
introduced in during the Z Specification, the point at which the detail was first introduced.

• Code proof found no faults. The code proof activity only accounts for the proof of security
properties. Proof of absence of run-time errors and static code analysis is done as part of the
coding process so it is typically difficult to gauge the effectiveness of these static code verification
activities. The performance of static analysis as part of the coding activity accounts for the relatively
low number of faults found in the code during testing.

• Faults are only recorded against entities in the lifecycle that have undergone formal review and
have been base-lined. Due to the relatively late availability of test drivers the interface code was
base-lined after all other coding was complete. This accounts for the low number of faults reported
on the interface software.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 49 of 73

4.3 Interpretation of Metrics

The raw data presented corresponds to the actual development undertaken by Praxis. Due to available
resources some of the activities in the Correctness by Construction process being demonstrated were
not completed.

There were also a number of occasions where relatively easy activities were performed by experts.

In order to gauge the cost effectiveness and applicability of the processes presented on this project we
have provided an interpretation of the raw metrics to estimate:

• The effort required if team skills were reduced so that experts performed only hard activities.

• The cost and effort required to complete the project if all the Correctness by Construction activities
were completed.

• The cost and effort required to perform the project to EAL5 certification standard.

For the purpose of this analysis we exclude the Project Management aspect. Our experience is that
project management typically accounts for about 10 - 15% of the effort and this is borne out in the raw
effort metrics (see Section 4.1.1).

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 50 of 73

4.3.1 The Raw data

Raw data is repeated here to allow easy comparison

 Effort (hours)

 Hard Easy Total

Define Requirements 68 124 192

Specify System 165 69 234

Design Core Functions 170 130 299

Code and Prove 104 453 557

System Test 0 76 76

Interfaces and Integration 0 316 316

Acceptance 10 53 63

Total 517 1219 1736

Table 13 Actual effort spent on lifecycle phases

Total (effort)

11%

13%

17%

33%

4%

18%
4%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 7: Effort distribution

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 51 of 73

4.3.2 Perfect team distribution

In an ideal team distribution all hard activities would be performed by experts in the field while all easy
activities would be performed by novices. Of course, the novices would graduate to practitioners over
the course of the project but this is not accounted for in the estimates presented here.

In order to analyse the likely time to complete if experts always perform hard activities and novices
always perform easy activities we make the following assumptions about the effective productivity of the
various skill levels. These assumed productivity ratios are equal to the cost ratios of staff at
representative grading levels.

Skill level Productivity

Novice 100%

Practitioner 165%

Expert 230%

Table 14 Productivity Rates

Productivity rates are presented as a percentage of Novice productivity.

This gives the following effort estimates for the work actually performed:

 Effort (hours)

 Hard Easy Total

Define Requirements 54 239 293

Specify System 165 158 323

Design Core Functions 159 277 436

Code and Prove 88 914 1002

System Test 0 115 115

Interfaces and Integration 0 426 426

Acceptance 10 53 63

Total 476 2181 2658

Table 15 Effort spent on lifecycle phases assuming a perfect team

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 52 of 73

Total (effort)

11%

12%

16%

39%

4%

16%
2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 8: Effort distribution assuming a perfect team

% hard

0%
10%
20%
30%
40%
50%
60%

D
ef

in
e

R
eq

ui
re

m
en

ts

S
pe

ci
fy

S
ys

te
m

D
es

ig
n

C
or

e
Fu

nc
tio

ns

C
od

e
an

d
P

ro
ve

S
ys

te
m

 T
es

t

In
te

rfa
ce

s
an

d
In

te
gr

at
io

n

A
cc

ep
ta

nc
e

Figure 9: Proportion of lifecycle activities classified as hard

The key observation that can be drawn from this is that in general more expertise is required early in the
lifecycle than during the later stages (hard activities require experts).

We now look at the cost impact of this distribution of experts and novices over the life time of the
project, using the same cost ratio as productivity ratio (Expert costs 2.3 times the cost of a Novice) and
consider the cost distribution over the lifetime of the project.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 53 of 73

Costs

11%

16%

20%34%

4%

13%
2% Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 10: Cost distribution for work performed

It should be noticed that almost half of the project costs were incurred prior to coding. This reflects the
emphasis placed on correct construction of requirements, specification and design.

4.3.3 Completing the Correctness by Construction Process

A number of the activities performed as part of the Praxis Correctness by Construction process were not
completed due to budget limitations. Here we estimate the extra effort required to complete these
activities and conclude with the effort and cost distribution that would be expected had all activities
been completed. Note that this evaluation concerns just the core functionality of the system and in
addition we would expect a contribution from the production of a test environment. The effort required
for generating a test environment should be deduced from the effort required by SPRE to perform this
activity and is not included in the figures below.

The activities that were not completed were as follows:

• Requirements Elicitation – restrictions on time available with the stakeholders interested in the
system resulted in the requirements elicitation activity being far smaller than usual. We estimate
that only 25% of the effort to complete was spent on this activity.

• Write Software Requirements Specification – due to reduced requirements elicitation, many
aspects of the system behaviour that would have been elaborated in the requirements specification
were only described at a very high level, detail being postponed to the Formal Specification. We
estimate that only 50% of the effort to complete was spent on this activity.

• Write Security Target – We only produced an outline Security Target. We estimate that this activity
took 40% of the effort to complete a Security Target.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 54 of 73

• Review SRS and ST – The review activities will take proportionally longer due to the SRS and ST
being larger documents if they had been completed. We estimate that we spent 50% of the effort
that would have been required to review these documents.

• Prove Security Properties – We only proved a sample of the security properties. We estimate that
this amounted to 30% of the effort required to complete the proof.

• Prove Design – We only performed part of the design proof, although more proof was actually
performed than was documented. We estimate that this amounted to 40% of the effort required to
complete the proof.

• Review Design Proof – We only reviewed the proof that was documented. We estimate that only
20% of the proof was documented.

• Proof Annotations – We produced approximately 30% of the proof annotations for the security
properties. Due to the simple correspondence between the formal design and code full functional
proof would probably not be performed in practice.

• Proof of Code – The effort required to prove the code is directly proportional to the number of proof
annotations inserted. We proved all VCs associated with the annotations we supplied. This
corresponds to 30% of the effort required to complete proof of all security properties.

• Code Proof Review – Again the effort expended corresponds to about 30% of the effort to
complete.

• Execute Functional Testing - We would normally instrument functional tests to capture coverage
metrics. We estimate that the testing we performed corresponds to about 50% of the effort that
would have been required if the testing was instrumented and we added tests to achieve 100%
code coverage as necessary.

• Test Plan and Specs – We wrote tests to cover all aspects of the Formal Design (and hence Formal
Specification). We anticipate that additional tests would be required to achieve 100% code
coverage (which was not monitored for). We estimate that we expended 60% of the effort required
to complete this activity.

• Test Report and Results – Ordinarily we would have analysed the coverage metrics we captured.
This would have added a substantial overhead to the collection and interpretation of test results.
We estimate that we performed about 30% of the effort required to complete this activity.

Taking into account the above we estimate that the effort to complete the project (again assuming a
perfect team) is as follows:

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 55 of 73

 Effort (hours)

 Hard Easy Total

Define Requirements 151 585 736
Specify System 206 158 364
Design Core Functions 229 277 506
Code and Prove 185 1369 1554
System Test 0 233 233
Interfaces and Integration 0 426 426
Acceptance 10 53 63

Total 782 3100 3882

Table 16 Effort required to complete assuming a perfect team

Total (effort)

19%

9%

13%
40%

6%

11% 2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 11: Effort distribution if Correctness by Construction process completed

Cost

19%

13%

16%
36%

5%

9% 2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 12: Cost distribution if Correctness by Construction process completed

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 56 of 73

4.3.4 Achieving EAL 5

A number of the activities performed in the Correctness by Construction process presented here are not
actually required for EAL5. So assuming that we were able to justify with the certification authorities that
the static analysis performed on the code removes the need to perform implementation testing we can
deduce the effort and cost of developing this system to EAL5 by removing the effort for the following
activities (not required for EAL5).

• Prove Security Properties

• Prove Design

• Review Design Proof

• Proof Annotations

• Proof of Code

• Code Proof Review

There would be additional effort required to write the installation guide, which needs to cover aspects of
security not covered by the current installation guide. We assume that the effort required to produce this
summary report is equivalent to the additional effort required to produce an installation guide suitable
for EAL5.

These assumptions give an estimate of the effort required to develop this system to EAL5 (assuming a
perfect team) as follows:

 Effort (hours)

 Hard Easy Total

Define Requirements 151 585 736
Specify System 148 158 306
Design Core Functions 94 277 370
Code and Prove 47 719 766
System Test 0 233 233
Interfaces and Integration 0 426 426
Acceptance 10 53 63

Total 449 2450 2900

Table 17 Effort required to complete to EAL5 assuming a perfect team

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 57 of 73

Total (effort)

25%

11%

13%26%

8%

15%
2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 13: Effort distribution for completing to EAL5

 Cost

27%

14%

14%

24%

7%

12%
2%

Define Requirements

Specify System

Design Core Functions

Code and Prove

System Test

Interfaces and Integration

Acceptance

Figure 14: Cost distribution for completing to EAL5

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 58 of 73

4.3.5 Relative costs

The relative costs of the work performed, completing the Correctness by Construction process and
completing to EAL5 are presented graphically

Relative Cost

1.00

1.49

1.06

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Actual

Full High Integrity Process

EAL 5

Figure 15: Relative costs of producing TIS core

Achieving EAL5 should cost little more than the actual costs measured during this evaluation. This is
because, although we did not complete all activities within the Correctness by Construction process that
we propose, many of the proof activities are not required to achieve EAL5 certification.

We believe that the Full Correctness by Construction process is close to achieving EAL7. There are a
number of quality activities such as fault management and configuration management that would need
to be performed using tools that provide fully integrated electronic support. The proof activity we use in
our high integrity process is sufficient for EAL7: this involves tool supported code proof but manual proof
of the Specification and Design.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 59 of 73

5 Analysis

5.1 Analysis of Method

The metrics of effort expended in the phases of the project, the size of the system developed, and the
number of residual faults found during reliability demonstration testing (final metric awaited) show that
the Praxis Correctness by Construction development process as carried out in this project is effective in
producing a high quality system cost effectively.

What are the elements of the method that achieves these benefits?

As indicated by the metrics relating number of errors found to phase in the development process where
the errors were found shows that errors were introduced and found in all phases, and that no one phase
can be pinpointed as the “key” place where errors were found. Indeed, part of the reason why, for
example, coding introduced few errors is that the specification is formal, and hence clear and easy to
implement from. The method brings together a number of techniques that work in unison to improve the
quality of the product.

Having said that, the method does not rely entirely on specific techniques, such as Z or SPARK Ada. It
will be possible to gain some of the benefit of the Praxis development approach even if only some of the
elements are used, or if different techniques are used to achieve the steps. Our experience is that the
approach adopted by us in this development achieves the greatest benefits, but if other factors force a
departure from the ideal, then some benefit can still be gained. Looking at each part of the development
in turn:

• Requirements management: Praxis’ own REVEAL® requirements process stresses a number of
elements of requirements management, and provides a number of techniques to address them.
The key outcomes are: clear system boundary; clear stakeholder involvement; full investigation and
documentation of system requirements; analysis and documentation of domain knowledge; and
justification of system specification in terms of system requirements.

• Specification: formality is used to achieve clarity of expression, to force early expression of precise
behaviour, and to allow more powerful verification and validation techniques to be applied. We
have found that Z is a powerful, general-purpose formal notation, but other notations can be used.
We have, for example, used CSP in particular circumstances. If a non-formal notation, such as UML,
is used, then there is significant scope for ambiguity and lack of precision, and the opportunities for
analysis are reduced (although even here, rigour in the use of UML can improve results [16]).

• Design: this is probably the area with the greatest amount of flexibility. The design step(s) are there
to identify, document, and justify the implementation decisions made in passing from the abstract
system specification to the concrete implementation. Different notations have different strengths
for this, and the correct notation should be chosen to give the greatest power in expressing the
design decisions being made, and the greatest scope for verification and validation techniques.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 60 of 73

• Coding: choosing to implement the core of TIS in SPARK Ada gave the project the opportunity to
apply powerful static analysis tools (the SPARK Ada tool-set) that eliminate many errors prior to
compilation, and encourage (and measure) good design structuring. Other implementation
languages can be chosen, but verification and validation power is lost, and poor design becomes
more likely. Alternatives, such as using SPARK Ada as a design language with automatic translation
into an implementation language, such as C, can be considered.

• Analysis: choosing appropriate formal specification and design notations, and SPARK Ada for
implementation, allowed effective analysis:

⎯ review becomes very powerful, as the notations used are unambiguous, and truly abstract
specifications allow useful correspondence checking down through progressive refinements

⎯ proofs of consistency of individual stages (e.g. pre-conditions checks) ensure that
specifications are not only syntactically correct but have good meaning

⎯ proofs can be used to show correspondence between representation levels, right down to the
code level

⎯ static analysis of the code can identify code-level errors (such as the use of un-initialised
variables) and, with the use of formal notations in more abstract representations, can identify
mismatches between specification and code.

• Testing: if static analysis, proof, etc. is carried out, this will remove most of the unit-level errors
before code is run. Therefore, most of the errors remaining at runtime will be integration errors, to
be identified through system testing. Once again, good specifications higher up the abstraction
hierarchy lead to clearer test specifications and easier coverage analysis.

5.2 Analysis of Results

5.2.1 What the results means for EAL5.

As tabulated in section 3.2, this development project has largely met the requirements of EAL5, and in
many cases, EAL6 and EAL7. As discussed in section 4.3.4, even the effort estimates for a fully-
conformant EAL5 development are very close to the effort expended on this project. It is therefore
reasonable to say that this project represents a close match to the process that should be followed for
an actual EAL5 development.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 61 of 73

However, issues of certification such as working with external evaluators and gaining agreement with
the certification bodies have not been investigated in this project. Very little time was given to the
development of the Security Target, and the development of the Protection Profile was out of scope. Our
general experience, however, indicates that there are elements that could be done differently to make
certification easier. In general:

• Engage with the accreditors and evaluators early, and ensure that they agree with all procedures
and documents as you go.

• Ruthlessly trim the security target down to the fundamental security requirements.

• Develop specific security mechanisms to address specific threats, rather than incorporating a range
of common mechanisms that have been proved to be useful in the past, but for which no clear
justification can be identified for this specific product or system.

• Make trade-offs at the security target stage between technical security mechanisms, environmental
security assumptions, and the effort of implementation. That is, analyse the threats created by the
chosen environment, decide whether the implementation cost of protecting against these threats
using technical means is acceptable, and if not, modify the environment to reduce the threats.

The consequences of adopting such an approach for TIS in particular would be:

• No protection profile (just develop a security target directly).

• A smaller security target (at least, the security target would be smaller than the current combination
of the security target and the protection profile).

• Clearly recognised, high-level security aims, such as “protection of the enclave”.

• Clear reliance on the environment, making it easier to assess the impact of deploying in a different
environment.

5.2.2 What the results means for EAL6/7

We believe that the Full Correctness by Construction process is close to achieving EAL7. The discussion
above for achieving EAL5 remains valid at the higher EALs as well. It can be seen from section 3.2 that
in many areas the project actually met the requirements of EAL6 or EAL7. If all of the proofs were
carried out to completion, rather than only a sample completed, then the comparison of the project to
EAL7 requirements falls into three areas:

• most requirements are met: the development requirements (on design documents, demonstration
of correspondence between them) are met because formality was used throughout the
development, and static analysis and proof was used where possible. Some testing and some
lifecycle requirements are met.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 62 of 73

• a few requirements are not met: these are generally process requirements (such as automated CM)
that do not fundamentally alter the design process, but just require slightly tighter control on the
activities that are already being done, or they are testing requirements, which in general are either
superseded by static analysis or would normally be complied with on a project with a larger team.

• those requirements deemed out of scope: would need to be carried out, and would require
additional effort.

5.2.3 What the results mean for achieving lower EAL levels

Even if a lower level of assurance is aimed for, the Correctness by Construction development process
followed on this project can be used, and will yield a high quality system cost effectively. Indeed,
provided there is a desire to reduce the number of residual errors sufficiently far, most of the processes
adopted in this development represent the most effective way of developing the system.

There is a cut-off point in terms of quality at which this development processes ceases to be cost
effective. If a high number of errors can be tolerated (e.g. in a system in use for limited time or by a
limited number of people) then a less formal and rigorous process may be cheaper. The level of this cut
off is not known, however.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 63 of 73

6 Further Work

NSA’s original purpose for this work was as a first step in improving the development of systems by NSA
contractors toward high security certification levels. Having demonstrated that Praxis’ Correctness by
Construction development process can produce reliable systems that should be certifiable at the high
EAL levels, it is worth considering the possible next steps toward NSA’s final goal of wider contractor
abilities to achieve these levels.

6.1 Disseminating the results of the project

There are a number of routes open to disseminate the results of this project to a wider audience, falling
into three main areas: conferences, journals, and NSA-sponsored communications.

There are two conferences that naturally lend themselves to presentations about this project: NSA’s own
annual conference in April, and the Common Criteria international conference (probably September
2004).

There may be scope for introducing some of the techniques used on this project into NSA’s own
National Cryptologic School. Initial aspects to discuss are probably REVEAL® (requirements
management), SPARK (design, implementation, and code), Z (formal specification and formal design),
and a more general process view, covering the whole lifecycle.

As the NIAP labs will have experience of independent assurance, a more interactive discussion with their
representatives may be fruitful, sponsored by NSA.

We would like to aim toward journal publication, also, and would be happy to discuss joint authorship.

6.2 Raising the development capabilities of contractors

To achieve the long-term aim of improving the take up of Common Criteria as a certification mechanism,
the lessons learnt in this experimental development will have to alter the development practices of the
majority of the NSA’s contractors. This in turn will need the contractors to pass through four phases:
understanding, belief, learning, experience.

• understanding
The contractors need to be exposed to the principles of the Common Criteria, the lessons learnt
during this project, and the concepts of the Praxis Correctness by Construction development
process. This will require a continuing, wide-ranging dissemination activity.

• belief
Having understood the demands of the Common Criteria and the promise of a development activity
that can achieve certification, the contractors need to be convinced that the development process
will work. They need to come to the belief that there is a business benefit in them adopting a new
approach. This is a hearts-and-minds activity.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 64 of 73

• learning
For contractors to change their processes, they will have to learn new skills, define new processes,
and work in a new way. This will require training courses, seminars and consultancy to transfer
knowledge to the contractors.

• experience
Training is never enough to sustain a change in a company. A continuing programme of change
management is needed, with mentoring, coaching, advanced technique seminars, and support.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 65 of 73

7 Conclusions

The TIS development project has demonstrated that the Praxis Correctness by Construction
development process is capable to producing a high quality, low defect system in a cost effective
manner following a process that conforms to the Common Criteria EAL5 requirements.

The TIS system’s key statistics are:

• lines of code: 9939

• total effort (days): 260

• productivity (lines of code per day, overall): 38

• productivity (lines of code per day, coding phase): 203

• defects (defects found post delivery per 1000 lines of code): not currently known

The development approach applied on this project, and described in this report, is Praxis High Integrity
System’s standard high-integrity development process, and has been applied successfully to a number
of commercial and government projects by Praxis. It is not new or under development — it is a proven
technology. It has been shown to work on information processing systems, interactive systems, and real-
time systems. Our experience in working with other system developers is that our development
approach can be applied successfully by other companies, but the learning curve for many
organisations is steep. Good training, a continuing mentor and coaching programme, and commitment
to improvement are necessary to ensure that take-up of the approach is successful.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 66 of 73

A Summary of the Behavioural Requirements

The required behaviour of TIS was described in the System Requirements Specification [1] in terms of a
number of scenarios and some more general information.

A.1 Scenarios

The scenarios are summarised below (for brevity only the key assumptions and end conditions are listed
here, failure conditions are not elaborated here, and nor is the list of audited events).

1 User gains allowed initial access to Enclave
Description: A user who is allowed access to the enclave is given access, making use of biometric
authentication.
Stimulus: The user supplies their token to TIS via the token reader.
Assumptions:
⎯ TIS is quiescent (no other access attempts, configuration changes or start-up activities are in

progress).
⎯ The user’s token is valid and the I&A data on the token includes a valid fingerprint template

that matches the fingerprint of the User’s finger.
⎯ The User is outside the Enclave; the door is closed and locked.
⎯ The User’s token does not have a valid, current Authorisation Certificate.
Success End-Conditions:
⎯ The User is in the Enclave; the door is closed and locked.
⎯ The User token contains a current, valid Authorisation Certificate.

2 User is denied prohibited initial access to Enclave
Description: A user who should not be allowed access to the enclave is prohibited access, possibly
making use of biometric authentication.
Stimulus: The user supplies their token to TIS via the token reader.
Assumptions:
⎯ TIS is quiescent.
⎯ The User is outside the Enclave; the door is closed and locked.
⎯ At least one of the certificates on the User’s token is invalid, or the I&A data on the token does

not include a valid fingerprint template that matches the fingerprint of the User’s finger.
⎯ The User’s token does not have a valid, current Authorisation Certificate.
Success End-Conditions:
⎯ The User is outside the Enclave; the door is closed and locked.
⎯ The User token is unmodified.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 67 of 73

3 User gains allowed repeat access to Enclave
Description: A user who should be allowed access to the enclave, is given access, but does not use
biometric authentication because an Authorisation Certificate is found that is still within its validity
period.
Stimulus: The user supplies their token to TIS via the token reader.
Assumptions:
⎯ TIS is quiescent.
⎯ The User is outside the Enclave; the door is closed and locked.
⎯ The User’s token has a valid, current Authorisation Certificate.
Success End-Conditions:
⎯ The User is in the Enclave; the door is closed and locked.
⎯ The User token is unmodified.

4 ID Station is started and enrolled with input from the Enrolment Station
Description: A person powers up the ID Station system, and loads the initialisation data from the
Enrolment Station via a floppy disk.
Stimulus: Launching the ID Station application from the Windows Interface.
Assumptions:
⎯ Enrolment data for the ID station is unavailable internally to the system.
⎯ A floppy disk has been inserted into the drive, and the data on the floppy disk from the

Enrolment Station is correct.
Success End-Conditions:
⎯ The ID Station is running and ready for use, with the data as supplied from the floppy.

5 ID Station is started already enrolled
Description: A person powers up the ID Station system, and the ID station becomes available for
use, as it has previously been enrolled.
Stimulus: Launching the ID Station application from the Windows Interface.
Assumptions:
⎯ Enrolment data for the ID station is available internally to the system.
Success End-Conditions:
⎯ The ID Station is running and ready for use.

6 ID Station is shutdown
Description: A Security Officer powers down the ID Station system.
Stimulus: Command to shutdown is typed into the console.
Assumptions:
⎯ A Security Officer is currently logged onto the ID Station.
Success End-Conditions:
⎯ The ID Station is no longer running and responds to no inputs.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 68 of 73

7 Security Officer updates the configuration of the ID Station
Description: A Security Officer updates the ID Station configuration data with a completely new set
of data, from a floppy.
Stimulus: Command to re-configure is typed into the console.
Assumptions:
⎯ A Security Officer is currently logged onto the ID Station.
Success End-Conditions:
⎯ The ID Station is available for use with its configuration identical to that specified on the

floppy.

8 Audit log is archived
Description: An Auditor archives the audit log off the system onto a floppy disk, clearing the audit
log on the ID Station.
Stimulus: Command to archive the log is typed into the console.
Assumptions:
⎯ An authorised Auditor is logged on.
Success End-Conditions:
⎯ The audit log on the ID Station no longer contains those audit elements that are now on the

floppy disk.
⎯ The oldest part of the audit log on the ID Station at the beginning of this scenario is on the

floppy disk.

9 Guard manually unlocks the door
Description: A Guard overrides the latching and requests the door to be unlocked manually to allow
the entry of a Person.
Stimulus: Command to unlock the door is typed into the console.
Assumptions:
⎯ The ID Station is quiescent.
⎯ The Guard is logged on.
⎯ The User is outside the enclave; the door is closed and locked.
Success End-Conditions:
⎯ The User is in the Enclave, the door is closed and locked.

10 Administrator logs on
Description: An Administrator logs onto the ID Station by inserting their Token in the Admin Token
Reader.
Stimulus: A Token is inserted in the Admin Token Reader.
Assumptions:
⎯ The ID Station is quiescent.
⎯ The card inserted by the Administrator has a valid Authorisation Certificate.
Success End-Conditions:
⎯ The ID Station is available for use by the Administrator, in that it will respond to the commands

allowed to that Administrator as defined by the privileges in the Authorisation Certificate read
from the Token and the Configuration data held on the ID Station.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 69 of 73

11 Administrator logs off
Description: An Administrator logs off the ID Station.
Stimulus: The Token is removed from the Admin Token Reader.
Assumptions:
⎯ An Administrator is logged on (which implies an Admin Token is in the Reader).
Success End-Conditions:
⎯ The ID Station is unavailable for use by anyone at the console; it will respond to no commands

typed in at the console.

A.2 General conditions

A.2.1 Audit Failure

The audit file should be a record of all auditable events that have occurred within the ID Station System.
There are two distinct failures associated with the audit:

⎯ Failure to write an auditable event to the audit file. Result: the Door is locked and the system
shutdown.

⎯ Space for audit files has been exhausted. Result: the oldest records are overwritten with the new
audit records, and an alarm is raised to the Guard.

A.2.2 Doors and Alarms

The door can be open or closed; and can also be locked or unlocked. These two bi-state conditions are
independent. In addition there is an alarming state: if the door is secure, then the alarm is silent. If the
door is potentially insecure (it is open but locked, waiting for a user to pass through before closing the
door and becoming secure) then the alarm is silent, but waiting a timeout period before alarming. If the
timeout period passes, the alarm goes off.

As unlocked states are potentially insecure, there is always a time-out period, after which the door will
be commanded to lock.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 70 of 73

Open/
Unlocked

(silent)

Closed/
Unlocked

(silent)

Closed/
Locked
(silent)

Open/
Locked
(waiting)

lock (timeout)

cl
os

e

lock (timeout)

lockunlock
unlock

unlock
lockunlock

 open cl
os

e

Open/
Locked

(alarming)

lock

timeout

clear alarm

unlock

close

open
(should be impossible)

Figure 16: Open/Closed, Locked/Unlocked, and Alarm relationships

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 71 of 73

B Raw Effort Metrics

All entries are hours unless
stated otherwise NA Total

Hard Easy Hard Easy Hard Easy Hard Easy

WBS # WBS Descriptions Key Technical Skill

0 Complete Project 62.50 69.50 18.00 393.00 426.25 540.80 10.00 216.00 215.50 1951.55
1000 Manage Project 215.50 215.50

1100 Plan Project 115.00 115.00
1200 Reporting Project 80.50 80.50
1300 Supporting infrastructure 20.00 20.00
1400 Close Project

2000 Define Requirements 22.00 36.50 5.50 40.50 87.80 192.30
2100 Study documents Requ Elicitation 22.00 14.00 36.00
2200 Elicit requirements Requ Elicitation 22.50 26.50 49.00
2300 Write SRS Requ Elicitation 7.50 22.00 29.50
2500 Write security target Security 65.80 65.80
2600 Review SRS and ST Security 5.50 6.50 12.00

3000 Specify System 165.00 68.50 233.50
3100 Specify core functions Writing Z 133.00 61.00 194.00
3200 Specify security properties Writing Z 7.50 7.50
3300 Prove security properties Z Proof 17.50 17.50
3400 Review spec and properties Writing Z 14.50 14.50

4000 Design Core Functions 19.00 17.00 150.75 112.50 299.25
4100 Formal design Writing Z 70.00 68.00 138.00
4200 INFORMED design INFORMED Design 19.00 17.00 12.00 40.50 88.50
4300 Abstraction relation Writing Z 3.50 4.00 7.50
4400 Review design Writing Z 21.75 21.75
4500 Prove design Z Proof 41.50 41.50
4600 Review proof Z Proof 2.00 2.00

5000 Code and Prove 21.50 12.50 197.50 70.00 255.00 556.50
5100 Code SPARK Coding 197.50 170.50 368.00
5200 Proof Annotations Proof Annotations 15.00 15.00 30.00
5300 Proof of code SPARK Proof 19.00 69.50 88.50
5400 Code review SPARK Coding 21.50 12.50 28.50 62.50
5500 Proof review SPARK Proof 7.50 7.50

6000 System Test 16.00 60.00 76.00
6100 Test plan and specs System Testing 33.50 33.50
6200 Execute Functional testing System Testing 26.50 26.50
6300 Test report and results System Testing 16.00 16.00

7000 Interfaces and Integration 135.50 17.00 163.00 315.50
7100 Interface specification 161.50 161.50
7200 Interface implementation SPARK Coding 135.50 17.00 152.50
7400 Integration testing 1.50 1.50

8000 Acceptance 10.00 53.00 63.00
8100 Write summary report 10.00 29.50 39.50
8200 Review summary report
8300 Write installation guide 12.50 12.50
8400 Support reliability testing 11.00 11.00

Totals (hours) 62.50 69.50 18.00 393.00 426.25 540.80 10.00 216.00 215.50 1,951.55
Totals (days) 8.33 9.27 2.40 52.40 56.83 72.11 1.33 28.80 28.73 260.21

By skill level and complexity

Novice Practitioner Expert NA

Table 18 Raw effort metrics gathered during development

Each engineer was assigned a competency level for each of the skills required. If no specific specialist
skill was required then the competency is not applicable although tasks may still be recorded as hard
or easy. The difficulty of project management activities was not classified.

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 72 of 73

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright © (2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved.

This material was originally developed by Praxis High Integrity Systems Ltd. under contract to the
National Security Agency.

Changes history

Issue 0.1 (17 September 2003): Initial Draft proposing general structure.

Issuer 0.2 (6 October 2003) Proposed general structure following internal review. Supplied to NSA for
comment.

Issue 0.3 (28 November 2003): first draft of content for internal review.

Issue 1.0 (17 December 2003): Provisional issue for client review.

Issue 1.1 (19 August 2008): Updated for public release.

Changes forecast

Updates following comments from NSA and completion of reliability demonstration testing.

Document references

1 TIS System Requirements Specification, Praxis High Integrity Systems Ltd, S.P1229.41.1.

2 TIS Formal Specification, Praxis High Integrity Systems Ltd, S.P1229.41.2.

3 TIS Security Target, Praxis High Integrity Systems Ltd, S.P1229.40.1

4 TIS Security Properties, Praxis High Integrity Systems Ltd, S.P1229.40.4

5 TIS Formal Design, Praxis High Integrity Systems Ltd, S.P1229.50.1.

6 TIS INFORMED Design, Praxis High Integrity Systems Ltd, S.P1229.50.2

7 TIS Code Verification Summary, Praxis High Integrity Systems Ltd, S.P1229.52.1

8 System Test Specification, S.P1229.63.1

Tokeneer ID Station
EAL5 Demonstrator: Summary Report

S.P1229.81.1
Issue: 1.1

 Page 73 of 73

9 TOKENEER User Authentication Techniques Using Public Key Certificates, Part 3: An Example
Implementation, NSA Central Security Service INFOSEC Engineering, v1.0, 10 February 1998.

10 Statement of Work for TIS re-development, NSA, 27 September 2002.

11 J. Michael Spivey, The fuzz Manual, Computer Science Consultancy,
ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz

12 ISO 15408, Common Criteria for Information Technology Security Evaluation, August 1999 (Version
2.1)

13 Correctness By Construction: Developing a Commercial Secure System, Anthony Hall and Roderick
Chapman, IEEE Software, Jan/Feb 2002, pp18-25

14 Web site for SPARK: http://www.sparkada.com/

15 Is Proof More Cost Effective Than Testing?, Steve King, Jonathan Hammond, Rod Chapman and
Andy Pryor, IEEE Transactions on Software Engineering, Volume 26 Number 8

16 High Integrity Ada in a UML and C World, Peter Amey, Neil White, Praxis High Integrity Systems Ltd.
submitted to Ada Europe 2004.

http://www.commoncriteria.org/cc/cc.html

	 Executive Summary
	 Process
	 Project Findings

