

Tokeneer ID Station

Overview and Reader's Guide

 S.P1229.81.8

Issue: 1.4

Status: Definitive

20th May 2009

 Originator

 Rod Chapman (Principal Engineer)

 Copies to:

 NSA Praxis High Integrity Systems

 Project File

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 2 of 31

Contents

1 Introduction 3
1.1 Tokeneer project time-line 3
1.2 Acknowledgements 4
1.3 List of Acronyms 4

2 TIS Public Release Navigation Guide 5
2.1 Release Structure and Content 5
2.2 Licences 6
2.3 Document Structure and Recommended Reading 7

3 Changes from the original TIS 8
3.1 Documents 8
3.2 Code 8

4 Building the TIS Components 10
4.1 The Core Software 10
4.2 The Peripheral Simulator 10
4.3 The demo GUI 10
4.4 The makecard utility 11

5 Reproducing the Code Proofs 12
5.1 Analysis using the SPARK tools on the command-line 12
5.2 Analysis using the SPARK tools from GPS 13
5.3 A defect is found… 18

6 Running the TIS Demo GUI 21
6.1 Preparing enrolment data 22
6.2 Starting the GUI 22
6.3 Stopping the System 24
6.4 Resetting the System Enrolment data, Keystore and Log 25

7 Challenges with TIS 26
7.1 Remove dependence on floppy disks 26
7.2 Remove dependence on Windows 26
7.3 Remove ―Proof by Review‖ 26
7.4 Alternative theorem prover support 26
7.5 Proof of Security Properties 26
7.6 Hardware 27
7.7 Re-implement using alternative languages and technologies 27

A Tools Inventory 28

Document Control and References 31
Changes history 31
Changes forecast 31
Document references 31

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 3 of 31

1 Introduction

This document is intended as an introduction, overview and ―reader‘s guide‖ to the public release of the

Tokeneer ID Station software and documentation.

Section 2 contains a brief description of the content of the release package, and the licences under

which the material has been released. It goes on to recommend specific entry points into the project

documentation for readers interested in particular topics.

Section 3 details changes that have been made between the original release of the Tokeneer material

to our customer in 2003 and this release.

Sections 4 and 5 go into more detail, describing how the Tokeneer software components are built and

analysed using the SPARK toolset for those interesting in re-producing the system binaries, analysis

results, or proofs of correctness.

Section 6 illustrates the use of the demonstration user-interface for the system that Praxis developed

following the original project.

Section 7 sets a few opening ―challenges‖ for researchers to tackle.

Finally, Appendix A lists the tools required to build and analyse the Tokeneer documents and software.

1.1 Tokeneer project time-line

In early 2002, Praxis published the results of our work in developing the MULTOS CA system[1]. This led

to an invitation to attend the NSA‘s High Confidence Systems and Software (HCSS) conference in

Baltimore where the idea of a ―demonstrator‖ project in secure software engineering was first proposed.

The remainder of 2002 was spent proposing and negotiating the terms of the contact, with the main

development project taking place over 9 months in 2003. Results were presented at the HCSS

conference in 2004, but we felt that the work deserved a wider audience beyond the ―closed shop‖ of

the NSA and its research partners. In 2005, we prepared a conference paper that was eventually

cleared for publication and appeared in the 2006 IEEE International Symposium on Secure Software

Engineering (ISSSE)[2].

At that time, the so-called ―Grand Challenge‖ in Dependable System Evolution[3] had come to our

attention calling for a repository of verified software to be used as a basis for scientific experiment and

research. This led to the idea of releasing the Tokeneer project material under a suitable licence that

would permit its inclusion in the repository.

This licence (in the form of an NSA ―Technology Transfer Agreement‖) was signed by the NSA and Praxis

in July 2008.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 4 of 31

1.2 Acknowledgements

Many people have been involved in the development and release of the Tokeneer system.

Firstly, we would like to thank the NSA staff that had the vision and budget to make the project happen

in the first place. In particular, Randolph Johnson worked tirelessly as our ―customer‖ during the

development work, and in the long process of securing approval to release the material in its current

form.

The original development team at Praxis—Janet Barnes, David Cooper, and David Painter–deserve

special mention for producing such a remarkable piece of work given such a limited budget.

Finally, we would like to thank the principals of the Verified Software Initiative, in particular Tony Hoare,

Jay Misra, and Jim Woodcock, for their encouragement and patience during the approval and release

process.

1.3 List of Acronyms

NSA National Security Agency

SPRE Software Process and Reliability Engineering Inc. (see www.spre-inc.com)

TIS Tokeneer ID Station

TTA Technology Transfer Agreement

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 5 of 31

2 TIS Public Release Navigation Guide

This section contains a brief tour of the released material, a reader‘s guide, and notes on the licences

under which the material is supplied.

Important – Where to begin

This section does not intend to reproduce background information about the project that is available in

other documents. In particular, for a thorough introduction to the Tokeneer system, the redevelopment

project, and the results of the work, we strongly recommend that all readers begin by reading the Project

Summary Report (document 81.1) or the paper from the ISSSE 2006 conference [2], which is available

from www.sparkada.com.

2.1 Release Structure and Content

The release material is stored below five top-level directories. The content of each directory is as

follows:

2.1.1 Documents – directory “docs”

This directory contains further subdirectories named for each document, consisting of the document‘s

part number in the project filing system and its name. For example, document 50.1 ―Formal Design‖

appears in subdirectory ―50_1_Formal_Design.‖

Where possible, the source format of each document is supplied. Most are in Microsoft Word format.

Documents containing the Z notation are in the LaTeX format. Documents where we are not able to

supply the source are in PDF format.

2.1.2 Tools – directory “tools”

This directory contains the Praxis Z styles and tools for LaTeX. The use of these is described in appendix

A.

2.1.3 Software source code – directory “code”

This directory contains a further six sub-directories as follows:

 Core. The source-code of the TIS Core software. Further subdirectories within here contain SPARK

Proof Checker scripts and ―PRV‖ files.

 Support. The source-code of the support software.

 Simulators. The source-code of the peripheral simulator.

http://www.sparkada.com/

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 6 of 31

 GuiDemo – the source code of the demonstration GUI.

 Test – 35 sub-directories each containing a test case from the System Test Specification. Also

contains the source-code of the ―makekey‖ utility.

 Testkeys – contains test token and enrolment data needed to start up and use the system.

2.1.4 Discovery – directory “discovery”

Provides a tutorial introduction to the SPARK Toolset, using Tokeneer as a worked example. The

material is provided in HTML format. The tutorial is self-explanatory – to begin, simply open the file

discovery/index.html in any standard web browser.

2.1.5 GPS updates – directory “gps_plug_ins”

Contains a version of the SPARK plug-in for use with the GPS environment. This version of the plug-in

has certain enhancements with respect to the plug-in that ships with GPS 4.3.1. For installation

instructions open the file discovery/index.html (referenced above) and select the ―installation page‖ link

in the ―Preamble‖ section.

2.2 Licences

2.2.1 Material developed by Praxis under contract

The material generated by Praxis under contract to the NSA is distributed under the terms of the

Technology Transfer Agreement (TTA) agreed by Praxis and the NSA. A copy of this agreement is

included with (and must always accompany) the release. This material consists of

 The ―Core‖ TIS Software (directory code/core)

 The ―Support‖ TIS Software (directory code/support)

 The project documents (directory docs, except document 31.2 (see below))

 The test cases derived from the system test specification (directory code/test)

 The test tokens and biometric data (directory code/testkeys)

2.2.2 Material supplied by NSA

The Protection Profile (document 31.2) was developed by SPRE Inc under a separate contract, and is

supplied ―as is.‖ As such, the Protection Profile is not subject to copyright protection as provided in 17

U.S.C. section 105, in line with section 4iii of the TTA.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 7 of 31

2.2.3 Other material developed by Praxis not under contract to the NSA

The demo GUI (directory "code/guidemo"), tools (directory "tools"), peripheral simulator (directory

"code/simulators") and Discovery Tutorial (directory "discovery") were developed by Praxis, but not under

contract to the NSA.

These items are supplied under the terms of the ―Two-Clause Simplified BSD Licence‖ (also known as

the ―FreeBSD Licence‖) See http://www.freebsd.org/copyright/freebsd-license.html for more details.

The GPS plug-in for SPARK (directory "gps_plug_ins") was developed by Praxis and AdaCore and is

subject to the terms and conditions of the GNU General Public License (GPL). See

http://www.gnu.org/copyleft/gpl.html for more details.

2.3 Document Structure and Recommended Reading

The relationship between the various documents and the project phases that they relate to is detailed in

section 3 of the Project Summary Report (document 81.1).

http://www.freebsd.org/copyright/freebsd-license.html

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 8 of 31

3 Changes from the original TIS

This section documents changes to TIS that have been made in preparing the public release since the

original release of the material to NSA in 2003.

In general, we have tried to keep changes to an absolute minimum, so the material is an accurate

reflection of that delivered within the original project‘s timescale and budget.

The following sections give a brief summary of changes:

3.1 Documents

All documents have been updated as follows:

 The names of now-retired NSA employees have been removed.

 The copyright notice(s) have been updated to comply with the NSA‘s TTA.

 Spelling mistakes discovered en-passant in reviewing these documents have been corrected.

 The company name has been changed from ―Praxis Critical Systems‖ to ―Praxis High Integrity

Systems‖.

Finally, the ―Code Verification Summary‖ (document 52.1) has been updated to reflect the results of

proving the code using release 8.1 of the SPARK toolset, as described in section 5.

3.2 Code

The code has been updated as follows:

 Copyright notices have been updated to comply with the NSA‘s TTA.

 The core TIS components were re-analysed using Release 8.1 of the SPARK toolset. This resulted in

a few minor improvements:

 A single defect (detailed in section 5.1 below) has been corrected.

 Explicit loop invariant assertions have been strengthened where necessary to add the ―A = A%‖

conjunct where a ―for‖ loop has a dynamic range.

 Comments justifying expected flow errors and warnings have been replaced by the equivalent

―accept‖ annotations. Analysis of the core software with SPARK Examiner 8.1 now passes with

zero unjustified warnings or errors.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 9 of 31

 Base-type assertions have been added to signed integer type declarations where necessary.

These are correct for the compilers mentioned in Appendix A. For other compilers and target

platforms, these might require modification.

 Redundant ―with‖ and ―use type‖ clauses identified by the compiler have been removed.

 Improvements to contracts and proof rules contributed by Phil Thornley (www.sparksure.com)

have been incorporated.

 The support software was also updated as follows:

 Copyright notices have been updated to comply with the NSA‘s TTA.

 The TCPIP package has been updated to use the local machine for connecting to the

peripheral simulators rather than SPRE‘s machine, which is no longer available.

 Redundant ―with‖ and ―use type‖ clauses identified by the compiler have been removed.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 10 of 31

4 Building the TIS Components

Appendix A lists the compilers that have been used to build and test the Tokeneer software for this

release.

There are four components that must be compiled: the core software, the peripheral simulator, and the

demo GUI.

For each component, a GNAT/GCC project file has been produced to automate compilation using the

―gnatmake‖ tool. The name of the project file matches the name of the main subprogram of each

component, with the extension ―.gpr‖.

This release only supports IA32/Windows at this time. Ports to other platforms should be

straightforward.

4.1 The Core Software

The core software is built with the commands

cd code\core

gnatmake –Ptis

This results in the binary tis.exe.

4.2 The Peripheral Simulator

The simulator is built with the commands

cd code\simulators

gnatmake –Psim

This results in the binary sim.exe.

4.3 The demo GUI

The project file for the GUI is called tis_main.gpr. This contains a reference to the directory where the

GtkAda bindings have been installed. This might have to be updated according to your local

environment.

The GUI is then built with the commands

cd code\guidemo\src

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 11 of 31

gnatmake –Ptis_main

This results in the binary tis_main.exe.

4.4 The makecard utility

The makecard utility is built with the commands

cd code\test

gnatmake –Pmakecard

This results in the binary makecard.exe.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 12 of 31

5 Reproducing the Code Proofs

This section assumes the reader is familiar with the SPARK language and toolset.

In preparing this release of Tokeneer, the SPARK analyses and proofs have been recreated using the

latest (release 8.1) SPARK toolset. This led to a few minor changes and improvements, including:

 Changes in the SPARK language facilitated some improvement in completeness of the proofs (i.e.

more proofs were automatically discharged). In particular, since release 7.2, SPARK has supported

a notation for reasoning about variables that control the bound of a dynamic ―for‖ loop. This meant

that some loop-invariant assertions could be strengthened.

 Since release 7.4, SPARK has included an ―accept‖ annotation that can be used to justify expected

warnings and errors. These annotations have been added as appropriate.

 The VC Generator has been significantly improved when it comes to VCs associated with arithmetic

overflow checks.

The Simplifier tool has also been improved in many ways since the original project was complete, so we

would also expect this to yield an improvement in proof automation using release 8.1. As such, some of

the manually-created Proof Checker scripts became redundant for this release, since the corresponding

proofs are discharged automatically by the new toolset.

5.1 Analysis using the SPARK tools on the command-line

The ―Core‖ directory contains the SPARK support and project files necessary to analyse the software. In

particular, a default switch file (spark.sw), warning control file (tis.wrn), index file (tis.idx), meta-file

(tis.smf) and configuration file (config.adb) are all supplied.

Static semantic and flow analysis of any one unit can be achieved by simply running the Examiner on

that unit body, such as:

spark configdata.adb

Analysis of the entire core software is achieved using the supplied meta-file:

spark @tis

This analysis should produce:

 No errors or warnings

 437 summarized warnings

 29 expected (justified) warnings

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 13 of 31

The theorem-prover is then run by the ―sparksimp‖ program, for example:

sparksimp /a /l (or sparksimp –a –l on UNIX platforms)

The status of the proof can be summarized by the ―POGS‖ tool. For example

pogs

Commands to re-generate and re-simplify all VCs are contained in the batch file ―runall.bat‖ in the

―core‖ directory. This results in a proof summary file ―core.sum‖ that closes with the overall summary:

VC summary:

Note: U/R denotes where the Simplifier has proved VCs using one or more user-

defined proof rules.

Total VCs by type:

 -----------Proved By Or Using------------

 Total Examiner Simp(U/R) Checker Review False Undiscgd

Assert or Post: 935 472 444(48) 0 19 0 0

Precondition check: 67 0 67(6) 0 0 0 0

Check statement: 36 0 36(25) 0 0 0 0

Runtime check: 1127 0 1126(2) 0 1 0 0

Refinement VCs: 212 182 26(24) 0 4 0 0

Inheritance VCs: 0 0 0 0 0 0 0

===

Totals: 2377 654 1699(105) 0 24 0 0

% Totals: 28% 71%(4%) 0% 1% 0% 0%

===================== End of Semantic Analysis Summary =======================

5.2 Analysis using the SPARK tools from GPS

The ―Core‖ directory also contains a file tis.gpr which is a Project File for the AdaCore GPS IDE. This sets

the toolset switches for GPS to the same values as in the spark.sw file described above. It contains:

with "win32ada";

with "..\common.gpr";

project Tis is

 for Source_Dirs use ("./**", "..\support");

 for Main use ("tis");

 for Languages use ("Ada", "Index", "Listing", "Metafile", "Siv", "Vcg");

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 14 of 31

 package Compiler renames Common.Compiler;

 package Builder renames Common.Builder;

 package Ide is

 for Default_Switches ("examiner") use

 ("/index_file=tis", "/listing=ls_",

 "/config=config.adb", "/warning_file=tis", "/noswitch",

 "/vcg", "/rules=lazy");

 for Default_Switches ("sparksimp") use ("/a", "/l", "/p=2");

 end Ide;

end Tis;

For more details on the format of the GPR file, see the GPS and GNAT documentation.

To analyse a single file, select that file in the GPS Editor Window, and do one of the following:

1 Select ―Examine File…‖ from the SPARK Menu.

2 Select ―Examine File…‖ from the contextual menu available from the right mouse button.

3 Press F8 on the keyboard.

The following screen-shot illustrates the first of these options. These have been reproduced using GPS

version 4.3.1 running on Windows. The Examiner‘s output summary can be seen in the ―SPARK Output‖

window highlighted below:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 15 of 31

To analyse the entire TIS core software, open the tis.smf meta-file in the GPS Editor, and select

―Examine metafile…‖ from the menu, like this:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 16 of 31

To generate VCs, add ―Generate VCs‖ to the Examiner switches on the Edit Project Properties dialog:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 17 of 31

and save the project file using the Project/Save All menu. Then, reanalyse using the meta-file as before.

To simplify all VCs, select any source file in the editor window, and select ―Simplify All‖ from the SPARK

menu, or press F10. The progress of SPARKSimp can be seen in the ―SPARKSimp Output‖ window:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 18 of 31

Finally, POGS can be run from the SPARK menu. The resulting core.sum file can be opened using the

File/Open dialog.

Currently, the Checker cannot be run from within GPS.

5.3 A defect is found…

When the Tokeneer code was reanalysed in preparation for the public release the POGS summary

revealed a single undischarged VC. Further investigation showed this to be in the subprogram

ConfigData.ValidateFile.ReadDuration.

The code in question concerns validation of an integer value that is read from a file, but is expected to

be in the range 0 .. 200 seconds before it is converted into a number of tenths of seconds in the range

0 .. 2000.

The offending undischarged VC is essentially:

H1: rawduration__1 >= - 2147483648 .

H2: rawduration__1 <= 2147483647 .

 ->

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 19 of 31

C1: success__1 -> rawduration__1 * 10 >= - 2147483648 and

 rawduration__1 * 10 <= 2147483647 .

The code is from line 222 of configdata.adb:

if Success and then

 (RawDuration * 10 <= Integer(DurationT'Last) and

 RawDuration * 10 >= Integer(DurationT'First)) then

This VC clearly has a counter-example. For instance, when RawDuration = 109, H1 and H2 are True, but

C1 is False. This reflects the possibility of an Integer overflow when multiplying by 10 before the range of

RawDuration is checked.

The correction to the code is trivial. If replaced by:

if Success and then

 (RawDuration <= Integer(DurationT'Last) / 10 and

 RawDuration >= Integer(DurationT'First) / 10) then

then all VCs discharge successfully.

This change has been applied to the TIS Core software for this release, although the original code has

been left ―commented out‖ for reference alongside the corrected section.

5.3.1 Root cause analysis

Why was this defect not discovered and reported during the original development?

The original project used the SPARK Examiner‘s ―rtc‖ switch to generate VCs – this generates VCs for

partial correctness and run-time errors but omits those side-conditions relating to Ada‘s

Overflow_Check. Previously, the SPARK toolset was limited in its capability to discharge these VCs, so

these were omitted from the original project.

Subsequently, the SPARK toolset has become far more capable with regard to overflow conditions,

through the use of the compiler-dependent configuration file, and the base-type assertion for integer

types. Consequently, we can now generate VCs using the ―vcg‖ switch which does include VCs for

overflow checks.

It is interesting to note that this defect was not discovered by any testing during the original project, or

any use or attempt to analyse the system since the initial delivery.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 20 of 31

5.3.2 Security impact of this defect

Firstly, there is a potential denial-of-service attack resulting from this defect – a malicious user holding

the ―security officer‖ role can deliberately terminate the TIS core software by supplying a malformed

configuration data file, rendering the system unusable.

More seriously, the software can be terminated in this fashion with the enclave door open.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 21 of 31

6 Running the TIS Demo GUI

The Tokeneer system can be run on a single machine using the TIS core software, peripheral simulator,

and demo GUI all running on the same machine.

The software is currently written to expect all files to appear in a directory ―C:\tokeneer\data‖. This can

be changed in code\guidemo\src\enclave_pkg.ads if you want to install the system somewhere else.

This directory needs to contain the following files:

 Four ―png‖ files supplied in code\guidemo*.png

 Eight token data files, supplied in code\testkeys\Admin*.dat (2 files) and code\testkeys\User*.dat

(6 files)

 The binaries of the three main TIS applications – tis.exe, sim.exe, and tis_main.exe – plus the

makecard.exe utility.

 17 DLL files required by the GtkAda and Gtk GUI components. These are obtained from the ―bin‖

directory of the GtkAda package that accompanies the GNAT compiler, as described in appendix A.

This totals 33 files. On our test machine, ―dir /oe‖ of c:\tokeneer\data results in:

Directory of C:\tokeneer\data

22/08/2008 11:55 2,683 AdminLogin2_p06.dat

22/08/2008 11:57 2,683 AdminLogout1_p07.dat

22/08/2008 12:01 2,684 UserEntry5_p04.dat

22/08/2008 12:01 2,683 UserEntry4_p03.dat

22/08/2008 11:59 2,684 UserEntry2_p02.dat

22/08/2008 11:58 2,684 UserEntry1_p01.dat

22/08/2008 11:58 2,692 UserEntry13_p07.dat

22/08/2008 12:02 2,684 UserEntry6_p05.dat

18/08/2007 08:51 605,333 libgdk-win32-2.0-0.dll

18/08/2007 08:51 166,177 libgdk_pixbuf-2.0-0.dll

17/08/2007 18:07 642,115 libglib-2.0-0.dll

17/08/2007 18:07 28,853 libgmodule-2.0-0.dll

17/08/2007 18:07 223,026 libgobject-2.0-0.dll

18/08/2007 08:52 3,170,609 libgtk-win32-2.0-0.dll

08/08/2008 16:32 4,868,618 libgtkada-2.10.dll

07/04/2004 11:47 44,100 libintl-1.dll

17/08/2007 18:29 522,940 libcairo-2.dll

17/08/2007 18:36 262,784 libpango-1.0-0.dll

17/08/2007 18:36 62,334 libpangocairo-1.0-0.dll

17/08/2007 18:37 88,626 libpangowin32-1.0-0.dll

07/10/2001 01:52 171,008 libpng-3.dll

07/04/2004 11:46 58,077 libz.dll

07/04/2004 11:47 843,776 iconv.dll

17/08/2007 18:22 142,762 libatk-1.0-0.dll

16/01/2007 12:27 131,784 libjpeg6b.dll

22/08/2008 18:33 1,125,993 sim.exe

22/08/2008 18:33 2,118,000 tis.exe

22/08/2008 18:33 1,554,257 tis_main.exe

22/08/2008 10:24 810,959 makecard.exe

22/08/2008 15:36 159 light_green.png

22/08/2008 15:34 215 dark_red.png

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 22 of 31

22/08/2008 15:35 159 dark_green.png

22/08/2008 15:36 161 light_red.png

 33 File(s) 17,664,302 bytes

6.1 Preparing enrolment data

The original system assumed that the machine has a floppy disk for loading enrolment and

configuration data. Luckily, the system will recognize a USB FLASH drive as a removable disk and work

just as well. To start the system, enrolment data must be supplied on a FLASH drive or a floppy disk. The

distribution includes three enrolment data files, in the directory code\testkeys.

Depending on the test case to be run, you will need one of three files installed on a single drive, which

must be otherwise empty.

The files enrol1.dat and enrol2.dat are needed only for the test cases Enrol1 and Enrol2 respectively.

The enrolment file enrol3.dat can be used for the test case Enrol3 or to start the system up for general

use.

6.2 Starting the GUI

Insert a USB FLASH drive or a floppy disk containing the enrol3.dat file. This should be the first (i.e.

closest to ‗A‘) removable drive.

The GUI is started first by running the tis_main application from the directory above. In a Windows Shell:

C:

cd \tokeneer\data

.\tis_main

This results in a small window with four buttons:

Press the ―Start Simulators‖ button. This should result in a new Shell Window opening running the

peripheral simulator application. You should see:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 23 of 31

and a small dialog asking you click ―OK‖ when the window above has appeared:

Click ―OK‖.

Now click on ―Connect to Simulator.‖ This should open the Demo GUI‘s main dialog:

Now click on ―Start TIS‖. You should see a final acknowledgement box:

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 24 of 31

and the main TIS core software running in another Shell Window:

If all is well, you should see the message ―WELCOME TO TIS‖ and both the Door and Audit Log Alarms

showing ―OK‖.

If the message ―PLEASE INSERT ENROLMENT DATA FLOPPY‖ persists, then the system has not been

able to find a floppy or other removable drive containing a suitable enrolment data file.

6.3 Stopping the System

For reasons unknown, the ―Exit‖ button on the GUI is not effective. To stop the system:

 Type ―Control-C‖ in the TIS Core Software Window. It should disappear.

 Type ―Control-C‖ in the Simulator Windows. It too should disappear.

 Type ―Control-C‖ in the Shell Window where you started tis_main. The GUI window should disappear

and terminate at that point.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 25 of 31

6.4 Resetting the System Enrolment data, Keystore and Log

The system keeps a cache of known enrolment data, keystore information and log data in two

subdirectories ―System‖ and ―Log‖. To reset the system to its initial state, simply remove these two

directories and their contents.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 26 of 31

7 Challenges with TIS

The Tokeneer project had a well-defined scope and budget that leave several topics open to further

work and investigation. This section suggests a list of ―challenges‖ that others might choose to pursue.

In no particular order:

7.1 Remove dependence on floppy disks

In 2003, it seemed reasonable to expect machines to have a floppy disk. This is no longer the case.

Challenge: Re-engineer the core and support software to remove the need for a floppy disk for

enrolment and configuration data.

7.2 Remove dependence on Windows

Several parts of the software explicitly depend on the Win32 API.

Challenge: Remove all dependence on Win32 and produce a ―port‖ of the System to other systems such

as GNU/Linux or OS X.

7.3 Remove “Proof by Review”

The ―Proved by Review‖ (PRV) files are a weak point in the verification.

Challenge: Remove these and produce Checker proof scripts for all VCs.

7.4 Alternative theorem prover support

Release 8.1 of the SPARK tools manages to prove 2513 out of 2623 Verification Conditions

automatically.

Challenge: Produce a tool to translate SPARK‘s FDL language into a format accepted by an alternative

theorem prover of your choice. Demonstrate automated proof of all VCs.

7.5 Proof of Security Properties

Within the scope of budget of the original project, we were only able to produce a formal proof of

Security Property 3, and a proof of one aspect of Security Property 1, as described in Section 3.1 of the

Code Verification Summary report.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 27 of 31

Challenge: Complete proofs of all remaining security properties, at the level of the function specification

(Z), formal design (Z), or code (SPARK), or possibly all of the above. Can these proofs also be

automated? Can a formal refinement between all 3 levels also be established?

7.6 Hardware

The use of the simulated peripherals was a necessity in the original project, owing to the lack of access

to the real Tokeneer hardware.

Challenge: produce a hardware mock-up of the Tokeneer system (a door, latch, alarm, token reader,

fingerprint reader and so on) suitable for university teaching and research. Interface this hardware to

some suitable low-cost single-board embedded computer, and re-write the Tokeneer interfacing and

support software (in SPARK) to run on this hardware.

7.7 Re-implement using alternative languages and technologies

Designers and users of other specification languages, programming languages and verification tools

could choose to re-implement the entire system, changing one or more of the notations and tools used.

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 28 of 31

A Tools Inventory

This section lists the various tools that are required to build and analyse the TIS software.

In this section the name ―<tisroot>‖ refers to the directory where you have installed the TIS distribution.

A.1 Documents

The majority of documents have been prepared using Microsoft Word 2000 (Build 9.0.6926 SP3). Other

versions of Word may well suffice.

Three documents (The formal specification, formal design, and security properties) contain the Z

notation. These documents require the LaTeX text formatting system, the Praxis Z styles, the FUZZ

typechecker, and the Praxis Z tools.

A.1.1 LaTeX

In preparing this release of the Tokeneer material, MikTex 2.7 for Windows has been used, obtained

from http://miktex.org/2.7/Setup.aspx.

We installed MikTex in c:/Program Files/MikTex/ - this is referred to as ―<texroot>‖ in subsequent

sections.

A.1.2 Praxis Z styles

These are contained in the TIS distribution in the directory ―<tisroot>/tools‖.

Create a directory <Texroot>/tex/latex/praxis, then copy *.cls and *.sty from <tisroot>/tools to

<Texroot>/tex/latex/praxis.

Open the MikTex 2.6 ―Settings‖ Utility (from the Windows Start Menu), and click the ―Refresh FNDB‖

button. Click ―OK‖ to exit the Settings Utility.

A.1.3 FUZZ

FUZZ is a type-checker for Z. We used the 2007-09-11 release of FUZZ, obtained from

http://spivey.oriel.ox.ac.uk/mike/fuzz/

FUZZ is supplied in source form so you‘ll need a C compiler (I used GNAT Pro 6.1.2), plus up-to-date

builds of the make, flex, bison, gawk, and cpp tools. On Windows, we use the Cygwin versions of these

tools from www.cygwin.com.

Once you have compiled the FUZZ binary, the FUZZ fonts and styles must also be installed, as follows:

http://miktex.org/2.7/Setup.aspx
http://spivey.oriel.ox.ac.uk/mike/fuzz/

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 29 of 31

Create 2 more directories: <Texroot>/fonts/source/local and <Texroot>/tex/latex/fuzz

Find the ―tex‖ subdirectory within the FUZZ installation. From this directory, copy *.mf to

<Texroot>/fonts/source/local and *.sty to <Texroot>/tex/latex/fuzz.

Refresh the MikTex FNDB once again, as described in section A.1.2 above.

Set an environment variable called ―FUZZLIB‖ to be the full path-name of the ―fuzzlib‖ file within the

FUZZ ―src‖ directory. For example, in our environment, FUZZLIB is set to ―d:\sparkdev\tis\fuzz\fuzz-

2007-09-11\src\fuzzlib‖.

A.1.4 Praxis Z tools

Praxis uses two tools to produce cross-reference and index information for Z/LaTeX documents. These

are called ―zlat2‖ and ―zmakeindex‖ respectively, both of which are written in PERL.

PERL 5.10.0 has been successfully used in reproducing the TIS material.

These tools are supplied in the directory <tisroot>/tools.

The ―makefiles‖ for each of the Z documents sets an environment variable ―PXTOOLDIR‖ to point at the

directory where these tools reside. You will need to alter these makefiles as appropriate.

A.1.5 Reproducing the Z documents

The directories that contain each of the 3 Z documents contain a makefile with two targets ―typecheck‖

and ―typeset‖.

The makefiles assume that fuzz, latex, and perl are all on your ―PATH‖. They also use ―cp‖ and ―rm‖

commands. On Windows, we use the Cygwin versions of these tools from www.cygwin.com.

To typecheck a document, do ―make typecheck‖.

To typeset, do ―make typeset‖. This results in a postscript file. These have been passed through Adobe‘s

Acrobat Distiller to produce the PDF versions of the documents.

A.2 The SPARK Toolset

The TIS Core software has been analysed with release 8.1 of the SPARK toolset, and also with the most

recent ―wavefront‖ release of the toolset at the time of writing.

Praxis is committed to supplying and supporting the SPARK toolset for those using the TIS material for

teaching and/or research. Please go to libre.adacore.com for details of how to obtain the SPARK toolset.

http://www.cygwin.com/

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 30 of 31

A.3 Compilers

The TIS software was designed to run on IA32/Windows.

In preparing the TIS release, we have compiled and tested the TIS software using the following Ada

compilers:

GNAT GAP Edition 2008 on Windows XP SP2 – academic faculty can obtain the GNAT compiler with full

support from AdaCore. Please see www.adacore.com/home/academia for details.

GNAT GPL Edition 2008 on Windows XP SP2 – available from libre.adacore.com

GNAT GPL Edition 2009 on Windows XP SP2 – also from libre.adacore.com

GNAT Pro 6.1.2 on Windows XP SP2 – available from AdaCore. See www.adacore.com

GNAT Pro 6.2.1 on Windows XP SP2 – as above.

You‘ll also need the Win32Ada bindings package, and (to rebuild the Demo GUI) the GtkAda package.

Both are available from AdaCore. Either the GAP, GPL, or Pro editions of these packages should be

used to match the compiler.

GNAT Pro 6.1.2 was also used to build the FUZZ tool.

http://www.adacore.com/home/academia
http://www.adacore.com/

Tokeneer ID Station

Overview and Reader's Guide

S.P1229.81.8

Issue: 1.4

 Page 31 of 31

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.

Copyright Praxis High Integrity Systems Limited 2009. All rights reserved.

Changes history

Issue 0.1 (25th August 2008): First draft issue for review.

Issue 0.2 (4th September 2008): Second draft after review.

Issue 0.3 (10th September 2008): Third draft following review within SPARK Team.

Issue 0.4 (11th September 2008): Updated references for compilers.

Issue 1.0 (16th September 2008): Definitive issue following review.

Issue 1.1 (23rd April 2009): Updates for SPARK Toolset 8.1.x.

Issue 1.2 (24th April 2009): Updated following review S.P0468.7.143.

Issue 1.3 (18th May 2009): Updates for Tokeneer Discovery.

Issue 1.4 (20th May 2009): Definitive issue following review.

Changes forecast

None.

Document references

1 Correctness by Construction—Developing a Commercial Secure System. Roderick Chapman and

Anthony Hall. IEEE Software Jan/Feb 2002.

2 Engineering the Tokeneer Enclave Protection Software. Janet Barnes, Rod Chapman, Praxis High

Integrity Systems. Randy Johnson, National Security Agency. David Cooper, River River Limited.

Bill Everett: SPRE Inc. Proceedings of the IEEE International Symposium on Secure Software

Engineering (ISSSE) 2006.

3 See http://www.fmnet.info/gc6/

	Introduction
	Tokeneer project time-line
	Acknowledgements
	List of Acronyms

	TIS Public Release Navigation Guide
	Release Structure and Content
	Documents – directory “docs”
	Tools – directory “tools”
	Software source code – directory “code”
	Discovery – directory “discovery”
	GPS updates – directory “gps_plug_ins”

	Licences
	Material developed by Praxis under contract
	Material supplied by NSA
	Other material developed by Praxis not under contract to the NSA

	Document Structure and Recommended Reading

	Changes from the original TIS
	Documents
	Code

	Building the TIS Components
	The Core Software
	The Peripheral Simulator
	The demo GUI
	The makecard utility

	Reproducing the Code Proofs
	Analysis using the SPARK tools on the command-line
	Analysis using the SPARK tools from GPS
	A defect is found…
	Root cause analysis
	Security impact of this defect

	Running the TIS Demo GUI
	Preparing enrolment data
	Starting the GUI
	Stopping the System
	Resetting the System Enrolment data, Keystore and Log

	Challenges with TIS
	Remove dependence on floppy disks
	Remove dependence on Windows
	Remove “Proof by Review”
	Alternative theorem prover support
	Proof of Security Properties
	Hardware
	Re-implement using alternative languages and technologies

	Tools Inventory
	Documents
	LaTeX
	Praxis Z styles
	FUZZ
	Praxis Z tools
	Reproducing the Z documents

	The SPARK Toolset
	Compilers

